TPS In-Flight Health Monitoring Project
Progress Report

Chris Kostyk, Lance Richards, Larry Hudson
NASA Dryden Flight Research Center
Edwards, CA

William Prosser
NASA Langley Research Center
Hampton, VA

NNWG 2006 Annual Meeting
National Institute of Standards and Technology Boulder, CO
February 28 – March 2, 2006
Outline

• Project Background, Goals, Approach
• Accomplishments
 – Testing Approach
 – Sensor / System Testing & Development
 – Thermal Analysis
• Conclusions / Current Efforts
Background

- Space vehicles utilize TPS to mitigate severity of re-entry heating
- TPS health monitoring is a necessary advancement for safety of flight
- New Approach – embed lightweight, sensitive, fiber optic strain and temperature sensors within the TPS
 - Temp / strain monitoring
 - Damage detection
Background

- Fiber Bragg Grating (FBG) sensors can be highly multiplexed using with LaRC demodulation architecture
- Hundreds of FBG sensors can be placed at variable intervals along the length of fiber
- FBG sensors max service temperature approximately 600°F
- FBG system currently limited to 4-5 sps (≈ 10 sps by summer 2006)
 - Acceptable for temperature / strain monitoring
 - Real-time damage detection (long term goal)
Goals

• Develop and demonstrate prototype TPS health monitoring system
• Develop a thermal-based damage detection algorithm
• Characterize limits of sensor / system performance
 – Determine fiber sensitivity and accuracy beneath tiles
 – Characterize the transient thermal response differences between damaged and undamaged TPS
 – Determine optimal fiber placement
 – Determine required sensor density
• Develop a methodology transferable to new designs of TPS health monitoring systems
Project Approach

Perform Setup / System Tests
- Discern significant physics present in test setup
- Validate model
- Determine sensor / system limits (response, accuracy, etc.)

Validate Tests with Thermal Analysis
- Utilize MSC’s Patran Thermal and generate computational model
- Determine physics
- Potential algorithm development application

Generate transient thermal response characteristics database for algorithm development and implementation

Develop algorithm for use with system
Testing Approach

<table>
<thead>
<tr>
<th>System Component</th>
<th>Feature(s) Tested</th>
<th>Physics / Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Article</td>
<td>Test article material</td>
<td>Material property data uncertainty</td>
</tr>
<tr>
<td></td>
<td>Test article design</td>
<td>Uniformity/direction of heat transfer modes</td>
</tr>
<tr>
<td></td>
<td>Exterior insulation</td>
<td>Uniformity/direction of heat transfer modes</td>
</tr>
<tr>
<td></td>
<td>Interior insulation</td>
<td>Uniformity/direction of heat transfer modes</td>
</tr>
<tr>
<td></td>
<td>Emissivity/Transmissivity coatings</td>
<td>Uniformity/direction of heat transfer modes</td>
</tr>
<tr>
<td>Test Setup</td>
<td>Supports</td>
<td>Undesired conduction</td>
</tr>
<tr>
<td></td>
<td>Profile input method</td>
<td>Surface temperature/rate precision</td>
</tr>
<tr>
<td></td>
<td>Thermal control</td>
<td>Control authority and precision across different test articles</td>
</tr>
<tr>
<td></td>
<td>Data acquisition system</td>
<td>TC data veracity</td>
</tr>
<tr>
<td></td>
<td>Heating element</td>
<td>Uniformity & spectral properties of lamp/test article</td>
</tr>
<tr>
<td>FBG Sensor System</td>
<td>FBG Sensor System</td>
<td>Verify optimal placement of FBG in bondline</td>
</tr>
</tbody>
</table>
Setup/System Testing

Fused Silica

Type-K TC

RTV

F.O.
Setup / System Testing

- Experimented with setup for improved model comparison (48 tests)
 - Test article insulation
 - Gap insulation, seam covers
 - Conduction paths (supports, wires, etc.)
 - Profile input, repeatability
 - Data acquisition system
 - Monolith vs. Compartmentalized articles
 - Titanium vs. Ceramic
 - Test article cover
 - Test article coatings
 - IR Camera, & Quartz vs. GRHT
 - Alumina Oxide & Shuttle Tile
Setup / System Testing

- Validated FBG for use as TC when bonded with RTV to bottom surface of ceramic
- Validated FBG for use as TC when bonded with RTV between ceramic and Al substrate
 - Successful compensation of strain transfer from Al substrate through RTV layer
Thermal Analysis

- Videos → Tutorials → Textbook Solution Comparison
- Validated by LTA & SPAR codes
- Model system, refine
 - Simplify to monolith, add materials
 - Try simple, known materials
 - Perform mat. prop. perturbation study
 - Investigate mat. prop. thermal variation effects
 - Examine B.C. effects
 - Create performance envelope (10K, 0.1Cp, etc.)
 - Study solution convergence/quality
 - mesh refinement
 - FD vs. FEM
 - 1D/2D/3D models
 - Simulate possible additional physics

Patran vs. Textbook Solution

-10
0
10
20
0 15 30 45 60
Time (days)
Temperature (C)

Text
PTherm Run1
PTherm Run2
 Thermal Analysis

Outcomes of Patran modeling effort:

• 65 Patran models
• Identified underlying physics in test materials and established confidence in test setup
• Successfully calibrated computational and experimental results
• Revealed bugs in Patran Thermal
 – FD does not work for transient (probably others)
 – Inability to run a 1D analysis with an LBC on the end of a bar element
Thermal Analysis Results

Comparison of Best Test/Model Results and Simulated Transmissivity Models

- Monolith Test
- Patran (orig)
- Sim Trans (1.0)
- Sim Trans (0.5)
- Sim Trans (0.1)
- GC+&T&BB+

Temperature (deg F) vs. Time (sec)
Conclusions & Current Efforts

- Established confidence in understanding of both test setup and model
- Validated system / sensor performance in simple TPS structure
- Completed initial system testing, ready to begin algorithm development effort to complete prototype
- Generating damaged thermal response characteristics database from tests with varying levels of fidelity
- Developing test plan for integration testing of proven FBG sensors in simple TPS structure with proven AE sensors on NASA / CSIRO’s Concept Demonstrator
- Developing partnerships to apply technology
Questions?