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Abstract

The evolving role of computational aerothermodynamics (CA)
within NASA over the past 20 years is reviewed. The presenta-
tion highlights contributions to understanding the Space Shuttle
pitching moment anomaly observed in the first shuttle flight,
prediction of a static instability for Mars Pathfinder, and the
use of CA for damage assessment in post-Columbia mission-
support. In the view forward, several current challenges in com-
putational fluid dynamics and aerothermodynamics for hyper-
sonic vehicle applications are discussed. Example simulations
are presented to illustrate capabilities and limitations. Opportu-
nities to advance the state-of-art in algorithms, grid generation
and adaptation, and code validation are identified.

Introduction

Computational fluid dynamics (CFD) is the numerical simula-
tion of flowfields through the approximate solution of the gov-
erning partial differential equations for mass, momentum, and
energy conservation coupled with the appropriate relations for
thermodynamic and transport properties. Aerothermodynam-
ics is the branch of fluid dynamics that focuses on the effects
of thermodynamic and transport models on aerodynamics and
heating. It is especially focused on conditions of hypersonic
velocities where the energy content and exchange between ki-
netic, internal, and chemical modes in the flow precludes the
otherwise common use of calorically perfect gas assumptions.
Computational aerothermodynamics is therefore defined in ex-
actly the same manner as CFD, with the added emphasis that
high temperature gas effects on pressure, skin friction, and heat
transfer are included in the numerical simulation. The funda-
mental role of computational aerothermodynamics is the simu-
lation of aerodynamic forces and heating for external and inter-
nal high speed flows. Reference [21] presents a review of recent
applications for access to space and planetary missions.

The evolving capabilities of computational aerothermodynamic
(CA) simulation and its role in various NASA programs is re-
viewed. The review provides context for discussion of new re-
search and development in CA. Emphasis is placed on the more
recent role of finite-volume, (pseudo) time-dependent Navier-
Stokes solvers using upwind discretizations to capture strong
shocks. Within NASA, these schemes began displacing conven-
tional discretizations (MacCormacks method or central differ-
ence methods with second-order implicit and fourth-order ex-
plicit smoothing and shock fitting) in the late 1980’s. Space-
marching, Parabolized Navier-Stokes methods were supplanted
as well when more powerful computers became available such
that the inherent restrictions to attached flow and spatial step
size no longer had to be endured. It is interesting to note that
the predominant algorithms of the 1970’s for heating analyses
(viscous-shock-layer (VSL) and boundary-layer equation solu-
tions tied to inviscid surface pressure distributions are seeing a
resurgence as engineering tools to provide quick running, mul-
tiphysics simulations.

The first three sections of this paper highlight examples where
CA simulations offered unique insight to an important prob-

lem within NASA regarding hypersonic flight environment. In
the first two examples - a shuttle orbiter body-flap anomaly on
STS-1 and a Mars Pathfinder static instability - CA simulations
demonstrated that subtle changes in gas chemistry can have
large effects on aerodynamics. Furthermore, the ability of CA
to quantify the distribution of pressure and shear provided the
best understanding of the integrated effects measured in flight
or ground-based tests. In the third example - Columbia acci-
dent investigation - CA provided data early in the investigation
to establish mass and energy flux into the wing as a function
of breach size and local boundary-layer thickness as well as the
extreme heating environments on the downstream edge of the
breach. These breach simulations demonstrated that CA could
respond in a timely manner to analyze damage to the outer-
mold-line and evolved to inclusion of CA within the Damage
Assessment Team that stands by for support in every mission
today. All of these examples served to enhance the perception
of CA as an ever stronger tool for understanding the environ-
ment of a hypersonic vehicle.

Even with these and other successes much advance to the state-
of-art (SOA) is still required. A brief review of current SOA fol-
lows in the next section. Too often, a new capability is inextri-
cably hardwired throughout a single code or is demonstrated for
an idealized test problem but is never matured for routine use by
the larger community. A reference to SOA herein refers to capa-
bilities in codes accepted by project offices for vehicle design.
A recent simulation of a flexible ballute - deployable aerobrake
- is provided to show specific advances required in both numeri-
cal and physical model capability. It provides context to say this
is what we can do now and this is what we still need to be able
to do. CA is a very broad field and because of the difficulty in
obtaining data at hypervelocity conditions in ground-based fa-
cilities it becomes an especially important tool for establishing
aerothermodynamic environments. It is hoped that these exam-
ples of CA evolution within NASA provide helpful perspective
for researchers entering this field.

Pitching Moment Anomaly in STS-1 (Reference [37])

On the entry phase of its first flight in April 1981, desig-
nated Space Transportation System (STS)-1, the Shuttle Or-
biter exhibited hypersonic pitching moment characteristics sig-
nificantly different from those derived from preflight predic-
tions. The vehicle’s bodyflap had to be deflected to an angle
over twice that predicted prior to the flight in order to main-
tain trim. The aerodynamic performance characteristics of the
Orbiter had been determined by extensive testing in ground-
based facilities. Because real-gas effects could not be fully sim-
ulated in ground-based facilities, some analytical assessments
were made for real-gas effects on Orbiter aerodynamics. These
analytical assessments of real-gas effects were not viewed with
much confidence (pre-1981), and thus they were applied to the
uncertainty in the aerodynamics of the vehicle rather than to
its expected aerodynamic performance. Because of the large
uncertainty assigned to these predicted aerodynamics in the hy-
personic speed range, ample control power was built into the
system to overcome the anomaly in the flight pitching moment.
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Figure 1: Computed windward centerline pressure distribution.

Still, the large bodyflap deflection required to trim the vehicle
raised concerns for the structural and thermal integrity of the
bodyflap.

The inability to predict the hypersonic pitching-moment char-
acteristics of the Orbiter, despite extensive wind-tunnel testing,
was a fundamental concern. The pitching-moment anomaly
had been attributed to a number of phenomena including vis-
cous effects, diminished bodyflap effectiveness, Mach number
effects, and real-gas effects. Contemporary SOA analyses ei-
ther did not include gas chemistry nor have the ability to pre-
dict separated flow in front of a deflected body-flap [36] or
were forced to make approximations to vehicle geometry and
gas chemistry due to limitations imposed by computer hard-
ware [23]. The shuttle aerodynamic databook was corrected
based on flight data. Still, a more definitive answer from CA
required increased sophistication and robustness of flow solvers
and a several-order-of-magnitude increase in computer power
available in the early 1990’s in order to better define the Orbiter
configuration and to utilize proper gas chemistry models.

CA simulations on a modified Orbiter configuration were used
to establish that high-temperature gas effects in a seven-species
air model account for the different aerodynamic characteristics
of the Orbiter at wind tunnel and flight conditions. The aero-
dynamics of the basic body and the bodyflap were investigated
independently, and it was shown that most of the increment can
be attributed to the basic body. The bodyflap was shown to be
as much as 1.5 times more effective in flight than in the wind
tunnel, which contradicts assertions that the Orbiter pitching-
moment “anomaly” was caused by reduced bodyflap effective-
ness in flight. In fact, had the bodyflap exhibited the same ef-
fectiveness in flight as in the wind tunnel, the vehicle may not
have trimmed at all. All evidence from CA analyses led to the
conclusion that the so-called “’pitching-moment anomaly” that
occurred on STS-1 was caused by the inability of perfect-gas
ground-based facilities to simulate the real-gas chemistry en-
countered by the vehicle in hypersonic flight. The aerodynamic
increments between wind-tunnel and flight conditions in Figure
1 is attributable to a relatively small pressure differential acting
on an expansion surface at the aft end of the vehicle, which has
a very large surface area. The net effect of this difference on
pitching moment is shown in Figure 2 in which the flight sim-
ulation (closed circles) is in agreement with derived flight data
(open squares).

Notable restrictions in the simulation from that period included
a post-processing approximation to include effects of elevon
gaps and near wake flow because the complexity of resolving
these features strained available resources. As it was, the nose
to trailing edge simulation was implemented in a block march-
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Figure 2: Comparison of predicted, measured, and computed
pitching moment coefficient over the hypersonic portion of the
STS-2 entry trajectory.
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Figure 3: Pitching moment coefficient vs velocity and angle of
attack for Mars Pathfinder.

ing mode that required more user intervention in selection of
sub-domains that is no longer required in equivalent simulations
today.

Static Instability in Mars Pathfinder (References [20, 8, 18])

CA was used to develop the Mars Pathfinder acrodynamic data-
book in 1995. It leveraged some ground-based aerodynamic
data from the earlier Viking tests (same forebody shape) but it
needed to focus on angle-of-attack near zero because Pathfinder
was spin-stabilized whereas Viking flew at 11 degrees with re-
action control system jets. As the matrix of simulations was
being completed a surprising result was obtained in the pitch-
ing moment coefficient, C,,. At small angles of attack C,, was
positive (and consequently C;, o, Was positive and destabilizing)
at two regions in velocity space (= 7.0 km/s and =~ 3.5 km/s)
as evident in the two folds in Figure 3. An investigation was
launched [20] to explain this behavior and ask what happens at
these velocities that is not in play at other velocities.

The major conclusions of that study showed that as the Mars
Pathfinder probe descended through the Martian atmosphere
the minimum value of the postshock effective 7y (ratio of spe-
cific heats) first decreased from frozen gas chemistry values
(= 1.333) to equilibrium values (1.094) corresponding to a
velocity of 4.86 km/s. As the probe continued to decelerate
through an equilibrium postshock gas chemistry regime, the
value of 7y increased again, until reaching its perfect-gas value
of ~ 1.333 at parachute deployment (0.42 km/s). At small an-
gles of attack (o0 < 5 deg) the sonic line location shifts from



0.005

flight data
— — — — . |POST simulation

LI —

0.004

L —

0.003

AJ/A,

T T T

e
\wl‘ﬂ

\

|
0.001 g ,1' \|r“\H ”Hn! i \‘ ‘H
‘VW\,H‘H“‘ My ‘“\'“H i”l“ I
iJH” I N' \ \

|\\u||\|\\“\l\l\\\\\\\\l\l\\l
2000 4000 6000 8000
s

o3

Figure 4: Comparison of Ay /A4 as measured in flight and as
simulated with the POST code for the reconstructed atmosphere
using the CFD derived database for the aerodynamic coeffi-
cients for Mars Pathfinder.

the shoulder to the nose cap and back again on the leeside sym-
metry plane because of the change in 7y for the cone half-angle
of 70 deg. The sonic line shift is accommodated by a bubble of
subsonic flow behind the shock that grows to connect the corner
to the spherical nose cap.

Pressure distributions on the cone frustum approaching the
shoulder tend to be very flat when the sonic line sits forward
over the spherical nose. Effects of the expansion over the shoul-
der can only be communicated upstream through the subsonic
portion of the boundary layer. In contrast, pressure distributions
on the cone frustum approaching the shoulder tend to be more
rounded when the sonic line sits on the shoulder, exhibiting a
more pronounced influence of the expansion on the upstream
flow. In general, windside pressures exceed leeside pressures on
the cone frustum, producing a stabilizing moment that pitches
the probe back to zero angle of attack. However, the behavior
of the pressure distribution in the vicinity of the shoulder sig-
nificantly influences the pitching-moment coefficient because
of the relatively larger moment arms and surface area athe edge
of the probe as compared to the inboard nose and frustum re-
gions. For the Mars Pathfinder probe at 2-deg angle of attack,
the flat, leeside pressures approaching the shoulder (when the
sonic line sits over the nose) can exceed the rounded windside
pressures approaching the shoulder (when the sonic line sits
over the shoulder). The net effect of this crossover distribution
near the shoulder tends to pitch the probe to higher angles of at-
tack. The overall balance (crossover-point location) is sensitive
to both freestream conditions and the gas chemistry.

Therefore conditions for a positive, destabilizing moment co-
efficient derivative occur twice in the Mars Pathfinder mission.
The first occurence (7.5 > Voo > 6.5 km/s, 51 > h > 37 km,
vicinity of peak heating for this trajectory) results from the
translation in the sonic-line location as a function of gas chem-
istry changing from nonequilibrium to equilibrium. The second
occurrence (4.0 > Vo, > 3.1 km/s, 25 > h > 2 km) results from
the translation in the sonic-line location as a function of de-
creasing flow enthalpy in an equilibrium gas chemistry regime.

The occurrence of a static instability at two different times dur-
ing entry was considered a serendipitous event for CA. The
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Figure 5: View of idealized, vented chamber under breach on
wing leading edge with pressure distributions in cut plane span-
ning exterior and interior domains for Columbia Accident In-
vestigation.

static instability provides a clearly defined signal on the ac-
celerometers to validate the simulation. Furthermore, the ef-
fect is a sensitive function of the computed pressure distribu-
tions as a function of gas chemistry; consequently a prediction
of the event presents an important accomplishment in the val-
idation of CA. The validation payoff came after a successful
mission in July 1997 as shown in Figure 4 where the predicted
accelerations using the CA database are compared to the flight
accelerometer measurements. While there is a slight shift in ve-
locity space between the predicted and measured onset of the
static instability its occurrence is clearly evident. More detailed
post-flight evaluations are available in Reference [18].

Columbia Accident Investigation (Reference [16])

STS-107, Columbia, and its crew of seven astronauts were lost
on entry on February 1, 2003. According to the Columbia Ac-
cident Investigation Board (CAIB) report [14], it “re-entered
Earth’s atmosphere with a pre-existing breach in the leading
edge of its left wing in the vicinity of Reinforced Carbon-
Carbon (RCC) panel 8. This breach, caused by the foam strike
on ascent, was of sufficient size to allow superheated air (proba-
bly exceeding 5,000 degrees Fahrenheit) to penetrate the cavity
behind the RCC panel.” In the weeks immediately following
the accident this root cause was suggested by films of the foam
strike but intensive investigation was required to build evidence
that the timeline of various recorded events was consistent with
an initial breach condition. To this end, a matrix of CA solutions
using a 5-species air model was generated to provide a nominal
baseline for assessing various breach sizes and locations.

A baseline solution for CFD Point 1 (Mach 24) in the STS-107
accident investigation was modified to include effects of holes
through the leading edge into a vented cavity. The simulations
were generated relatively quickly and early in the investigation
(March 28, 2003 to April 10, 2003) by making simplifications
to the leading edge cavity geometry using a grid morphing tool
that had originally been developed to do quick assessments of
RCS jet locations. These simplifications in the breach simula-
tions enabled: (1) a very quick grid generation procedure; (2)
high fidelity corroboration of jet physics with internal surface
impingements ensuing from a breach through the leading edge,
fully coupled to the external shock layer flow at flight condi-
tions; and (3) mass and energy inflow rates into the wing as a
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Figure 6: Total enthalpy in vicinity of breach indicating level of
ingestion of the external boundary layer.

function of breach size to feed other analyses.

Figure 5 shows the pressure distributions in a cut plane that is
approximately orthogonal to the wing leading edge over a two-
inch hole into the wing. The cut plane extends into a vented
chamber within the wing into which flow hot gasses from the
external shock layer. The grid used to define the walls of the
chamber are shown as well. These simulations provided early
evidence that the flow through a two-inch diameter (or larger)
breach enters the cavity with significant retention of external
flow directionality. As seen in Figure 6 a normal jet directed
into the cavity was not an appropriate model for these condi-
tions at CFD Point 1 (Mach 24). The breach diameters were
of the same order or larger than the local, external boundary-
layer thickness. High impingement heating and pressures on the
downstream lip of the breach were also computed. It is likely
that hole shape would evolve as a slot cut in the direction of the
external streamlines. In the case of the six-inch diameter breach
the boundary layer is fully ingested.

The role of CA in mission support has been profoundly ad-
vanced as a consequence of the accident investigation. Prior to
Columbia there was no available matrix of CA solutions span-
ning the trajectory. Post Columbia missions utilize a repository
of flowfield solutions in standby mode for use in damage as-
sessment. CA teams are on call to morph damage sites into
archived nominal solutions and provide data to complement the
suite of engineering tools that are the backbone of the damage
assessment process. Morphed solutions are completed within
18 hours of the delivery of the damage shape and location.

The role of CA in the Damage Assessment Team has also accen-
tuated deficiencies in the current SOA. CA cannot predict tran-
sition to turbulent flow, either naturally occurring or resulting
from trips in the boundary layer as with protruding gap fillers.
Rather, it provides the boundary layer characteristics as a func-
tion of location on the vehicle and trajectory point in the atmo-
sphere to empirical prediction tools for transition. CA is not
coupled to the thermal response of the vehicle. It typically uses
a radiative equilibrium wall boundary condition to define sur-
face temperature. It cannot account for significant conduction
relief through the surface that occurs at the sharp ridges of cav-
ities and protuberances. Within a cavity, CA does not routinely
use radiation view factors to modify thermal boundary condi-
tions within a cavity. Finally, the coupled multiphysics simu-
lations required to simulate hole growth, starting from a crack

in which continuum approximations are invalid are not yet han-
dled by CA. Consequently, the primary CA deliverable in the
damage assessment process is a heating bump factor associated
with the effect of a damage configuration relative to a nominal
configuration. Other effects are approximated by more rapid
running engineering tools.

State-of-Art (SOA)

CA Codes

Continuum, Structured Grid: The main CA codes in NASA
for parallel, multiblock, continuum flow analyses are Langley
Aerothermodynamic Upwind Relaxation Algorithm (LAURA
)[12, 19] and Data Parallel Line Relaxation (DPLR)[40]
for external flows and VULCAN[38] for internal, scram-jet
flows. These codes employ finite-volume formulations of
the Reynolds-averaged Navier-Stokes equations with upwind
discretizations for inviscid flux (quasi-one-dimensional recon-
struction) and central differences for viscous flux. They em-
ploy both point-implicit and line-implicit relaxation strategies.
VULCAN also has options to engage a space marching algo-
rithm where appropriate in a flow path. Alignment of the struc-
tured grid with the captured bow shock is a critical element for
simulation quality. LAURA has used a quasi-one-dimensional
grid adaptation strategy since its inception in 1987 that automat-
ically aligns the grid with the bow shock during the computation
and resets the near-wall mesh spacing to attain a cell-Reynolds
number of order 1. DPLR adopted a similar adaptation strategy
during the post-Columbia Return to Flight era. LAURA and
DPLR are usually run in tandem to supply aerothermodynamic
environments for projects like Crew Exploration Vehicle (CEV)
design and planetary exploration. A matrix of needed cases
is divided between teams running each code using occasional
overlap of coverage to provide independent checks of computed
environments. On rare occasion this practice has flushed out
problems when results disagree - a process that benefits both
codes in an environment where the suite of models and flow
conditions are varied and complex. The practice also acknowl-
edges that ground-based experimental validation is more dif-
ficult to obtain in these high temperature, nonequilibrium en-
vironments; shock tunnels, expansion tubes, and arc jets all do
imperfect simulations of the intended design space and are more
dependent on CA for extrapolation to flight.

Continuum, Unstructured Grid: Unstructured grids provide the
greatest flexibility to resolve complex flowfields. However, in
the hypersonic regime, use of simplex tetrahedral elements with
SOA flux reconstruction corrupts the shock capturing and the
stagnation region heating.[15] Still, unstructured grids are mak-
ing inroads into CA for three reasons. First, it is easier to
achieve load balancing on massively parallel architectures with-
out being constrained by structured-block boundaries. Second,
mixed-element formulations (ability to use tetrahedra, pyra-
mids, prisms, and hexahedra) enable structured grids to be used
where required for accuracy. Third, there is expectation that
algorithm advances will remove semi-structured requirements
thus opening the way for orders-of-magnitude faster grid gen-
eration and adaptation for complex configurations with moving
boundaries as compared to structured grid methods. FUN3D[2]
and US3DJ[31] are mixed element, finite-volume solvers of the
Euler and Navier-Stokes equations. US3D and DPLR share a
similar development history. FUN3D was developed indepen-
dently of LAURA but a suite of modules have been added to
FUN3D to synthesize all of the gas physics models in LAURA
and VULCAN for thermodynamics, transport properties, chem-
ical kinetics, and thermal relaxation. The turbulence models in
VULCAN have also been added to FUN3D.




Non-continuum: Heating analyses at the lower densities of tran-
sitional rarefied flow require the Direct Simulation Monte Carlo
(DSMC) technique developed by Bird[4]. DSMC simulates
gas flows by modeling the motion and collisions of millions of
representative molecules based on the kinetic theory of gases.
The DSMC technique captures the non-equilibrium in transla-
tional and internal degrees of freedom, which is strongly evi-
dent in most rarefied flows, and uses phenomenological mod-
els to describe the inelastic collisions that may occur between
gas molecules and surfaces. The DSMC simulations used in
NASA include the DS2V[5] and DS3V[6] programs of Bird
and the DAC[28] program of LeBeau. These codes provides
both time accurate unsteady flow and time-averaged flow sim-
ulations. Molecular collisions are simulated with the variable
hard sphere (VHS) molecular model. Energy exchange between
the translational and internal modes is controlled by the Larsen-
Borgnakke statistical model[7].

Thermo-chemical models

Chemical kinetic models in LAURA and DPLR utilize the com-
pilation of rate constants assembled by Park predominantly
derived from shock-tube experiments. The effects of ther-
mal non-equilibrium on reaction rates are approximated by
Parks two-temperature model in a simple, ad-hoc fashion cal-
ibrated to shock tube measurements.[32] The two temperature
model assumes that the distribution of energy in vibrational
and electronic modes can be defined by a Boltzmann distribu-
tion at temperature TV. Exchange of energy between rotational-
translational modes and vibrational-electronic modes include:
(1) vibrational relaxation through collisions with heavy parti-
cles as correlated by Millikan and White and modified by Park
at high temperatures; (2) preferential and non-preferential mod-
els for dissociation defining the the vibrational energy content
of molecules as they are created and destroyed; (3) losses due
to elctron-impact ionization; and (4) electronic-translational
relaxation.[19] The impact of thermal nonequilibrium on a hy-
personic flow is to retard dissociation behind strong shocks, thus
raising the shock layer temperature and increasing shock stand-
off distance. These effects in turn have a modest influence on
pressure distributions but have a very large effect on radiative
energy transfer across the shock layer. Recall that modest influ-
ence on pressure distributions acting over large areas can have
significant influence on pitching moment coefficients.

Catalysis

Aerothermodynamic simulation tools for surface catalysis of
air assume homogeneous recombination of atomic oxygen to
molecular oxygen and atomic nitrogen to molecular nitrogen.
All charged particles are de-ionized at the surface. Nitric oxide
(NO) is not produced at the surface; consequently, the gradient
of mole fraction of NO at the surface is set to zero. Curve fits
of catalytic efficiency 7, as a function of surface temperature
for pure oxygen and pure nitrogen are compiled for several TPS
materials and coatings.[34, 35] Surface catalysis of CO2 in the
Martian atmosphere is generally assumed to be fully catalytic,
the most conservative approximation to maximize heating. An-
other approximation for the Martian atmosphere is to assume
that atomic oxygen is fully catalysed to molecular oxygen and
all other species are treated as non-catalytic. Effects of finite
number of surface adsorption sites, non-homogeneous recombi-
nation, and competition for adsorption sites are not included in
standard models used in either LAURA or DPLR within NASA.

Ablation

CMA and FIAT are state-of-art material response codes for
ablation modeling used in NASA.[13] The infrastructure is in
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Figure 7: Comparison of simulations of radiative intensity in
the range 0.2 to 6.2 eV with measured FIRE II total radiometer
data.

place for coupling structured CFD and FIAT but only prelim-
inary validation on simple problems exists at present. The
Galileo and Stardust missions provide some flight data for re-
cession as a function of time. Time dependent shape change
is not fully automated at present nor does it model the surface
roughness that may ensue from uneven surface response.

Radiation

The current state-of-art in radiation modeling within NASA is
best summarized by Hash et. al.[26] and Johnston[27]. Line-
by-line (LBL) and smeared rotational bands (SRB) integrations
are used to obtain radiation intensity along a line of sight. Tan-
gent slab approximations are generally applied in order to sim-
ply integration to a single line of sight orthogonal to the sur-
face of a blunt body. Loose coupling of the radiative energy
transfer to the conservation equations for mass, momentum, and
energy is implemented in a sequential manner, requiring 5 to
10 sequential passes to converge the radiative flux to the wall.
The time to complete a radiation calculation is 1 to 4 orders
of magnitude longer then the time to complete a flow solve.
This wide variation is a strong function of the spectral resolu-
tion and coarsening of the flow grid to the radiation spatial grid.
The FIRE II flight data (total heating, radiative heating over the
range 0.23 to 4 um (0.31 to 5.4 eV), and spectral radiometer
over the range 0.3 to 0.6 um) taken on May 22, 1965 remain the
touchstone for validation of air radiation simulations.[29, 10]
SOA simulation tools in NASA agree with total radiometer data
within experimental uncertainty in both the nonequilibrium and
equilbrium flight regimes. (See Figure 7) However, there re-
mains some ambiguity in calibration of the suite of energy ex-
change models that lead to acceptable agreement with the data
for this single flight.

Turbulence models

Turbulence models are critically important for the simulation
of mixing in scramjet engines.[38] VULCAN has options for
k — € models, Wilcox’s k — ® model[39], and Menters[30]
k — o (baseline and Shear Stress Transport (SST)) model. Op-
tions for an explicit algebraic Reynolds Stress model[1] are
available in VULCAN and FUN3D. LAURA and DPLR typ-
ically apply Wilcox’s k — ® model and Menters &k — ® SST
model. Compressibility corrections are required in hypersonic
applications.[41, 33] In cases without separation LAURA will
typically use simple algebraic turbulence models[11, 3].

Spacecraft - Tether - Ballute System Simulation

A simulation of a spacecraft - tether - ballute system using the
unstructured grid, Navier-Stokes flow solver FUN3D is pre-
sented in Figs. 8 - 11. The system is chosen as a current exam-
ple because it is so far ~out of the box™ of typical applications
and it exhibits several challenges facing CA today.



The ballute has a 52 m ring diameter and 13 m cross-sectional
diameter. Conditions of the simulation are for a Titan Organics
Explorer with velocity equal to 8550 m/s and density equal to
1.9 1077 kg/m3 .[24, 25] All surface temperatures are set to a
constant value equal to 500 K. The gas model includes molec-
ular nitrogen and atomic nitrogen in thermochemical nonequi-
librium. The towing spacecraft is a Pathfinder shape — 70 deg
spherically capped cone with a 6 m base diameter. The simula-
tion domain encompasses a 90 degree wedge about the system
axis. The simulation assumes symmetric flow with four 0.3 m
diameter compressive tethers attached to the toroid so that the
leading edge of the tether is tangent to the toroid outer surface.
A compressive tether is a flexible cylinder which can be inflated
to withstand compressive loads and is used to position the toroid
in space prior to entry. At present, only a continuum simulation
is enabled. Flow over the compressive tethers is deep in the
transitional flow domain in which the validity of Navier-Stokes
analyses is inaccurate. Consequently, an independent analysis
of the tether using DSMC is required. Ideally, a fully coupled
continuum - rarefied analysis would be brought to bear on this
complex system of disparate length scales.
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Figure 8: Unstructured grid used in simulation of spacecraft
- tether - ballute system. Colors correspond to pressure levels
nondimensionalized by pe.V2.

The quarter domain in Figure 8 is discretized with 992,102
nodes. Flow over the spacecraft is in a merged layer, transi-
tional regime. The Knudsen number based on spacecraft diam-
eter is approximately 0.057. Flow over the ballute is still in a
transitional regime, but is closer to the continuum domain than
the towing spacecraft. The Knudsen number based on ballute
cross-sectional diameter is 0.026. The cell Reynolds number
at the ballute surface is approximately 0.2 with approximately
20 nodes extending across the shock layer and 3 to 4 nodes ex-
tending across the “inviscid” portion of the shock layer. The
largest mesh height stretching factor is approximately 2.0 and
it occurs where the advancing front of the boundary domain
over the ballute meets the isotropic grid away from the solid
surface. In the domain where the tether is directly exposed to
the free stream the Knudsen number based on tether diameter is
approximately 0.88, placing it near the free molecular limit of
the transitional flow regime. Near wall grid resolution is well
within accepted norms for simulation of surface heating. Re-
sults presented herein with FUN3D should be considered qual-
itative at present. Stretching factors of two in the merged layer
exceed accepted structured grid metrics and there is lack of val-
idation or grid convergence study in this domain. Furthermore,
issues remain regarding ability to compute heat transfer with

high aspect ratio, tetrahedral cells in the boundary layer within
the stagnation region of a blunt body in hypersonic flow.[22]
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Figure 9:  Pressure contours and streamlines in symmetry
plane. Colors correspond to pressure levels nondimensionalized
by p..V2

Pressure distributions in the plane of symmetry away from the
tether are presented in Figure 9. The extent of reverse flow
through the wake core is in good agreement with the earlier
LAURA solution[17] that did not include the tether. The flow is
nearly frozen chemically, consistent with the spacecraft Knud-
sen number, as indicated in Figure 10(a). It is not until the flow
crosses the ballute bow shock or enters the recirculating flow
driven by the converging shocks in the core of the toroid that
residence times in a high temperature domain are long enough
to enable dissociation. In like manner, thermal nonequilibrium
is evident in Figure 10. Vibrational temperatures lag transla-
tional temperatures by nearly 20,000 K at the shock front but
then exceed translational temperature in the recirculating core.
A front view of the entire system, including grid, pressure, and

(b) Translational temperature

(c) Vibrational temperature

Figure 10: Chemical and thermal state in symmetry plane.

heating is presented in Figure ??. Surface grid in the vicinity of
the attachment point is clustered to pick up details of the inter-
action. A high pressure and heating occurs on the ballute sur-



face associated with the shock over the tether interacting with
the bow shock over the ballute as seen in Figure 11. Surface
streamlines show that the attachment line is pulled further out-
board toward the tether attachment point. The heating rate on
the ballute surface is approximately 70% larger than nominal
rates on the attachment line away from the tether. Pressures too
are greater than nominal values on the attachment line due to the
focusing of the ballute shock - tether shock interaction. In re-
ality, significant deformation of this system, possibly unsteady,
would be expected.

(a) Pressure

(c) Pressure at attachment

(d) Heating at attachment

Figure 11: Front view of surface pressure and heating.

View Forward

In the view forward for CA simulation there are still significant
advances in capability required. Many of these challenges to
advance the SOA have been identified in previous examples. In
some instances, the capabilities have been demonstrated on sim-
ple geometries but have not made there way to production CA.
Some of the most notable remaining challenges are to enable:

(1) Accurate shock capturing and stagnation region heating on
high aspect ratio, tetrahedral grids This advance probably re-
quires flux reconstruction algorithms that are inherently multi-
dimensional. Advances here greatly enhance the possibility of
fully automated grid adaptation on complex, hypersonic config-
urations without restriction to prismatic elements. A long term
goal here is to be able to start a simulation on a quickly gener-
ated, reasonable grid that automatically refines to achieve user
specified grid convergence levels for key design parameters.

(2) Large Eddy Simulations (LES) in production CA Requires
development of low dissipation schemes and probably higher-
order accurate schemes. Advances here may be expected to
greatly reduce uncertainties in prediction of base drag effect
on blunt bodies at Mach numbers below 5. Also promises to
improve turbulence simulations in more complex environments
of separated flow and shock - boundary-layer interactions. It
is expected that direct numerical simulations (DNS) on canon-
ical problems will guide the development of sub-grid models
required here.

(3) Automated prediction of transition to turbulence and re-lam-

inarization in production CA Overly conservative prediction
of transition to turbulence costs weight in thermal protection
system mass. On STS-114 the level of uncertainty was

sufficient to order removal of exposed gap fillers lest early
transition to turbulence ensue and a turbulent wedge of heating
wash over the wing leading edge.

(4) Fully coupled, multi-physics simulations These multi-
physics elements include: unsteady deformation, thermal
response of structure, ablation, radiation, rarefied and contin-
uum flow domains, and Magneto-hydro-dynamics (MHD).
The challenges here exist in both improving efficiencies of the
component physics simulations and in time-accurate, viscous
grid movement to accommodate shape change due to ablation
or structural deformation.

(5) Facility simulation in the code validation process Ground-
based tests provide the best opportunity to measure boundary
conditions and probe the flowfield with sufficient detail to val-
idate physical models. However, the facilities are not perfectly
quiet and often the flows are neither perfectly uniform nor per-
fectly steady. As enthalpies are increased flow quality and test
times become more problematic. Recent efforts by Candler et
al. [9] underscore the proposition that future code validation
tests will require more complete simulation of the facility flow
in addition to simulation around models.

Conclusions

Code verification and validation are required for acceptance of
any CFD simulation tool. Because ground-based validation has
often been more difficult in the hypersonic domain the oppor-
tunity to resolve highly visible problems in flight data analyses
have helped grow the credibility of CA . CA’s role in under-
standing the Space Shuttle pitching moment anomaly observed
in the first shuttle flight, its prediction of a static instability for
Mars Pathfinder, and its use for damage assessment in both the
Columbia accident investigation and post-Columbia mission-
support have all served to advance its credibility to the wider
community of engineers.

Current state-of-art in ”production” codes used in NASA for CA
is described. In the view forward, several current challenges in
computational fluid dynamics and aerothermodynamics for hy-
personic vehicle applications are noted. An example simulation
dealing with hypersonic flight of an inflated ballute trailing a
planetary probe in the Titan atmosphere is presented to illus-
trate current capabilities and limitations.

References

[1] Abid, R., Rumsey, C. and Gatski, T. B., Prediction of
nonequilibrium turbulent flows with explicit algebraic tur-
bulence models, AIAA J., 33.

[2] Anderson, W. K. and Bonhaus, D. L., An implicit upwind
algorithm for computing turbulent flows on unstructured
grids, Comp. and Fluids, 23, 1994, 1-21.

[3] Baldwin, B. S. and Lomax, H., Thin Layer Approxima-
tion and Algebraic Model for Separated Turbulent Flows,
AIAA Paper 78-257, 1978.

[4] Bird, G. A., Molecular Gas Dynamics and the Direct Sim-
ulation of Gas Flows, Clarendon Press, Oxford, 1994.

[5] Bird, G. A., Visual DSMC Program for Two-Dimensional
and Axially Symmetric Flows, The DS2V Program User’s
Guide, Version 2.1, 2003.

[6] Bird, G. A., Visual DSMC Program for Three-
Dimensional Flows, The DS3V Program User’s Guide,
Version 2.2, 2006.



(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Borgnakke, C. and Larsen, P. S., Statistical collision
model for monte carlo simulation of polyatomic gas mix-
ture, J. Comput. Phys., 18, 1975, 405-420.

Braun, R. D., Powell, R. W., Engelund, W. C., Gnoffo,
P. A., Weilmuenster, K. J. and Mitcheltree, R. A., Mars
pathfinder six-degree-of-freedom entry analysis, J. Space-
craft and Rockets, 32, 1995, 993-1000.

Candler, G. V., Nompelis, 1., Druguet, M.-C., Holden,
M. S., Wadhams, T. P, Boyd, L. D. and Wang, W.-L., Cfd
validation for hypersonic flight - hypersonic double-cone
flow simulations, AIAA Paper 2002-0581, 2002.

Cauchon, D. L., Radiative Heating Results from the FIRE
IT Flight Experiment at a Reentry Velocity of 11.4 Kilo-
meters per Second, NASA TM X-1402, 1967.

Cebeci, T. and Smith, A. M. O., A Finite-Difference
Method for Calculating Compressible Laminar and Tur-
bulent Boundary Layers, Journal of Basic Engineering,
523-535.

Cheatwood, F. M. and Gnoffo, P. A., User’s Manual for
the Langley Aerothermodynamic Upwind Relaxation Al-
gorithm (LAURA), NASA TM 4674, 1996.

Chen, Y.-K. and Milos, F. S., Ablation and Thermal
Analysis Program for Spacecraft Heatshield Analysis, J.
Spacecraft and Rockets, 36, 1999, 475-483.

Gehman Jr., H. W. and et. al., Columbia Accident Investi-
gation Board, Report Volume I, NASA, August 2003, p12.

Gnoffo, P. A., Simulation of Stagnation Region Heating
in Hypersonic Flow on Tetrahedral Grids, AIAA Paper
2007-3960, 2007.

Gnoffo, P. A. and Alter, S. J., Simulation of flow through
breach in leading edge at mach 24, AIAA Paper 2004-
2283, 2004.

Gnoffo, P. A. and Anderson, B. P., Computational analy-
sis of towed ballute interactions, AIAA Paper 2002-2997,
2002.

Gnoffo, P. A., Braun, R. D., Weilmuenster, K. J., Mitchel-
tree, R. A., Engelund, W. C. and Powell, R. W., Prediction
and validation of mars pathfinder hypersonic aerodynamic
data base, AIAA Paper 98-2445, 1998.

Gnoffo, P. A., Gupta, R. N. and Shinn, J. L., Conservation
equations and physical models for hypersonic air flows in
thermal and chemical nonequilibrium, NASA TP 2867,
1989.

Gnoffo, P. A., Weilmuenster, K. J., Braun, R. D. and Cruz,
C. L., Influence of sonic-line location on mars pathfinder
probe aerothermodynamics, J. Spacecraft and Rockets,
33, 1996, 169-177.

Gnoffo, P. A., Weilmuenster, K. J., Hamilton, H. H.,
Olynick, D. R. and Venkatapathy, E., Computational
aerothermodynamic design issues for hypersonic vehicles,
J. Spacecraft and Rockets, 36, 1999, 21-43.

Gnoffo, P. A. and White, J. A., Computational aerother-
modynamic simulation issues on unstructured grids,
ATAA Paper 2004-2371, 2004.

Griffith, B. J., Maus, J. R. and Best, J. T., Explana-
tion of hypersonic longitudinal stability problem — lessons
learned, NASA CP CP-2283, 1983.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Hall, J. L., A review of ballute technology for planetary
aerocapture, IAA Paper L-1112, 2000.

Hall, J. L. and Le, A., Aerocapture trajectories for space-
craft with large towed ballutes, AAS Paper 01-235, 2001.

Hash, D. B., Olejniczak, J., Wright, M., Prabhu, D., Pul-
sonetti, M., Hollis, B., Gnoffo, P., Barnhardt, M., Nome-
pelis, I. and Candler, G., FIRE II Calculations for Hyper-
sonic Nonequilibrium Aerothermodynamics Code Verifi-
cation: DPLR, LAURA, and US3D, AIAA Paper 2007-
0605, 2007.

Johnston, C. O., Hollis, B. R. and Sutton, K., Nonequilib-
rium Stagnation-Line Radiative Heating for Fire II, AIAA
Paper 2007-3908, 2007.

LeBeau, G.J., A User Guide for the DSMC Analysis Code
(DAC) Software for Simulating Rarefied Gas Dynamic
Environments, Revision DAC97-G 4674, NASA Johnson
Space Center, 2002.

Lewis Jr., J. H. and Scallion, W. 1., Flight Parameters and
Vehicle Performance for Project FIRE Flight II, Launched
May 22, 1965, NASA TN D-3569, 1966.

Menter, F. R., Improved two-equation k-o turbulence
model for aerodynamic flows, NASA TM 103975, 1992.

Nomepelis, 1., Drayna, T. W. and Candler, G., A Paral-
lel Unstructured Implicit Solver for Hypersonic Reacting
Flow Simulation, AIAA Paper 2005-4867, 2005.

Park, C., Nonequilibrium Hypersonic Aerothermodynam-
ics, John Wiley & Sons, Inc., 1990.

Sarkar, S., Erlebacher, G., Hussaini, M. Y. and Kreiss,
H. O., The analysis and modeling of dilational terms in
compressible turbulence, ICASE Report 89-79, 1989.

Stewart, D. A., Determination of Surface Catalytic Effi-
ciency for Thermal Protection Materials — Room Temper-
ature to Their Upper Use Limit, AIAA Paper 96-1863,
1996.

Stewart, D. A., Surface Catalysis and Characterization of
Proposed Candidate TPS for Access-to-Space Vehicles,
NASA TM 112206, 1997.

Venkatapathy, E., Rakich, J. V. and Tannehill, J. C., Nu-
merical solution of space shuttle orbiter flow field, AIAA
Paper 82-0028, 1982.

Weilmuenster, K. J., Gnoffo, P. A. and Greene, F. A,
Navier-Stokes Simulations of Orbiter Aerodynamic Char-
acteristics Including Pitch Trim and Bodyflap, J. Space-
craft and Rockets, 31, 1994, 355-366.

White, J. A. and Morrison, J. H., A pseudo-temporal
multi-grid relaxation scheme for solving the parabolized
Navier-Stokes equations, AIAA Paper 99-3360, 1999.

Wilcox, D. C., Turbulence Modeling for CFD, 2nd Edi-
tion, DCW Industries, Inc., La Cafiada, CA, 1998.

Wright, M. J., Candler, G. V. and Bose, D., Data-parallel
line relaxation method for the navier-stokes equations,
AIAA J., 36, 1998, 1603-16009.

Zeman, O., Dilational dissipation: The concept and appli-
cation in modeling compressible mixing layers, Physics of
Fluids, 2.



