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Objective

D t i i t f fl idi hDetermine impact of core fluidic chevrons on 
noise produced by dual stream jets

•Broadband shock noise - supersonic

Mi i i b i d i•Mixing noise – subsonic and supersonic

NATR
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Jet Noise Sources

Fine Grain 
Turbulence

Large Scale 
Turbulence 
(Mach Wave

Broadband

Shock Noise Mixing Noise

(Mach Wave 
Emission)

Screech

• Mixing noise
• Mach wave radiation

Crackle
• Shock associated noise

BroadbandBroadband
Discrete

• STOVL noise/tones Mach Waves
Courtesy of D. Papamoschou
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NASA Langley (LSAWT)

Low Speed Aeroacoustics Wind Tunnel
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Jet Engine Simulator (JES)
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Generation II Fluidic Chevrons
Air Supply

Pylon

Slotted core no le

Fan Nozzle

Slotted core nozzle

Fluidic Chevron Core Nozzle

N l d i th lt f t hi b t NASA L l
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Nozzle design was the result of a partnership between NASA Langley 
Research Center and Goodrich Aerostructures under SAA1-561



Generation III Fluidic Chevrons

• Core fluidic chevron 
nozzlenozzle

• 8 injectors
– 4 pairs independently p p y

controlled
• No common plenum
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Fluidic Chevron Nozzles

BPR 5

8IFan Flow

Core Flow Injection Flow

6I 8I

Gen II Gen III
Line 1
Line 2Line 2
Line 3
Line 4

Three Air Injection Nozzles

122o Pylon Angle

Three Air Injection Nozzles
• 6I steep injection
• 6I shallow injection
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• 8I steep injection
– azimuthal controlMicrophone



Chevron Mixing Enhancement

• Enhanced mixing shortens potential core and reduces
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Enhanced mixing shortens potential core and reduces 
volume of acoustic sources



Characteristics of Fluidic Chevrons
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Experiments

NPRc TTRc

1.93 1
2 04 1

Single Stream Experiments
2.04 1
2.17 1
2.30 2.5

• Fan stream operated at tunnel conditions

Dual Stream Experiments

NPRc TTRc NPRf TTRf

1.56 2.66 1.75 1.16
1.61 2.13 2.23 1.05
1.82 2.13 2.23 1.05 Dual Stream Experiments2.04 2.39 2.23 1.05
1.61 2.26 2.35 1.17
1.82 2.26 2.35 1.17
2.04 2.39 2.35 1.17
2.17 2.46 2.35 1.17
2.04 2.39 2.45 1.04
2.17 2.46 2.5 1.05
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Free-stream Mach number = 0.10



Single Stream Resultsg
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Effect of Increasing NPRc
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90

Injection at Low Supersonic Speeds
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θ = 61o

50

60

S
P

L 
(d

B
)

IPR = 1.0
IPR = 2.0
IPR = 4.0

• Increases in IPR 
produce reductions in 
mixing noise near peak

30

40

100 1000 10000 100000
F (H )

95

mixing noise near peak 
jet noise angle

Frequency (Hz)

75

85
B

)
θ = 148o

NPRc = 1.93

45

55

65

S
P

L 
(d

IPR = 1.0
IPR = 2.0
IPR = 4.0

15

National Aeronautics and Space Administration

35

45

100 1000 10000 100000
Frequency (Hz)



Injection for Well-Defined Shock Noise
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Azimuthal Control for Shock Noise
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Impact of Injection on Sideline Directivity
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Dual Stream ResultsDual Stream Results



Injection at Subsonic Core and Fan Speeds
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Injection at Subsonic Core and Fan Speeds
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Baseline Results at NPRf = 2.23
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Injection at Subsonic Core Speeds
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Azimuthal Control at Subsonic Core Speeds
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Injection at Supersonic Core Speeds
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Injection at Subsonic Core Speeds
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Points of Discussion

• Injection impacts shock structure and stream j p
disturbances through enhanced mixing

– May impact constructive interferenceMay impact constructive interference 
between acoustic sources

• High fan pressures may inhibit mixing 
produced by core injectorsp y j

– Fan stream injection may be required for 
better noise reduction
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better noise reduction



Future Plans

• Modification of Gen II nozzles to allow for 
some azimuthal control

• Will allow for higher mass flow ratesWill allow for higher mass flow rates
• Will allow for shallower injection angles

Fl fi ld t d i 2008• Flow field study – spring, 2008
• CFD analysis of flow
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Conclusions

Injection can reduce well defined• Injection can reduce well-defined 
shock noise

• Injection reduces mixing noise near 
peak jet noise anglepeak jet noise angle
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