FINITE ELEMENT ANALYSIS OF ELASTOMERIC SEALS FOR LIDS

Jay J. Oswald
J&J Technical Solutions, Inc.
Cleveland, Ohio

Christopher C. Daniels
University of Akron
Akron, Ohio

Finite Element Analysis of Elastomeric Seals for LIDS

Jay Oswald - J&J Technical Solutions, Inc., Cleveland, OH
Christopher Daniels - The University of Akron, Akron, OH

Prepared for the 2006 NASA Glenn Seals/Secondary Air System Workshop
November 15, 2006
Objectives & Motivation

Objective
• Create a means of evaluating seals w/o prototypes

Motivation
• Cost
  – Prototype 54” seal ~$100k per seal pair
  – FEA license + high end workstation ~ $30k per year
• Development time
  – 6 months lead time for a new seal design
  – Many designs per day (solution time <1 minute)
• Understanding
  – Difficult to experimentally measure strains, contact pressure profile, stresses, displacements
Special Properties of Hyperelastic Materials

• Fully or nearly Incompressible
  – Bulk modulus typically 100-1000x shear modulus
  – Poisson’s ratio approaches 0.5
  – Problems in displacement-based FEA formulation
    • Requires B-bar or mixed u-P formulation

• Huge elastic range of deformation
  – Strains > 80% are (mostly) recoverable
    • Analysis should account for nonlinear geometry and material properties
Hyperelasticity vs. Linear Elasticity

Linear elasticity:
\[ W = c \varepsilon : \varepsilon \]
(which is like: \( E = \frac{1}{2} k \Delta x^2 \))

Hyperelasticity:
\[ W = f(I_1, I_2, I_3) \]
or \( W = f(\lambda_I, \lambda_{II}, \lambda_{III}) \)

\[ \sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}} \]
Definition of second Piola-Kirchoff stress from strain energy density and Green-Lagrange strain

\[ I_1 = \lambda_I^2 + \lambda_{II}^2 + \lambda_{III}^2 \]
\[ I_2 = \lambda_I^2 \lambda_{II}^2 + \lambda_{II}^2 \lambda_{III}^2 + \lambda_{III}^2 \lambda_{II}^2 \]
\[ I_3 = \lambda_I^2 \lambda_{II}^2 \lambda_{III}^2 = 1 + \left( \frac{\Delta V}{V} \right)^2 = J^2 \]

\( \lambda_I, \lambda_{II}, \lambda_{III} \): principal stretch ratios
\( I_1, I_2, I_3 \): strain invariants
\( J \): Jacobian (volume ratio)
Some forms of the work function

Polynomial models: (Mooney-Rivlin, Neo-Hookean)

\[ W = \sum_{i+j=1}^{N} C_{ij} (I_1 - 3)^i (I_2 - 3)^j + \sum_{k=1}^{N} \frac{1}{d_k} (J - 1)^{2k} \]

Yeoh model: \( j = 0 \), neglects second strain invariant

- For plane strain Yeoh is equivalent to general polynomial form because \( I_1 = I_2 \)

Comparison of lowest order terms for a 50 durometer material

\[ \frac{1}{d_1} \approx 200,000 \quad c_{1,0} \approx 40 \]
Constraints on the work function

Zero strain must have zero energy \( W(0) = 0 \)
Zero strain must have zero stress \( W'(0) = 0 \)
Second derivative must be positive \( W''(\varepsilon) > 0 \) for all \( \varepsilon \)
Determining $W$

- Fit $W$ to experimental stress-strain states
  - Three basic strain modes
    - Uniaxial tension
    - Biaxial tension
    - Planar tension
  - All deformation falls between uniaxial and biaxial – ($I_3 = 1 \rightarrow$ incompressible)

Energy density function of a hyperelastic material
Basic strain states of a nearly incompressible material

<table>
<thead>
<tr>
<th>Load</th>
<th>Strain</th>
<th>Stretch Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Uniaxial</strong></td>
<td>![Uniaxial Diagram]</td>
<td>$\lambda_I = \frac{1}{\lambda_{II}^2} = \frac{1}{\lambda_{III}^2}$</td>
</tr>
<tr>
<td><strong>Biaxial</strong></td>
<td>![Biaxial Diagram]</td>
<td>$\lambda_I = \lambda_{II} = \frac{1}{\sqrt{\lambda_{III}}}$</td>
</tr>
<tr>
<td><strong>Planar</strong></td>
<td>![Planar Diagram]</td>
<td>$\lambda_I = \frac{1}{\lambda_{II}}, \lambda_{III} = 1$</td>
</tr>
<tr>
<td><strong>Volumetric</strong></td>
<td>![Volumetric Diagram]</td>
<td>$\lambda_I = \lambda_{II} = \lambda_{III} &lt; 1$</td>
</tr>
</tbody>
</table>
Material Tests Performed

• Materials: XELA-SA-401, S0899-50, S0383-70
  – 40, 50, 70 durometer hardness

• Test parameters
  – Various temperatures
    • -50, 23, 50, &125 ºC
  – 3 specimens per test
  – Uniaxial, planar, biaxial tension & volumetric
    • 20,40,60,80 % strain increments

• Other properties:
  – Coefficient of friction (elastomer on elastomer), thermal conductivity, heat capacity, density, emissivity, absorptivity

This data will be published soon in a NASA technical publication
Data Processing

1 – select cycle from set
2 – subtract offset strain
3 – subtract offset stress
4 – average and decimate

offset stress  offset strain
Processed Material Data

Uncertainty based off student’s t distribution from multiple specimens

Results can be curve fitted to determine material property constants

This can be done as a function of temperature

The strain energy density is the area under the curve for each deformation

Processed data from 40 durometer elastomer (-50 °C )
Part II

Finite Element Analysis of Seals
Hints for Elastomeric FEA

1) Stay away from triangular elements
   • Elements with 2 displacement BC will have only 1 degree of freedom due to incompressibility

2) Low order elements converge easiest 4-node brick works well

3) Sliding contact may require non-symmetric stiffness matrices for large friction coefficients

4) Watch corners for element distortion

5) u-P element formulation is most stable

6) Check for stability of material models

Severe element edge distortion
Analyses did not converge
Types of FEA models of LIDS seals

Aligned seal – contact pressure

Misaligned seal
Principal strains

Gaskoseal adhesion analysis with cohesive elements at contact

Tolerance studies
Seal Thermal Analyses

- CTE of elastomers is very high
  - 350x10^{-6} \degree C^{-1}
  - Al: 24x10^{-6} \degree C^{-1}

Comparison of compression at 25\degree C (front) and 125\degree C (back). Contours are axial stress.

Y displacement of seals with 100\degree C rise in temperature, black outline indicates original geometry.
Summary

• Need 4 experimental strain states to
  – choose energy density function
  – fit material constants
  – determine compressibility of material
• Hyperelastic material present new challenges
• FEA analyses for LIDS
  – Force vs. displacement and pressure contours
    • Aligned & misaligned cases
  – Thermal expansion
  – Tolerance studies
  – Adhesion analysis
Further reading/information

- ANSYS gives excellent background for element technology/hyperelasticity
  - Nonlinear element technology
  - Hyperelasticity
- Future publications of material properties, analysis, etc. will be posted on [http://www.grc.nasa.gov/WWW/structuralseal](http://www.grc.nasa.gov/WWW/structuralseal)