Space Based Range Demonstration and Certification (SBRDC)

Robert Sakahara, STARS Dryden Flight Research Center (DFRC) Project Manager
October 25, 2005
SBR Goal: Reduce the cost of operating and maintaining range systems supporting space launch vehicles while increasing range responsiveness

SBR Strategic Objective: Demonstrate space based range technologies to provide more responsive, robust, and economical tracking and communication systems

- Responsive
 - Reduce launch turn-around times
 - Reduce launch delays and scrubs due to range instrumentation problems
 - Support multiple vehicles simultaneously
- Robust
 - Increase vehicle telemetry data rates
 - Increase launch trajectories
 - Launch from any spaceport in the world
- Economical
 - Reduce range operations and maintenance (O&M) costs by $50M per year by eliminating ground based down-range infrastructure
SBR Project Objectives

SBR Technology Development:

Develop, utilize, test, and demonstrate state-of-the-art technologies for Range Safety and Range User Systems.

- Range Safety System (Flight Termination, Vehicle Tracking, Key Flight Telemetry Data)
 - Support simultaneous forward links
 - Meet intent of range safety requirements

- Range User System (Video, Voice, Vehicle Data)
 - Maximize high data rate capabilities
Today’s United States Range

- A complex ground based infrastructure consisting of:
 - Radars
 - High power UHF transmitters
 - Telemetry receive stations
- Very costly to operate and maintain
- Eleven percent of launches are scrubbed or delayed due to range instrumentation problems
Future Range

- Space based range using:
 - Communication satellites for command and telemetry relay
 - GPS satellites for vehicle tracking
- Reduce O&M costs
 - ~$50M per year
- Increase flexibility
 - Reduced launch turn around time
 - Support multiple vehicles simultaneously
 - Launch from Spaceport anywhere in the World

~L+8.5 MIN

WR/RSO
OR ER/RSO

S-Band Launch Head
(Simultaneous w/ TDRSS - L+6min.)

WSC

GPS
Another Vision for the Future Range

Satellite Navigation data for Metric Tracking

Satellite Relay for Telemetry, Command, Control, Communications

Long-Duration, Instrumented, Mobile Range Assets, Seamlessly Integrated and Deployed and On Station Where and When Needed for Supplemental Coverage

Modernized Ground-Based or Mobile Assets Near Launch/Recovery Location

Centralized, Remote Network-enabled Planning, Scheduling, Coordination and Decision Support
STARS Project Goals

♦ STARS will utilize existing space-based platforms to provide reliable communications for flight termination commands, telemetry, and vehicle tracking for Range Safety and Range Users
 • Tracking and Data Relay Satellite System (TDRSS) for command/data relay
 • Global Positioning System (GPS) for metric tracking

♦ STARS will develop and utilize state of the art technologies that can be applied to Launch Vehicles:
 • Multi-channel transceivers (TDRS/GPS)
 • Antennas (Ka/Ku-band phased array)
 • Data formatting (Error-correction, Encryption, Standard Protocols, Compression)

♦ STARS will conduct a series of incremental proof of concept flight demonstrations to increase the Test Readiness Level (TRL)

♦ STARS team members will participate in the development of requirements for space based range full scale development

♦ STARS team members will support the United States Air Force (USAF) in the certification of the Range Safety System and the Range User System on the Operational Space-lift Ranges (i.e. ER and WR)
STARS Content

♦ STARS has four flight demonstrations planned
 • Flight Demo 1 – Completed successfully June 2003
 – Proof of concept using F-15B as test vehicle
 – Range Safety (RS) System
 • Developed Low Power Transceiver (LPT) with basic flight termination receiver capabilities and low-rate return link
 • Developed Command & Data Handler (C&DH) for command decoding and telemetry formatting
 • Utilized commercial off-the-shelf (COTS) Ashtech Z-12 GPS receiver
 • Utilized Omni patch antennas (combined S-band/L-band receive antennas on top and bottom of the F-15B and S-band transmit antennas located on the top and bottom of the F-15B)
 – Range User (RU) System
 • Utilized COTS hardware transmitting up to 500 kbps data rate
 • Utilized Omni patch antennas (S-band transmit antennas only located on top and bottom of the F-15B)
STARS Configuration
Flight Demonstrations 1 & 2

GPS

F-15B

TDRS

DFRC Aeronautical Test Facility

DFRC Mission Control Center

White Sands Complex
Hardware Locations

F-15B

Door 3 Left: RU
Multiplexer, LPT, C&DH,
RS power amplifiers, GPS

Ammo Pallet: RU transmitter,
power amplifiers, standard analog
FTS receivers

F15 GPS
Antenna

Door 3 Left: RU
Multiplexer, LPT, C&DH,
RS power amplifiers, GPS

Right Side
Antenna Locations

♦ F-15B – Top View

- Dual S-band / GPS Antenna
- S-band Antenna
- FTS Antenna
- F15 GPS Antenna
- Panel = 2
- Dual S-band / GPS Antenna
Antenna Locations

♦ F-15B – Bottom View
Spaceport And Range Technologies
STARS Objectives and Results

FD1 Test Objectives and Results:

♦ Range Safety (RS)
 • Verify link margin, acquisition/reacquisition, signal lock, Bit Error Rate (BER), and simultaneous forward links (satellite and launch head)
 • Receive and process FTS commands (100% of all FTS commands were successfully initiated: over 300 Arm and Terminate commands were sent during the flight tests)
 • Receive and process GPS metric tracking data
 • Transmit tracking, telemetry, and status data from a high dynamic vehicle to DFRC via WSC (Data was also transmitted to Kennedy Space Center (KSC) and Wallops Flight Facility (WFF) in near real-time for monitoring)
 • Process and display the RS return link data

➢ The objectives were satisfied, although the RS return link margin was less than predicted due to interferometer effects and surface wave interference
 • Interferometer effects and surface wave interference will be corrected for FD2

♦ Range User (RU)
 • Verify link margin, acquisition/reacquisition, and signal lock
 • Transmit RU data (video, voice, and telemetry) from a high dynamic vehicle to DFRC via WSC
 • Process and display the RU return link data

➢ The objectives were satisfied, achieving higher link margin than predicted
Spaceport And Range Technologies
STARS FD2 Objectives

FD2 Test Objectives
♦ Similar to FD1 with modified flight hardware
♦ Range Safety System
 • Integrate the LPT, C&DH, and GPS receiver into single unit
 • Characterize latency, implement encryption on the forward link, implement Reed-Solomon encoding on both forward and return links
 • Verify link margin, acquisition/reacquisition, latency, signal lock, BER
 • Verify ability to send commands to transceiver and respond with flight termination action, measure the Signal to Noise ratio, test with 2 TDRS simultaneously, verify vehicle location (GPS with inertial navigation system (INS))
♦ Range User System
 • Develop Ku-band transmitter and Phased Array Antenna supporting 5 Mbps data rates
 • Integrate hardware on test aircraft with GPS/INS controller
 • Verify link margin, latency, acquisition/reacquisition performance, BER in dynamic environment, compression system performance, antenna capabilities & performance, antenna flight control interface and control algorithms performance
♦ Schedule: 8 Test Flights on NASA F-15B, July 06
♦ Status
 • All Range Safety and Range User hardware for Flight Demo 2 has been designed, developed and acceptance tested.
 • STARS RU hardware is currently in the integration and test phase prior to aircraft installation
 • Additional testing will occur after aircraft installation prior to flight testing
Range Safety Hardware

Range Safety Unit
Range User Hardware

IP Formatter

Ku-band Transmitter

Ku-band Phased Array Antenna

Waveguide Crossguide Couplers

5 Bit Ferrite Phase Shifters

Ridged Waveguide Slot Array

Waveguide Power Dividers (2:1 & 4:1)
Past/Future Flight Demo Plans

- **Global Flyer support – FY05 (Flight Demo 1a)**
 - STARS was asked to provide hardware to the Global Flyer program to provide continuous video during the 67 hour global flight
 - STARS Flight Demo #2 RS hardware was delivered January 13, 2005
 - Flight was successfully completed March 3, 2005
 - STARS system exceeded performance expectations. Eb/No’s were greater than 10dB for most of the flight.

- **Flight Demo 3 – 2007**
 - Develop smaller, lighter version of the RSU for the Range Safety system
 - Use low cost transmitter (LCT) 2 developed in-house at NASA Wallops and port C&DH functionality into digital signal processor on LCT2
 - RSU dimensions would be roughly 5”x5”x6” (with internal high power amplifier)
 - RSU weight would be roughly 3 lbs
 - Perform flight test on a hypersonic vehicle over the horizon
 - Sounding rocket is baselined, however, possible opportunity on expendable launch vehicle (ELV)

- **Flight Demo 4 – 2008**
 - Develop Ka-band transmitter and phased array antenna for Range User system
 - Re-fly RSU design from Flight Demo 3 with enhancements
 - Perform flight test
QUESTIONS

♦ ????