
US00550680 1 A

United States Patent t191 [11] Patent Number: 5,506,801
Tawel [45] Date of Patent: Apr. 9,1996

[54] HIGH-PERFORMANCE ULTRA-LOW
POWER VLSI ANALOG PROCESSOR FOR
DATA COMPRESSION

[75] Inventor: Raoul Tawel, Glendale, Calif.

[73] Assignee: California Institute of Technology,
Pasadena, Calif.

[21] Appl. No.: 196,295

[22] Filed: Feb. 14, 1994

[51] Int. C1.6 ... GO66 7/00
[52] U.S. C1. .. 364/807
[58] Field of Search 364/807, 602

[561 References Cited

U.S. PATENT DOCUMENTS

5,115,492 5/1992 Engeler 364/602
5,140,531 8/1992 Engeler 364/602
5,220,642 6/1993 Takahashi et al. 364/807
5,353,383 10/1994 Uchimura et al. 3641807

OTHER PUBLICATIONS

J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A.
Mead, “Winner-Take-All Networks of O(N) complexity,”
Caltech Computer Science publication CS-TR-88-21,
1988.
R. M. Gray, “Vector Quantization”, IEEE ASSP Magazine,
April 1984. pp. 4-29.
Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for
Vector Quantizer Design”, IEEE Trans. on Commun., vol.

T. Delbruck, “Bump’ Circuits for Computing Similarity and
Dis-similarity of Analog Voltages,” Proceedings of the
International Neural Network Society, Seattle, Washington,
1991.

COM-28, NO. 1 Jan. 1980. pp. 84-95.

W. H. Equitz, “A New Vector Quantization Clustering
Algorithm”, IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. ASSP-37, pp. 1568-1575, 1989.
C. Mead, “Analog VLSI and Neural Systems,” Addison
Wesley, Reading, Massachusetts, 1989, Chapter 6.
Primary Examiner-Tan V. Mai
Attorney, Agent, or Fimz-Michael L. Keller; Michaelson &
Wallace

is71 ABSTRACT

An apparatus for data compression employing a parallel
analog processor. The apparatus includes an array of pro-
cessor cells with N columns and M rows wherein the
processor cells have an input device, memory device, and
processor device. The input device is used for inputting a
series of input vectors. Each input vector is simultaneously
input into each column of the array of processor cells in a
pre-determined sequential order. An input vector is made up
of M components, ones of which are input into ones of M
processor cells making up a column of the array. The
memory device is used for providing ones of M components
of a codebook vector to ones of the processor cells making
up a column of the array. A different codebook vector is
provided to each of the N columns of the array. The
processor device is used for simultaneously comparing the
components of each input vector to corresponding compo-
nents of each codebook vector, and for outputting a signal
representative of the closeness between the compared vector
components. A combination device is used to combine the
signal output from each processor cell in each column of the
array and to output a combined signal. A closeness deter-
mination device is then used for determining which code-
book vector is closest to an input vector from the combined
signals, and for outputting a codebook vector index indicat-
ing which of the N codebook vectors was the closest to each
input vector input into the array.

20 Claims, 7 Drawing Sheets

U.S. Patent Apr. 9,1996 Sheet 1 of 7

- z ---

\
\

5,506,801

U.S. Patent

0
0
.c

1

Apr. 9,1996 Sheet 2 of 7

0 . .

N
0

0 . .

5,506,801

@J
X

U.S. Patent Apr. 9,1996 Sheet 3 of 7 5,506,801

0

v
--

1
0
N
.c

I

ROW DECODER
00
7 I
1

* a ..
* *

- . a .
- . a *

. .

I' I

.

I I

.c
c

-3

U.S. Patent Apr. 9,1996 Sheet 4 of 7 5,506,801

u3

U.S. Patent

- d -

,cv

-0

Apr. 9,1996 Sheet 5 of 7

,cv
I

5,506,801

I I I
I I

I I I

OUTPUT CURRENT (AMPS)

n
3
hl
3

I

v

G

Q co

U.S. Patent Apr. 9,1996 Sheet 6 of 7

b

.

0

5,506,801

LOG [I (MAX)

AMPS

U.S. Patent Apr. 9,1996 Sheet 7 of 7 5,506,801

M

5,506,801
2 1

HIGH-PERFORMANCE ULTRA-LOW
POWER VLSI ANALOG PROCESSOR FOR

DATA COMPRESSION

ORIGIN OF THE INVENTION

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in which the
contractor has elected to retain title.

BACKGROUND OF THE INVENTION

1. Technical Field
The invention relates to an apparatus for data compres-

sion, and more particularly, to such an apparatus employing
a parallel analog processor.

2. Background Art
Data compression is the art of packing data. It is the

process of transforming a body of data to a smaller repre-
sentation from which the original or some approximation to
the original can be retrieved at a later time. Most data
sources contain redundancy like symbol distribution, pattern
repetition, and positional redundancy. It is the role of the
data compression algorithm to encode the data to reduce this
built-in redundancy.

There are two kinds of data compression: lossless com-
pression and lossy compression. Lossless compression guar-
antees that the data that is to be compressed and then
subsequently decompressed, is identical to the original.
Lossless data compression can be applied to any type of
data. In practice, however, it is most common for textual
data such as text, programming languages, object codes,
data base information, numerical data, electronic mail etc.,
where it is important to preserve the original content exactly.
Lossy data compression, on the other hand, allows the
decompressed data to differ from the original data as long as
the decompressed data can satisfy some fidelity criterion.
For example, with image compression, it may suffice to have
an image that subjectively looks to the human eye as good
as the original. Likewise, in the case of compression of audio
signals, it may suffice to have a reconstructed signal that
merely sounds as good as the original to a user, rather than
being an exact reproduction.

Data compression has not been a standard feature in most
communicatiodstorage systems for the following reasons:
Compression increases the software and/or hardware cost; it
is difficult to incorporate into high data rate systems (>lo
Mbls); most compression techniques are not flexible enough
to process different types of data; and blocks of compressed
data with unpredictable lengths present space allocation
problems. These obstacles are becoming less significant
today due to the recent advances in algorithm development,
high-speed VLSI technology, and packet switching commu-
nications. Data compression, in certain restricted applica-
tions, is now a feasible option for those communication or
storage systems for which communication bandwidth and/or
storage capacity are at a premium.

Of the numerous algorithms present in image coding,
vector quantization has been used as a source coding tech-

preserving the required fidelity of the data. This is particu-
larly important to many present and future communication
systems, as the volume of speech and image data in the
foreseeable future would become prohibitively large for
many communication links or storage devices. A major
obstacle preventing the widespread use of such compression
algorithms, is the large computational burden associated
with the coding of such images. It has been shown that a
well-designed vector quantization scheme can provide high
compression ratio with good reconstructed quality. Insofar

Unlike scalar quantization where the actual coding of
continuous or discrete samples into discrete quantities is
done on single samples, the input data of a vector quanti-
zation encoder are multi-dimensional blocks of data (input

l5 vectors). Therefore, in image coding, raw pixels are grouped
together as input vectors for post-processing by the encoder,
as seen in FIG. 1. Without loss of generality, we shall refer
to gray scale images. However, as will be apparent to those
skilled in the art, compression of color images is readily

20 dealt with by extension. In FIG. 1, a fraction of a gray scale
image is shown with a block of pixels highlighted. In this
case the dimensionality of the pixel block is 4x4, which is
a typical value for vector quantization. In the pre-processing
stage, the intensity values corresponding to the pixels in this

25 4x4 block are raster scanned into a 16 element vector for
post- processing by the encoder. An important technique in
vector quantization is the training of the codebook prior to
transmission. Extensive preprocessing is performed on
sample source data to construct the codebook which will be

3o used in the compression session. The classical codebook
training scheme is the Lloyd-Buzo-Gray (LBG) algorithm,
which is a generalized k- mean clustering algorithm. There
are various other means for generating a codebook with
lower complexity. These include codeword merging and
codeword splitting algorithms. These algorithms trade off

35 lower rate-distortion performance for faster code book gen-
eration. The encoder and decoder must first agree on the
same codebook before data transmission. The closeness
between an input vector and a codeword in the codebook is
measured by an appropriate distortion function. During the

40 compression session distortions between an input vector and
codewords in the codebook are evaluated. The codeword
closest to the input vector is chosen as the quantization
vector to represent the input vector. The index of this chosen
codeword is then transmitted through the channel. Compres-

45 sion is achieved since fewer bits are used to represent the
codeword index than the quantized input data. The decoder
receives the codeword index, and reconstructs the transmit-
ted data using the pre- selected codebook.

The vector quantization algorithm which provides the
50 foundation for the VLSI based hardware solution associated

with the present invention will now be discussed. Consider
a k- dimensional VQ encoder. The source image, say from
an image data file or directly from a CCD array, is to be
divided up into non- overlapping squares of p*p pixels. The

55 pixel intensities for the block are subsequently put into a
raster scan order, i.e. a k-dimensional input vector given by

(1)

5

lo lies the motivation for this work.

-,
x=(x1. x*. . . . I Xt)

where k=p*p. The vector quantization encoder has an asso-
6o ciated codebook C consisting of N precomputed codewords

words given by:
nique for both speech and images. It essentially maps a

sequence suitable for communication over a digital channel
or storage in a digital medium. The goal is to reduce the 65
volume of the data for transmission over a digital channel
and also for archiving to a digital storage medium, while

sequence of continuous or discrete vectors into a digital C d 1) , C@), . . . , c" (2)

In practice, N is some power of 2, ranging typically from
128 to 256 or even 512 vectors for a large codebook with lots
of detail. The N codewords are of course k- dimensional, i.e.

5,506,801

(3)

--f
For an input vector x , the encoder determines that

d(X, C"))Sd(, C'")) (4)

for 1 S n S N . The function d(X,C(") is a distance metric, and
the algorithmic goal is to find that codeword in the K
dimensional space that is "closest" to the input vector. A
common choice of the metric is the Euclidean distance
metric, as given by

codebook element C(m) such that
5

(5)

A more intuitive description of the problem is the following:
For a k dimensional input vector consisting of bounded
positive real-values and for a codebook consisting of N
codewords, then the state space of the system is a k
dimensional space populated by N unique vectors. The case
for k=3 and N=6 is shown in FIG. 2. for illustrative
purposes. The six stored codebook vectors are represented as
filled points with indices C(i) in the 3 dimensional space. The
input vector requiring classification is shown as the open
point with index X. The role of the vector quantization
encoder is to therefore select the physically closest code-
book vector C'" in the available space to the input vector x.
The placement or selection of the locations of the codebook
vectors is a part of the preprocessing stage and is outside the
scope of this invention.

Once the encoder has determined the closest codeword for
the given input kernel, all that remains is to either store or
transmit the index m of the winning codeword. For a
codebook consisting of N codewords, we require log,N bits.
On the receiving end, the decoder's job is to replace the
index m by C'"). Therefore, the coder achieves a compres-
sion ratio of

where s is the number of bits per pixel. As an example, for
an 8 bit/pixel gray scale image with a codebook size of 256
codewords, and using 16 dimensional kernels we achieve a
compression ratio of 16.

In terms of the raw number of basic arithmetic operations
(Le. additions, multiplications, etc . . .) required for each
kernel classification, vector quantization is a very expensive
algorithm to implement on a digital computer. There exist,
however, techniques for pruning these prohibitive compu-
tational costs, but to date no such technique has lead to
pseudo real-time image coding, hence the popularity of
alternative coding schemes. Yet this very same repetitive-
ness of computations is indicative that the kernel classifi-
cation task can be parallelized.

It is, therefore, an objective of the present invention to
demonstrate how such a parallelization of the vector quan-
tization algorithm was achieved.

In addition, it is another objective of the present invention
to demonstrate how the parallelization of the vector quan-
tization algorithm can be embodied in VLSI hardware.

SUMMARY OF THE DISCLOSURE

The foregoing problems are overcome in an apparatus for
data compression employing a parallel analog processor.
The apparatus includes an array of processor cells with N
columns and M rows wherein the processor cells have an

15

20

25

30

35

40

45

50

55

60

65

4
input device, memory device, and processor device. The
input device is used for inputting a series of input vectors
wherein each input vector in the series can represent a
non-overlapped grouping of pixels of an image to be com-
pressed. Each input vector is simultaneously input into each
column of the array of processor cells in a pre- determined
sequential order. An input vector is made up of M compo-
nents, ones of which are input into ones of M processor cells
making up a column of the array. In the case where an image
is being compressed, each one of the input vector compo-
nents represents an intensity of a particular pixel in the
aforementioned grouping. The memory device is used for
providing ones of M components of a codebook vector to
ones of the processor cells making up a column of the array,
such that a different such codebook vector is provided to
each of the N columns of the array. The components of the
codebook vector represent predetermined pixel intensities, if
an image is being compressed. The processor device is used
for simultaneously comparing the components of each input
vector, whenever inputted, to corresponding components of
each codebook vector in the respective columns of the array,
and for outputting a signal representative of the closeness
between the compared vector components.

The apparatus for data compression also includes a com-
bination device and a closeness determination device. The
combination device is used for combining the signal output
from each processor cell in each column of the array and for
outputting a combined signal for each column of the array.
The closeness determination device is used for determining
which codebook vector is closest to an input vector from the
combined signals output by the combination device, and for
outputting a codebook vector index indicating which of the
N codebook vectors was the closest to the input vector for
each input vector input into the array.

In a preferred embodiment of the present invention, the
apparatus for data compression incorporates the capability to
change the value of the codebook vector component pro-
vided by the memory device in each processor cell. This
capability is realized by the addition of an array address
generator device, library device, column and row decoder
devices, and an access device. The array address generator
device is used for outputting a series of array addresses
wherein the series is made up of the array addresses of every
processor cell in the array listed only once, and wherein the
series is constantly repeated. The library device is used for
storing the value of each codebook vector component for all
the N codebook vectors and a corresponding array address
of the processor cell associated with a particular codebook
vector component, and for outputting the value of the
codebook vector component corresponding to each array
address received from the array address generator device.
The column and row decoder devices are used for exclu-
sively accessing the processor cell residing at an array
address received from the array address generator device.
And finally, the access device, which is disposed in each
processor cell, is used for allowing the processor cell to be
accessed by the column and row decoder device, such that
a value of a codebook vector component received from the
library device can be impressed on the memory device.

It is also preferred that the library device for storing the
value of each codebook vector component for the N code-
book vectors and a corresponding array address of the
processor cell associated with a particular codebook vector
component, further include a device for storing a plurality of
N codebook vector sets such that a particular set of N
codebook vectors whose associated components values are
to be outputted can be selected in one of two ways. Either

5,506,801
5

by a user, or automatically, in accordance with a predeter-
mined selection criteria.

The preferred embodiment of the present invention, when
used for image compression, further employs a voltage level
proportional to the pixel intensity to represent the values of
the components of the input and codebook vectors. To this
end the memory device includes a capacitor for storing a
voltage level representing the pixel intensity of the code-
book vector component associated with the processor cell.
In addition, the processor device includes a distance metric
operation circuit for computing the degree of similarity
between two voltages and outputting a current that becomes
relatively large whenever the two voltages are very close
together and substantially falls off the more dissimilar the
two voltages are from each other. This provides a current
which is indicative of the closeness of the two voltages
representing the values of the components of the input and
codebook vectors. The combination device can, therefore,
be made by connecting the individual outputs of each
processor cell in each column of processor cells to a single
output line. The individual currents output from each pro-
cessor cell in the column will combine, and so provide an
indication of the closeness of the overall input vector to the
codebook vector impressed on that column of processor
cells. Because of this, the closeness determination device
can include a winner-take-all circuit. This circuit determines
which of the columns exhibits the highest current. The index
of the codebook vector impressed on the “winning” column
is then output.

BRIEF DESCRTPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood with regard
to the following description, appended claims, and accom-
panying drawings where:

FIG. 1 is a diagram showing a pre-processing stage where
pixel intensities in non-overlapping kernels from the original
image are rearranged in vector form for post-processing by
the vector quantization encoder.

FIG. 2 is a diagram showing a positive real valued state
space for the illustrative case of M=3. It shows locations of
six precomputed codebook vectors C” along with a sample
input vector x. In the example x is closest to C3’.

FIG. 3 is a diagram of a parallel architecture for the vector
quantization encoder. Codebook vectors now occupy col-
umns in the array structure, and input kernel vectors are
broadcast simultaneously to all cells for computation.

FIG. 4 is a simplified schematic of a circuit for the vector
quantization encoder of FIG. 3. It includes (volatile) storage
of codebook vectors as analog voltages on capacitors.

FIG. 5 is a simplified schematic of a circuit for the
computational cells of FIG. 4. It includes a digital control
logic circuit (upper circuit) and a “bump” comparator circuit
(lower circuit).

FIG. 6a is a graph showing a linear plot of the bell shaped
response of the “bump” circuit.

FIG. 6b is a graph showing a loghinear plot of the bell
shaped response of the “bump” circuit.

FIG. 7 is a graph showing a plot of the output current from

6
FIG. 9 is a diagram of a one dimensional encoder.
FIG. 10 is a diagram showing the positive real valued

state space for the illustrative case of M=3 showing bubble
regions surrounding codebook vectors.

5

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The computational schematic for the parallel implemen-
10 tation of the vector quantization algorithm is shown in FIG.

3. It was required a priori that each kernel be compared to
all stored codebook vectors in parallel (i.e. simultaneously).
For an N size codebook, this would lead to an automatic
speedup of the encoding task by a factor of N. Secondly, for

15 each of the N such input-vector/codebook-vector compari-
sons, further speed improvements can be obtained by per-
forming the distance metric operation across the M vector
components in a fully parallel fashion. This entails calcu-
lating all M quantities of the metric operation f(xk-ck)

20 simultaneously and summing the result as the quantity d(X,
C@)). For the Euclidean metric the function f is the squaring
function. This would lead to an additional speed-up by a
factor of M. This formalism is shown schematically in FIG.
3, where each codebook vector now occupies a column in

25 the array structure 100 shown. Each column consists of M
computational cells 102 The codebook vector components
C:O form one of two inputs to the computational cell. The
other input is the corresponding component of the incoming
kernel vector XI.

In actual practice N is some power of 2, say 256 or 512
codevectors for a good sized codebook. Each vector in the
codebook is of dimension M, and one finds vectors of length
4, 9, 16 and 25. Recall that the length of a code vector is
governed by the size of the pixel block requiring classifi-
cation in the raw image. The computational schematic in
FIG. 3 now provides us with the mechanism by which
images may be encoded. The image to be compressed is
partitioned into a sequence of nonoverlapping input kernels.
The pixel intensities in each such kernel become the vector

components of the input vector x which is applied to the
vector quantization encoder processor, as seen by the quan-
tities xM. The array of cells 100 compute the metric opera-
tion as defined by f , and provide an output proportional to

45 the distance between the vector components. A subsequent
comparison of the M quantities d(X, C‘“’) points to the
winning codebook vector. The address of this vector is the
quantity required from the encoder. It should be noted that
the parallelization of the vector quantization architecture has

50 lead to an automatic speed-up of the encoding task by a
factor of N*M. For our example of a 256 clement codebook
with a kernel of dimension 16, this is a speed-up factor of
4096 over a serial implementation. Up to this point, no
reference being made as to the medium for the implemen-

55 tation. All the above holds true for a N*M node Connection
Machine or a N*M analog CMOS application specific
processor.

FIG. 4 is a preferred embodiment of the present invention
and provides a practical electronic implementation of the

60 computational paradigm described above. The array of com-
uutational cells 202 are identical to one another. Each

30

35

40 --f

the “bump” circuit as a function of time. The capacitor was
initially charged to 4.04 V and disconnected from the outside
world at t=o”. The Plot is indicative of charge leakage from
the capacitor.

FIG. 8 is a graph showing a logarithmic plot of the
intercell variation of peak current due to process variation.

computational cell 202 receives two scalar quantities and
provides as an output a single scalar quantity. Exploiting the
physics of the medium, input quantities 204 are voltages that

65 can readily be broadcast across multiple cells 202. One such
voltage, V,‘ represents an incoming kernel pixel intensity,
and as such, identical quantities need to be broadcast across

5,506,801
7 8

all corresponding columns (codebook patterns). The second these two values. In our implementation, we chose the
input 206 corresponds to a programming voltage line “bump” distance metric function f . This function computes
required to impress an externally controlled voltage on the the similarity between two voltages. The similarity output of
built-in capacitors 208 in each cell. These capacitors provide this circuit is a current that becomes very large when the
for volatile) storage of the statidor time invariant) codebook 5 input voltages are very Close together and falls off quasi-
vector components required for the computation. It should exponentially as the voltages are made more dissimilar. This
be recognized, that although capacitors are preferred, other functionality allows us to use a well known Winner-Take-All
devices capable of storing a voltage level could be (WTA) module block 224 to determine the closest matching
employed. The second input 206 is supplied from a library codebook vector. An example of this well known circuit is
210 which stores the value of each codebook vector corn- io described in J. La~zaro, S . Ryckebusch, M. A. Mahowald,
ponent for all the N codebook vectors and a corresponding and C. A. Mead, “Winner-Take-All Networks of O(N)Com-
array address of the computational cell 202 associated with plexity,” Caltech Computer Science publication CS-TR-88-
a particular codebook vector component. It is also noted that 21. Of course, as those skilled in the art will appreciate,
the library 210 preferably has the capability to store more many other comparison circuits are available which could be
than one set of N codebook vectors, thereby allowing a user 15 employed instead of the aforementioned “bump” circuit. For
to choose which set to employ in the array. Alternately, the instance, a circuit implementing an absolute value or least
set to be employed could be chosen automatically via a squares approach could be used. A comparison circuit whose
predetermined selection criteria appropriate for the type of output decreases the closer the inputs are to each other could
data being compressed. The library 210 outputs a signal even be employed. Although in that case a “Loser-Take-All”
having a voltage level consistent with the codebook vector 20 circuit would have to be utilized to determine which code-
component associated with an array address received from book vector the input vector is closest too.
an array address generator 212. The array address generator A schematic of the preferred embodiment of the compu-
212 continuously repeats a series of array addresses where tational cells 202 is shown in R G . 5. This circuit is particu-
the series is made up of the address of each computational larly elegant in its simplicity. The upper portion of the figure
cell 202 in the array. In this way, the voltage level associated 25 contains the necessary address circuitry required impress a
with each codebook vector component is impressed on the voltage and subsequently refresh this voltage on the capaci-
appropriate capacitor 208, and refreshed each time the series tor C”. The lower portion of the figure contains the distance
of addresses is repeated. The output of the library 210 is metric computational guts of the cell. This circuit, known as
connected to every computational cell 202 in the array. To a “bump” circuit, and is well known in the art as exemplified
ensure the proper voltage is impressed on the capacitor 208 30 by T. Delbmck, “Bump Circuits for Computing Similarity
in each computational cell 202, each cell 202 has an access and Dissimilarity of Analog Voltages,” Proceedings of the
circuit 214. The access circuit 214 is connected to both a International Neural Network Society, Seattle, Wash., 1991.
column decoder 216 and a row decoder 218. The column It essentially consists of a current correlator circuit hooked
decoder 216 receives a column designation from the array up to a differential pair. Its response is gaussian like and is
address generator 212, and provides an activation signal to 35 given by
the access circuit 214 of each computational cell 202 in the

(7)

receives a row designation from the array address generator
212, and provides an activation signal to the access circuit where AV=(Vt~-VCu,,~), I, is the bias current on the tail
214 of each computational cell 202 in the designated row. 40 transistor, w is the transistor width to length ratio W:L, and
The access circuit 214 of the computational cell 202 receiv- ~m0.7. This function is bell shaped and actual data points
ing both a column and row activation signal allows the taken from the hardware are shown in FIGS. 6a and 6b. FIG.
signal from the library 210 to access the capacitor 208 and 6a shows the bell shaped curve plotted on a linear-linear
impress a voltage thereon. As described above, the voltage scale, and FIG. 6b shows the same curve on a log-linear
impressed will correspond to the codebook vector compo- 45 scale. The function is centered on AV=O where it attains a
nent associated with the address of the accessed cell 202. In maximum amplitude of wIJ2. The operating conditions
this way the capacitors 208 of each computational cell 202 used were V,,=8 V and V,# V. For the given bias current
in the array are programmed to their preselected codebook and cell, a peak current of 33 nA was obtained and a full
values and subsequently refreshed during each cycle of the width at half maximum (FWHM) of the peak of =0.2 V.
array address generator 212. The just-described library 210, 50 Although the peak centroid could be made to slide across the
array address generator 212, and column and row decoders entire coding range of [I, 71 volts, the data shown was taken
216,218 can be implemented in any number of well known with a capacitor voltage of 4.04 V. It should be pointed out
ways. For instance, a microprocessor could be programmed that the sensitivity on the voltage difference may be tuned
to perform these functions. However, as these elements do (Le. decreased or increased depending on the maximum
not make up novel aspects of the present and are achievable 55 output required by the winner-take-all stage) by changing
in well known ways, no detailed description is provided the bias current to the gaussian circuit.
herein. The output, of the computational cell 202 is to a From FIG. 6a and FIG. 6b, it can be seen that the distance
single line 220 on which a uni-directional current is broad- function f is extremely sensitive to small variations in input
cast. Summation of current contributions from cells along a voltage differential. A valid concern in using capacitors for
given column is therefore achieved on a single wire 220. The 60 storing one of the voltage inputs to the metric function is the
specific role of the function block f 222 within these effect of charge leakage from the capacitor on the accuracy
computational cells 202 is to perform the distance metric of the encoder. The size of the polyl-poly2 capacitors was
operation between the two input scalar quantities 204, 206 set at 69x58 p2 for an effective capacitance of 2 pF. FIG.
as denoted by V,,”, and V j , (these being the jfh elements 7 shows indirectly the charge leakage off the capacitor by
of the ifh code vector and the j‘” component of the input 65 plotting the output current of the computational cell as a
kernel, respectively). The output of each such computational function of time, given that at t=O- the capacitor was charged
cell 202 is a quantity proportional to the disparity between to 4.04 V, and that at t=O+ the capacitor was disconnected

designated column. Simultaneously, the row decoder 218 Io”,= O T l b sech2 (+)

5,506,801
9

from the external voltage charge line and allowed to drift.
From the figure, in =27 seconds, the output current changed
by 24 nA. This corresponds to an effective change in
capacitor voltage of A V d . 14 Volts. Correspondingly, we
have a voltage drift rate of AV/At=5 mV/s. This implies that 5
with a 12 bit D/A converter operating at =5 kHz, we should
observe negligible effect on the accuracy of the encoder
from charge decay.

A further concern with analog computing is the effect of
process variation on the computational stability of the VQ 1o
encoder. In FIG. 8, a statistical representation of the varia-
tion of the maximum current (i.e. the peak current) across 18
cells in the array is shown. For the given operating condi-
tions, we have a mean 1,,=31.4 nA with a standard devia-
tion of 3.5 nA. The range on I,, across the cells was (27.2,
37.8) nA. The concern posed is the following: does the
combination of process variation and exponential sensitivity
on the part of the computational cell lead to classification
problems? It turns out that there is really no problem.
Consider a VAP processor of dimensionality M. This defines
a real positive valued M dimensional state space for the 20
system. Codebook vectors are points in this space. The
question to ask now, is how close can two points be in this
state space be to be resolved individually in view of the
impact on I,, caused by process variations? The worst case
scenario is for M=l, as seen in FIG. 9. In this figure, we are 25
given two very closely space patterns C(m) and C'"' such that

fy'=d"'+6 (8)

Furthermore, lets assume that an input vector x is very close

x=C'"' (9)

then we can experimentally guarantee that the correct clas-
sification, i.e. that the following relationship holds

f(x, C'"')>f(x, C'"') (10)

provided that 620.1 Volt. This defines a bubble around each
codebook vector in the state space seen in FIG. 10. On a
coding range of [1, 71 Volts, this implies that we can load at 40

to C(m), i.e. 30

35

most 60 distinct patterns in our one dimensional case. For
the case M22, the same relationship holds in all dimensions.
This means that for an M dimensional state space, there can
be at most 6dv distinct resolvable states. For our 16 dimen-
sional vector quantization problem, this implies that loading
is complete after 10'' vectors.

A VLSI based analog chip capable of performing this
vector quantization algorithm has been fabricated. This chip
was designed as the Jet Propulsion Laboratory and fabri-
cated through the MOSIS facilities in a 2 pm feature size
process. Each chip was designed to be programmable (that
is one can download a new set of codewords at will) and
cascadable (so that libraries of several hundredthousands of
codewords may be stored. The chip is based on a capacitor
refresh scheme, and consists of an addreddata de-multi-
plexer, row and column address decoders, capacitor refresh
circuitry, 16 analog input lines, winner select output lines,
computational cells, and a WTA module. The WTA module
is an adaptation of Lazzaro's Winner-Take-All analog net-
work. The cells on the test chip are arranged in a 16x256
cross-bar matrix so that each of the N=256 columns are
dedicated to the storage of a codebook patterns. Each
column comprises M=16 cells, each of which performs the
basic computation of t, he sum-squared disparity measure-
ment.

For performance comparison, we have been able to com-
press a 512x512 pixel image in 0.5 seconds using a 256

15

50

55

60

65

10
element codebook and 16 element kernels. The same com-
pression done in software on a SparcStation 2 was on the
order of 200 seconds. This speed-up of 400 times was
performed by a single VLSI chip at a fraction of the power
(typically mW) and cost.

While the invention has been described by specific ref-
erence to preferred embodiments thereof, it is understood
that variations and modifications thereof may be made
without departing from the true spirit and scope of the
invention. For instance, even though the foregoing discus-
sion concentrated on the parallel implementaion of the
vector quantization algorithm for image compression, it
would be equally applicable to any type of data compression
where some amount of data loss is acceptible.

What is claimed is:
1. A parallel analog processor for data compression,

(a) an array of processor cells having N columns and M
rows, each of said processor cells comprising,
(al) an input for inputting one of M components

making up an input vector,
(a2) memory means for providing one of M compo-

nents making up one of N codebook vectors, and,
(a3) processor means connected to the input and

memory means for comparing an input vector com-
ponent to a codebook vector component, and for
outputting from an output of the processor cell a
signal representative of the closeness between the
compared vector components, and wherein,

(a4) the inputs of each row of processor cells are
connected together;

(b) combination means for combining the signal output
from each processor cell in each column of M proces-
sor cells and for outputting a combined signal for each
column of processor cells; and,

(c) closeness determination means for determining which
codebook vector is closest to the input vector from the
combined signals output by the combination means,
and for outputting a codebook vector index indicating
which of the N codebook vectors was the closest to the
input vector.

2. The parallel analog processor of claim 1, further

(a) array address generator means for outputting a series
of array addresses wherein the series is made up of the
array addresses of every processor cell in the array
listed only once, and wherein the series is constantly
repeated;

(b) library means for storing the value of each codebook
vector component for the N codebook vectors and a
corresponding array address of the processor cell asso-
ciated with a particular codebook vector component,
and for outputting the value of the codebook vector
component corresponding to each array address
received from the array address generator means;

(c) column and row decoder means for exclusively
accessing the processor cell residing at an array address
received from the array address generator means; and,

(d) access means disposed in each processor cell for
allowing the processor cell to be accessed by the
column and row decoder means to cause a value of a
codebook vector component received from the library
means to be impressed on the memory means.

3. The parallel analog processor of claim 2, wherein the
library means for storing the value of each codebook vector
component for the N codebook vectors and a corresponding

comprising:

comprising:

5,506,801
11 12

array address of the processor cell associated with a par-
ticular codebook vector component, further comprises:

means for storing a plurality of N codebook vector sets
wherein a particular set of N codebook vectors whose
associated components values are to be outputted is 5
capable of being selected in one of two ways, (i) by a
user, and (ii) automatically in accordance with a pre-
determined selection criteria.

which of the N codebook vectors was the closest to the
input vector for each input vector input into the array.

10. The method of claim 9, further comprising the

(a) outputting a series of array addresses via an array
address generator means wherein the series is made up
of the array addresses of every processor cell in the
array listed only once, and wherein the series is con-
stantly repeated;

Of the input vector represents an 10 (b) storing the value of each codebook vector component
intensity of a pixel of an image to be compressed, and for the N codebook vectors and a corresponding array

address of the processor cell associated with a particu- wherein the input vector comprises a grouping of said
lar codebook vector component via library means, and pixels; and,

(b) each codebook vector component represents a pre- outputting the value of the codebook vector component
determined pixel intensity. corresponding to each array address received from the

array address generator means; 5. The parallel analog processor of claim 4, wherein
values of the components of the input vector and codebook

(c) exclusively accessing the processor cell residing at an vector represent pixel intensity via a voltage level propor-
array address received from the array address generator tional to the pixel intensity, and wherein the memory means
means via column and row decoder means; and,

a capacitor for storing a voltage level representing the to be accessed by the
column and row decoder means via access means pixel intensity of the codebook vector component asso-
disposed in each processor cell to cause a value of a ciated with the processor cell.
codebook vector component received from the library 6. The parallel analog processor of claim 5, wherein the

processor means comprises a distance metric operation 25
circuit for computing the degree of similarity 11. The method of claim 10 wherein the step of storing the
between two voltages and outputting a current that becomes value Of each vector component for the 'Ode-
relatively large whenever the two voltages are very close book vectors and a array address Of the
together and falls off the dissimilar the processor cell associated with a particular codebook vector

3o component via library means, further comprising the step of: two voltages are from each other.
7. The parallel analog processor of claim 6, wherein the storing a plurality of N codebook vector sets wherein a

individual outputs of each processor cell in each column of particular set of N codebook vectors whose associated
processor cells are connected to a single output line to form components values are to be outputted is capable of
the combination means. being selected in one of two ways, (i) by a user, and (ii)

automatically in a ~ o r d a n c e with a Predetermined
closeness determination means comprises a winner- take-all selection criteria.
circuit.

9. A method of data compression employing a parallel
analog processor having an array of processor cells with N
columns and M rows, comprising the steps of

(a) inputting a series of input vectors wherein each input
vector in the series is simultaneously input into each
column of the array of processor cells in a pre-deter-
mined sequential order, said input vectors having M
components, ones of which are input into ones of the M 45 parallel analog processor, the apparatus comprising:
processor cells making up a column of the array;

(b) providing, via memory means disposed in each
processor cell, ones of M components of a codebook
vector to ones of the processor cells making up a
column of the array, and providing a different such 50
codebook vector to each of the N columns of the array;

(c) simultaneously comparing the components of each
input vector, whenever inputted, to corresponding com-
ponents of each codebook vector in the respective 55
columns of the array, via processor means disposed in
each processor cell, and outputting a signal represen-
tative of the closeness between the compared vector
components;

(d) combining the signal output from each processor cell 60
in each column of the array via combination means and
outputting a combined signal for each column of the
array; and,

(e) determining which codebook vector is closest to an
input vector from the combined signals output by the 65
combination means via closeness determination means,
and outputting a codebook vector index indicating

steps Of:

4. The parallel analog processor of claim 1, wherein:
(a) each

15

comprises: 20 (dl 'lowing the processor

to be impressed On the memory

8. The parallel analog processor of claim 7, wherein the 35

12. The method of claim 9, wherein:
(a) each input, vector represents anon- overlapped group-

ing of pixels of an image to be compressed, and each
component of the input vector represents an intensity of
a particular pixel in the grouping; and,

(b) each component of each codebook vector represents a
pre-determined pixel intensity.

13. An apparatus for data compression employing a

(a) an array of processor cells with N columns and M
rows;

(b) input means for inputting a series of input vectors
wherein each input vector in the series is simulta-
neously input into each column of the array of proces-
sor cells in a pre-determined sequential order, said
input vectors having M components, ones of which are
input into ones of M processor cells making up a
column of the array;

(c) memory means disposed in each processor cell for
providing ones of M components of a codebook vector
to ones of the processor cells making up a column of
the array, and wherein a different such codebook vector
is provided to each of the N columns of the array;

(d) processor means disposed in each processor cell for
simultaneously comparing the components of each
input vector, whenever inputted, to corresponding com-
ponents of each codebook vector in the respective
columns of the array, and for outputting a signal
representative of the closeness between the compared
vector components;

40

5,506,801
13 14

(e) combination means for combining the signal output
from each processor cell in each column of the array
and for outputting a combined signal for each column
of the array; and,

(f) closeness determination means for determining which 5
codebook vector is closest to an input vector from the
combined signals output by the combination means,
and for outputting a codebook vector index indicating
which of the N codebook vectors was the closest to the

14. The apparatus in accordance with claim 13, further

(a) array address generator means for outputting a series

array addresses Of every processor in the array
listed O'Y once, and wherein *e series is constanfly
repeated;

(b) library means for storing the value of each codebook
vector component for *e N codebook vectors and a 20
corresponding array address of the processor cell asso-
ciated with a particular codebook vector component,

component corresponding to each array address the processor means comprises a distance metric operation
received from the 25 circuit means for computing the degree of similarity

(C) Column and row dfx~der means for exclusively between two voltages and outputting a current that becomes
accessing the Processor cell residing at an array ddress relatively large whenever the two voltages are very close
received from the array address generator means; and, together and substantially falls off the more dissimilar the

(d) access means disposed in each processor cell for two voltages are from each other.
allowing the processor cell to be accessed by the 30 19. The apparatus in accordance with claim 18, wherein
column and row decoder means to cause a value of a the individual outputs of each processor cell in each column
codebook vector component received from the library of processor cells are connected to a single output line to
means to be impressed on the memory means. form the combination means.

15. The apparatus in accordance with claim 14, wherein 20. The apparatus in accordance with claim 19, wherein
the library means for storing the value of each codebook 35 the closeness determination means comprises a winner-
vector component for the N codebook vectors and a corre- take-all circuit.
sponding array address of the processor cell associated with

means for storing a plurality of N codebook vector sets
wherein a particular set of N codebook vectors whose
associated components values are to be outputted is
capable of being selected in one of two ways, (i) by a
user, and (ii) automatically in accordance with a pre-
determined selection criteria.

16. The apparatus in accordance with claim 13, wherein:
(a) each input vector represents a non- overlapped group-

ing of pixels of an image to be compressed, and each

a particular pixel in the grouping; and,

pre-determined pixel intensity.

input Vector for each input vector input into the lo component ofthe input vectorrepresents an intensity of

comprising: (b) each component of each codebook vector represents a

Of addresses wherein the series is Of the 15 17. The apparatus in accordance with claim 16, wherein
values of the components of the input vector and codebook
vector represent pixel intensity via a voltage level propor-
tional to the pixel intensity, and wherein the memory means
comprises:

a capacitor for storing a voltage level representing the
pixel intensity of the codebook vector component asso-
ciated with the processor cell.

and for Outputting the value Of the 'Odebook vector 18. The apparatus in accordance with claim 17, wherein

address generator means;

a particular codebook vector component, further comprises: * * * * *

