
US00550680 1 A 

United States Patent t191 [11] Patent Number: 5,506,801 
Tawel [45] Date of Patent: Apr. 9,1996 

[54] HIGH-PERFORMANCE ULTRA-LOW 
POWER VLSI ANALOG PROCESSOR FOR 
DATA COMPRESSION 

[75] Inventor: Raoul Tawel, Glendale, Calif. 

[73] Assignee: California Institute of Technology, 
Pasadena, Calif. 

[21] Appl. No.: 196,295 

[22] Filed: Feb. 14, 1994 

[51] Int. C1.6 ....................................................... GO66 7/00 
[52] U.S. C1. .............................................................. 364/807 
[58] Field of Search ...................................... 364/807, 602 

[561 References Cited 

U.S. PATENT DOCUMENTS 

5,115,492 5/1992 Engeler ................................... 364/602 
5,140,531 8/1992 Engeler ................................... 364/602 
5,220,642 6/1993 Takahashi et al. ...................... 364/807 
5,353,383 10/1994 Uchimura et al. ...................... 3641807 

OTHER PUBLICATIONS 

J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. 
Mead, “Winner-Take-All Networks of O(N) complexity,” 
Caltech Computer Science publication CS-TR-88-21, 
1988. 
R. M. Gray, “Vector Quantization”, IEEE ASSP Magazine, 
April 1984. pp. 4-29. 
Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for 
Vector Quantizer Design”, IEEE Trans. on Commun., vol. 

T. Delbruck, “Bump’ Circuits for Computing Similarity and 
Dis-similarity of Analog Voltages,” Proceedings of the 
International Neural Network Society, Seattle, Washington, 
1991. 

COM-28, NO. 1 Jan. 1980. pp. 84-95. 

W. H. Equitz, “A New Vector Quantization Clustering 
Algorithm”, IEEE Transactions on Acoustics, Speech, and 
Signal Processing, vol. ASSP-37, pp. 1568-1575, 1989. 
C. Mead, “Analog VLSI and Neural Systems,” Addison 
Wesley, Reading, Massachusetts, 1989, Chapter 6. 
Primary Examiner-Tan V. Mai 
Attorney, Agent, or  Fimz-Michael L. Keller; Michaelson & 
Wallace 

is71 ABSTRACT 

An apparatus for data compression employing a parallel 
analog processor. The apparatus includes an array of pro- 
cessor cells with N columns and M rows wherein the 
processor cells have an input device, memory device, and 
processor device. The input device is used for inputting a 
series of input vectors. Each input vector is simultaneously 
input into each column of the array of processor cells in a 
pre-determined sequential order. An input vector is made up 
of M components, ones of which are input into ones of M 
processor cells making up a column of the array. The 
memory device is used for providing ones of M components 
of a codebook vector to ones of the processor cells making 
up a column of the array. A different codebook vector is 
provided to each of the N columns of the array. The 
processor device is used for simultaneously comparing the 
components of each input vector to corresponding compo- 
nents of each codebook vector, and for outputting a signal 
representative of the closeness between the compared vector 
components. A combination device is used to combine the 
signal output from each processor cell in each column of the 
array and to output a combined signal. A closeness deter- 
mination device is then used for determining which code- 
book vector is closest to an input vector from the combined 
signals, and for outputting a codebook vector index indicat- 
ing which of the N codebook vectors was the closest to each 
input vector input into the array. 

20 Claims, 7 Drawing Sheets 
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HIGH-PERFORMANCE ULTRA-LOW 
POWER VLSI ANALOG PROCESSOR FOR 

DATA COMPRESSION 

ORIGIN OF THE INVENTION 

The invention described herein was made in the perfor- 
mance of work under a NASA contract, and is subject to the 
provisions of Public Law 96-517 (35 USC 202) in which the 
contractor has elected to retain title. 

BACKGROUND OF THE INVENTION 

1. Technical Field 
The invention relates to an apparatus for data compres- 

sion, and more particularly, to such an apparatus employing 
a parallel analog processor. 

2. Background Art 
Data compression is the art of packing data. It is the 

process of transforming a body of data to a smaller repre- 
sentation from which the original or some approximation to 
the original can be retrieved at a later time. Most data 
sources contain redundancy like symbol distribution, pattern 
repetition, and positional redundancy. It is the role of the 
data compression algorithm to encode the data to reduce this 
built-in redundancy. 

There are two kinds of data compression: lossless com- 
pression and lossy compression. Lossless compression guar- 
antees that the data that is to be compressed and then 
subsequently decompressed, is identical to the original. 
Lossless data compression can be applied to any type of 
data. In practice, however, it is most common for textual 
data such as text, programming languages, object codes, 
data base information, numerical data, electronic mail etc., 
where it is important to preserve the original content exactly. 
Lossy data compression, on the other hand, allows the 
decompressed data to differ from the original data as long as 
the decompressed data can satisfy some fidelity criterion. 
For example, with image compression, it may suffice to have 
an image that subjectively looks to the human eye as good 
as the original. Likewise, in the case of compression of audio 
signals, it may suffice to have a reconstructed signal that 
merely sounds as good as the original to a user, rather than 
being an exact reproduction. 

Data compression has not been a standard feature in most 
communicatiodstorage systems for the following reasons: 
Compression increases the software and/or hardware cost; it 
is difficult to incorporate into high data rate systems (>lo 
Mbls); most compression techniques are not flexible enough 
to process different types of data; and blocks of compressed 
data with unpredictable lengths present space allocation 
problems. These obstacles are becoming less significant 
today due to the recent advances in algorithm development, 
high-speed VLSI technology, and packet switching commu- 
nications. Data compression, in certain restricted applica- 
tions, is now a feasible option for those communication or 
storage systems for which communication bandwidth and/or 
storage capacity are at a premium. 

Of the numerous algorithms present in image coding, 
vector quantization has been used as a source coding tech- 

preserving the required fidelity of the data. This is particu- 
larly important to many present and future communication 
systems, as the volume of speech and image data in the 
foreseeable future would become prohibitively large for 
many communication links or storage devices. A major 
obstacle preventing the widespread use of such compression 
algorithms, is the large computational burden associated 
with the coding of such images. It has been shown that a 
well-designed vector quantization scheme can provide high 
compression ratio with good reconstructed quality. Insofar 

Unlike scalar quantization where the actual coding of 
continuous or discrete samples into discrete quantities is 
done on single samples, the input data of a vector quanti- 
zation encoder are multi-dimensional blocks of data (input 

l5 vectors). Therefore, in image coding, raw pixels are grouped 
together as input vectors for post-processing by the encoder, 
as seen in FIG. 1. Without loss of generality, we shall refer 
to gray scale images. However, as will be apparent to those 
skilled in the art, compression of color images is readily 

20 dealt with by extension. In FIG. 1, a fraction of a gray scale 
image is shown with a block of pixels highlighted. In this 
case the dimensionality of the pixel block is 4x4, which is 
a typical value for vector quantization. In the pre-processing 
stage, the intensity values corresponding to the pixels in this 

25 4x4 block are raster scanned into a 16 element vector for 
post- processing by the encoder. An important technique in 
vector quantization is the training of the codebook prior to 
transmission. Extensive preprocessing is performed on 
sample source data to construct the codebook which will be 

3o used in the compression session. The classical codebook 
training scheme is the Lloyd-Buzo-Gray (LBG) algorithm, 
which is a generalized k- mean clustering algorithm. There 
are various other means for generating a codebook with 
lower complexity. These include codeword merging and 
codeword splitting algorithms. These algorithms trade off 

35 lower rate-distortion performance for faster code book gen- 
eration. The encoder and decoder must first agree on the 
same codebook before data transmission. The closeness 
between an input vector and a codeword in the codebook is 
measured by an appropriate distortion function. During the 

40 compression session distortions between an input vector and 
codewords in the codebook are evaluated. The codeword 
closest to the input vector is chosen as the quantization 
vector to represent the input vector. The index of this chosen 
codeword is then transmitted through the channel. Compres- 

45 sion is achieved since fewer bits are used to represent the 
codeword index than the quantized input data. The decoder 
receives the codeword index, and reconstructs the transmit- 
ted data using the pre- selected codebook. 

The vector quantization algorithm which provides the 
50 foundation for the VLSI based hardware solution associated 

with the present invention will now be discussed. Consider 
a k- dimensional VQ encoder. The source image, say from 
an image data file or directly from a CCD array, is to be 
divided up into non- overlapping squares of p*p pixels. The 

55 pixel intensities for the block are subsequently put into a 
raster scan order, i.e. a k-dimensional input vector given by 

(1) 

5 

lo lies the motivation for this work. 

-, 
x=(x1. x*. . . . I Xt) 

where k=p*p. The vector quantization encoder has an asso- 
6o ciated codebook C consisting of N precomputed codewords 

words given by: 
nique for both speech and images. It essentially maps a 

sequence suitable for communication over a digital channel 
or storage in a digital medium. The goal is to reduce the 65 
volume of the data for transmission over a digital channel 
and also for archiving to a digital storage medium, while 

sequence of continuous or discrete vectors into a digital C d 1 ) ,  C@), . . . , c" (2) 

In practice, N is some power of 2, ranging typically from 
128 to 256 or even 512 vectors for a large codebook with lots 
of detail. The N codewords are of course k- dimensional, i.e. 
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(3) 

--f 
For an input vector x ,  the encoder determines that 

d(X, C"))Sd(, C'")) (4) 

for 1 S n S N .  The function d(X,C(") is a distance metric, and 
the algorithmic goal is to find that codeword in the K 
dimensional space that is "closest" to the input vector. A 
common choice of the metric is the Euclidean distance 
metric, as given by 

codebook element C(m) such that 
5 

(5) 

A more intuitive description of the problem is the following: 
For a k dimensional input vector consisting of bounded 
positive real-values and for a codebook consisting of N 
codewords, then the state space of the system is a k 
dimensional space populated by N unique vectors. The case 
for k=3 and N=6 is shown in FIG. 2. for illustrative 
purposes. The six stored codebook vectors are represented as 
filled points with indices C(i) in the 3 dimensional space. The 
input vector requiring classification is shown as the open 
point with index X. The role of the vector quantization 
encoder is to therefore select the physically closest code- 
book vector C'" in the available space to the input vector x. 
The placement or selection of the locations of the codebook 
vectors is a part of the preprocessing stage and is outside the 
scope of this invention. 

Once the encoder has determined the closest codeword for 
the given input kernel, all that remains is to either store or 
transmit the index m of the winning codeword. For a 
codebook consisting of N codewords, we require log,N bits. 
On the receiving end, the decoder's job is to replace the 
index m by C'"). Therefore, the coder achieves a compres- 
sion ratio of 

where s is the number of bits per pixel. As an example, for 
an 8 bit/pixel gray scale image with a codebook size of 256 
codewords, and using 16 dimensional kernels we achieve a 
compression ratio of 16. 

In terms of the raw number of basic arithmetic operations 
(Le. additions, multiplications, etc . . . ) required for each 
kernel classification, vector quantization is a very expensive 
algorithm to implement on a digital computer. There exist, 
however, techniques for pruning these prohibitive compu- 
tational costs, but to date no such technique has lead to 
pseudo real-time image coding, hence the popularity of 
alternative coding schemes. Yet this very same repetitive- 
ness of computations is indicative that the kernel classifi- 
cation task can be parallelized. 

It is, therefore, an objective of the present invention to 
demonstrate how such a parallelization of the vector quan- 
tization algorithm was achieved. 

In addition, it is another objective of the present invention 
to demonstrate how the parallelization of the vector quan- 
tization algorithm can be embodied in VLSI hardware. 

SUMMARY OF THE DISCLOSURE 

The foregoing problems are overcome in an apparatus for 
data compression employing a parallel analog processor. 
The apparatus includes an array of processor cells with N 
columns and M rows wherein the processor cells have an 
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4 
input device, memory device, and processor device. The 
input device is used for inputting a series of input vectors 
wherein each input vector in the series can represent a 
non-overlapped grouping of pixels of an image to be com- 
pressed. Each input vector is simultaneously input into each 
column of the array of processor cells in a pre- determined 
sequential order. An input vector is made up of M compo- 
nents, ones of which are input into ones of M processor cells 
making up a column of the array. In the case where an image 
is being compressed, each one of the input vector compo- 
nents represents an intensity of a particular pixel in the 
aforementioned grouping. The memory device is used for 
providing ones of M components of a codebook vector to 
ones of the processor cells making up a column of the array, 
such that a different such codebook vector is provided to 
each of the N columns of the array. The components of the 
codebook vector represent predetermined pixel intensities, if 
an image is being compressed. The processor device is used 
for simultaneously comparing the components of each input 
vector, whenever inputted, to corresponding components of 
each codebook vector in the respective columns of the array, 
and for outputting a signal representative of the closeness 
between the compared vector components. 

The apparatus for data compression also includes a com- 
bination device and a closeness determination device. The 
combination device is used for combining the signal output 
from each processor cell in each column of the array and for 
outputting a combined signal for each column of the array. 
The closeness determination device is used for determining 
which codebook vector is closest to an input vector from the 
combined signals output by the combination device, and for 
outputting a codebook vector index indicating which of the 
N codebook vectors was the closest to the input vector for 
each input vector input into the array. 

In a preferred embodiment of the present invention, the 
apparatus for data compression incorporates the capability to 
change the value of the codebook vector component pro- 
vided by the memory device in each processor cell. This 
capability is realized by the addition of an array address 
generator device, library device, column and row decoder 
devices, and an access device. The array address generator 
device is used for outputting a series of array addresses 
wherein the series is made up of the array addresses of every 
processor cell in the array listed only once, and wherein the 
series is constantly repeated. The library device is used for 
storing the value of each codebook vector component for all 
the N codebook vectors and a corresponding array address 
of the processor cell associated with a particular codebook 
vector component, and for outputting the value of the 
codebook vector component corresponding to each array 
address received from the array address generator device. 
The column and row decoder devices are used for exclu- 
sively accessing the processor cell residing at an array 
address received from the array address generator device. 
And finally, the access device, which is disposed in each 
processor cell, is used for allowing the processor cell to be 
accessed by the column and row decoder device, such that 
a value of a codebook vector component received from the 
library device can be impressed on the memory device. 

It is also preferred that the library device for storing the 
value of each codebook vector component for the N code- 
book vectors and a corresponding array address of the 
processor cell associated with a particular codebook vector 
component, further include a device for storing a plurality of 
N codebook vector sets such that a particular set of N 
codebook vectors whose associated components values are 
to be outputted can be selected in one of two ways. Either 
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by a user, or automatically, in accordance with a predeter- 
mined selection criteria. 

The preferred embodiment of the present invention, when 
used for image compression, further employs a voltage level 
proportional to the pixel intensity to represent the values of 
the components of the input and codebook vectors. To this 
end the memory device includes a capacitor for storing a 
voltage level representing the pixel intensity of the code- 
book vector component associated with the processor cell. 
In addition, the processor device includes a distance metric 
operation circuit for computing the degree of similarity 
between two voltages and outputting a current that becomes 
relatively large whenever the two voltages are very close 
together and substantially falls off the more dissimilar the 
two voltages are from each other. This provides a current 
which is indicative of the closeness of the two voltages 
representing the values of the components of the input and 
codebook vectors. The combination device can, therefore, 
be made by connecting the individual outputs of each 
processor cell in each column of processor cells to a single 
output line. The individual currents output from each pro- 
cessor cell in the column will combine, and so provide an 
indication of the closeness of the overall input vector to the 
codebook vector impressed on that column of processor 
cells. Because of this, the closeness determination device 
can include a winner-take-all circuit. This circuit determines 
which of the columns exhibits the highest current. The index 
of the codebook vector impressed on the “winning” column 
is then output. 

BRIEF DESCRTPTION OF THE DRAWINGS 

These and other features, aspects, and advantages of the 
present invention will become better understood with regard 
to the following description, appended claims, and accom- 
panying drawings where: 

FIG. 1 is a diagram showing a pre-processing stage where 
pixel intensities in non-overlapping kernels from the original 
image are rearranged in vector form for post-processing by 
the vector quantization encoder. 

FIG. 2 is a diagram showing a positive real valued state 
space for the illustrative case of M=3. It shows locations of 
six precomputed codebook vectors C” along with a sample 
input vector x. In the example x is closest to C3’. 

FIG. 3 is a diagram of a parallel architecture for the vector 
quantization encoder. Codebook vectors now occupy col- 
umns in the array structure, and input kernel vectors are 
broadcast simultaneously to all cells for computation. 

FIG. 4 is a simplified schematic of a circuit for the vector 
quantization encoder of FIG. 3. It includes (volatile) storage 
of codebook vectors as analog voltages on capacitors. 

FIG. 5 is a simplified schematic of a circuit for the 
computational cells of FIG. 4. It includes a digital control 
logic circuit (upper circuit) and a “bump” comparator circuit 
(lower circuit). 

FIG. 6a is a graph showing a linear plot of the bell shaped 
response of the “bump” circuit. 

FIG. 6b is a graph showing a loghinear plot of the bell 
shaped response of the “bump” circuit. 

FIG. 7 is a graph showing a plot of the output current from 

6 
FIG. 9 is a diagram of a one dimensional encoder. 
FIG. 10 is a diagram showing the positive real valued 

state space for the illustrative case of M=3 showing bubble 
regions surrounding codebook vectors. 

5 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

The computational schematic for the parallel implemen- 
10 tation of the vector quantization algorithm is shown in FIG. 

3. It was required a priori that each kernel be compared to 
all stored codebook vectors in parallel (i.e. simultaneously). 
For an N size codebook, this would lead to an automatic 
speedup of the encoding task by a factor of N. Secondly, for 

15 each of the N such input-vector/codebook-vector compari- 
sons, further speed improvements can be obtained by per- 
forming the distance metric operation across the M vector 
components in a fully parallel fashion. This entails calcu- 
lating all M quantities of the metric operation f(xk-ck) 

20 simultaneously and summing the result as the quantity d(X, 
C@)). For the Euclidean metric the function f is the squaring 
function. This would lead to an additional speed-up by a 
factor of M. This formalism is shown schematically in FIG. 
3, where each codebook vector now occupies a column in 

25 the array structure 100 shown. Each column consists of M 
computational cells 102 The codebook vector components 
C:O form one of two inputs to the computational cell. The 
other input is the corresponding component of the incoming 
kernel vector XI. 

In actual practice N is some power of 2, say 256 or 512 
codevectors for a good sized codebook. Each vector in the 
codebook is of dimension M, and one finds vectors of length 
4, 9, 16 and 25. Recall that the length of a code vector is 
governed by the size of the pixel block requiring classifi- 
cation in the raw image. The computational schematic in 
FIG. 3 now provides us with the mechanism by which 
images may be encoded. The image to be compressed is 
partitioned into a sequence of nonoverlapping input kernels. 
The pixel intensities in each such kernel become the vector 

components of the input vector x which is applied to the 
vector quantization encoder processor, as seen by the quan- 
tities xM. The array of cells 100 compute the metric opera- 
tion as defined by f ,  and provide an output proportional to 

45 the distance between the vector components. A subsequent 
comparison of the M quantities d(X, C‘“’) points to the 
winning codebook vector. The address of this vector is the 
quantity required from the encoder. It should be noted that 
the parallelization of the vector quantization architecture has 

50 lead to an automatic speed-up of the encoding task by a 
factor of N*M. For our example of a 256 clement codebook 
with a kernel of dimension 16, this is a speed-up factor of 
4096 over a serial implementation. Up to this point, no 
reference being made as to the medium for the implemen- 

55 tation. All the above holds true for a N*M node Connection 
Machine or a N*M analog CMOS application specific 
processor. 

FIG. 4 is a preferred embodiment of the present invention 
and provides a practical electronic implementation of the 

60 computational paradigm described above. The array of com- 
uutational cells 202 are identical to one another. Each 

30 

35 

40 --f 

the “bump” circuit as a function of time. The capacitor was 
initially charged to 4.04 V and disconnected from the outside 
world at t=o”. The Plot is indicative of charge leakage from 
the capacitor. 

FIG. 8 is a graph showing a logarithmic plot of the 
intercell variation of peak current due to process variation. 

computational cell 202 receives two scalar quantities and 
provides as an output a single scalar quantity. Exploiting the 
physics of the medium, input quantities 204 are voltages that 

65 can readily be broadcast across multiple cells 202. One such 
voltage, V,‘ represents an incoming kernel pixel intensity, 
and as such, identical quantities need to be broadcast across 
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all corresponding columns (codebook patterns). The second these two values. In our implementation, we chose the 
input 206 corresponds to a programming voltage line “bump” distance metric function f .  This function computes 
required to impress an externally controlled voltage on the the similarity between two voltages. The similarity output of 
built-in capacitors 208 in each cell. These capacitors provide this circuit is a current that becomes very large when the 
for volatile) storage of the statidor time invariant) codebook 5 input voltages are very Close together and falls off quasi- 
vector components required for the computation. It should exponentially as the voltages are made more dissimilar. This 
be recognized, that although capacitors are preferred, other functionality allows us to use a well known Winner-Take-All 
devices capable of storing a voltage level could be (WTA) module block 224 to determine the closest matching 
employed. The second input 206 is supplied from a library codebook vector. An example of this well known circuit is 
210 which stores the value of each codebook vector corn- io described in J. La~zaro, S .  Ryckebusch, M. A. Mahowald, 
ponent for all the N codebook vectors and a corresponding and C. A. Mead, “Winner-Take-All Networks of O(N)Com- 
array address of the computational cell 202 associated with plexity,” Caltech Computer Science publication CS-TR-88- 
a particular codebook vector component. It is also noted that 21. Of course, as those skilled in the art will appreciate, 
the library 210 preferably has the capability to store more many other comparison circuits are available which could be 
than one set of N codebook vectors, thereby allowing a user 15 employed instead of the aforementioned “bump” circuit. For 
to choose which set to employ in the array. Alternately, the instance, a circuit implementing an absolute value or least 
set to be employed could be chosen automatically via a squares approach could be used. A comparison circuit whose 
predetermined selection criteria appropriate for the type of output decreases the closer the inputs are to each other could 
data being compressed. The library 210 outputs a signal even be employed. Although in that case a “Loser-Take-All” 
having a voltage level consistent with the codebook vector 20 circuit would have to be utilized to determine which code- 
component associated with an array address received from book vector the input vector is closest too. 
an array address generator 212. The array address generator A schematic of the preferred embodiment of the compu- 
212 continuously repeats a series of array addresses where tational cells 202 is shown in R G .  5. This circuit is particu- 
the series is made up of the address of each computational larly elegant in its simplicity. The upper portion of the figure 
cell 202 in the array. In this way, the voltage level associated 25 contains the necessary address circuitry required impress a 
with each codebook vector component is impressed on the voltage and subsequently refresh this voltage on the capaci- 
appropriate capacitor 208, and refreshed each time the series tor C”. The lower portion of the figure contains the distance 
of addresses is repeated. The output of the library 210 is metric computational guts of the cell. This circuit, known as 
connected to every computational cell 202 in the array. To a “bump” circuit, and is well known in the art as exemplified 
ensure the proper voltage is impressed on the capacitor 208 30 by T. Delbmck, “Bump Circuits for Computing Similarity 
in each computational cell 202, each cell 202 has an access and Dissimilarity of Analog Voltages,” Proceedings of the 
circuit 214. The access circuit 214 is connected to both a International Neural Network Society, Seattle, Wash., 1991. 
column decoder 216 and a row decoder 218. The column It essentially consists of a current correlator circuit hooked 
decoder 216 receives a column designation from the array up to a differential pair. Its response is gaussian like and is 
address generator 212, and provides an activation signal to 35 given by 
the access circuit 214 of each computational cell 202 in the 

(7) 

receives a row designation from the array address generator 
212, and provides an activation signal to the access circuit where AV=(Vt~-VCu,,~), I, is the bias current on the tail 
214 of each computational cell 202 in the designated row. 40 transistor, w is the transistor width to length ratio W:L, and 
The access circuit 214 of the computational cell 202 receiv- ~m0.7. This function is bell shaped and actual data points 
ing both a column and row activation signal allows the taken from the hardware are shown in FIGS. 6a and 6b. FIG. 
signal from the library 210 to access the capacitor 208 and 6a shows the bell shaped curve plotted on a linear-linear 
impress a voltage thereon. As described above, the voltage scale, and FIG. 6b shows the same curve on a log-linear 
impressed will correspond to the codebook vector compo- 45 scale. The function is centered on AV=O where it attains a 
nent associated with the address of the accessed cell 202. In maximum amplitude of wIJ2. The operating conditions 
this way the capacitors 208 of each computational cell 202 used were V,,=8 V and V,# V. For the given bias current 
in the array are programmed to their preselected codebook and cell, a peak current of 33 nA was obtained and a full 
values and subsequently refreshed during each cycle of the width at half maximum (FWHM) of the peak of =0.2 V. 
array address generator 212. The just-described library 210, 50 Although the peak centroid could be made to slide across the 
array address generator 212, and column and row decoders entire coding range of [I, 71 volts, the data shown was taken 
216,218 can be implemented in any number of well known with a capacitor voltage of 4.04 V. It should be pointed out 
ways. For instance, a microprocessor could be programmed that the sensitivity on the voltage difference may be tuned 
to perform these functions. However, as these elements do (Le. decreased or increased depending on the maximum 
not make up novel aspects of the present and are achievable 55 output required by the winner-take-all stage) by changing 
in well known ways, no detailed description is provided the bias current to the gaussian circuit. 
herein. The output, of the computational cell 202 is to a From FIG. 6a and FIG. 6b, it can be seen that the distance 
single line 220 on which a uni-directional current is broad- function f is extremely sensitive to small variations in input 
cast. Summation of current contributions from cells along a voltage differential. A valid concern in using capacitors for 
given column is therefore achieved on a single wire 220. The 60 storing one of the voltage inputs to the metric function is the 
specific role of the function block f 222 within these effect of charge leakage from the capacitor on the accuracy 
computational cells 202 is to perform the distance metric of the encoder. The size of the polyl-poly2 capacitors was 
operation between the two input scalar quantities 204, 206 set at 69x58 p2 for an effective capacitance of 2 pF. FIG. 
as denoted by V,,”, and V j ,  (these being the jfh elements 7 shows indirectly the charge leakage off the capacitor by 
of the ifh code vector and the j‘” component of the input 65 plotting the output current of the computational cell as a 
kernel, respectively). The output of each such computational function of time, given that at t=O- the capacitor was charged 
cell 202 is a quantity proportional to the disparity between to 4.04 V, and that at t=O+ the capacitor was disconnected 

designated column. Simultaneously, the row decoder 218 Io”,= O T  l b  sech2 ( + ) 
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from the external voltage charge line and allowed to drift. 
From the figure, in =27 seconds, the output current changed 
by 24 nA. This corresponds to an effective change in 
capacitor voltage of A V d .  14 Volts. Correspondingly, we 
have a voltage drift rate of AV/At=5 mV/s. This implies that 5 
with a 12 bit D/A converter operating at =5 kHz, we should 
observe negligible effect on the accuracy of the encoder 
from charge decay. 

A further concern with analog computing is the effect of 
process variation on the computational stability of the VQ 1o 
encoder. In FIG. 8, a statistical representation of the varia- 
tion of the maximum current (i.e. the peak current) across 18 
cells in the array is shown. For the given operating condi- 
tions, we have a mean 1,,=31.4 nA with a standard devia- 
tion of 3.5 nA. The range on I,, across the cells was (27.2, 
37.8) nA. The concern posed is the following: does the 
combination of process variation and exponential sensitivity 
on the part of the computational cell lead to classification 
problems? It turns out that there is really no problem. 
Consider a VAP processor of dimensionality M. This defines 
a real positive valued M dimensional state space for the 20 
system. Codebook vectors are points in this space. The 
question to ask now, is how close can two points be in this 
state space be to be resolved individually in view of the 
impact on I,, caused by process variations? The worst case 
scenario is for M=l, as seen in FIG. 9. In this figure, we are 25 
given two very closely space patterns C(m) and C'"' such that 

fy'=d"'+6 (8) 

Furthermore, lets assume that an input vector x is very close 

x=C'"' (9) 

then we can experimentally guarantee that the correct clas- 
sification, i.e. that the following relationship holds 

f(x, C'"')>f(x, C'"') (10) 

provided that 620.1 Volt. This defines a bubble around each 
codebook vector in the state space seen in FIG. 10. On a 
coding range of [ 1, 71 Volts, this implies that we can load at 40 

to C(m), i.e. 30 

35 

most 60 distinct patterns in our one dimensional case. For 
the case M22,  the same relationship holds in all dimensions. 
This means that for an M dimensional state space, there can 
be at most 6dv distinct resolvable states. For our 16 dimen- 
sional vector quantization problem, this implies that loading 
is complete after 10'' vectors. 

A VLSI based analog chip capable of performing this 
vector quantization algorithm has been fabricated. This chip 
was designed as the Jet Propulsion Laboratory and fabri- 
cated through the MOSIS facilities in a 2 pm feature size 
process. Each chip was designed to be programmable (that 
is one can download a new set of codewords at will) and 
cascadable (so that libraries of several hundredthousands of 
codewords may be stored. The chip is based on a capacitor 
refresh scheme, and consists of an addreddata de-multi- 
plexer, row and column address decoders, capacitor refresh 
circuitry, 16 analog input lines, winner select output lines, 
computational cells, and a WTA module. The WTA module 
is an adaptation of Lazzaro's Winner-Take-All analog net- 
work. The cells on the test chip are arranged in a 16x256 
cross-bar matrix so that each of the N=256 columns are 
dedicated to the storage of a codebook patterns. Each 
column comprises M=16 cells, each of which performs the 
basic computation of t, he sum-squared disparity measure- 
ment. 

For performance comparison, we have been able to com- 
press a 512x512 pixel image in 0.5 seconds using a 256 

15 

50 

55 

60 

65 

10 
element codebook and 16 element kernels. The same com- 
pression done in software on a SparcStation 2 was on the 
order of 200 seconds. This speed-up of 400 times was 
performed by a single VLSI chip at a fraction of the power 
(typically mW) and cost. 

While the invention has been described by specific ref- 
erence to preferred embodiments thereof, it is understood 
that variations and modifications thereof may be made 
without departing from the true spirit and scope of the 
invention. For instance, even though the foregoing discus- 
sion concentrated on the parallel implementaion of the 
vector quantization algorithm for image compression, it 
would be equally applicable to any type of data compression 
where some amount of data loss is acceptible. 

What is claimed is: 
1. A parallel analog processor for data compression, 

(a) an array of processor cells having N columns and M 
rows, each of said processor cells comprising, 
(al) an input for inputting one of M components 

making up an input vector, 
(a2) memory means for providing one of M compo- 

nents making up one of N codebook vectors, and, 
(a3) processor means connected to the input and 

memory means for comparing an input vector com- 
ponent to a codebook vector component, and for 
outputting from an output of the processor cell a 
signal representative of the closeness between the 
compared vector components, and wherein, 

(a4) the inputs of each row of processor cells are 
connected together; 

(b) combination means for combining the signal output 
from each processor cell in each column of M proces- 
sor cells and for outputting a combined signal for each 
column of processor cells; and, 

(c) closeness determination means for determining which 
codebook vector is closest to the input vector from the 
combined signals output by the combination means, 
and for outputting a codebook vector index indicating 
which of the N codebook vectors was the closest to the 
input vector. 

2. The parallel analog processor of claim 1, further 

(a) array address generator means for outputting a series 
of array addresses wherein the series is made up of the 
array addresses of every processor cell in the array 
listed only once, and wherein the series is constantly 
repeated; 

(b) library means for storing the value of each codebook 
vector component for the N codebook vectors and a 
corresponding array address of the processor cell asso- 
ciated with a particular codebook vector component, 
and for outputting the value of the codebook vector 
component corresponding to each array address 
received from the array address generator means; 

(c) column and row decoder means for exclusively 
accessing the processor cell residing at an array address 
received from the array address generator means; and, 

(d) access means disposed in each processor cell for 
allowing the processor cell to be accessed by the 
column and row decoder means to cause a value of a 
codebook vector component received from the library 
means to be impressed on the memory means. 

3. The parallel analog processor of claim 2, wherein the 
library means for storing the value of each codebook vector 
component for the N codebook vectors and a corresponding 

comprising: 

comprising: 
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array address of the processor cell associated with a par- 
ticular codebook vector component, further comprises: 

means for storing a plurality of N codebook vector sets 
wherein a particular set of N codebook vectors whose 
associated components values are to be outputted is 5 
capable of being selected in one of two ways, (i) by a 
user, and (ii) automatically in accordance with a pre- 
determined selection criteria. 

which of the N codebook vectors was the closest to the 
input vector for each input vector input into the array. 

10. The method of claim 9, further comprising the 

(a) outputting a series of array addresses via an array 
address generator means wherein the series is made up 
of the array addresses of every processor cell in the 
array listed only once, and wherein the series is con- 
stantly repeated; 

Of the input vector represents an 10 (b) storing the value of each codebook vector component 
intensity of a pixel of an image to be compressed, and for the N codebook vectors and a corresponding array 

address of the processor cell associated with a particu- wherein the input vector comprises a grouping of said 
lar codebook vector component via library means, and pixels; and, 

(b) each codebook vector component represents a pre- outputting the value of the codebook vector component 
determined pixel intensity. corresponding to each array address received from the 

array address generator means; 5. The parallel analog processor of claim 4, wherein 
values of the components of the input vector and codebook 

(c) exclusively accessing the processor cell residing at an vector represent pixel intensity via a voltage level propor- 
array address received from the array address generator tional to the pixel intensity, and wherein the memory means 
means via column and row decoder means; and, 

a capacitor for storing a voltage level representing the to be accessed by the 
column and row decoder means via access means pixel intensity of the codebook vector component asso- 
disposed in each processor cell to cause a value of a ciated with the processor cell. 
codebook vector component received from the library 6. The parallel analog processor of claim 5, wherein the 

processor means comprises a distance metric operation 25 
circuit for computing the degree of similarity 11. The method of claim 10 wherein the step of storing the 
between two voltages and outputting a current that becomes value Of each vector component for the 'Ode- 
relatively large whenever the two voltages are very close book vectors and a array address Of the 
together and falls off the dissimilar the processor cell associated with a particular codebook vector 

3o component via library means, further comprising the step of: two voltages are from each other. 
7. The parallel analog processor of claim 6, wherein the storing a plurality of N codebook vector sets wherein a 

individual outputs of each processor cell in each column of particular set of N codebook vectors whose associated 
processor cells are connected to a single output line to form components values are to be outputted is capable of 
the combination means. being selected in one of two ways, (i) by a user, and (ii) 

automatically in a ~ o r d a n c e  with a Predetermined 
closeness determination means comprises a winner- take-all selection criteria. 
circuit. 

9. A method of data compression employing a parallel 
analog processor having an array of processor cells with N 
columns and M rows, comprising the steps of 

(a) inputting a series of input vectors wherein each input 
vector in the series is simultaneously input into each 
column of the array of processor cells in a pre-deter- 
mined sequential order, said input vectors having M 
components, ones of which are input into ones of the M 45 parallel analog processor, the apparatus comprising: 
processor cells making up a column of the array; 

(b ) providing, via memory means disposed in each 
processor cell, ones of M components of a codebook 
vector to ones of the processor cells making up a 
column of the array, and providing a different such 50 
codebook vector to each of the N columns of the array; 

(c) simultaneously comparing the components of each 
input vector, whenever inputted, to corresponding com- 
ponents of each codebook vector in the respective 55 
columns of the array, via processor means disposed in 
each processor cell, and outputting a signal represen- 
tative of the closeness between the compared vector 
components; 

(d) combining the signal output from each processor cell 60 
in each column of the array via combination means and 
outputting a combined signal for each column of the 
array; and, 

(e) determining which codebook vector is closest to an 
input vector from the combined signals output by the 65 
combination means via closeness determination means, 
and outputting a codebook vector index indicating 

steps Of: 

4. The parallel analog processor of claim 1, wherein: 
(a) each 

15 

comprises: 20 (dl 'lowing the processor 

to be impressed On the memory 

8. The parallel analog processor of claim 7, wherein the 35 

12. The method of claim 9, wherein: 
(a) each input, vector represents anon- overlapped group- 

ing of pixels of an image to be compressed, and each 
component of the input vector represents an intensity of 
a particular pixel in the grouping; and, 

(b) each component of each codebook vector represents a 
pre-determined pixel intensity. 

13. An apparatus for data compression employing a 

(a) an array of processor cells with N columns and M 
rows; 

(b) input means for inputting a series of input vectors 
wherein each input vector in the series is simulta- 
neously input into each column of the array of proces- 
sor cells in a pre-determined sequential order, said 
input vectors having M components, ones of which are 
input into ones of M processor cells making up a 
column of the array; 

(c) memory means disposed in each processor cell for 
providing ones of M components of a codebook vector 
to ones of the processor cells making up a column of 
the array, and wherein a different such codebook vector 
is provided to each of the N columns of the array; 

(d) processor means disposed in each processor cell for 
simultaneously comparing the components of each 
input vector, whenever inputted, to corresponding com- 
ponents of each codebook vector in the respective 
columns of the array, and for outputting a signal 
representative of the closeness between the compared 
vector components; 

40 
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(e) combination means for combining the signal output 
from each processor cell in each column of the array 
and for outputting a combined signal for each column 
of the array; and, 

(f) closeness determination means for determining which 5 
codebook vector is closest to an input vector from the 
combined signals output by the combination means, 
and for outputting a codebook vector index indicating 
which of the N codebook vectors was the closest to the 

14. The apparatus in accordance with claim 13, further 

(a) array address generator means for outputting a series 

array addresses Of every processor in the array 
listed O'Y once, and wherein *e series is constanfly 
repeated; 

(b) library means for storing the value of each codebook 
vector component for *e N codebook vectors and a 20 
corresponding array address of the processor cell asso- 
ciated with a particular codebook vector component, 

component corresponding to each array address the processor means comprises a distance metric operation 
received from the 25 circuit means for computing the degree of similarity 

(C) Column and row dfx~der  means for exclusively between two voltages and outputting a current that becomes 
accessing the Processor cell residing at an array ddress relatively large whenever the two voltages are very close 
received from the array address generator means; and, together and substantially falls off the more dissimilar the 

(d) access means disposed in each processor cell for two voltages are from each other. 
allowing the processor cell to be accessed by the 30 19. The apparatus in accordance with claim 18, wherein 
column and row decoder means to cause a value of a the individual outputs of each processor cell in each column 
codebook vector component received from the library of processor cells are connected to a single output line to 
means to be impressed on the memory means. form the combination means. 

15. The apparatus in accordance with claim 14, wherein 20. The apparatus in accordance with claim 19, wherein 
the library means for storing the value of each codebook 35 the closeness determination means comprises a winner- 
vector component for the N codebook vectors and a corre- take-all circuit. 
sponding array address of the processor cell associated with 

means for storing a plurality of N codebook vector sets 
wherein a particular set of N codebook vectors whose 
associated components values are to be outputted is 
capable of being selected in one of two ways, (i) by a 
user, and (ii) automatically in accordance with a pre- 
determined selection criteria. 

16. The apparatus in accordance with claim 13, wherein: 
(a) each input vector represents a non- overlapped group- 

ing of pixels of an image to be compressed, and each 

a particular pixel in the grouping; and, 

pre-determined pixel intensity. 

input Vector for each input vector input into the lo component ofthe input vectorrepresents an intensity of 

comprising: (b) each component of each codebook vector represents a 

Of addresses wherein the series is Of the 15 17. The apparatus in accordance with claim 16, wherein 
values of the components of the input vector and codebook 
vector represent pixel intensity via a voltage level propor- 
tional to the pixel intensity, and wherein the memory means 
comprises: 

a capacitor for storing a voltage level representing the 
pixel intensity of the codebook vector component asso- 
ciated with the processor cell. 

and for Outputting the value Of the 'Odebook vector 18. The apparatus in accordance with claim 17, wherein 

address generator means; 

a particular codebook vector component, further comprises: * * * * *  


