
I 11111 111111ll111 Ill11 Ill11 US006321373Bl IIIII 111ll IIIII IIIII 111ll11111111ll1111111ll1111 
(12) United States Patent (io) Patent No.: US 6,321,373 B1 

Ekanadham et al. (45) Date of Patent: *Nov. 20,2001 

(54) METHOD FOR RESOURCE CONTROL IN 
PARALLEL ENVIRONMENTS USING 

TIME SUPPORT 
PROGRAM ORGANIZATION AND RUN- 

(75) Inventors: Kattamuri Ekanadham; Jose Eduardo 
Moreira; Vijay Krishnarao Naik, all 
of Yorktown Heights, NY (US) 

(73) Assignee: International Business Machines 
Corporation, Armonk, NY (US) 

Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 

This patent is subject to a terminal dis- 
claimer. 

( * ) Notice: 

(21) Appl. No.: 09/431,107 

(22) Filed: Oct. 30, 1999 

Related U.S. Application Data 

(63) Continuation of application No. 081511,777, filed on Aug. 7, 
1995, now Pat. No. 5,978,583. 

(51) Int. C1.7 ........................................................ G06F 9/44 
(52) U.S. C1. ................................... 717/1; 71714; 7091102; 

7091104 

(58) Field of Search .................................... 71711, 2, 3, 4, 
71715, 6, 7; 7091100-106 

(56) References Cited 
U.S. PATENT DOCUMENTS 

5,978,583 * 1111999 Ekanadham et al. ................ 3951703 

OTHER PUBLICATIONS 

Darlington et al., “Structured parallel programming” IEEE, 

* cited by examiner 

Primary Examinerxakal i  Chaki 
(74) Attorney, Agent, or Firm-Wayne L. Ellenbogen; 
Anne Vachon Dougherty 

(57) ABSTRACT 

Asystem and method for dynamic scheduling and allocation 
of resources to parallel applications during the course of 
their execution. By establishing well-defined interactions 
between an executing job and the parallel system, the system 
and method support dynamic reconfiguration of processor 
partitions, dynamic distribution and redistribution of data, 
communication among cooperating applications, and vari- 
ous other monitoring actions. The interactions occur only at 
specific points in the execution of the program where the 
aforementioned operations can be performed efficiently. 

1993, pp 160-169.* 

12 Claims, 3 Drawing Sheets 

~ 3 1 6  

PROGRAM SPECIFIC INPUT ’ 1 / INPUT FROM OTHER PROGRAM SEGMENTS 
I PROGRAM INPUT PARAMETERS 

I S  I 

RESOURCE LEVEL 
SPEC I FIC ATlON 
VIA USER 
INTERACTION 

PARALLEL APPLICATION CODE 

INITIALIZATION OF PROGRAM 
SEGMENT CONTROL 

RSM CONTROLLING AND STEERJNG LOGIC 

PROGRAM SEGMENT CONTROL 

INITIALIZATION OF CONTROL LOGIC 
VARl BLES 

.. VARIABLES 

PROGRAM CONSTRUCTS 
(INCLUDES 
APP LIC ATlON 
CODE) 

\ PROGRAM SEGMENT REQUIREMENTS 
I ‘MEMTRYRETU IKZMFF~TT 

I PROCESSOR REQUIREMENT P 

‘OTHER REQUIREMENTS 31 2 L- - - - - - l  

RSM 

AMP 

-318 

31 0 



U S .  Patent Nov. 20,2001 Sheet 1 of 3 US 6,321,373 B1 

APP LI CAT1 ON PROGRAM 

1 ----- I- ' PROGRAM SEGMENT 1 ' 
I I 

' PROGRAM SEGMENT 2 

1 ----- I- ' PROGRAM SEGMENT 3 ' 
I I 

I 
I I 
' PROGRAM SEGMENT 4 

FIG. 1 



U S .  Patent Nov. 20,2001 

0 
T 

I 
t - - -J  
\ 
\ 
\ 

Sheet 2 of 3 

.--J 
/ 

/ 
/ 

US 6,321,373 B1 

i \ / 

r-- 
1 %  

W 
I 

\ 
\ 

I 
I 
I 
I 
I 
I 

1 

I 

/ 
/ 

rM- 1 
I 
I 

I 



U S .  Patent Nov. 20,2001 Sheet 3 of 3 

1, 

.) 

f 

US 6,321,373 B1 

G 
0- m 

O N  

I I 

A -  --r-l-\-t 

\ 



US 6,321,373 B3 
1 

METHOD FOR RESOURCE CONTROL IN 
PARALLEL ENVIRONMENTS USING 

TIME SUPPORT 
PROGRAM ORGANIZATION AND RUN- 

This is a continuation of application Ser. No. 081511,777, 
filed Aug. 7, 1995 now U.S. Pat. No. 5,978,583. 

This invention was made with Government support 
under HPCCPT-1 Cooperative Research Agreement No. 
NCC2-9000 awarded by NASA. The Government has cer- 
tain rights under this invention. 

FIELD OF THE INVENTION 

The invention relates to the control of resources in a 
parallel computing environment. 

BACKGROUND OF THE INVENTION 

When a program is executed on a multiple resource 
system, many resources may be used to execute the program 
to completion. Depending on the requirements of the 
program, different kinds of resources may be required to run 
the program to completion. For example, a program requires 
processing resources for executing the program and for 
manipulation of data; it also requires memory to store 
intermediate and final results; and it may require resources 
of a file system. A program may be constructed so that 
multiple resources of the same kind can be used in order to 
speed up the program execution or to handle larger problem 
sizes and/or larger data sets. The resources used by a 
program may be allocated at the beginning of program 
execution or may be allocated during the course of execution 
just prior to its use. For example, all memory used by a 
program during the course of execution might be allocated 
only once at the beginning of program execution or instead 
might be allocated during execution just prior to generation 
of data and then deallocated when no longer necessary. 
Resources may be requested by a program explicitly or 
implicitly. In an explicit allocation, the program makes a 
request for specific resources explicitly; for example, a 
program may request a certain amount of memory or may 
request a specific set of processors prior to scalable nature of 
these paral le l  environments .  Because of these 
considerations, in a scalable multiprocessor environment, 
the resource boundaries cannot be fixed at the time appli- 
cations are written or even at compile time. For example, the 
number of processors on which an application may be run 
cannot be fixed a priori, or it may not be desirable to do so 
in order to realize the flexibility associated with scalable 
architectures. Furthermore, it has been observed that the data 
input to an application can have a large impact on the 
performance of the computations since concurrency and data 
distribution are both affected by the particular problem being 
solved. See J. Saltz, H. Berryman, and J. Wu, Multiprocess- 
ing and Run-Time Compilation, “Concurrency: Practice and 
Experience”, vol. 3(6), pp. 573-592, December, 1991. In 
such cases, the actual resource requirements to solve a 
problem to completion can be known only after the inputs to 
the problem are defined and the utilization of these resources 
may be determined only during the course of the program 
e x e c u t i o n .  W h e n  m u l t i p r o c e s s o r  s y s t e m s  are  
multiprogrammed, a new dimension is added to the sched- 
uling problem as multiple parallel jobs compete dynamically 
for resources. In some research systems, as discussed in C. 
P o  1 y c h r o n o p o u 1 o s  , “ M u  1 t i p  r o c e s s  i n  g v e r s u s  
Multiprogramming”, Proceedings of the 1989 International 
Conference on Parallel Processing, Aug. 8-12, 1989, pp. 

2 
11-223-230; A. Gupta, A. Tucker, and L. Stevens, “Making 
Effective Use of Shared-Memory Multiprocessors: The Pro- 
cess Control Approach”, Technical Report CSL-TR-91- 
475A, Computer Systems Laboratory, Stanford University, 

s 1991; and S. Leutenegger and M. Vernon, “Multipro- 
grammed Multiprocessor Scheduling Issues”, Research 
Report RC-17642, IBM Research Division, February 1992, 
resources are rearranged during the lifetime of a parallel job. 
In the presence of multiple applications, all vying for the 

i o  same resources, some form of efficient dynamic scheduling 
of resources is essential. 

The scalable nature of parallel environments requires that 
an application be able to adapt to a particular configuration 
of the underlying system whenever it is invoked to solve a 

1s particular problem. Not only should the program as a whole 
be able to reconfigure, but to achieve flexibility and 
efficiency, the components of a program should be recon- 
figurable with respect to one another. For example, for any 
specified level of resources, the program data structures may 

20 have to be distributed suitably and the bounds for loops 
executed by each processor may have to be adjusted accord- 
ingly. 

In summary, parallel applications developed for scalable 
systems with multiple resources have the following impor- 

i. Dynamism: Resource requirements change dynamically 
during the course of computations. 

ii. Reconfigurability: Each stage of computations can be 
designed to operate under multiple levels of resources. 

iii. Shareability: Applications often are required to share 
data and physical resources. 

Thus, any resource management system for controlling of 
the resources associated with a parallel environment must 

i. Dynamism: It should be possible to acquire and release 

ii. Reconfigurability: It should be possible to reconfigure 

iii. Shareability: It should be possible to dynamically 

To realize these characteristics, it is necessary for the end 
users and for the system itself to monitor the resources 

4s allocated to each segment of computations in an application 
and to steer the program to maximize the respective perfor- 
mance goals. In view of the above, a run-time system is 
necessary to integrate the resource manager and the parallel 
application in an intelligent manner. 

2s tant characteristics: 

30 

3s have the following characteristics: 

resources dynamically on demand. 

the allocated resources to individual applications. 

partition the resources both in space and time. 

40 

PROBLEMS WITH PRIOR ART so 

Current parallel systems provide very limited control over 
resources. Often, a program requests the maximum amount 
of resources at the beginning and the resources are kept 

ss throughout the lifetime of the program. Thus, the resources 
are under-utilized in less demanding segments of the pro- 
gram. Furthermore, current systems do not provide any 
interactive control over the resources. The extent of dyna- 
mism is limited to redistribution of data structures at run- 

60 time, such as in high performance Fortran (HPF) systems. In 
C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele 
Jr., and M. E. Zosel, “The High Performance Fortran 
Handbook”, The MIT Press, Cambridge, MASS., 1994, 
there is no provision for meaningful dynamic acquisition or 

65 release of processor resources during the course of program 
execution. Examples of systems where parallel jobs are run 
on a fixed-size partition include the IBM SP2 (See Special 
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Issue on IBM POWERParallel Systems, IBM Systems 
Journal, vol. 34, no. 2, 1995), the Cray T3D (See Cray 
Research Inc., “Cray T3D System Architecture Overview 
Manual”, Eagan, Minn., 1994), and the Thinking Machines 
CM-5 (See Thinking Machines Corp., “The Connection 
Machine CM-5 Technical Summary”, Cambridge, Mass., 
1992). MPI allows dynamic acquisition and release of 
processors, but there is no redistribution of control or data 
structures. See Message Passing Interface Forum, “MPI: A 
Message-Passing Interface Standard”, May, 1994. 

We elaborate the above points in the following. 
Existing art allows limited manipulation (i.e., allocation/ 

deallocation and scheduling) of processors and memory to 
parallel applications. For example, prior to beginning the 
execution of a parallel application on a multiprocessor 
system, a user can ask for a specific number of processors or 
ask for processors that fall within a range. However, during 
the course of execution, processors cannot be explicitly 
allocated and deallocated in a manner similar to the way 
memory can be allocated and deallocated in a uniprocessor 
environment. In a pure shared memory environment, using 
the process fork mechanism, one can create processes 
dynamically during the course of execution, which in turn 
can be served by a pool of processors. Thus, under such an 
environment, services of additional processors may be 
obtained implicitly. Similarly, threads can be created 
dynamically to make use of a variable number of processing 
elements. However, in both cases, compile-time and run- 
time optimizations (such as minimization of memory 
accesses by cache, and register reuse) cannot be fully 
performed because of the dynamic data-sharing introduced 
in these models. Examples of research in dynamic control of 
processors for shared-memory environments are discussed 
in C. McCann, R. Vaswani, J. Zahorian, “A Dynamic Pro- 
cessor Allocation Policy for Multiprogrammed Shared- 
Memory Multiprocessors” ACM Transactions on Computer 
Systems, vol 11(2), pp.  146-178. May, 1993; C. 
P o  1 y c h r o n o p o u 1 o s  , “ M u  1 t i p  r o c e s s  i n  g v e r s u s  
Multiprogramming”, Proceedings of the 1989 International 
Conference on Parallel Processing, Aug. 8-12, 1989, pp. 
11-223-230; and A. Gupta, A. Tucker, and L. Stevens, 
“Making Effective Use of Shared-Memory Multiprocessors: 
The Process Control Approach”, Technical Report CSL-TR- 
91-475A, Computer Systems Laboratory, Stanford 
University, 1991. In a distributed memory environment or in 
a hierarchical memory environment where a portion of the 
address space of a process spans over some privateilocal 
memory and the rest over a shared memory, one cannot use 
just the process forking or thread creation mechanisms to 
adjust the computations to changes in the available 
resources. Additional mechanisms-such as rearrangement 
of data structures and/or data movement across the memory 
hierarchy-may be required. Such mechanisms are absent in 
the existing systems. Thus, in such environments, it is not 
possible to dynamically manipulate allocationideallocation 
and scheduling of processing resources, even in an implicit 
manner. In summary, on distributed systems allocation/ 
deallocation of processors during the program execution is 
not possible; for shared memory systems, while it is possible 
to allocateideallocate processors, compile time optimiza- 
tions are not possible, to their fullest extent. 

These are shortcomings in manipulation of the physical 
resources other than memory. There are also limitations in 
the manner in which memory is managed. (By memory we 
mean the storage location where most of the application data 
and instructions reside.) However, the issues in memory 
management are somewhat different. First of all, in existing 

4 
systems, memory can be allocated and deallocated from 
both local and shared memory, so long as the memory is 
within the addressing scope of the memory allocating pro- 
cessor. This can be done just as efficiently as in the unipro- 

s cessor environment. It is not possible, however, in the 
existing systems, either explicitly or implicitly, to allocate 
memory outside the addressing scope of the processors on 
which the application is currently being executed. 

10 OBJECTS OF THIS INVENTION 

A first object of the invention is to provide a new method 
of organizing a program into modules such that computa- 
tions within each module can adapt, in a flexible manner, to 
various configurations of resources made available to that 
module at run-time. 

Another object of the invention is to provide a new 
method of structuring a program into modules such that 
decisions regarding allocation of system resources to a 
program can be made at the module-level and such that 
system resources can be scheduled to perform the compu- 
tations of a module in a manner independent of the sched- 
uling used for other modules. 

Another object of the invention is to provide a new 
25 method of specification of data structures within a module 

such that at run-time data can be rearranged over the 
memory hierarchy just prior to beginning the computations 
within that module. 

Another object of the invention is to provide an improved 
30 compiler apparatus that can optimize computations within a 

module by taking advantage of data locality without know- 
ing the exact number of processing resources allocated to 
that module. 

Another object of the invention is to provide an improved 
35 compiler apparatus that can incorporate optimizations for 

data movements that may take place during the course of 
computations of a module, without having full information 
about the exact nature of the allocated processing resources 
or the exact organization of data at the time computations are 

Another object of the invention is to provide an improved 
compiler and run-time apparatus for efficient data movement 
and data reorganization across module boundaries during the 
course of the computations, including the support of data 

Another object of the invention is to provide an improved 
run-time apparatus that facilitates spawning of computations 
for remote processors in a parallel or distributed system. 

Another object of the invention is to provide an innova- 
tive run-time apparatus that can provide facilities with which 
applications and libraries can provide on-demand execution 
services to other unrelated applications. 

20 

40 performed. 

45 spaces that span multiple address spaces. 

SUMMARY OF THE INVENTION 
55 

In this invention, we propose a methodology by which 
resources in a scalable parallel environment can be con- 
trolled in a more sophisticated manner than that which has 
heretofore been available in parallel programming environ- 

60 ments. The approach comprises the following components: 
i. A scheme for annotating and instrumenting application 

program segments such that (a) each segment can 
operate at multiple resource levels, and (b) the program 
segment can be reconfigured at run-time to execute 
with a specified resource level. These annotations and 
the associated instructions may be generated by a 
programmer, by a pre-processor, by a compiler, by a 

65 
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library call, by a run-time system, or by combination of 
these. All are within the scope of this invention. 

ii. A run-time system that monitors the progress of a 
program and provides an interface to a user and/or to a 
system-wide resource coordinator at each point in the 
program at which resource revisions and reconfigura- 
tions are amenable. 

iii. A run-time system that takes a given allocation of 
resources during the course of a program execution and 
reconfigures the data and control structures as dictated 
by the annotations. 

We propose an apparatus that incorporates the above 
methodology to implement the above features on a parallel 
system. 

FIGURES 

FIG. 1 is a conceptual view of a computer program. 
FIG. 2 is an expanded view of a computer program 

FIG. 3 is a further expanded view of a program segment 
segment in accordance with the present invention. 

in accordance with the present invention. 

DETAILED DESCRIPTION 

Shown in FIG. 1 is the structure of an application pro- 
gram. In that figure, the application program has four logical 
components which are labeled as “Program Segment l”, 
“Program Segment 2”, “Program Segment 3”, and “Program 
Segment 4”. Such sectioning of a program into segments 
could be based on several different considerations, such as 
the nature of the control structure of the program (e.g., 
computations may progress in phases, with each phase 
having its own control structure), changes in the manner in 
which data structures are used, changes in the data access 
pattern, changes in the level of parallelism, and so on. 
Although we have shown four program segments (PS), one 
may be able to divide an application program into more or 
less than four segments. An application program could be 
viewed in this manner either prior to compile time (in its 
static form) or at run-time (in its dynamic form). In the 
following description, we assume both forms. 

Each PS has its own set of resource requirements; for 
example, a certain amount of memory is required to com- 
plete the computations of a PS or a certain minimum number 
of cpu cycles must be spent to perform the computations. 
The resource requirements of a PS are constrained by 
various factors. For example, resources required for the 
completion of computations of a PS are affected by the 
parameters input to the application program and may also 
depend on the outcome of the computations preceding the 
entry to that PS. Thus, the constraints on the resource 
requirements of a PS may be expressed in terms of the 
parameters input to the application program and/or in terms 
of the outcome of the computations at preceding PSs. In 
addition, the resource requirements may be inter-related; 
that is, the quantity and the type of a resource may influence 
the quantity and the type of another resource necessary to 
complete the computations. For example, depending on the 
type of computations and memory access and storage pat- 
terns involved, the degree of parallelism may vary from one 
PS to the next. Therefore, the amount of memory required 
may depend on the number of processors used in performing 
the computations of a PS. Moreover, the constraints may 
allow use of a range of values in determining the quantity of 
that resource required. Utilization of that resource, however, 
may vary within that range. 
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6 
Thus, in an application each PS is associated with a set of 

resources, each of which may have various constraints, and 
each resource may have its own degree of effectiveness, 
which may vary over the range, in delivering a desired level 
of performance. In FIG. 2, we illustrate this for our example 
application program 10  by expanding the view of Program 
Segment 2 (PS2). Other program segments can be viewed in 
a similar manner. In the expanded view of PS2, box 202 
represents the information on the resource requirements and 
constraints, and the utility of these resources. For example, 
box 202 can include information such as a memory require- 
ment m, a processor requirement p, and other information. 
Box 204 represents the application program. In allocating 
resources at run-time, if one makes use of these program 
segment requirements, then the available resources can be 
used judiciously. 

The invention presented here proposes that each PS be 
organized such that the resource dependent variables in the 
body of the application program code associated with that 
PS are initialized at run-time; the resource dependent data 
structures are specified so that data distributions are 
arranged at run-time after the resources are specified. 
Further, we propose that the main body of the application 
program code associated with the PS be constructed so that 
it can be executed with more than one level of resources and 
so that it can operate on data, the exact organization of which 
may be determined only at run-time. We provide examples 
to illustrate how programs can be organized in this manner. 
we propose a scheme that makes use of programs written in 
this manner to control and use resources efficiently. 

Under the proposed scheme, the range of resources over 
which the data structures can be manipulated and over which 
the code can execute correctly is specified in an auxiliary 
information section associated with the PS shown in box 202 
of FIG. 2. The use of this auxiliary information is illustrated 
in FIG. 3. In that figure, for simplicity, only PS2 is consid- 
ered. The application code 308 of a PS is separated out into 
two parts: (i) a special initialization part (block 302), and (ii) 
the part corresponding to the application program itself 
(block 306). The first part consists of code for initialization 
of the control variables used in the program segment of the 
second part. The first part is referred to as the control 
variables initialization section (CVIS), block 302. All 
resource dependent control structures present in the program 
segment in block 306 are written in terms of the control 
variables initialized in CVIS. This program segment is 
referred to as program construct. The variables in CVIS are 
set using the information on the actual allocated resources, 
as described below. After these variables are initialized, the 
resource dependent control structures in the program con- 
structs 306 associated with that PS are completely specified. 
The program constructs 306 of the PS are organized such 
that all resource dependent control structures can be 
expressed in terms of the control variables initialized in 
CVIS 302. Thus, the program constructs take a flexible form 
so that the computations of that PS can be reconfigured and 
scheduled in many different ways. 

The CVIS 302 and flexible program constructs 306 
together form a reconfigurable and schedulable module 
(RSM) 304. The program constructs 306 in an RSM may be 
user program (as in the original application program) or it 
may be a segment of code from a run-time library or it may 
be an invocation of another independent object or a combi- 
nation of all. All of these possibilities are within the scope 
of this invention. 

Associated with each RSM is a program segment require- 
ment block 310, which includes information on the seg- 
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ment’s resource requirements, such as identification of the 
resources, the constraints on the types and quantities, their 
inter-relationships, their relationship to problem specific 
input parameters, and other information such as the utility of 
each resource over a range of values. This information may 5 

are mutually understood by the program and the run-time 
system. For instance, the phrase nproc {2, 4, 8) means that 
the number of processors can be either 2 or 4 or 8. The 
implementation of the run-time system ensures that the 
number of processors is indeed so and the variable nproc is 

be in the form of a table, a database or another program. It 
may be generated by the user, by a pre-processor, a compiler, 
or a run-time system. 

Also associated with the RSM is the RSM controlling and 
steering logic 318. This logic, along with the program i o  
segment requirement information 310 form an auxiliary 

set to the actual number of processors allocated. Aprogram 
may use the variable nproc in other expressions. 

In general, an annotated segment has the following form: 

module program (AMP) 312. Using the run-time informa- 
tion on the available resources 314 and 315, and the problem 

with R l  {rll, r12, ’ ’ ’ > rlhl 

R2 {rzl, rzz, . . . , r m l  
. . .  

specific input 316, the RSM controlling and steering logic 
318 processes the resource information to determine the IS 

do 
{code} 

values of the control variables set in CVIS 302. The steering 
logic 318 may also include the capability to determine where R,, R, are the resource names and the values inside 
exactly which executable code is to be invoked as part of the the braces are permissible values for the from its 
Program constructs 306 of the RSMs. In addition, logic 318 respective domain. The meaning of the above segment is 
Performs the appropriate data structure organization SO that 20 that the code segment following the resource statements is 
available resources can be used with the selected program guaranteed to execute with one of the permissible values 
constructs. The resources to be used may be specified by the assigned to each resource. Furthermore the application’s do 
system (31412 by the user in an interactive manner (315) Or clause {code} may contain a preamble to do the necessary 
may be directed by the results of Previous segments (316). reconfigurations, as illustrated by the following example: 

In this section, we illustrate our methodology with the 
help of a specific implementation Note that the scope of this 

programming model. 

An Example Implementation 25 

invention is not restricted to any particular architecture or with nproc (4, 9, 16}, 
display {video} 

n = sqrt (nproc) 
redistribute A onto processors (n,n) 
ub = dimension-of (A) in 
for (i=l; i<=ub; i++) 

compute matrix 

move filter (A) to display 

do { The particular configuration discussed here consists of a 30 
distributed memory system where each processor has its 
own private local memory space. For these type of 

the global problem space. For each private location in a 

global space. The compiler and run-time system provide a 

. . .  architectures, the combination of all the local spaces form 

processor’s space, there is a corresponding location in the 35 

uniform memory model that programmers can use to write 

. . .  

I 
resource-independent code. 

In this implementation, application programs are delin- The piece of code is provided by a programmer or it may 
eated into program segments. Each program segment has 40 be generated from another program. How it is produced is 
annotations specifying the set and the range of resources irrelevant for this discussion. The methodology presented 
over which that program segment can operate. In the here requires that the program segments be produced in the 
examples presented below, the data structures are specified above ‘with’ and ‘do’ type format (or the equivalent). Here 
using the HPF abstraction for data distributions. This is done the program needs 4 ,9  or 16 processors and a video display. 
only for convenience. Program constructs are then devel- 45 The program redistributes the matrix A onto an nxn grid of 
oped using these data structures. For each program segment, processors and computes its elements. It then applies some 
a special compiler generates the RSM and corresponding filter function to the elements and sends the filtered data onto 
AMP components. At run-time, the exact resources are a display. The display variable contains the necessary infor- 
determined and the run-time system initializes the variables mation to access the device. The move command has 
specified in the CVIS of each RSM. This is followed by the SO implicit semantics to funnel the distributed data in some 
execution of the application code in that RSM. The details standard (e.g., column major) order to the device. Additional 
on the complier and run-time system mechanisms are given parameters can be specified to control any other parameters 
in the following. associated with a device or data movement. 

Note that this implementation differs from an HPF imple- In the above example, the information in the with clause 
mentation in that it is able to vary physical resources ss is used by the compiler to generate the corresponding AMP. 
allocated to the program at run-time. The declarations in the do clause are used to initialize the 

By separating resource allocation and application code, control variables of the program segment. Specifically in 
users can develop programs that work correctly and effi- this example, n(=sqrt(nproc)) and ub are control variables 
ciently with various instantiations of physical resources. that are assigned values as soon as nproc is assigned a 

The issues discussed above are further elaborated in the 60 specific value. A is a distributed data structure whose exact 
following. distribution is again fixed when nproc is known. Code in the 
Annotations do clause (in ‘for’ loop in the above example) is usually 

We consider a program that is a sequence of annotated parameterized on control variables (e.g., variables n and ub), 
program segments. From these annotations, each segment is allowing it to adjust to actual resources. 
prefixed with resource specifications as described below. In 65 As another example, consider the following. In this 
these examples, it is assumed that resources and their example, a program (called main-program) must invoke 
domains of values are referred to by predeclared names that another program (called cfd-program) on a separate set of 
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processors, at some point during the course of its execution. 
The ‘with’ clause specifies that to execute the code in the 
program segment (of main-program) shown, the program 

-continued 

distribute A (block,cyclic) onto p 
compute matrix A 

11. 
cfd-program should be up and running on 4, 9 or 16 
processors. The main-program communicates a distributed 5 I 
data structure A to the cfd-program as its initial data and later 
receive the 
newjob creates a new job with the name Cfd-Program for 
which either 4, 9 or 16 processors are required. These 
processors form a separate partition, in addition to the set of lo 

processors on which the main-program is currently running, 
(For clarity, we have not indicated the number of processors 

program is loaded onto this new partition, (Note that we 

to initialize itself and to request for initializing data-this 
request is satisfied by the init-signal in main-program. The 
move command moves the contents of A from main- 
program into the contents of B in the cfd-program. The 20 

transfers so that after the transfer, the standard linearization 
of the distributed structure A in main-program will be 
identical to that of the distributed structure B in cfd- 
program. 
Main Program 

from the cfd-Program. The The specification of relationship between global and local 
data spaces is performed in two phases denoted by (i.) and 
(ii.) in the above program. 

Phase i. Here a grid of nxn (virtual) processors is declared 
by p(n,n). AS indicated by the initialization statement, n is 
the square root Of nProc (the number Of Physical Processors). 

processors in a one-to-one correspondence. In our example 
15 implementation, the following mapping is adopted: let the 

on which main-program is running,) The program cfd- Thus, n2 physical processors get mapped to n2 

have not shown cfd-program.) The cfd-program is designed physical processors be numbered 0,1, , , , , nproc-l; then 
p(ij)--physical processorfi-l)*n+(i-1). 

Other mapping schemes can also be used, 
run-time system automatically perform the necessary Phase ii, The relationship between the local storage for 

matrix A in each processor belonging to processor grid 
p and the global data space for A is specified. The 
specification is per dimension axis of the matrix array 
A as indicated in the example. The first axis of A is 
mapped according to a block distribution, while the 
second axis of A is mapped according to a cyclic 
distribution. This means that local element A(x,y) in 
processor p(ij) corresponds to global element A((i-1) 
*m+x, (y-l)*n+j). By providing this means to convert 
between local and global indices dynamically, we allow 
the program to operate in terms of global indices 
(which are invariant) and then automatically translate 
to local indices when it is necessarv. 

25 

with newjob {prog {cfd-program}, nproc (4, 9, 16}} 
{ 

move A into cfd-pr0gram.B 
send start-signal 
. . .  

30 
do 

wait for init-signal 

wait for completion-signal 
move cfd-pr0gram.B into A 35 Acompiler that understand the annotations int he program 

segments shown above will convert the program segments 
I into RSMs of AMPS. The RSM consisk of initialization 

statements of the program segment control variables and the 
code in terms of these variables. The AMP specifies the 

40 possible values the variables can take. In the executable, Specification of Data Structures 
For a parallel program to execute correctly when each RSM is preceded by its AMP, 

resources, such as processors, are changed during the course 
of execution, data must be dynamically rearranged across requirements for correct execution of the program segment. 
the memory hierarchy of a parallel system. The compiler uses these annotations to generate the Program 

In the implementation described here, a parallel applica- 45 Segment Requirements (PSR) block (block 310) of AMP 
tion consists of a collection of programs, each running on a (block 312). In the general case, the requirements assume 
separate processor. The program running on each processor the form of expressions that specify an acceptable range of 
maintains the data structures local to it. Also, the program resources for the execution of the segment. The exact 
can directly access only its local data structures (i.e., local to determination of the range bounds may have to wait until 
the processor on which the program is running). The data SO run-time when several factors, such as user interaction, input 
structure declarations described here specify the relationship data, intermediate results, and communication with other 
between global data space of the application and the local programs, may be used in the evaluation of the expressions. 
data space of each program running on a processor. We The combination of the resource requirements (when finally 
reiterate that by using these features the user can construct computed at run-time), available resources, and particular 
programs that are independent of the physical resources ss resource allocation method used, will determine the exact 
instantiated at any particular execution. number of resources that a program segment obtains. 

me declaration of data structures is performed at the Annotations in the “do” clause specify the organization of 
beginning of a module, It is illustrated in the following data structures and describe computations in terms of a 
example: global index space. The compiler uses these annotations to 

60 generate the RSM Controlling and Steering Logic (CSL) 
block (block 318) of AMP and the Control Variable Initial- 
ization Segment (block 302) of RSM. For the CSL, the 
compiler generates descriptors of the organization of the 
global data and generates code and data based on these 

65 descriptors for use by the run-time system. The descriptors 
include the index mapping information, data distribution and 
data type information, ownership information, and any other 

Annotations in the specify the 

with nproc (4, 9, 16) 
{ 

real A (m,m) 

do 
n = sqrt (nproc) 

i. processors p (n,n) 
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data layout information specific to that program segment. created. Based on the compiler-created descriptor, the 
The run-time system makes use of this information in handle specifies the mapping between the global data space 
organizing the data as a function of the available resources. (where the distributed data structure is defined) and the local 
We describe details on the run-time system mechanism later. data spaces of the individual processors (where each element 
The compiler also makes use of the descriptors in generating s of the data structure resides). This handle supports the 
the appropriate code for the program constructs (block 306). translation from global to local index spaces (the local index 
The compiler also generates code that computes the values specifies the exact location of an element), and thus the 
for the control variables that will steer the flow of compu- access of any element given its global index. 
tation in the program constructs. In the general case, these When a redistribute operation on a distributed data struc- 
descriptors and control variables cannot be completely com- i o  ture is performed, a change in mapping between global and 
puted at compile time and have to be filled in with infor- 
mation on the actual resources allocated to the segment. For 
the CVIS, the compiler generates code that initializes the 
variables using the information on data structures and 
resources allocated for the segment. 

Inside the program constructs (block 306), the compiler 
also uses the information on the organization of the data 
structures to translate the computations described on a 
global index space. These computations are translated to 
equivalent executable code involving only computations on 

local spaces occurs. A new handle is created that specifies 
different locations for the elements. Data has to be reorga- 
nized to conform to this new specification. This reorgani- 
zation is achieved through data movement both inter- and 

is intra-processor. Using both the old and new handles, each 
processor computes the set of elements that it has to send to 
each other processor, and sends them. It also computes the 
set of elements it has to receive from each other processor 
and receives them. This is complemented by each processor 

20 computing the new location for the original elements that 
a local index space and inter-processor communication. The remained in the processor. 
resulting code can then be executed directly by the proces- Each task of a parallel application is associated with an 
sors. RTS and all RTS’s associated with that application work in 
Run-time System cooperation with one another. When a change in a level of 

To utilize the flexibility associated with the programs zs resources requires moving or reorganizing a data structure, 
organized and compiled in the manner described above, a each RTS executes the code in the associated AMP to 
special run-time system (RTS) is implemented. During the compute the segment of data that must be reorganized. The 
course of the program execution, whenever the program data reorganization takes into account any possible optimi- 
completes the execution of an RSM, the control is passed to zation. For example, in case of a distributed memory system 
the RTS. The RTS has the access to the AMP of the next 30 where data movement is via message passing, data move- 
RSM and from that it determines the list of resources and the ment is brought about by using at most one message 
valid range for each resource necessary to execute the next exchange between any pair of processors. The receiving 
RSM. Some of this information may be parameterized by the processors can compute the indices at which the received 
program input and by the values computed in other RSMs. data must be stored. Such optimizations are possible because 
In such cases, the RTS may execute additional code in the 3s of the instrumentations for data movement provided in the 
AMP to determine the actual resource range in that particu- AMP. The RTS also provides signals to communicate among 
lar instance of the execution. Such code is inserted by the the processors, in order to implement a variety of protocols. 
compiler. By interfacing with a system-wide resource This allows, for example, invocation of a new program from 
coordinator, the RTS acquires a valid set of resources for the within a program or communication of data with different 
execution of the next RSM. The system-wide resource 40 structural organizations among independent programs. 
coordinator has knowledge about the available resources and We now briefly elaborate how with the framework 
makes a decision on what resources to allocate to this described above, it is possible for users to interactively 
application during the execution of the current RSM. control and steer the computations as well as the resources 
Mechanisms used by the resource coordinator are irrelevant allocated to a program during the course of its execution. In 
for this discussion. (The RTS is also capable of interfacing 4s the framework described here, a program is delineated into 
with the user so that the user can steer the computations with program segments where each segment consists of an RSM 
the help of the run-time system as shown in block 315 of and a corresponding AMP. When interactive steering is 
FIG. 3. (This is elaborated later in this section.) After the enabled, prior to executing the code in the RSM, the 
exact set of resources are available, RTS executes the run-time system allows the user to specify or to override 
controlling and steering logic present in the AMP. The SO resource level settings put in place by the program or by the 
control logic in the AMP (put in place by the compiler) system. Similarly, the user interaction can specify settings 
allows the RTS to keep track of the descriptors for all for evaluating control structure and, thus, steer the compu- 
resource dependent data structures associated with that tations in a particular direction. In short, the framework 
program segment. It also provides all information about allows the user to set resource levels at the program segment 
processors and index mappings. Each distributed data struc- ss level, in the same manner it allows the system or the 
ture is registered in the AMP, along with its distribution application to set resource levels. This is indicated by block 
attributes. Note that the RTS may optimize its operations and 315 in FIG. 3. 
may not always perform all the above described steps it they While the invention has been described in particular with 
are not necessary; for example, if the level of resources does respect to preferred embodiments thereof, it will be under- 
not change then there is no need to perform data redistri- 60 stood by those skilled in the art that modifications to the 
butions. When there is a change in data distribution or when disclosed embodiments can be effected without departing 
a distributed data structure is newly introduced (which is from the spirit and scope of the invention. 
indicated in AMP), the run-time system executes data dis- 
tribution code so the appropriate distributions are in place 
prior to executing the next RSM. 

When a distributed data structures is newly introduced to 
the run-time system, a handle for that data structure is 

What is claimed is: 
1. A method for organizing computations in a parallel 

65 application program into modules, such that the computa- 
tions within the module can be adapted to multiple processor 
and memory configurations without having to rewrite the 
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program and without having to recompile the program, 10. The method of claim 9, wherein the run-time system 
comprising the step of  comprises means for causing the invocation of a new 

arranging the explicitly parallel program into a plurality program within the program. 
of reconfigurable and schedulable modules (RSMs), 11. The method of claim 9, wherein the run-time system 
each RSM differing in content from each other RSM, ’ comprises means for causing the communication of data 
each RSM comprising a main body Of code that accom- with different structural organizations among independent 
plishes application specific computations associated programs, 
with that RSM, and an auxiliary module program 12. A system for organizing computations in a parallel (AMP) comprising code for the efficient execution of 

application program into modules, such that the computa- the RSM under various conditions. 
2, The method of claim 1, wherein the AMP is a program tions within the module can be adapted to multiple processor 

executing the corresponding RSM to generate necessary program or without having to recompile the program, com- 
information for the efficient execution of the RSM. prising: 

3. The method Of more means for arranging the explicitly parallel program into a 
than one RSM. plurality of reconfigurable and schedulable modules 

(RSMs), each module comprising a main body of code 4. The method of claim 1, wherein a specific AMP is 

that accomplishes application specific computations associated with each RSM. 

(ASC) associated with that module, and an auxiliary 5. The method of claim 1, wherein a particular AMP is 
selected at run-time from a pool of AMPS. module program (AMP) comprising code for the effi- 6. The method of claim 1, wherein an application program cient execution of the RSM under various conditions; is organized into RSMs and AMPs by a programmer. 
7. The method of claim 1, wherein an application program means for executing the AMP at run time Prior to each 

is organized into RSMs and AMPs by a preprocessor. instance of executing the corresponding RSM to gen- 
8. The method of claim 1, wherein an application program 25 erate necessary information for the efficient execution 

is organized into RSMs and AMPs by a compiler. of the RSM. 
9. The method of claim 1, wherein an application program 

that can be executed at run-time prior to each instance of and memory configurations without having to rewrite the 

1, wherein the 

2o 

is organized into RSMs and AMPs by a run-time system. * * * * *  


