
I 11111 111111ll111 Ill11 Ill11 US006321373Bl IIIII 111ll IIIII IIIII 111ll11111111ll1111111ll1111
(12) United States Patent (io) Patent No.: US 6,321,373 B1

Ekanadham et al. (45) Date of Patent: *Nov. 20,2001

(54) METHOD FOR RESOURCE CONTROL IN
PARALLEL ENVIRONMENTS USING

TIME SUPPORT
PROGRAM ORGANIZATION AND RUN-

(75) Inventors: Kattamuri Ekanadham; Jose Eduardo
Moreira; Vijay Krishnarao Naik, all
of Yorktown Heights, NY (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(*) Notice:

(21) Appl. No.: 09/431,107

(22) Filed: Oct. 30, 1999

Related U.S. Application Data

(63) Continuation of application No. 081511,777, filed on Aug. 7,
1995, now Pat. No. 5,978,583.

(51) Int. C1.7 .. G06F 9/44
(52) U.S. C1. 717/1; 71714; 7091102;

7091104

(58) Field of Search 71711, 2, 3, 4,
71715, 6, 7; 7091100-106

(56) References Cited
U.S. PATENT DOCUMENTS

5,978,583 * 1111999 Ekanadham et al. 3951703

OTHER PUBLICATIONS

Darlington et al., “Structured parallel programming” IEEE,

* cited by examiner

Primary Examinerxakal i Chaki
(74) Attorney, Agent, or Firm-Wayne L. Ellenbogen;
Anne Vachon Dougherty

(57) ABSTRACT

Asystem and method for dynamic scheduling and allocation
of resources to parallel applications during the course of
their execution. By establishing well-defined interactions
between an executing job and the parallel system, the system
and method support dynamic reconfiguration of processor
partitions, dynamic distribution and redistribution of data,
communication among cooperating applications, and vari-
ous other monitoring actions. The interactions occur only at
specific points in the execution of the program where the
aforementioned operations can be performed efficiently.

1993, pp 160-169.*

12 Claims, 3 Drawing Sheets

~ 3 1 6

PROGRAM SPECIFIC INPUT ’ 1 / INPUT FROM OTHER PROGRAM SEGMENTS
I PROGRAM INPUT PARAMETERS

I S I

RESOURCE LEVEL
SPEC I FIC ATlON
VIA USER
INTERACTION

PARALLEL APPLICATION CODE

INITIALIZATION OF PROGRAM
SEGMENT CONTROL

RSM CONTROLLING AND STEERJNG LOGIC

PROGRAM SEGMENT CONTROL

INITIALIZATION OF CONTROL LOGIC
VARl BLES

.. VARIABLES

PROGRAM CONSTRUCTS
(INCLUDES
APP LIC ATlON
CODE)

\ PROGRAM SEGMENT REQUIREMENTS
I ‘MEMTRYRETU IKZMFF~TT

I PROCESSOR REQUIREMENT P

‘OTHER REQUIREMENTS 31 2 L- - - - - - l

RSM

AMP

-318

31 0

U S . Patent Nov. 20,2001 Sheet 1 of 3 US 6,321,373 B1

APP LI CAT1 ON PROGRAM

1 ----- I- ' PROGRAM SEGMENT 1 '
I I

' PROGRAM SEGMENT 2

1 ----- I- ' PROGRAM SEGMENT 3 '
I I

I
I I
' PROGRAM SEGMENT 4

FIG. 1

U S . Patent Nov. 20,2001

0
T

I
t - - -J
\
\
\

Sheet 2 of 3

.--J
/

/
/

US 6,321,373 B1

i \ /

r--
1 %

W
I

\
\

I
I
I
I
I
I

1

I

/
/

rM- 1
I
I

I

U S . Patent Nov. 20,2001 Sheet 3 of 3

1,

.)

f

US 6,321,373 B1

G
0- m

O N

I I

A - --r-l-\-t

\

US 6,321,373 B3
1

METHOD FOR RESOURCE CONTROL IN
PARALLEL ENVIRONMENTS USING

TIME SUPPORT
PROGRAM ORGANIZATION AND RUN-

This is a continuation of application Ser. No. 081511,777,
filed Aug. 7, 1995 now U.S. Pat. No. 5,978,583.

This invention was made with Government support
under HPCCPT-1 Cooperative Research Agreement No.
NCC2-9000 awarded by NASA. The Government has cer-
tain rights under this invention.

FIELD OF THE INVENTION

The invention relates to the control of resources in a
parallel computing environment.

BACKGROUND OF THE INVENTION

When a program is executed on a multiple resource
system, many resources may be used to execute the program
to completion. Depending on the requirements of the
program, different kinds of resources may be required to run
the program to completion. For example, a program requires
processing resources for executing the program and for
manipulation of data; it also requires memory to store
intermediate and final results; and it may require resources
of a file system. A program may be constructed so that
multiple resources of the same kind can be used in order to
speed up the program execution or to handle larger problem
sizes and/or larger data sets. The resources used by a
program may be allocated at the beginning of program
execution or may be allocated during the course of execution
just prior to its use. For example, all memory used by a
program during the course of execution might be allocated
only once at the beginning of program execution or instead
might be allocated during execution just prior to generation
of data and then deallocated when no longer necessary.
Resources may be requested by a program explicitly or
implicitly. In an explicit allocation, the program makes a
request for specific resources explicitly; for example, a
program may request a certain amount of memory or may
request a specific set of processors prior to scalable nature of
these paral le l environments . Because of these
considerations, in a scalable multiprocessor environment,
the resource boundaries cannot be fixed at the time appli-
cations are written or even at compile time. For example, the
number of processors on which an application may be run
cannot be fixed a priori, or it may not be desirable to do so
in order to realize the flexibility associated with scalable
architectures. Furthermore, it has been observed that the data
input to an application can have a large impact on the
performance of the computations since concurrency and data
distribution are both affected by the particular problem being
solved. See J. Saltz, H. Berryman, and J. Wu, Multiprocess-
ing and Run-Time Compilation, “Concurrency: Practice and
Experience”, vol. 3(6), pp. 573-592, December, 1991. In
such cases, the actual resource requirements to solve a
problem to completion can be known only after the inputs to
the problem are defined and the utilization of these resources
may be determined only during the course of the program
e x e c u t i o n . W h e n m u l t i p r o c e s s o r s y s t e m s are
multiprogrammed, a new dimension is added to the sched-
uling problem as multiple parallel jobs compete dynamically
for resources. In some research systems, as discussed in C.
P o 1 y c h r o n o p o u 1 o s , “ M u 1 t i p r o c e s s i n g v e r s u s
Multiprogramming”, Proceedings of the 1989 International
Conference on Parallel Processing, Aug. 8-12, 1989, pp.

2
11-223-230; A. Gupta, A. Tucker, and L. Stevens, “Making
Effective Use of Shared-Memory Multiprocessors: The Pro-
cess Control Approach”, Technical Report CSL-TR-91-
475A, Computer Systems Laboratory, Stanford University,

s 1991; and S. Leutenegger and M. Vernon, “Multipro-
grammed Multiprocessor Scheduling Issues”, Research
Report RC-17642, IBM Research Division, February 1992,
resources are rearranged during the lifetime of a parallel job.
In the presence of multiple applications, all vying for the

i o same resources, some form of efficient dynamic scheduling
of resources is essential.

The scalable nature of parallel environments requires that
an application be able to adapt to a particular configuration
of the underlying system whenever it is invoked to solve a

1s particular problem. Not only should the program as a whole
be able to reconfigure, but to achieve flexibility and
efficiency, the components of a program should be recon-
figurable with respect to one another. For example, for any
specified level of resources, the program data structures may

20 have to be distributed suitably and the bounds for loops
executed by each processor may have to be adjusted accord-
ingly.

In summary, parallel applications developed for scalable
systems with multiple resources have the following impor-

i. Dynamism: Resource requirements change dynamically
during the course of computations.

ii. Reconfigurability: Each stage of computations can be
designed to operate under multiple levels of resources.

iii. Shareability: Applications often are required to share
data and physical resources.

Thus, any resource management system for controlling of
the resources associated with a parallel environment must

i. Dynamism: It should be possible to acquire and release

ii. Reconfigurability: It should be possible to reconfigure

iii. Shareability: It should be possible to dynamically

To realize these characteristics, it is necessary for the end
users and for the system itself to monitor the resources

4s allocated to each segment of computations in an application
and to steer the program to maximize the respective perfor-
mance goals. In view of the above, a run-time system is
necessary to integrate the resource manager and the parallel
application in an intelligent manner.

2s tant characteristics:

30

3s have the following characteristics:

resources dynamically on demand.

the allocated resources to individual applications.

partition the resources both in space and time.

40

PROBLEMS WITH PRIOR ART so

Current parallel systems provide very limited control over
resources. Often, a program requests the maximum amount
of resources at the beginning and the resources are kept

ss throughout the lifetime of the program. Thus, the resources
are under-utilized in less demanding segments of the pro-
gram. Furthermore, current systems do not provide any
interactive control over the resources. The extent of dyna-
mism is limited to redistribution of data structures at run-

60 time, such as in high performance Fortran (HPF) systems. In
C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele
Jr., and M. E. Zosel, “The High Performance Fortran
Handbook”, The MIT Press, Cambridge, MASS., 1994,
there is no provision for meaningful dynamic acquisition or

65 release of processor resources during the course of program
execution. Examples of systems where parallel jobs are run
on a fixed-size partition include the IBM SP2 (See Special

US 6,321,373 B3
3

Issue on IBM POWERParallel Systems, IBM Systems
Journal, vol. 34, no. 2, 1995), the Cray T3D (See Cray
Research Inc., “Cray T3D System Architecture Overview
Manual”, Eagan, Minn., 1994), and the Thinking Machines
CM-5 (See Thinking Machines Corp., “The Connection
Machine CM-5 Technical Summary”, Cambridge, Mass.,
1992). MPI allows dynamic acquisition and release of
processors, but there is no redistribution of control or data
structures. See Message Passing Interface Forum, “MPI: A
Message-Passing Interface Standard”, May, 1994.

We elaborate the above points in the following.
Existing art allows limited manipulation (i.e., allocation/

deallocation and scheduling) of processors and memory to
parallel applications. For example, prior to beginning the
execution of a parallel application on a multiprocessor
system, a user can ask for a specific number of processors or
ask for processors that fall within a range. However, during
the course of execution, processors cannot be explicitly
allocated and deallocated in a manner similar to the way
memory can be allocated and deallocated in a uniprocessor
environment. In a pure shared memory environment, using
the process fork mechanism, one can create processes
dynamically during the course of execution, which in turn
can be served by a pool of processors. Thus, under such an
environment, services of additional processors may be
obtained implicitly. Similarly, threads can be created
dynamically to make use of a variable number of processing
elements. However, in both cases, compile-time and run-
time optimizations (such as minimization of memory
accesses by cache, and register reuse) cannot be fully
performed because of the dynamic data-sharing introduced
in these models. Examples of research in dynamic control of
processors for shared-memory environments are discussed
in C. McCann, R. Vaswani, J. Zahorian, “A Dynamic Pro-
cessor Allocation Policy for Multiprogrammed Shared-
Memory Multiprocessors” ACM Transactions on Computer
Systems, vol 11(2), pp. 146-178. May, 1993; C.
P o 1 y c h r o n o p o u 1 o s , “ M u 1 t i p r o c e s s i n g v e r s u s
Multiprogramming”, Proceedings of the 1989 International
Conference on Parallel Processing, Aug. 8-12, 1989, pp.
11-223-230; and A. Gupta, A. Tucker, and L. Stevens,
“Making Effective Use of Shared-Memory Multiprocessors:
The Process Control Approach”, Technical Report CSL-TR-
91-475A, Computer Systems Laboratory, Stanford
University, 1991. In a distributed memory environment or in
a hierarchical memory environment where a portion of the
address space of a process spans over some privateilocal
memory and the rest over a shared memory, one cannot use
just the process forking or thread creation mechanisms to
adjust the computations to changes in the available
resources. Additional mechanisms-such as rearrangement
of data structures and/or data movement across the memory
hierarchy-may be required. Such mechanisms are absent in
the existing systems. Thus, in such environments, it is not
possible to dynamically manipulate allocationideallocation
and scheduling of processing resources, even in an implicit
manner. In summary, on distributed systems allocation/
deallocation of processors during the program execution is
not possible; for shared memory systems, while it is possible
to allocateideallocate processors, compile time optimiza-
tions are not possible, to their fullest extent.

These are shortcomings in manipulation of the physical
resources other than memory. There are also limitations in
the manner in which memory is managed. (By memory we
mean the storage location where most of the application data
and instructions reside.) However, the issues in memory
management are somewhat different. First of all, in existing

4
systems, memory can be allocated and deallocated from
both local and shared memory, so long as the memory is
within the addressing scope of the memory allocating pro-
cessor. This can be done just as efficiently as in the unipro-

s cessor environment. It is not possible, however, in the
existing systems, either explicitly or implicitly, to allocate
memory outside the addressing scope of the processors on
which the application is currently being executed.

10 OBJECTS OF THIS INVENTION

A first object of the invention is to provide a new method
of organizing a program into modules such that computa-
tions within each module can adapt, in a flexible manner, to
various configurations of resources made available to that
module at run-time.

Another object of the invention is to provide a new
method of structuring a program into modules such that
decisions regarding allocation of system resources to a
program can be made at the module-level and such that
system resources can be scheduled to perform the compu-
tations of a module in a manner independent of the sched-
uling used for other modules.

Another object of the invention is to provide a new
25 method of specification of data structures within a module

such that at run-time data can be rearranged over the
memory hierarchy just prior to beginning the computations
within that module.

Another object of the invention is to provide an improved
30 compiler apparatus that can optimize computations within a

module by taking advantage of data locality without know-
ing the exact number of processing resources allocated to
that module.

Another object of the invention is to provide an improved
35 compiler apparatus that can incorporate optimizations for

data movements that may take place during the course of
computations of a module, without having full information
about the exact nature of the allocated processing resources
or the exact organization of data at the time computations are

Another object of the invention is to provide an improved
compiler and run-time apparatus for efficient data movement
and data reorganization across module boundaries during the
course of the computations, including the support of data

Another object of the invention is to provide an improved
run-time apparatus that facilitates spawning of computations
for remote processors in a parallel or distributed system.

Another object of the invention is to provide an innova-
tive run-time apparatus that can provide facilities with which
applications and libraries can provide on-demand execution
services to other unrelated applications.

20

40 performed.

45 spaces that span multiple address spaces.

SUMMARY OF THE INVENTION
55

In this invention, we propose a methodology by which
resources in a scalable parallel environment can be con-
trolled in a more sophisticated manner than that which has
heretofore been available in parallel programming environ-

60 ments. The approach comprises the following components:
i. A scheme for annotating and instrumenting application

program segments such that (a) each segment can
operate at multiple resource levels, and (b) the program
segment can be reconfigured at run-time to execute
with a specified resource level. These annotations and
the associated instructions may be generated by a
programmer, by a pre-processor, by a compiler, by a

65

US 6,321,373 B3
5

library call, by a run-time system, or by combination of
these. All are within the scope of this invention.

ii. A run-time system that monitors the progress of a
program and provides an interface to a user and/or to a
system-wide resource coordinator at each point in the
program at which resource revisions and reconfigura-
tions are amenable.

iii. A run-time system that takes a given allocation of
resources during the course of a program execution and
reconfigures the data and control structures as dictated
by the annotations.

We propose an apparatus that incorporates the above
methodology to implement the above features on a parallel
system.

FIGURES

FIG. 1 is a conceptual view of a computer program.
FIG. 2 is an expanded view of a computer program

FIG. 3 is a further expanded view of a program segment
segment in accordance with the present invention.

in accordance with the present invention.

DETAILED DESCRIPTION

Shown in FIG. 1 is the structure of an application pro-
gram. In that figure, the application program has four logical
components which are labeled as “Program Segment l”,
“Program Segment 2”, “Program Segment 3”, and “Program
Segment 4”. Such sectioning of a program into segments
could be based on several different considerations, such as
the nature of the control structure of the program (e.g.,
computations may progress in phases, with each phase
having its own control structure), changes in the manner in
which data structures are used, changes in the data access
pattern, changes in the level of parallelism, and so on.
Although we have shown four program segments (PS), one
may be able to divide an application program into more or
less than four segments. An application program could be
viewed in this manner either prior to compile time (in its
static form) or at run-time (in its dynamic form). In the
following description, we assume both forms.

Each PS has its own set of resource requirements; for
example, a certain amount of memory is required to com-
plete the computations of a PS or a certain minimum number
of cpu cycles must be spent to perform the computations.
The resource requirements of a PS are constrained by
various factors. For example, resources required for the
completion of computations of a PS are affected by the
parameters input to the application program and may also
depend on the outcome of the computations preceding the
entry to that PS. Thus, the constraints on the resource
requirements of a PS may be expressed in terms of the
parameters input to the application program and/or in terms
of the outcome of the computations at preceding PSs. In
addition, the resource requirements may be inter-related;
that is, the quantity and the type of a resource may influence
the quantity and the type of another resource necessary to
complete the computations. For example, depending on the
type of computations and memory access and storage pat-
terns involved, the degree of parallelism may vary from one
PS to the next. Therefore, the amount of memory required
may depend on the number of processors used in performing
the computations of a PS. Moreover, the constraints may
allow use of a range of values in determining the quantity of
that resource required. Utilization of that resource, however,
may vary within that range.

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

6
Thus, in an application each PS is associated with a set of

resources, each of which may have various constraints, and
each resource may have its own degree of effectiveness,
which may vary over the range, in delivering a desired level
of performance. In FIG. 2, we illustrate this for our example
application program 10 by expanding the view of Program
Segment 2 (PS2). Other program segments can be viewed in
a similar manner. In the expanded view of PS2, box 202
represents the information on the resource requirements and
constraints, and the utility of these resources. For example,
box 202 can include information such as a memory require-
ment m, a processor requirement p, and other information.
Box 204 represents the application program. In allocating
resources at run-time, if one makes use of these program
segment requirements, then the available resources can be
used judiciously.

The invention presented here proposes that each PS be
organized such that the resource dependent variables in the
body of the application program code associated with that
PS are initialized at run-time; the resource dependent data
structures are specified so that data distributions are
arranged at run-time after the resources are specified.
Further, we propose that the main body of the application
program code associated with the PS be constructed so that
it can be executed with more than one level of resources and
so that it can operate on data, the exact organization of which
may be determined only at run-time. We provide examples
to illustrate how programs can be organized in this manner.
we propose a scheme that makes use of programs written in
this manner to control and use resources efficiently.

Under the proposed scheme, the range of resources over
which the data structures can be manipulated and over which
the code can execute correctly is specified in an auxiliary
information section associated with the PS shown in box 202
of FIG. 2. The use of this auxiliary information is illustrated
in FIG. 3. In that figure, for simplicity, only PS2 is consid-
ered. The application code 308 of a PS is separated out into
two parts: (i) a special initialization part (block 302), and (ii)
the part corresponding to the application program itself
(block 306). The first part consists of code for initialization
of the control variables used in the program segment of the
second part. The first part is referred to as the control
variables initialization section (CVIS), block 302. All
resource dependent control structures present in the program
segment in block 306 are written in terms of the control
variables initialized in CVIS. This program segment is
referred to as program construct. The variables in CVIS are
set using the information on the actual allocated resources,
as described below. After these variables are initialized, the
resource dependent control structures in the program con-
structs 306 associated with that PS are completely specified.
The program constructs 306 of the PS are organized such
that all resource dependent control structures can be
expressed in terms of the control variables initialized in
CVIS 302. Thus, the program constructs take a flexible form
so that the computations of that PS can be reconfigured and
scheduled in many different ways.

The CVIS 302 and flexible program constructs 306
together form a reconfigurable and schedulable module
(RSM) 304. The program constructs 306 in an RSM may be
user program (as in the original application program) or it
may be a segment of code from a run-time library or it may
be an invocation of another independent object or a combi-
nation of all. All of these possibilities are within the scope
of this invention.

Associated with each RSM is a program segment require-
ment block 310, which includes information on the seg-

US 6,321,373 B1
7 8

ment’s resource requirements, such as identification of the
resources, the constraints on the types and quantities, their
inter-relationships, their relationship to problem specific
input parameters, and other information such as the utility of
each resource over a range of values. This information may 5

are mutually understood by the program and the run-time
system. For instance, the phrase nproc {2, 4, 8) means that
the number of processors can be either 2 or 4 or 8. The
implementation of the run-time system ensures that the
number of processors is indeed so and the variable nproc is

be in the form of a table, a database or another program. It
may be generated by the user, by a pre-processor, a compiler,
or a run-time system.

Also associated with the RSM is the RSM controlling and
steering logic 318. This logic, along with the program i o
segment requirement information 310 form an auxiliary

set to the actual number of processors allocated. Aprogram
may use the variable nproc in other expressions.

In general, an annotated segment has the following form:

module program (AMP) 312. Using the run-time informa-
tion on the available resources 314 and 315, and the problem

with R l {rll, r12, ’ ’ ’ > rlhl

R2 {rzl, rzz, . . . , r m l
. . .

specific input 316, the RSM controlling and steering logic
318 processes the resource information to determine the IS

do
{code}

values of the control variables set in CVIS 302. The steering
logic 318 may also include the capability to determine where R,, R, are the resource names and the values inside
exactly which executable code is to be invoked as part of the the braces are permissible values for the from its
Program constructs 306 of the RSMs. In addition, logic 318 respective domain. The meaning of the above segment is
Performs the appropriate data structure organization SO that 20 that the code segment following the resource statements is
available resources can be used with the selected program guaranteed to execute with one of the permissible values
constructs. The resources to be used may be specified by the assigned to each resource. Furthermore the application’s do
system (31412 by the user in an interactive manner (315) Or clause {code} may contain a preamble to do the necessary
may be directed by the results of Previous segments (316). reconfigurations, as illustrated by the following example:

In this section, we illustrate our methodology with the
help of a specific implementation Note that the scope of this

programming model.

An Example Implementation 25

invention is not restricted to any particular architecture or with nproc (4, 9, 16},
display {video}

n = sqrt (nproc)
redistribute A onto processors (n,n)
ub = dimension-of (A) in
for (i=l; i<=ub; i++)

compute matrix

move filter (A) to display

do { The particular configuration discussed here consists of a 30
distributed memory system where each processor has its
own private local memory space. For these type of

the global problem space. For each private location in a

global space. The compiler and run-time system provide a

. . . architectures, the combination of all the local spaces form

processor’s space, there is a corresponding location in the 35

uniform memory model that programmers can use to write

. . .

I
resource-independent code.

In this implementation, application programs are delin- The piece of code is provided by a programmer or it may
eated into program segments. Each program segment has 40 be generated from another program. How it is produced is
annotations specifying the set and the range of resources irrelevant for this discussion. The methodology presented
over which that program segment can operate. In the here requires that the program segments be produced in the
examples presented below, the data structures are specified above ‘with’ and ‘do’ type format (or the equivalent). Here
using the HPF abstraction for data distributions. This is done the program needs 4 ,9 or 16 processors and a video display.
only for convenience. Program constructs are then devel- 45 The program redistributes the matrix A onto an nxn grid of
oped using these data structures. For each program segment, processors and computes its elements. It then applies some
a special compiler generates the RSM and corresponding filter function to the elements and sends the filtered data onto
AMP components. At run-time, the exact resources are a display. The display variable contains the necessary infor-
determined and the run-time system initializes the variables mation to access the device. The move command has
specified in the CVIS of each RSM. This is followed by the SO implicit semantics to funnel the distributed data in some
execution of the application code in that RSM. The details standard (e.g., column major) order to the device. Additional
on the complier and run-time system mechanisms are given parameters can be specified to control any other parameters
in the following. associated with a device or data movement.

Note that this implementation differs from an HPF imple- In the above example, the information in the with clause
mentation in that it is able to vary physical resources ss is used by the compiler to generate the corresponding AMP.
allocated to the program at run-time. The declarations in the do clause are used to initialize the

By separating resource allocation and application code, control variables of the program segment. Specifically in
users can develop programs that work correctly and effi- this example, n(=sqrt(nproc)) and ub are control variables
ciently with various instantiations of physical resources. that are assigned values as soon as nproc is assigned a

The issues discussed above are further elaborated in the 60 specific value. A is a distributed data structure whose exact
following. distribution is again fixed when nproc is known. Code in the
Annotations do clause (in ‘for’ loop in the above example) is usually

We consider a program that is a sequence of annotated parameterized on control variables (e.g., variables n and ub),
program segments. From these annotations, each segment is allowing it to adjust to actual resources.
prefixed with resource specifications as described below. In 65 As another example, consider the following. In this
these examples, it is assumed that resources and their example, a program (called main-program) must invoke
domains of values are referred to by predeclared names that another program (called cfd-program) on a separate set of

US 6,321,373 B1
9 10

processors, at some point during the course of its execution.
The ‘with’ clause specifies that to execute the code in the
program segment (of main-program) shown, the program

-continued

distribute A (block,cyclic) onto p
compute matrix A

11.
cfd-program should be up and running on 4, 9 or 16
processors. The main-program communicates a distributed 5 I
data structure A to the cfd-program as its initial data and later
receive the
newjob creates a new job with the name Cfd-Program for
which either 4, 9 or 16 processors are required. These
processors form a separate partition, in addition to the set of lo

processors on which the main-program is currently running,
(For clarity, we have not indicated the number of processors

program is loaded onto this new partition, (Note that we

to initialize itself and to request for initializing data-this
request is satisfied by the init-signal in main-program. The
move command moves the contents of A from main-
program into the contents of B in the cfd-program. The 20

transfers so that after the transfer, the standard linearization
of the distributed structure A in main-program will be
identical to that of the distributed structure B in cfd-
program.
Main Program

from the cfd-Program. The The specification of relationship between global and local
data spaces is performed in two phases denoted by (i.) and
(ii.) in the above program.

Phase i. Here a grid of nxn (virtual) processors is declared
by p(n,n). AS indicated by the initialization statement, n is
the square root Of nProc (the number Of Physical Processors).

processors in a one-to-one correspondence. In our example
15 implementation, the following mapping is adopted: let the

on which main-program is running,) The program cfd- Thus, n2 physical processors get mapped to n2

have not shown cfd-program.) The cfd-program is designed physical processors be numbered 0,1, , , , , nproc-l; then
p(ij)--physical processorfi-l)*n+(i-1).

Other mapping schemes can also be used,
run-time system automatically perform the necessary Phase ii, The relationship between the local storage for

matrix A in each processor belonging to processor grid
p and the global data space for A is specified. The
specification is per dimension axis of the matrix array
A as indicated in the example. The first axis of A is
mapped according to a block distribution, while the
second axis of A is mapped according to a cyclic
distribution. This means that local element A(x,y) in
processor p(ij) corresponds to global element A((i-1)
*m+x, (y-l)*n+j). By providing this means to convert
between local and global indices dynamically, we allow
the program to operate in terms of global indices
(which are invariant) and then automatically translate
to local indices when it is necessarv.

25

with newjob {prog {cfd-program}, nproc (4, 9, 16}}
{

move A into cfd-pr0gram.B
send start-signal
. . .

30
do

wait for init-signal

wait for completion-signal
move cfd-pr0gram.B into A 35 Acompiler that understand the annotations int he program

segments shown above will convert the program segments
I into RSMs of AMPS. The RSM consisk of initialization

statements of the program segment control variables and the
code in terms of these variables. The AMP specifies the

40 possible values the variables can take. In the executable, Specification of Data Structures
For a parallel program to execute correctly when each RSM is preceded by its AMP,

resources, such as processors, are changed during the course
of execution, data must be dynamically rearranged across requirements for correct execution of the program segment.
the memory hierarchy of a parallel system. The compiler uses these annotations to generate the Program

In the implementation described here, a parallel applica- 45 Segment Requirements (PSR) block (block 310) of AMP
tion consists of a collection of programs, each running on a (block 312). In the general case, the requirements assume
separate processor. The program running on each processor the form of expressions that specify an acceptable range of
maintains the data structures local to it. Also, the program resources for the execution of the segment. The exact
can directly access only its local data structures (i.e., local to determination of the range bounds may have to wait until
the processor on which the program is running). The data SO run-time when several factors, such as user interaction, input
structure declarations described here specify the relationship data, intermediate results, and communication with other
between global data space of the application and the local programs, may be used in the evaluation of the expressions.
data space of each program running on a processor. We The combination of the resource requirements (when finally
reiterate that by using these features the user can construct computed at run-time), available resources, and particular
programs that are independent of the physical resources ss resource allocation method used, will determine the exact
instantiated at any particular execution. number of resources that a program segment obtains.

me declaration of data structures is performed at the Annotations in the “do” clause specify the organization of
beginning of a module, It is illustrated in the following data structures and describe computations in terms of a
example: global index space. The compiler uses these annotations to

60 generate the RSM Controlling and Steering Logic (CSL)
block (block 318) of AMP and the Control Variable Initial-
ization Segment (block 302) of RSM. For the CSL, the
compiler generates descriptors of the organization of the
global data and generates code and data based on these

65 descriptors for use by the run-time system. The descriptors
include the index mapping information, data distribution and
data type information, ownership information, and any other

Annotations in the specify the

with nproc (4, 9, 16)
{

real A (m,m)

do
n = sqrt (nproc)

i. processors p (n,n)

US 6,321,373 B3
11 12

data layout information specific to that program segment. created. Based on the compiler-created descriptor, the
The run-time system makes use of this information in handle specifies the mapping between the global data space
organizing the data as a function of the available resources. (where the distributed data structure is defined) and the local
We describe details on the run-time system mechanism later. data spaces of the individual processors (where each element
The compiler also makes use of the descriptors in generating s of the data structure resides). This handle supports the
the appropriate code for the program constructs (block 306). translation from global to local index spaces (the local index
The compiler also generates code that computes the values specifies the exact location of an element), and thus the
for the control variables that will steer the flow of compu- access of any element given its global index.
tation in the program constructs. In the general case, these When a redistribute operation on a distributed data struc-
descriptors and control variables cannot be completely com- i o ture is performed, a change in mapping between global and
puted at compile time and have to be filled in with infor-
mation on the actual resources allocated to the segment. For
the CVIS, the compiler generates code that initializes the
variables using the information on data structures and
resources allocated for the segment.

Inside the program constructs (block 306), the compiler
also uses the information on the organization of the data
structures to translate the computations described on a
global index space. These computations are translated to
equivalent executable code involving only computations on

local spaces occurs. A new handle is created that specifies
different locations for the elements. Data has to be reorga-
nized to conform to this new specification. This reorgani-
zation is achieved through data movement both inter- and

is intra-processor. Using both the old and new handles, each
processor computes the set of elements that it has to send to
each other processor, and sends them. It also computes the
set of elements it has to receive from each other processor
and receives them. This is complemented by each processor

20 computing the new location for the original elements that
a local index space and inter-processor communication. The remained in the processor.
resulting code can then be executed directly by the proces- Each task of a parallel application is associated with an
sors. RTS and all RTS’s associated with that application work in
Run-time System cooperation with one another. When a change in a level of

To utilize the flexibility associated with the programs zs resources requires moving or reorganizing a data structure,
organized and compiled in the manner described above, a each RTS executes the code in the associated AMP to
special run-time system (RTS) is implemented. During the compute the segment of data that must be reorganized. The
course of the program execution, whenever the program data reorganization takes into account any possible optimi-
completes the execution of an RSM, the control is passed to zation. For example, in case of a distributed memory system
the RTS. The RTS has the access to the AMP of the next 30 where data movement is via message passing, data move-
RSM and from that it determines the list of resources and the ment is brought about by using at most one message
valid range for each resource necessary to execute the next exchange between any pair of processors. The receiving
RSM. Some of this information may be parameterized by the processors can compute the indices at which the received
program input and by the values computed in other RSMs. data must be stored. Such optimizations are possible because
In such cases, the RTS may execute additional code in the 3s of the instrumentations for data movement provided in the
AMP to determine the actual resource range in that particu- AMP. The RTS also provides signals to communicate among
lar instance of the execution. Such code is inserted by the the processors, in order to implement a variety of protocols.
compiler. By interfacing with a system-wide resource This allows, for example, invocation of a new program from
coordinator, the RTS acquires a valid set of resources for the within a program or communication of data with different
execution of the next RSM. The system-wide resource 40 structural organizations among independent programs.
coordinator has knowledge about the available resources and We now briefly elaborate how with the framework
makes a decision on what resources to allocate to this described above, it is possible for users to interactively
application during the execution of the current RSM. control and steer the computations as well as the resources
Mechanisms used by the resource coordinator are irrelevant allocated to a program during the course of its execution. In
for this discussion. (The RTS is also capable of interfacing 4s the framework described here, a program is delineated into
with the user so that the user can steer the computations with program segments where each segment consists of an RSM
the help of the run-time system as shown in block 315 of and a corresponding AMP. When interactive steering is
FIG. 3. (This is elaborated later in this section.) After the enabled, prior to executing the code in the RSM, the
exact set of resources are available, RTS executes the run-time system allows the user to specify or to override
controlling and steering logic present in the AMP. The SO resource level settings put in place by the program or by the
control logic in the AMP (put in place by the compiler) system. Similarly, the user interaction can specify settings
allows the RTS to keep track of the descriptors for all for evaluating control structure and, thus, steer the compu-
resource dependent data structures associated with that tations in a particular direction. In short, the framework
program segment. It also provides all information about allows the user to set resource levels at the program segment
processors and index mappings. Each distributed data struc- ss level, in the same manner it allows the system or the
ture is registered in the AMP, along with its distribution application to set resource levels. This is indicated by block
attributes. Note that the RTS may optimize its operations and 315 in FIG. 3.
may not always perform all the above described steps it they While the invention has been described in particular with
are not necessary; for example, if the level of resources does respect to preferred embodiments thereof, it will be under-
not change then there is no need to perform data redistri- 60 stood by those skilled in the art that modifications to the
butions. When there is a change in data distribution or when disclosed embodiments can be effected without departing
a distributed data structure is newly introduced (which is from the spirit and scope of the invention.
indicated in AMP), the run-time system executes data dis-
tribution code so the appropriate distributions are in place
prior to executing the next RSM.

When a distributed data structures is newly introduced to
the run-time system, a handle for that data structure is

What is claimed is:
1. A method for organizing computations in a parallel

65 application program into modules, such that the computa-
tions within the module can be adapted to multiple processor
and memory configurations without having to rewrite the

US 6,321,373 B1
13 14

program and without having to recompile the program, 10. The method of claim 9, wherein the run-time system
comprising the step of comprises means for causing the invocation of a new

arranging the explicitly parallel program into a plurality program within the program.
of reconfigurable and schedulable modules (RSMs), 11. The method of claim 9, wherein the run-time system
each RSM differing in content from each other RSM, ’ comprises means for causing the communication of data
each RSM comprising a main body Of code that accom- with different structural organizations among independent
plishes application specific computations associated programs,
with that RSM, and an auxiliary module program 12. A system for organizing computations in a parallel (AMP) comprising code for the efficient execution of

application program into modules, such that the computa- the RSM under various conditions.
2, The method of claim 1, wherein the AMP is a program tions within the module can be adapted to multiple processor

executing the corresponding RSM to generate necessary program or without having to recompile the program, com-
information for the efficient execution of the RSM. prising:

3. The method Of more means for arranging the explicitly parallel program into a
than one RSM. plurality of reconfigurable and schedulable modules

(RSMs), each module comprising a main body of code 4. The method of claim 1, wherein a specific AMP is

that accomplishes application specific computations associated with each RSM.

(ASC) associated with that module, and an auxiliary 5. The method of claim 1, wherein a particular AMP is
selected at run-time from a pool of AMPS. module program (AMP) comprising code for the effi- 6. The method of claim 1, wherein an application program cient execution of the RSM under various conditions; is organized into RSMs and AMPs by a programmer.
7. The method of claim 1, wherein an application program means for executing the AMP at run time Prior to each

is organized into RSMs and AMPs by a preprocessor. instance of executing the corresponding RSM to gen-
8. The method of claim 1, wherein an application program 25 erate necessary information for the efficient execution

is organized into RSMs and AMPs by a compiler. of the RSM.
9. The method of claim 1, wherein an application program

that can be executed at run-time prior to each instance of and memory configurations without having to rewrite the

1, wherein the

2o

is organized into RSMs and AMPs by a run-time system. * * * * *

