
I Ill11 11111111 111 11111 11111 Ill11 Ill11 Ill11 Ill11 111ll Ill11 111111 111 11111 llll
US005243607A

United States Patent 1191 [11] Patent Number: 5,243,607
Masson et al. [451 Date of Patent: Sep. 7, 1993

I541 METHOD AND APPARATUS FOR FAULT
TOLERANCE

Debugging System,” IEEE Transactions on Comput-
ers, Jan. 1968, pp. 81-86.

[75] Inventors:

[73] Assignee:

[21] Appl. No.:
[22] Filed:

Gerald M. Masson; Gregory F.
Sullivan, both of Baltimore, Md.

The Johns Hopkins University,
Baltimore, Md.

Primary Examiner-Robert W. Beausoliel, Jr.
Assivant &miner-Ly V . Hua
Attorney, Agent, or Firm-Ansel M. Schwartz

543,451 P I ABsTRAcr
Jun. 25,1990 A method and apparatus for achieving fault tolerance in

[51]
[52]

Int. (3 . 5 ... H04L 1/08
US. Cl. 371/69.1; 371/68.3;

37V68.1; 371/19; 395/575
[58] Field of Search 37V69.1, 68.3, 68.1,

371/19, 15.1, 16.1, 67.1; 364/200 MS File;
395/575

1561 References Cited
U.S. PATENT DOCUMENTS

4,696,003 9/1987 Kerr 371/69.1 X
4,756,005 7/1988 Shedd 37W69.1 X
5,005,174 4/1991 Bruckert et al. 371/68.3

OTHER PUBLICATIONS
H. Geng, “Circuit for the Complete Check of a Data--
Processing System”, IBM TDB, vol. 16, No. 4, Sep.
1974, pp. 1144-1 145.
K. Knowlton, “A Combination Hardware-Software

a computer system having at least a first central process-
ing unit and a second central processing unit. The
method comprises the steps of first executing a first
algorithm in the first central processing unit on input
which produces a first output as well as a certification
trail. Next, executing a second algorithm in the second
central processing unit on the input and on at least a
portion of the certification trail which produces a sec-
ond output. The second algorithm has a faster execution
time than the first algorithm for a given input. Then,
comparing the first and second outputs such that an
error result is produced if the first and second outputs
are not the same. The step of executing a first algorithm
and the step of executing a second algorithm preferably
takes place over essentially the same time period.

18 Claims, 6 Drawing Sheets

.

OUTPUT OR
ERROR CERTIFICATION

TRAl L

SECOND EXECUTION

U.S. Patent Sep. 7, 1993 Sheet 1 of 6 5,243,607

FIRST EXECUTION

OUTPUT OR
ERROR - CERTIFICATION

TRAl L INPUT

SECOND EXECUTION

1
2
3
4
5
6
7
8
9
IO
I I
12
13
14

FIG. ?

Algorithm MINSPAN(G,weight)
Input : Connected graph G = (VI E) where V = {l, . . , ,n} with edge weights.
Output: Spanning tree-of G which has minimum weight

CHOOSE root r V
FOR ALL u t V, key tu): = (0 END FOR
h:=O; v :=rmt
WHILE v # empty DO
key(v1: = -a
FOR EACH [V,W]C E DO
IF weiqht([v,wl)< kcy(w) THEN
key tu):= weight ([v,wl);prefer (w) : = [v ,Wl
I F member (w,h) THEN chanqekey (w, key (w), h 1
ELSE insert (w,key(w),h) END IF

END IF
END FOR
(v,k) := deleternin (h)

END WHILE
15 FOR A L L u r V - (root},OiJTPuT(preferlu)) END FOR
END MINSPAN

FIG. 3

US. Patent Sep. 7, 1993 Sheet 2 of 6 5,243,607

FIG. 210/

.
250 “0 2 50 w

U.S. Patent Sep. 7, 1993 Sheet 3 of 6 5,243,607

FIG. 4(i) FIG. 4(b)

AlQorithm HUFFMAN (FREQ)
Input: Sequence of positive integers FREQ.={f [11,f 121,. . .,f hl}
Output: Pointer too Huffmon tree for the input frequencies
1 FOR i : = 1 to n DO
2 insert (i,f [i] ,h)
3 ptr C i l : = oliocote()
4 i n f ~ [p t r l i l J : = (i , f t i l)
5 END FOR
6 FORj :=n+ l to 2 n - 1 DO
7 (iteml, keyl): = deletemin(h)
8
9 ptr [j l : = o l iocote()
10
I I l e f t tptr[jJJ:=ptr [item11
'3.
13 insert(j ,keyl +key2 ,h)
14 END FOR
15 OUTPUT (ptr [2n-13)
END HUFFMAN

(item 2, key2): = deletemin (h)

infotptr I jll: =(jl key 1 + key 2 1

right [ptr Cjll:= ptr [item 21

FIG. 5

U.S. Patent Sep. 7, 1993 Sheet 4 of 6 5,243,607

FIG. 6

Algorithm CONVEXHULLS)
Input: set of points, S, i n ~2
0utput:Counterclockwise sequence of points i n R which define convex hull of S
1 Let p l be the poinl with the largest x coordinate (ond rmollcrt y to breok ties)
2 For eoch point p (except p l) colculote the slope of the line through p1 and p
3 Sort the points (except p l 1 from the smollest slope to the brgest. Coli them p2, ...p n
4 ql:: pl; q2:=p2; q3:=p3; m.3
5 F O R k = 4 ton DO
6
7 m : = m + l
b q m : = p ~
9 END FOR
IO FOR i = 1 to m DO, OUTPUTIqi) END FOR
END CONVEXHULL

2

WHILE the ongk formed by qm-l,qm,pk i s 2 180 degrees DO m :* m - 1 END FOR

FIG. 7

U.S. Patent

- c

Sep. 7, 1993

r
,

MEANS c FIRST
FOR ALGORITHM
FAULT
TO L ERENCE

T

,'I SECOND t
ALGOR I T H M

Sheet 5 of 6 5,243,607

FIG. 8(u) FIG. 8(b)

FIG. 9

.

FIRST CENTRAL
PROCESSING UNIT

FIRST
ALGORITHM

I

US. Patent

FIRST OUTPUT

Sep. 7, 1993

INPUT

Sheet 6 of 6

CERTIFICATION
TRAl L

SECOND CENTRAL SECOND OUTPUT -

5,243,607

FIRST INPUT FIRST MEMORY FIRST CENTRAL
PORT PROCESSING
I FIRST

FIG. IO

UNIT
ALGOR IT H M

COMPARING
MECHANISM

SECOND COMPUTER

INPUT PORT
SECOND CENTRAL

I I I 1

FIG. / I

5,243,607
1 2

ing a first algorithm and the step of executing a second
algorithm preferably takes place over essentially the

The present invention also pertains to a method for
achieving fault tolerance in a central processing unit.
The method comprises the steps of executing a first
algorithm in the central processing unit on input which
produces the first output as well as a certification trail.
Then, there is the step of executing a second algorithm
in the central processing unit on the input and on at least
a portion of the certification trail which produces a
second output. The second algorithm has a faster execu-

15 Then, there is the step of comparing the first and second
outputs such that an error result is produced if the first

BACKGROUND OF THE INVENTION and second outputs are not the same.
Traditionally, with respect to fault tolerance, the The present invention also pertains to a computer

specification of a problem is given and an algorithm to system. The computer system comprises a first com-
solve it is constructed. This algorithm is executed on an 2o puter. The first computer has a first memory. The first
input and the output is stored. Next, the same algorithm computer also has a first central processing unit in corn-
is executed again on the same input and the Output iS munication with the memory. The first computer addi-
compared to the earlier output. If the outputs differ then tionally has a first input port in comm~ca t ion with the
an error is indicated, otherwise the output is accepted as memory in the first central processing unit. mere is a
correct. This software fault tolerance method requires 25 first algorithm disposed in the first memory which pro-
additional time, so called time redundancy [Johnson, B., duces a first output as well as a certification trail based Design and analysis of fault tolerant digital systems,

METHOD AND APPARATUS FOR FAULT
TOLERANCE same time period.

LICENSES
The United States Government has a paid-up non-

exclusive license to practice the claimed invention
herein as per NSF Grant CCR-8910569 and NASA
Grant NSG 1442.

FIELD OF THE INVENTION
The present invention relates to fault tolerance. More

specifically, the present invention relates to a first algo-

rithm for fault tolerance purposes.
rithm that provides a certification trail to a second alga- time than the first for a given input’

Addison-Wesley, Reading Mass., 1989; Siewiorek, D., On input received by the input Port when it is executed
and Swarz, R., The theory and practice of reliable de- by the first central processor. The computer system is
sign, D ig id Press, Bedford, Mass., 19821; however, it 30 additionally comprised of a second computer. The set-
requires not additional software. It is particularly valu-
able for detecting errors caused by transient fault phe-
nomena. If such faults cause an error during only one of
the executions then either the error will be detected or
the output will be correct.

A variation of the above method uses two separate
algorithms, one for each execution, which have been
written independently based on the Problem Vcifica-

ond computer is comprised of a second memory. The
second computer is also comprised of a second central.
processing unit in communication with the memory and
the first central processing unit. The second computer

35 additionally is comprised of a second input port in com-
munication with the memory in the second central pro-
cessing unit. There is a second algorithm disposed in the
second memory which produces a second output based

tion. This N-version programming on the input and on at least a portion of the certification
D e n , L., and Avizienis A., “N-version programming: 40 trail when the second algorithm is executed by the set-

ond central processing unit. The second algorithm has a a fault tolerant approach to reliability of software oper-
ation,” Digest of the 1978 Fault Tolerant Computing faster execution time than the first algorithm for a given Symposium, pp. 3-9, IEEE Computer Society Press,

tolerant software,” IEEE Trans. on Software Engineer- 45 mechanism for comparing the first and second Outputs
ing, vol. 11, pp. 1491-1501, December, 19851 (in this such that an error first and
case N=2), allows for the detection of errors caused by second outputs are not the same.
some faults in the software in addition to those caused Moreover, the Present invention also pertains to a
by transient hardware faults and utilizes both time and computer. The computer is comprised of a memory.
software redundancy. Errors caused by software faults 50 Additionally, the computer is comprised of a central
are detected whenever the independently written pro- processing unit in communication with the memory.
grams do not generate coincident errors. The computer is additionally comprised of a first input

port in communication with the memory and the central SUMMARY OF THE INVENTION
processing unit. There is a first algorithm disposed in

The present invention pertains to a method for 55 the memory which produces a first output as well as a
achieving fault tolerance in a computer system having certification based on input received by the input
at least a first central processing system and a second port when the input is executed by the fist central

steps of first executing a first algorithm in the first cen- the memory which produces a second output based on tral processing unit on input which produces a first 60

second algorithm in the second central processing unit trail when the second algorithm is executed by the cen-
on the input and on at least a portion of the certification tral processing unit. The second algorithm has a faster
trail which produces a second output. The second alga- execution time than the first algorithm for a given input.
rithm has a faster execution time than the first algorithm 65 Moreover, the computer is comprised of a mechanism
for a given input. Then, comparing the first and second for comparing the first and second outputs such that an
outputs such that an error result is produced if the first error result is produced if the first and second outputs
and second outputs are not the same. The step of execut- are not the same.

1978; Avizienis, A*, “The N-version approach to fault input. The computer system is comprised of a

is Produced

central processing system’ The method comprises the processor. There is a second algorithm also disposed in

output as well as a certification trail. Next, executing a the input and On at least a portion Of the certification

3
5,243,607

BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings, the preferred em-

bodiments of the invention and preferred methods of

FIG. 1 is a block diagram of the present invention.
FIGS. 2A through FIG. 2F shows an examples of a

minimum spanning tree algorithm.
FIG. 3 with the source code for a mince man algo-

rithm. 10
FIG. 4A and 4B shows an example of a data structure

used in the second execution of a mince man algorithm.
FIG. 5 with the source code for a Huffman algo-

rithm.
FIG. 6 shows an example of a Huffman tree.
FIG. 7 with the source code for Graham’s scan algo-

FIG. 8A through FIG. 8C shows a convex hull exam-

FIG. 9 is a block diagram of an apparatus of the 20

practicing the invention are illustrated in which: 5

15

rithm.

ple.

present invention.

the present invention.

the present invention.

FIG. 10 is a block diagram of another embodiment of

FIG. 11 is a block diagram of another embodiment of

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The central idea of the present invention, essentially a
fault tolerance mechanism, as illustrated in FIG. 1, is to
modify a first algorithm so that it leaves behind a trail of
data which is called a certification trail. This data is
chosen so that it can allow a second algorithm to exe-
cute more quickly and/or have a simpler structure than
the first algorithm. The outputs of the two executions
are compared and are considered correct only if they
agree. Note, however, care must be taken in defining
this method or else its error detection capability might
be reduced by the introduction of data dependent be-
tween the two algorithm executions. For example, sup-
pose the first algorithm execution contains a error
which causes an incorrect output and an incorrect trial
of data to be generated. Further suppose that no error
occurs during the execution of the second algorithm. It
still appears possible that the execution of the second
algorithm might use the incorrect trail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be “fooled” by the
data left behind by the first execution. The definitions
given below exclude this possibility. They demand that
the second execution either generates a correct answer
or signals the fact that an error has been detected in the
data trail. Finally, it should be noted that in FIG. 1 both
executions can signal an error. These errors would in-
clude run-time errors such as divided-by-zero or non-
terminating computation. In addition the second execu-
tion can signal error due to an incorrect certification
trail. The fault tolerance means can be used in hardware
or software systems and manifested as fmware or soft-
ware in a central processing unit.

A formal definition of a certification trail is the fol-
lowing.

Definition 2.1. A problem P is formalized as a relation
(that is, a set of ordered pairs). Let D be the domain
(that is, the set of inputs) of the relation P and let S be
the range (that is, the set of solutions) for the problem.
It can be said an algorithm A solves a problem P if for

25

30

35

40

45

4
all d E D when d is input to A then an s E S is output such
that (d,s) E P.

Definition 2.2. Let P : D - S be a problem. Let T be
the set of certification trails. A solution to this problem
using a certification trail consists of two functions FI
and F2 with the following domains and ranges F1:D
S x T and F2:D x T + S U error. The functions must
satisfy the following two properties:

(1) for all d E D there exists s E S and there exists t E
T such that Fl(d) = (s,t) and Fz(d,t) = s and (d,s) E P

(2) for all d E D and for all t T either (F2(d,t) = s and
(d,s) P) or F2(d,t) = error.

The definitions above assure that the error detection
capability of the certification trail approach is compara-
ble to that obtained with the simple time redundancy
approach discussed earlier. That is, if transient hard-
ware faults occur during only one of the executions
then either an error will be detected or the output will
be correct. It should be further noted, however, the
examples to be considered will indicate that this new
approach can also save overall execution time.

The certification trial approach also allows for the
detection of faults in software. As in N-version pro-
gramming, separate teams can write the specification
now must include precise information describing the
generation and use of the certification trial. Because of
the additional data available to the second execution,
the specifications of the two phases can be very differ-
ent; similarly, the two algorithms used to implement the
phases can be very different. This will be illustrated in
the convex hull example to be considered later. Alterna- .
tively, the two algorithms can be very similar, differing
only in data structure manipulations. This will be illus-
trated in the minimum spanning tree and Huffman tree
examples to be ’considered later. When significantly
different algorithms are used it is sometimes possible to
save programming effort by sharing program code.
While this reduces the ability to detect errors in the
software it does not change the ability to detect tran-
sient hardware errors as discussed earlier.

With respect to the above, it has been assumed that
our method is implemented with software; however, it
is clearly possible to implement the certification trail
technique by using dedicated hardware. It is also possi-
ble to generalize the basic two-level hierarchy of the
certification trial approach as illustrated in FIG. 1 to
higher levels.

Examples of the Certification Trail Technique
50 In this section, there is illustrated the use of certifica-

tion trails by means of applications to three well-known
and significant problems in computer science: the mini-
mum spanning tree problem, the Huffman tree problem,
and the convex hull problem. It should be stressed here

55 that the certification trail approach is not limited to
these problems. Rather, these algorithms have been
selected only to give illustrations of this technique.

Minimum Spanning Tree Example
The minimum spanning tree problem has been exam-

ined extensively in the literature and an historical sur-
vey is given in [Graham, R.L., “An efficient algorithm
for determining the convex hull of a planar set”, Infor-
mation Processing Letters, pp. 132-133, 1, 19721. The

65 certification trial approach is applied to a variant of the
PrimDijkstra algorithm]Prim, R.C., “Shortest con-
nection networks and some generalizations,: Bell Syst.
Tech. J., pp. 1389-1401, November, 1957; Dijkstra, E.

60

5,243,607
5 6

W., “A note on two problems in connexion with In our case, there is used two different data structure
graphs,” Numer. Math. 1, pp. 269-1984, Jun. 20-221 as methods to support these operations. One method will
explicated in [Tarjan, R.E., Data Structures and Net- be used in the first execution of the algorithm and an-
work Algorithms, Society for Industrial and applied other, faster and simpler, method will be used in the
Mathematics, Philadelphia, Pa. 19831. The discussion of 5 second execution. The second method relies on a trail of
the application of the certification trail approach to the data which is output by the fmt execution.
minimum spanning tree problem beings with some pre-
liminary definitions. MINSPAN ALGORITHM

Definition 3.1. A graph G = W,E) consists of a ver-
tex set v and an edge set E. An edge is an unordered 10 these methods the overall algorithm

of distinct vertices which is notated as, for example,
[v,w], and it is said v is adjacent to w. A path in a graph
from VI to vkk a sequence of vertices VI, v2, . . . , vksuch
that [VI, V I = I] is an edge for i L 11, . . . k - 11. A path
is a cycle if k > 1 and V1 = Vk. An acyclic graph is a 15 rithm must perfom when

graph such that for all pairs of vertices V,W there is a
path from v to w. A tree is an acyclic and connected
graph.

a positive rational valued function defined on E. A
subtree of G is a tree, T(V’,E‘), with V’ 51. V and E‘ €
E. It is said T spans V’ and V’ is spanned by T. If V’ =
V then we say T is a spanning tree of G. The weight of

spanning tree of minimum weight.

Before discussing precise implementation details for
in both execu-

tiom is presented. Pidgin d e for this algorithm ap-
pears &low. In addition, FIG. 2 iliustrates the execu-
tion of the algorithm on a sample graph and the table
below records the data structure operations the dgo-

on the sample graph. The

member and the p a m e t e r h dropped to reduce clutter.
ne second column gives the evolving of h.
The third column records the ordered pair deleted by

certification to these operations and
is further discussed

uses a method to a
spanning tree. The algorithm starts by chaos-

During each iteration of the algorithm a new edge is
added to the tree being constructed. Thus, the set of
vertices spanned by the tree increases by exactly one
vertex for each iteration. The edge which is added to

graph which conhhs no cycles. A connected graph is a fist column of the table gives the operations except

Definition 3*2. = (V*E) be a graph and let w be Z0 the delete- operation. The fourth column records to

The

this tree ’ ’, d?w(e)’ A ’panning tree ‘s a 25 ing an arbitrary vertex frorn which to grow the tree.

Data Structures and Supported Operations
Before discussion of the minimum spanning tree algo-

rithm, there must be described the properties of the 30

algorithm, initially there is described abstractly the data gaph, 2(b) through 2(e) show stages Of

tions that can be used to manipulate this data. The data 35 the tt-hhum spanning tree. The solid edges in FIGS.
consists of set of ordered pairs. The fmt element in 2(b) though %e) represent the current tree and the
these ordered pairs is referred to as the item number and dotted edges represent candidates for addition to the
the second element is called the key value. Ordered tree.
pairs may be added and removed from the set; however, To efficiently find the edge to add to the current tree
at dl times, the item numbers of distinct ordered pairs 40 the algorithm uses the data structure operations de-
must be distinct. It is possible, through, for multiple scribed above. AS won as a vertex, say V, is adjacent to
ordered pairs to have the same key value. In this paper Some vertex which is currently Spanned it is inserted in
the item numbers are integers between 1 and n, inclu- the set h. The key value for v is the weight of the mini-
sive. Our default convention is that i is an item number, mum edge between v and Some vertex spanned by the
k is a key value and h is a set of ordered pairs. A total 45 current tree. The array element prefer (v) is used to
ordering on the pairs of a set can be defined lexica- keep track of this minimum weight edge. AS the tree
graphically as follows: (i,k) < (i’,k) iff k < k‘ or (k = grows, information is updated by operations such as
k and i < i’). The data structure should support a subset insert (i,k,h) and changekey (i,k,h).

TABLE 1 of the following operations.
member (i,h) returns a boolean value of true if h con- 50

Data structure operations and certification
tnil for MINSPAN rains an ordered pair with item number i, otherwise

returns false.

principle data structure that are required. Since many
different data structures can be used to implement the

that can be stored by the data structure and the opera-

the tree is the One with the
shows this process in action.

the tree growth and

weight.
qa) shows the input.

shows the output Of

Operation Set of Ordered Pairs Delete Trail

insert(6.500)

insert (i,k,h) adds the ordered pair (i,k) to the set h.
delete (i,h) deletes the unique ordered pair with item (2.200) smallat

(2,2W(6,500) 2
inscrt(2*200)

55 deleternin (6,500) (2,200) number i from h.
changekey (i,k,h) is executed only when there is an inscrt(3.8~~~) (6,W,(3,800) 6

replaced by (i,k). inscrt(7.505) (6,4%(7,W.(3.800) 6
ordered pair with item number i and h. This pair is ch.ngekey(6.450) (6,450),(3,800) s d a t

according to the total order defined above and de- 60 ch.ngckey(7,495)

“empty” is returned. chnngekey(3,350) (3,350),(7,495) smallat

pair which immediately precedes the pair with item chmgekey(4,650) (7,495),(4,650) 7
number i in the total order. If there is no predecessor 65 deleternin

Many different types and combinations of data struc- deletemin empty

(7,505),(3,800) (6,450)
(~t2WW39L3s800) d l w t
(s ,2~) , (7 ,49~) , (3 ,m)

letes this pair. If h is the empty set then the token deleternin 0.495),(3,800) (5,250)

(3,3S0),0.495),(4,700) 7
(7,495),(4,700) (3.350)

(4.650) (7,495)
then the token “smallest” is returned. deleternin (4,650)

deletemin (h) returns the ordered pair which is smallest EzE!)
5

predecessor (i,h) returns the item number of the ordered 2zzL00)
tures can be used to support these operations efficiently.

8
5,243,607

7
The deletemin (h) operation is used to select the next FIG. 3(u) is before the insertion and FIG. 3(b) is after

vertex to add to the span of the current tree. Note, the the insertion.
algorithm does not explicitly keep a set of edges repre- When the insert operation is performed, some checks
senting the current tree. Implicitly, however, if (v,k) is must be conducted. First, the ith array pointer must be
returned by deletemin then prefer (v) is added to the 5 nil before the operation is performed. Section, the
current tree. sorted order of the pairs stored in the linked list must be

In the first execution of the MINSPAN algorithm, preserved after the operation. That is, if (i’,r) is stored
the MINSPAN code is used and the principle data in the node before (i,k) in the linked list and (i”,r’) is
structure is implemented with a balanced tree such as an stored after (i,k), then (?,Y) < 0,k) < (i”, F’) must hold
AVL tree [Aderson-Vel’skii, G.M., and Landis, E.M., 10 in the to& order. If either Of these checks f d S then
“& algorithm for the organization of information”, execution halts and “elTOr” is Output.
Soviet Math. Dokl., pp. 1259-1262,3, 19621, a red-black To perform delete (iyh) the i* array pointer is tra-
tree [Guibas, L.J., and Sedgewick, R., “A dichromatic versed and the node found is from the linked

Nineteenth ~ ~ ~ a l symposium on Foundations of 15 the deletion of item number 7 if one considers FIG. 3(u)

pp ation is performed one check is made. If the ith array
173-189, 1, 19721. In addition, an array of pointers in- pointer is nil before the operation then the execution
dexed from 1 to n is used. The balanced search tree halts and ‘krror” is output‘

To perform changekey (i,i,h) it suffices to perform
delete (i,h) followed by insert (i,k,h). Note, this means stores the ordered pairs in h and is based on the total

the next item in the certification trail is read. Also, the order described earlier. The array of pointers is initially

checks associated with both these two operations are all nil. For each item i, the ith pointer of the array is
used to point to the location of the ordered pair with 25 performed and the execution halts with ,.error., output
item number i in the balanced search tree. If there is no if any check fails. such ordered pair in the tree then the ith pointer is nil. the Oth array pointer is

list is accessed. If there is no such node then “empty” is member (i,h) and delete (i,h).
The certification trail is generated during the first 3o returned and the operation is complete. Otherwise,

execution as follows: When CHOOSE root c V is exe- suppose the node is

output. Also, each time insert (Lkh) Or changekey the ith array pointer is set to nil, and (i,k) is returned.
(i,k,h) are executed, predecessor is executed after- Lastly, to perform member (i,h) the ith array pointer
wards, and the answer returned is output. This is illus- 35 is If it is nil then false is returned, otherwise,
trated in column labeled “Trail” in the table above. true is returned. The predecessor (i,h) operation is not

The second execution of the MINSPAN algorithm used int he second execution.
also uses the MINSPAN code; however, the CHOOSE mS completes the description of the second execu-
construct and the data structure operations are imple- tion. T~ show that there is described a correct imple-
mented differently than in the fist execution. The 40 mentation of the certification trail method requires a
CHOOSE is Performed by simply reading the first de- proof. The proof has several parts of varying difficulty.
merit Of the Certification trail. This guarantees the Same First, one must show that if the first execution is fault-
choice of a starting vertex is made in both executions. free then it outputs a minimum tree. Second,
FIG. depicts the Principal data structure used which is one must show that if the first and second executions are
called an indexed linked list. The array is indexed from 45 fault-free then they both output the -e minimum
1 to n and Contains pointers to a Singly linked list which spanning tree. Both these parts of the proof are not
represents the current contents of h from smallest to difficult to show.
largest. The ith dement of the m a y Points to the node The third more subtle part of the proof deals with the
containing the ordered pair with the item number i if it situation in which only the second execution is fault-
is present in h; otherwise, the pointer is nil. The 0th 50 free. - means an incorrect certification trail may be
element of the array points to the node containing (0, generated in the first execution. In this case, it must be
-1NF). Initially, the m a y contains nil pointers except shown that the second execution outputs either the
the 0th element. In order to implement the data struc- correct minimum spanning tree or “error”. The checks
ture operations, the following is provided. that were described this property by detecting any er-

To perform insert (i,k,h), it is necessary to read the 55 rors that would prevent the execution from generating
next value in the certification trail. This value, say j, is the correct output.
the item number of the ordered pair which is the prede- In the first execution each data structure operation
cessor of (i,k) in the current contents of h. A new linked can be performed in O(log(n)) time where M =n.
list node is allocated and the trail information is used to There are at most O(m) such operations and O(m) addi-
insert the node into the data structure. Specifically, the 60 tional time overhead where [E] =m. Thus, the first
ith array pointer is traversed to a node in the linked h t , execution can be performed in O(mlog(n)). It is noted
say Y. (If j = “smallest” then the 0th array pointer is that th is algorithm does not achieve the fastest known
traversed.) The new node is inserted in the list just after asymptotic time complexity which appears in Gabow,

- n d e .Y and before the next node in the linked list (if H.N., Galil, Z., Spencer, T., and Tarjan, R.E., “Effi-
.---tipxe is one). The data field in the new node is set to (i,k) 65 cient algorithms for finding minimum spanning trees in
%-’and ._ the ith pointer of the array is set to point to the new undirected and directed graphs,” Cornbinatorica 6, pp.
.’ node. FIG. 4 shows the insertion of (7,505) into the data 109-122, 2, 1986. However, the algorithm presented

structure given that the certification trail value is 6. here has a significantly smaller constant of proportion-

Framework for balanced trees**, prmdings of the

Computing, pp. 8-21, IEEE Computer Society Press,
19781 or a b-tree [Bayer, R., and McCreight, E., “Orga-

h t . Next, the ith array pointer is set to d. FIG. 4 Shows

depicting the data StlWctUre before the Operation and
‘per- FIG. depicting it *rWmds* When the

of large ordered indexes”, Acta

To detelemin This array allows rapid execution Of operations such traversed TO the head ofthe list and the next node in the

and suppose it the or-.
cuted in the first step, the vertex is chosen is &red pair (i,k), then the node y is deleted from the list,

5,243,607
9 10

ally which makes it competitive for reasonably sized also uses the command allocate to construct the tree.
graphs. In addition, it provides us with a relatively This command allocates a new node and returns a
simple and illustrative example of the use of a certifica- pointer to it. Each node is able to store an item number
tion trail. and a key value in the field called info. the item numbers

In the second execution each data structure operation 5 are in the set (1, . . . , 2n - 1) and the key values are
can be performed in O(1). There are still at most O(m) sums of frequency values. The nodes also contain fields
such operations and O(m) additional time overhead. for left and right pointers since the tree being con-
Hence, the second execution can be performed in O(m) structed is binary.
time. In other words, because of the availability of the The Huffman tree is built from the bottom up and the
certification trail, the second execution is performed in 10 overall structure of the algorithm is based on the greedy
linear time. There are no known O(m) time algorithms “merging” of subtrees. An array of pointers called ptr is
for the minimum spanning tree problem. Komlos [2q used to point to the subtrees as they are constructed.
was able to show that O(m) comparisons suffice to find Initially, n single vertex subtrees with the smallest asso- - the minimum spanning tree. However, there is no ciated frequency values. To perform a merge a new
known q m) time algorithm to actually find and per- Is subtree is created by first allocating a new root node
form these comparisons. Even the related “verification and next setting the left and right pointers to the two
problem has no known linear time solution. In the veri- subtrees being merged. The frequency associated with
fication problem the input consists of an edge weighted the new subtree is the sum of the frequencies of the two
graph and a subtree. The output is “yes” if the subtree subtrees being merged. In FIG. 6 the frequency associ-
is the minimum spanning tree and “no” otherwise. The 20 ated with each subtree is shown as the second value in
best known algorithm for this Problem Was created by the root vertex of the subtree. Details of the algorithm
Tarjan [Tarjan, R.E., “Applications of path compres- are given below. Note that the priority queue data
sion on balanced trees”, 3. ACM, PP. 690-715, October, structure allows the algorithm to quickly determine
19791 and has the nonlinear time complexity of o(- which subtrees should be merged by enabling the two
ma(m,n)), where a(m,n) is a functional inverse of Ack- 25 smallest frequency values to be found efficiently during
erman’s function. The fact that the data in a certification each iteration.
trail enables a minimum spanning tree to be found in Table 2 below illustrates the data structure operations
linear time is, we believe, intriguing, significant, and performed when the ~ ~ f f ~ ~ ~ tree in FIG. 6 is con-
indicative of the great promise of the certification trail structed. F~~ conciseness the initial inset operations
technique. 30 have been omitted. The first column gives the set of

ordered pairs in h. The second column gives the result. Huffman Tree Example
of the two deletemin operations during each iteration.

Huffman trees represent another classic algorithmic Note that column is labeled -~~ail97 because it is
problem, one of the original solutions being attributed also output as the certification trail. The third column
to Huffman [Huffman, D., “A method for the construe- 35 records the elements which are inserted by the corn-
tion of minimum redundancy codes”, Proc. IRE, pp. mand on line 13.
1098-1101,40, 19523. This solution has been used exten-
siveiy to perform data compression through the design
and use of so-called Huffman codes. These codes are
prefix codes which are based on the Huffman tree and 40
which yield excellent data compression ratios. The tree kt of Ordered Pairs Trail Insert

structure and the code design are based on the frequen-
cies of individual characters in the data to be com-

tion of minimum redundancy codes”, Proc. IRE, pp. (9,73),(4,77),(10,87),(7,gg) (8,43),(3,44) (10.87)
1098-1 101, 40, 1952, for information about the coding (10,87),(7,88),(11,150) (9,73),(4,77) (1 1,150)
application. (1 1,150),(12,175) (10,87),(7,88) (12,175)

(1 l,l50),(12,175) (13,325)

TABLE 2
Data structure operations and certifications trial

for HUFFMAN

(2,20),(5,23),(1,35),(6,38),(3,441,(4,77),
(7.88)

(8,43),(3,44),(9,73),(4,77),(7,88) (1,35),(6,38) (9,73)
pressed. See Huffman, D., “A method for the construe- (1,35).(6,38),(8,431,(3,44),(4,77),(7,88) (2XM523) (8,43)

Definition 3.3. The Huffman tree problem is the fol-
lowing: Given a seauence of freauencies (Dositive inte-

45

First Execution of HUFFMAN gers) fill, f[2], . . . ,-f[n], construct a tree with n leaves 50
and with one frequency value assigned to each leaf so
that the weighted path length is minimized. Specifi- In this execution the code entitled HUFFMAN is
cally, the tree should minimize the following sum: Elic used and the priority queue data structure is imple-
~wden(i)fTi] where LEAF is the set of leaves, len(i) is mented with a heap [Tarjan, R.E., Data Structures and
the length of the path from the root of the tree to the 55 Network Algorithms, Society for Industrial and Ap-
leaf li,f[i] is the frequency assigned to the leaf li. plied Mathematics, Philadelphia, Pa. 19831 or a bal-

An example of a Huffman tree is given in FIG. 6. The anced search tree [Guibas, L.J., and Sedgewick, R., “A
input frequencies are: f(1) = 35, f(2) = 20, f(3) = 44, dichromatic framework for balanced trees”, Proceed-
f(4) = 77, f(5) = 23, f(6) = 38, and f(7) = 88. The ings of the Nineteenth Annual Symposium on Founda-
frequencies appear inside the leaf nodes as the second 60 tions of Computing, pp. 8-21, IEEE computer Society
elements of the ordered pairs in the figure. Press, 1978; Adel‘son-Vel-Vel’skii, G.M., and Landis,

EM., “An algorithm for the organization of informa-
tion”, Soviet Math. Dokl., pp. 1259-1262, 3, 1962;

The algorithm to construct the Huffman tree uses a Bayer, R., and McCreight, E., “Organization of large
data structure which is able to implement the insert and 65 ordered indexes”, Acta Inform., pp. 173-189, 1, 19721.
the deletemin operations which are defined above in the Actually, any correct implementation is acceptable;
minimum spanning tree example. This type of data however, to achieve a reasonable time complexity for
structure is often called a priority queue. The algorithm this execution the suggested implementation are desir-

HUFFMAN ALGORITHM

5,243,607
11

able. the certification trail is generated as follows:
whenever deletemin (h) is executed the item number
and the key value which are returned are both output.
In the table, the certification trail is listed in the second
column.

Second Execution of HUFFMAN
This execution consists of two parts which may be

logically separated but which are performed together.
In the first logical part, the code called HUFFMAN is
executed again except that the data structure operations
are treated differently. All insert operations are not
performed and all deletemin operations are performed
Py simply reading the ordered pairs from the certifica-
tion trail. In the second logical part, the data structure
operations are “verified”. Note, by “verify” it does not
mean a formal proof of correctness based on the text of
an algorithm. The problem of verification can be formu-
lated as follows: given a sequence of insert (i,k,h) and
deletemin (h) operations @)operations check to see if 20
the answers are correct. It should be noted that while in
our example there is only one h, in general there can be
multiple h’s to be handled.

The description of the algorithm for the second exe-
cution can be further simplified because only some re- 25
stricted types of operation sequences are generated by
the HUFFMAN code. First, it can be observed that all
elements are ultimately deleted from h before the algo-
rithm terminates; second, it can be further observed that
when an element is inserted into h, its key value is larger 3 0
than the key value of the last element deleted from h.
These two important observations allow us to check a
sequence using the simplified method which is de-
scribed next.

dexed from 1 to 2n - 1. T h i s array is used to track the
contents of h. If the ordered pair (i,k) is in h, then array
element i is set to a value of k; and if no ordered pair
with item number i is in h, then airay element i is set to
a value of - 1. Initially, all array elements are set to - 1 40
and then operation sequence is processed. If insert (i,k)
is executed then array element i is checked to see if it
contains - 1. (The value of - 1 is an arbitrary selection
meant to serve only as an indicator.) If array element i
does contain -1, then it is set to k. If deletemin (h) is 45
executed, then the answer indicated by the certification
trail, say (i,k), is examined. Array element i is checked
to see if it contains k. In addition, k is compared to the
key value of previous element in the certification trail
sequence to see if it is greater than or equal to that 5 0
previous value. If both these checks succeed then array
element i is set to - 1.

If any of the checks just described above fails, then
the execution halts and “error” is output. Otherwise the
operation sequence is considered “verified”. It can be 55
rigorously shown that the checks described are suffi-
cient for determining whether the answers given in the
certification trail are correct; this proof, however, has
been omitted for the sake of brevity. Finally, it is worth
noting that to combine the two logical parts of this 60
execution, one can perform the data structure checking
in tandem with the code execution of HUFFMAN.
Each time an insert or deletemin is encountered in the
code, the appropriate set of checks are performed.

Time Complexity Comparison of the Two Executions
Again, as in the minimum spanning tree example, the

availability of the certification trail permits the second

Our simplified method uses an array of integers in- 35

65

12
execution for the Huffman tree problem to be dramati-
cally more efficient than the first.

In the first execution of HUFFMAN, each data struc-
ture operation can be performed in O(log(n)) time
where n is the number of frequencies in the input. There
are O(n) such operations and O(n) additional time over-
head, hence, the execution can be performed in O(n log
(n)). This is the same complexity as the best known
algorithm for constructing Huffman trees.

In the second code execution of HUFFMAN, each
data structure operations is performed in constant time.
Further, verifying the data structure operations are
correct takes only a constant time per operation. Thus,
it follows that the overall complexity of the second
execution is only O(n).

Convex Hull Example
The convex hull problem is fundamental in computa-

tional geometry. The certification trail solution to the
generation of a convex hull is based on a solution due to
Graham [Graham, R.L., “An efficient algorithm for
determining the convex hull of a planar set”, Informa-
tion Processing Letters, pp. 132-133, l 19721 which is
called “Graham’s Scan.” (For basic definitions and
concepts in computational geometry, see the text of
Preparata and Shamos [Preparata F.P., and Shamos
M.I., Computational geometry; an introduction, Spring-
er-Verlag, New York, N.Y., 19851.) For simplicity in
the discussion which follows, it is assumed the points
are in so-called “general position” (this is, no three
points are colinear). It is not difficult to remove this.
restriction.

D e f ~ t i o n 3.4. A convex region in R2 is a set of
points, say Q, in Rzsuch that for every pair of points in
Q the line segment connecting the points lies entirely
within Q. A polygon is a circularly ordered set of line
segments such that each line segment shares one of its
endpoints with the preceding line segment and shares
the other endpoint with the succeeding line segment in
the ordering. The shared endpoints are called the verti-
ces of the polygon. A polygon may also be specified by
an ordering of its vertices. A convex polygon is a poly-
gon which is the boundary of some convex region. The
convex hull of a set of points, S, in the Euclidean plane
is defined as the smallest convex polygon enclosing all
the points. This polygon is unique and its vertices are a
subset of the points in S. It is specified by a counter-
clockwise sequence of its vertices.

FIG. 8(c) shows a convex hull for the points indicated
by black dots. Graham’s can algorithm given below
constructs the convex hull incrementally in a counter-
clockwise fashion. Sometimes it is necessary for the
algorithm to “backup” the construction by throwing
some vertices out and then continuing. The first step of
the algorithm selects an “extreme” point and calls it p1.
The next two steps sort the remaining points in a way
which is depicted in FIG. 8(u). It is not hard to show
that after these three steps the points when taken in
order, Pi, p2, . . . , pn, form a simple polygon; although,
in general, this polygon is not convex.

Graham’s Scan Algorithm
It is possible to think of Graham’s scan algorithm as

removing points from this simple polygon until it be-
comes convex. the main FOR loop iteration adds verti-
ces to the polygon under construction and the inner
WHILE loop removes vertices from the construction.
A point is removed when the angle test performed at

5,243,607
13 14

Step 6 reveals that it is not on the convex hull because
it falls within the triangle defined by three other points.
A “snapshot” ofthe algorithm given in FIG. 8(b) shows
that q5 is removed from the hull. The angle formed by
q445, pa is less than 180 degrees. This means, q5 lies 5
within the triangle formed by q4, PI, p6. (Note, ql = PI.)
In general, when the angle test is performed, if the angle

Below it will be revealed that this is the primary infor- 10
mation relied on in our certification trail. When the
main FOR loop is complete, the convex hull has been
constructed.

First Execution of Graham’s Scan

actually consists of indices into the input data. this does
not unduly complicate the checks above; instead it
makes them easier. The correctness and adequacy of
these checks must be proven.

Time Complexity of the Two Executions

In the first execution the sorting of the input points
formed by qm-l@hpk is less than 180 degrees, then
qm lies within the triangle formed by qm-I,pl,pk.

takes O(&g(n) time where n is the number of input
points. One a show that this cost dominates and the

complexity is qdog(n)).
It is possible to note that, the span-

ning tree example and the Huffman tree example, the
convex hull example utilizes an algorithm in the second
execution that is not a close variant of that used int he

In this execution the code CONVEXHULL is used. 15 first execution. However, like the previous two exam-

depends fundamentally on the information in the certifi-
cation trail for eficiency and performance.

The certification trail is generated by adding an output ples, the second for the problem
Statement within the WHILE loop. specifically, if an
angle of less than 180 degrees is found in the WHILE
loop test then the four tuple consisting of 2o Concurrency of Executions
qm,qm- l,pl,pk is output to the certification trail.
Table 3 below shows the four tuples of points that In the three examples discussed above, it is possible to
would be output by the algorithm when run on the Start the second execution before the first execution has
example in FIG. 8. The points in Table 3 are given the terminated. This is a highly desirable capability when
m e names as in FIG. e@). The final convex hull points 25 additional hardware is available to run the second exe-
ql , . . . qm are also output to the certification trail. cution (for example, with multiprocessor machines, or
Strictly speaking the trail output does not consist of the machines with coprocessors or hardware monitors).
actual points in R2. Instead, it consists of indices to the In the case of the minimum spanning tree problem,
original input data. This means if the original data con- the two executions can be run concurrently. It is only
sists of ~ 1 ~ 2 , . . . , sn then rather than output the element 3o necessary for the second execution to read the certifica-
in R2 corresponding to sithe number i is output. It is not tion trail as it is generated-one item number at a time. ,
hard to code the program so that this is done. Thus, there is a slight time lag in the second execution.

The case of the Huffman tree problem is similar. Both TABLE 3
executions can be run concurrently if the second execu-

35 tion reads the certification trail as it is generated by the
first execution.

The case of the convex hull problem is not quite as
favorable, but it is still possible to partially overlap the
two executions. For example, as each 4-tuple of points is

40 generated by the first execution, it can be checked by
the second execution. But the second execution must

First part of certification trail for Graham’s scan
Point not on convex hull Three surroundmg points

PS

P7

P4.PI.P6

PbPI.P8
P4 P3.PI.P6

Second Execution for the Convex Hall Problem
Let the certification trail consist of a set of four tu-

ples, (xi,ai,bl,cl), (x2dn9c2), . . . , (xrtanbrtcr) followed
by the supposed convex hull, ql,q2, . . . ,qm. The code
for CONVEXHULL is not used in this execution. In-
deed, the algorithm performed is dramatically different
than CONVEXHULL.

First, the algorithm checks for i Q (1, . . . ,r) that xilies
It consists of five checks on the trail data.

within the triangle defined bv ai.bi. and ci.

45

50

wait for the points on the convex hull to be output at the
end of the first execution before they can be checked.

An additional opportunity for overlapping execution
occurs when the system has a dedicated comparator. In
this case it is sometimes possible for the two executions
to send their output to the comparator as they generate
it. For example, this can be done in the minimum span-
ning tree problem where the edges of the tree can be
sent individually as they are discovered by both execu-,

Second, the algorithm checks that for each triple of tiom.
counterclockwise consecutive points on the supposed
convex hull the angle formed by the points is less than
or equal to 180 degrees.

Third, it checks that there is a one to one correspon- 55
dence between the input points and the points in (XI,

Fourth, it checks that for i Q (1, . , . ,r), albj, and Ciare
among the input points.

Fifth, it checks that there is a unique point among the 60
points on the supposed convex hull which is a local
extreme point. A point q on the hull is a local extreme
point if its predecessor in the counterclockwise order-
ing has a strictly smaller y coordinate and its succes-
sor in the ordering has a smaller or equal y coordi- 65
nate.
If any of these checks fail then execution halts and

“error” is output. As mentioned above, the trail data

. * * J,) u (¶ I t * f . ,qm).

Comparison of Techniques
The certification trail approach to fault tolerance,

whether implemented in hardware or software or some
combination thereof, has resemblances with other fault
tolerant techniques that have been previously proposed
and examined, but in each case there are significant and
fundamental distinctions. These distinctions are primar-
ily related to the generation and character of the certifi-
cation trail and the manner in which the secondary
algorithm or system uses the certification trail to indi-
cate whether the execution of the primary system or
algorithm was in error and/or to produce an output to
be compared with that of the primary system.

To being, the certification trail approach might be
viewed as a form of N-version programming [Chen, L.,
and Avizienis A., “N-version programming: a fault

15
5,243,607

16
tolerant approach to reliability of software operation,” collects or is sent information about the operation of the
Digest of the 1978 Fault Tolerant Computing Sympo- system to be compared with that which was provided
sium, pp. 3-9, IEEE computer Society Press, 1978; during the set-up phase. On the basis of this comparison,
Avizienis, A., and Kelly J., “Fault tolerance by design a decision is made by the watchdog processor as to
diversity: concepts and experiments,” Computer, vol. 5 whether or not an error has occurred. The information
17, pp. 67-80. August, 19841. This approach specifies about system behavior by means of which a watchdog
that N different implementations of an algorithm be processor must monitor for errors includes memory
independently executed with subsequent comparison of access behavior [Namjoo, M., and McCluskey, E.,
the resulting N outputs. There is no relationship among “Watchdog processors and capability checking,” Di-
the executions of the different versions of the algo- 10 gest of the 1982 Fault Tolerant Computing Symposium,
rithms other than they all use the same input; each algo- pp. 245-248, IEEE Computer Society Press, 19821,
rithm is executed independently without any informa- control and program flow [Eifert, J. B. and Shen, J. P.,
tion about the execution of the other algorithms. In “Processor monitoring using asynchronous signatured
marked contrast, the certification trail approach allows instruction streams,” Dig. 14th Int. Conf. Fault-Toler-
the primary system to generate a trail of information 15 ant Comput., pp. 394-399, 1984, June 20-22; Iyengar,
while executing its algorithm that is critical to the sec- V. S. and Kinney, L. L., “Concurrent fault detection in
ondary system’s execution of its algorithm. In effect, microprogrammed control units,” IEEE Trans. Com-
N-version programming can be thought of relative to put., vol. C-34, pp. 810-821, September 1985; Kane, J.
the certification trail approach as the employment of a R and Yau, S. S., “Concurrent software fault detection,
null trail. 20 ” IEEE Trans. Software Eng., vol. SE-1, pp. 87-99,

A softwarehardware fault tolerance technique March 1975; Lu, D., “Watchdog processor and struc-
known as the recovery block approach [Randell, Ba., tural integrity checking, ” IEEE Trans. Comput., vol.
“System structure for software fault tolerance,” IEEE C-31, pp. 681-685, July 1982; Namjoo, M., “Techniques
Trans. on Software Engineering vol. 1, pp. 202-232, for concurrent testing of VLSI processor operation,”
June, 1975; Anderson, T., and Lee, P., Fault tolerance: 25 Dig. 1982 Int. Test Conf., pp. 461-468, November 1982;
principles and practices, Prentice-Hall, Englewood Namjoo, M., “CERBERUS-16: An architecture for a
Cliffs, N.J., 1981; Lee, Y. H. and Shin, K. G., “Design general purpose watchdog processor,” Dig. Papers 13th
and evaluation of a fault-tolerant multiprocessor using Annu. Int. Sump. Fault Tolerant Comput., pp. 216-219,
hardware recovery blocks,” IEEE Trans. Comput., vol June, 1983; Shen, J. P. and Schuette, M.A., “On-line
C-33, pp. .113-124, February 1984.1 uses acceptance 30 self-monitoring using signatured instruction streams,”
tests and alternative procedures to produce what is to Proc. 1983 Int. Test Conf., pp. 275-282, October, 1983;
be regarded as a correct output from a program. When Sridhar, T. and Thatte, S. M., “Concurrent checking of
using recovery blocks, a program is viewed as being program flow in VLSI processors,” Dig. 1982 Int. Test
structured into blocks of operations which after execu- Conf., pp. 191-199, November, 1982; 46,471, or reason-
tion yield outputs which can be tested in some informal 35 ableness of results [Mahmood, A., Lu, D. J. and
sense for correctness. The rigor, completeness, and McCluskey, E. J., “Concurrent fault detection using a
nature of the acceptance test is left to the program de- watchdog processor and assertions,” Proc. 1983 Int.
signer, and many of the acceptance tests that have been Test Conf., pp. 622-628, October, 1983; Mahmood, A.
proposed for use tend to be somewhat straightforward Ersoz, a. and McCluskey, E.J., “Concurrent system
[Anderson, T., and Lee, P., Fault tolerance: principles 40 level error detection using a watchdog processor,”
and practices, Prentice-Hall, Englewood Cliffs, N.J., Proc. 1985 Int. Test conf., pp. 145-152, November,
19811. Indeed, formal methodologies for the definition 19851. Using physical fault injection techniques, distri-
and generation of acceptance tests have thus far not butions of errors that could be detected using such types
been established. Regardless, the certification trail no- of information have been determined for some specific
tion of a secondary system that receives the same input 45 systems [Schmid, M., Trapp, R., Davidoff, A., and Mas-
as the primary system and executes an algorithm that son, G., “Upset exposure by means of abstraction verifi-
takes advantage of this trail to efficiently produce the cation,” Dig. of the 1982 Fault Tolerant Computing
correct output and/or to indicate that the execution of Symposium, pp. 237-244, June, 1982; Gunneflo, U.,
the ftrst algorithm was correct does not fall into the Karlsson, J., and Torin, J., “Evaluation of error detec-
category of an acceptance test. H) tion schemes for using fault injection by heavy-ion radi-

A watchdog processor is a small and simple (relative ation,” Dig. of the 1989 Fault Tolerant Computing
to the primary system being monitored) hardware mon- Symposium, pp. 340-347, June, 19891, and the perfor-
itor that detects errors examining information relative mance of models of error monitoring techniques that
to the behavior of the primary system [Mahmood, A., could be realized in the form of watchdog processors
and McCluskey, E., “Concurrent error detection using 55 have been analyzed [Blough, D., and Masson, G., “Per-
watchdog processors,” IEEE Trans. on Computers, formance analysis of a generalized concurrent error
vol. 37, pp. 160-174, February, 1988; Mahmood, A., detection procedure,” IEEE Trans. on Computers vol.
and McCluskey, E., “Concurrent error detection using 39, January, 1990.1. However, in contrast to the certifi-
watchdog processors-a survey,” IEEE Trans. on cation trail technique, a watchdog processor uses only a
Computers, vol. 37, pp. 160-174, February, 1988; Nam- 60 priori defrned behavior checks, none of which is SUE-
joo, M., and McCluskey, E., “Watchdog processors and cient together with the input to the primary system to
capability checking,” Digest of the 1982 Fault Tolerant efficiently reproduce the output for direct comparison
Computing Symposium, pp. 245-248, IEEE Computer with that of the primary system.
Society Press, 1982.1. Error detection using a watchdog Related to the watchdog processor approach is that
processor is a two-phase process: in the set-up phase, 65 of using executable assertions [Andrews, D., “Software
information about system behavior is provided a priori fault tolerance through executable assertions,” Rec.
to the watchdog processor about the system to be moni- 12th Asilomar Conf. Circuits, Syst., Comput., pp.
tored; in the monitoring phase, the watchdog processor 641-645, 1978, November 6-8; Andrews, D., “Using

5,243,607
17 18

executable assertions for testing and fault tolerance,” cause it is allowed to be probabilistic in a carefully
Dig. 9th Annu. Int. Sump. Fault-Tolerant Comput., pp. specified way. There are two main differences between
102-105, 1979, June 20-22: Mahwood, A., Lu, D. J. and this approach and the certification trail approach. First,
McCluskey E. J., “Concurrent fault detection using a a program checker may call the algorithm it is checking
watchdog processor and assertions,” Proc. 1983 Int. 5 a polynomial number of times. In the certification trail
Test Conf., pp. 622-628, October 19831. An assertion approach the algorithm being checked is run once.
can be defined as an invariant relationship among van- Second, the checker is designed to work for a problem
ables of a process. In a program, for examples, asser- and not a specific algorithm. That is, the checker design
tions can be written as logical statements and can be is based on the input/output specification of a problem.
inserted into the code to signify that which has been 10 The certification trail approach is explicitly algorithm
predetermined to be invariably true at that point in the being checked is run once. Second, the checker is de-
execution of the program. Assertions are based on a signed to work for a problem and not a specific algo-
priori determined properties of the primary system or rithm. That is, the checker design is based on the input-
algorithm. This, however, again serves to distinguish /output specification of a problem. The certification
executable assertion technique from the use of certifica- 15 trail approach is explicitly algorithm oriented. In other
tion trails in that a certification trail is a key to the words, a specific algorithm for a problem is modified to
solution of a problem or the execution of an algorithm out put a certifications trail. This trail sometimes allows
that can be utilized to e&ciently and correctly produce the second execution to be faster than any known pro-
the solution. gram checkers for the problem. This is the case for the

Abraham, J., “Algorithm-based fault tolerance for ma- Other hardware and software fault tolerance and
trix operations,” IEEE Trans. on Computers, pp. error monitoring techniques have been proposed and
518-529, vol. C-33, June, 1984; Nair, V., and Abraham, studied that might be thought of as bearing some resem-
J., “General linear codes for fault-tolerant matrix opera- blance to the certification trail approach. Extensive
tions on processor arrays,” Dig. of the 1988 Fault Tol- 25 summaries and descriptions of these techniques can be
erant Computing Symposium, pp. 180-185, June, 1988; found in the literature [Siewiorek, D., and Swarz, R.,
“Fault tolerant FTT networks,” Dig. of the 1985 Fault The theory and practice of reliable design, Digital
Tolerant Computing Symposium, June, 19851 uses error Press, Bedford, Mass., 1982; AvizieNs, A., “Fault toler-
detecting and correcting codes for performing reliable ance by means of external monitoring of computer sys-
computatians with specific algorithms. This technique 30 tems,” Proceedings of the 1981 National Computer
encodes data at a high level and algorithms are specifi- Conference, pp. 27-40, AFIPS Press, 1980; Johnson, B.,
cally designed or modified to operate on encoded data Design and analysis of fault tolerant digital systems,
and produce encoded output data. Algorithm-based Addison-Wesley, Reading, Mass., 1989; Mahmood, A.,
fault tolerance is distinguished from other fault toler- and McCluskey, E., “Concurrent error detection using
ance techniques by three characteristics: the encoding 35 watchdog processors-a survey,” IEEE Trans. on
of the data used by the algorithm; the modification of Computers, vol. 37, pp. 160-174, February, 19881. Ex-
the algorithm to operate on the encoded data; and the amination of these techniques reveals, however, that in
distribution of the computation steps in the algorithm each case there are fundamental distinctions from the
among computational units. It is assumed that at most certification trail approach. In summary, the certifica-
one computational unit is faulty during a specified time 40 tion trail approach stands along in its employment of
period. The error detection capabilities of the al- secondary algorithms/systems for the computation of
gorithm-based fault tolerance approach are directly an output for comparison that because of the availability
related to that of the error correction encoding utilized. of the trail not only proceeds in a more efficient manner
The certification trail approach does not require that than that of the primary but also can indicate whether
the data to be executed be modified nor that the funda- 45 the execution of the primary algorithm was correct.
mental operations of the algorithm be changed to ac- Although the invention has been described in detail in
count for these modifications. Instead, only a trail indic- the foregoing embodiments for the purpose of illustra-
ative of aspects of the algorithm’s operations must be tion, it is to be understood that such detail is solely for
generated by the algorithm. As seen from the above that purpose and that variations can be made therein by
examples, the production of this trail does not burden 50 those skilled in the art without departing from the spirit
the algorithm with a significant overhead. Moreover, and scope of the invention except as it may be described
any combination of computational errors can be han- by the following claims.
dled. What is claimed is:

Recently Blum and Kannan [slum, M., and Kannan, 1. A method for achieving fault tolerance in a com-
S., “Designing programs that check their work,” Pro- 55 puter system having at least a first central processing
ceedings of the 1989 ACM Symposium on Theory of unit and a second central processing unit comprising the
Computing, pp. 86-97, ACM Press, 19891 have defined steps of:
what they call a program checker. A program checker executing a first algorithm in the first central process-
is an algorithm which checks the output of an other ing unit on input so that a first output and a certifi-
algorithm for correctness and thus it is similar to an 60 cation trail are produced;
acceptance test in a recovery block. An example of a executing a second algorithm in the second central
program checker is the algorithm developed by Tarjan processing unit on the input and on the certification
[Tarjan, R. E., “Applications of path compression on trail so that a second output is produced, said sec-
balanced trees,” J. ACM, pp. 690-715, October, 19791 ond algorithm having a faster execution time than
which takes as input a graph and a supposed minimum 65 the first algorithm for a given input; and
spanning tree and indicates whether or not the tree comparing the first and second outputs such that an
actually is a minimum spanning tree. The Blum and error result is produced if the first and second out-
Kannan checker is actually more general than this be- puts are not the same.

Algorithm-based fault tolerance [Huang, K.-H., and 20 minimum spanning tree problem.

5.243,607 >-

19
2. A method as described in claim 1 wherein the step

of executing the second algorithm includes the step of
determining whether the certification trail is in error.
3. A method as described in claim 2 including before

the step of executing the first algorithm, there is the step
of duplicating the input such that the input that i s pro-
vided to the step of executing the first algorithm is also
the input that is provided to the step of executing the
second algorithm.

4. A method as described in claim 3 wherein the step
of executing the first algorithm includes the step of
determining whether the first output is in error.

5. A method as described in claim 4 wherein the step
of executing the first algorithm includes the step of
determining whether the second output is in error.

6. A method as described in claim 5 wherein the
second algorithm generates the second output correctly
when the second algorithm is executed by the second
processing unit even if the certification trial produced
by the first algorithm when the first algorithm is exe-
cuted by the first processing unit is incorrect.

7. A method as described in claim 1 wherein the
second algorithm is derived from the first algorithm.

8. A computer system comprising:
a first computer comprising:
a first memory,
a first central processing unit in communication with

the memory,
a first input port in communication with the memory

and the first central processing unit,
a first algorithm disposed in the first memory, said

first algorithm produces a first output and produces
a certification trail based on input received by the
input port when the first algorithm is executed by
the first central processor;

a second computer comprising a second memory,
a second central processing unit in communication

with the second memory and the first central pro-
cessing unit;

a second input port in communication with the sec-
ond memory and the second central processing
unit;

a second algorithm disposed in the second memory,
said second algorithm produces a second output
based on the input and the certification trail when
the second algorithm is executed by the second
central processing unit, said second algorithm hav-
ing a faster execution time than the first algorithm
for a given input; and

a mechanism for comparing the first and second out-
puts such that an error result is produced if the first
and second outputs are not the same.

9. A computer as described in claim 8 wherein the
second algorithm generates the second output correctly
when the second algorithm is executed by the second
processing unit even if the certification trail produced

20
by the first algorithm when the first algorithm is exe-
cuted by the first processing unit is incorrect.
10. A computer system as described in claim 9

wherein the mechanism for comparing is a comparator.
11. An apparatus as described in claim 10 wherein the

second algorithm is derived from the first algorithm.
12. A method for achieving fault tolerance in a cen-

tral processing unit comprising the steps of:
executing a first algorithm in the central processing

unit on input so that a first output and a certifica-
tion trail are produced;

executing a second algorithm in the central process-
ing unit on the input and on the certification trail so
that a second output is produced, said second algo-
rithm having a faster execution time than the first
algorithm for a given input; and

cornparing the first and second outputs such that an
error result is produced if the first and second out-
puts are not the same.

13. A method as described in claim 12 wherein the
second algorithm generates the second output correctly
when the second algorithm is executed by the process-
ing unit even if the certification trail produced by the
first algorithm when it is executed by the processing

14. A method as described in claim 13 wherein the

15. A computer comprising:
a memory,
a central processing unit in communication with the

memory,
a first input port in communication with the memory

and the central processing unit,
a first algorithm disposed in the memory, said first

algorithm produces a first output and a certifica-
tion trail based on input received by the input port
when the input is executed by the central process-
ing unit;

a second algorithm disposed in the memory, said
second algorithm produces a second output based
on the input and on at least a portion of the certifi-
cation trail when the second algorithm is executed
by the central processing unit, said second algo-
rithm having a faster execution time than the first
algorithm for a given input; and

a mechanism for comparing the first and second out-
puts such that an error result is produced if the first
and second outputs are not the same.

16. A computer as described in claim 15 wherein the
50 second algorithm generates the second output correctly

when the second algorithm is executed by the process-
ing unit even if the certification trail produced by the
first algorithm when the first algorithm is executed by
the processing unit is incorrect.
17. A computer as described in claim 16 wherein the

mechanism for comparing is a comparator.
18. An apparatus as described in claim 15 wherein the

second algorithm is derived from the first algorithm.

5

10

15

20

25 unit is incorrect.

second algorithm is derived from the first algorithm.

30

35

40

45

55

* * * * *
60

65

