
I11111 11ll1111 Ill lllll1111111111 lllll1111111111 Ill11 Ill11 ll11111111111111ll
United States Patent

US005 170400A
[I I] Patent Number: 5,170,400

Dotson [45] Date of Patent: Dec. 8, 1992

[54] MATRIX ERROR CORRECTION FOR

1751 Inventor: Ronald S. Dotson, Glendale, Calif.

[73] Assignee: California Institute of Technology,
Pasadena, Calif.

1211 Appl. No.: 456,170

[22] Filed: Dec. 26, 1989

[51] Int. C l . 5 G l l B 20/18; G l l B 20/16
[52] US. C1. ... 37V37.4
[58] Field of Search .. 37V37.4
1561 References Cited

DIGITAL DATA

U S . PATENT DOCUMENTS
3,800,281 3/1974 Devore et al. 371/37.4
4,760,576 7/1988 sat^ 37V37.4

OTHER PUBLICATIONS
Patel, A. et al., “Optical Rectangular Code for High
Density Magnetic Tapes”, IBk.fJourna1 of Research and
Development, Nov. 1974, pp. 579-588.
T. Rao et al., Error-Control Coding for Computer Sys-
rems, Prentice-Hall, 1989, pp. 299-300.

Primary Examiner-Stephen M. Baker
Attorney, Agent, or Firm-Norman E. Brunell

1571 ABSTRACT
A technique for digital data error detection and correc-
tion is disclosed which adds alignment and checksum
bytes to three sides of a matrix (24) of digital data to be
protected. This technique is particularly used for the
recording and storage (16,18) of digital data on video
tape medium (14). The digital data is treated as a matrix
block (24). Checksum and aiipnment bytes are added
(20) to the digital data before tape storage and stripped
(22) therefrom after successful alignment checks and
data validation. In particular, the first column may be
used to provide alignment bytes of a predetermined
value for each row. The last column provides row
checksum bytes for the data in each row. The last row
provides column check sum bytes for each column,
excluding the column of alignment bytes. The data
location at the intersection of the row of column check-
sum bytes and the column of row checksum bytes may
be used as a checksum byte for either the row or column
checksum bytes.

2 Claims, 2 Drawing Sheets

. I

Row
Checksum

bpte
Alignment

4,15

5,15

4,13 4.14

5,13 5,14

I i

.
I

Column
Checksum

byte 24 /

U.S. Patent Dec. 8, 1992 Sheet 1 of 2

10 20

I I
I- Data Source

I. Data Store F
Encoding h
Decodinn

5,170,400

Video Tape
Storage

4-(4 Controller I
-1’ R

U.S. Patent Dee. 8, 1992

r- digital

Sheet 2 of 2 5,170,400

Row
Checksum

data --9 i
I

column
Checksum

byte 24

5,170,400
1 2

matical relationship with the remaining locations in that
row and by adding column checksum locations to the
matrix in which each column checksum location is in a
particular column and the data stored therein represents

5 a predetermined mathematical relationship with the
remaining locations in that column, means for Storing
the encoded matrix of digital data, means for removing
the encoded matrix of digital data from storage, means
for comparing the data in each checksum row and col-

lo umn location to determine if that data accurately re-
flects the appropriate predetermined mathematical rela-

1, Field of the Invention tionship with the locations related thereto, means for
The present invention relates to techniques for the attempting to correct the data in locations in which

storage and recovery of digital data On video tape. In comparison of the d a h in the checksum row and col-
parriCUkir, the present invention relates to techniques l5 umn location indicates an error may have occurred, and
for error correction of digital data which are particu- for decoding the matrix by stripping out all
lady useful when employed during the storage and
recovery of digital data on video tape media.

MATRIX ERROR CORRECHON FOR DIGITAL
DATA

ORIGIN O F THE INVENTION
The invention described herein was made in the per-

formance of work under a NASA contract, and is sub-
j e t to the provisions of Public Law 96-517 (35 USC
202) in which the Contractor has elected to retain title.

BACKGROUND O F THE INVENTION

checksum row and column locations.

2, Description of the Prior Art
The use of video tape for the storage of large quanti- 2o

BRIEF DESCRIPTION O F THE DRAWINGS

ties of digital data originally stored or created on other
media has become increasingly attractive. Conventional
techniques for video tape recording and storage of digi-
tal data, such as the VIDEOTRAX @ SYSTEM avail-
able from Alpha Microsystems of Santa Ana, Califor- 25
nia, are howeven susceptible to substantial data corrup-
tion. That is, the digital data often have unacceptable
levels of error when recovered from the video tape
storage media.

sume a binary symmetric channel in which errors in
transmitting successive digits occur independently.
Data analysis indicates that such techniques are not
optimizable for correcting digital data recovered from

digital data results in bursts of data corruption rather
than the truly random errors which are typically as- SUMMARY O F THE INVENTION

The preceding and other shortcomings of the prior sumed to occur and for which conventional error cor-
art are addressed and overcome by the present inven- rection schemes are supposed to be optimized. These
tion that provides, in a first aspect, a method for error 40 bursts of errors are thought to result from contaminants
detection and correction in the storage and recovery Of on tape 14 and/or on the tape heads associated with
digital data by encoding data to be stored in a matrix tape deck 16 for writing to or reading from tape 14.
format. Row checksum locations are added to the ma- The present invention makes use of this burst
trix in which each row checksum location is in a partic- pattern by optimizing the detection and correc-
ular row and the data stored therein represents a prede- 45 tion scheme for corruption in several contiguous digits
termined mathematical relationship with the remaining in a data block. The detection and correction
locations in that row. Column checksum locations are scheme of the present invention models the digital data
added to the matrix in which each column checksum in a data block as two sets of linear equations. In each location is in a particular column and the data stored equation set, th; right hand side of the equations are

represented by checksum data added to the block dur- therein represents a predetermined mathematical rela- 50
tionship with the remaining locations in that column. ing encoding and stripped from the block after success- The matrix is then stored and recovered from storage.

The data in each checksum row and column location ful decoding.
is compared to determine if that data accurately reflects and recovered may
the: appropriate predetermined mathematical relation- 55 originate from a variety of sources, indicated in FIG. I
ship with the locations related thereto. Attempts are by data Source lo. The most common

xIR of the data in the checksum row and column loca- are the hard disks common in most microcomputers.
tion indicares an may have occurred. Then the The data when recovered is often returned to the origi-
mavix is stripped of all checksum row and column 60 nal source, but may be returned to any number of data
locations. using systems, indicated in FIG. 1 as data store 12.

In another aspect, the present invention provides, a The video tape storage medium is shown as tape 14
system for the storage and recovery of digital data with which is mounted On tape deck 16 and operated by tape
enor detection and correction, including means for controller 18. Tape Controller 18 may conveniently be
encoding data to be stored in a matrix format by adding 65 a card installed in the microcomputer, not shown, in
raw checksum locations to the matrix in which each which data source 10 and data store 12 may also be
row checksum location is in a particular row and the located. The devices described SO far-data source 10,
data stored therein represents a predetermined mathe- data store 12, tape 14, tape deck 16 and tape controller

Conventional digital error correcting techniques as- 30

video tape storage. 35

The digita1 data to be

Of

made to correct the data in locations in which compari- digital data appropriate for storage on video tape media

FIG. 1 is a block diagram illustration of a system for
the video tape storage and recovery of digital data ac-
cording to the present invention.

FIG. 2 is a partial illustration of the data storage bytes
in a 512 byte block of digital data encoded according to
the present invention.

FIG. 3 is a block diagram illustration of the proce-
dural flow for decoding and recovery of encoded digi-
tal data from video tape storage in accordance with the
present invention.

DETAILED DESCRIPTION O F THE
PREFERRED EMBODIMENT

In accordance with the present invention, it has been
determined that video tape storage and recovery of

5,170,400
3 4

18-are the major components in a conventional system umn 1. The information stored in these bytes is used to
for the video tape storage of digital data. validate and/or correct the data within the other col-

Conventional systems operate under software control umn locations in that row during decoding as will be
to move digital data to be stored from data source 10 to described in greater detail with reference to FIG. 3.
tape 14. Tape 14 is transported on tape deck 16 by tape 5 The data stored in each column location in row 31,
controller 18, also under software control. The data except column 0, are check bytes representing a prede-
tapes may be moved and/or stored in other physical termined function of the data stored in the other row
locations until the digital data is to be recovered. In any locations of that column. The information stored in
event, during recovery, tape 14 is transported on tape these bytes is used to validate and/or correct the data
deck 16 by tape controller 18 in order to move the 10 within the other row locations in that column during
digital data to data store 12. decoding as will be described in greater detail with

In accordance with the present invention, however, reference to FIG. 3.
the digital data must first be encoded in encoder 20 Many different alignment bytes may be used. For
before it is stored on tape 14 and must be decoded on convenience the byte representing hexadecimal “AB” is
decoder 22 before it is recovered and moved to data 15 used. In binary form, this byte has alternating bits in the -
store 12. form “1010 101 1” and therefore avoids the long string

A particularly convenient configuration for the prac- of 0’s which seems to be particularly susceptible to
tice of the present invention is a microcomputer system corruption. The byte locations used for alignment may
including a hard disk in which the data on the hard disk be recovered for use for digital data storage without
is stored for archival purposes on tape 14. In that con- 20 substantial degradation of the system if used with video
figuration, the microcomputer hard disk serves as both tape record and playback equipment not particularly
data source 10 and data store 12 and the encoding and susceptible to alignment problems. This would permit
decoding operations of encoder 20 and decoder 22 are the storage of 465 bytes of digital data in a 512 byte
performed within the microcomputer on the hard disk block.
as data is transferred from there on to and off from tape 25 Many different check byte functions may be used in
14. accordance with the present invention. A particularly

The encoding operation perfoimed within encoder convenient conventional function, called checksum,
20 may best be described with reference to FIG. 2. FIG. will be described herein for the purpose of illustrating
2 is a partial, graphical illustration of the data storage the present invention. Other check functions and/or
bytes in a 512 byte block of digital data encoded accord- 30 variations thereof may also be used. Using checksum,
ing to the present invention. Digital data to be stored the hexadecimal bytes in the row or column to be pro-
and recovered is often moved in convenient sized tected are simply added, the checksum representing the
blocks. The encoding operation required by the present sum of these bytes.
invention will be described with reference to the com- FIG. 3 is a block diagram illustration of the proce-
monly used 512 byte data block as an example. It is well 35 dural flow for decoding and recovery of digital data
within the skill of a man of ordinary skill in this art to from video tape storage in accordance with the present
apply the techniques described below to data blocks of invention. A 512 byte block of digital data for decoding
other sizes. is received from tape deck 16 and first checked for

A 512 byte data block may conveniently be viewed as alignment using the alignment byte in column 0. Since
a matrix having 32 rows and 16 columns. In this way, 40 the pattern of binary bits in the alignment bytes are
each byte of data may be identified by its row and col- predetermined and known, alignment may be checked
umn position in the matrix. The 512 byte data block simply by determining if the bits occur when expected.
partially depicted in FIG. 2 has 512 data locations in If the data is not in alignment, an attempt is made to
rows numbered from row 0 to row 31 and columns from realign the data by shifting the time base a predeter-
column 0 to column 15. The data location in the upper 45 mined amount, typically one byte, while rechecking
right comer of the matrix may therefore be identified as alignment. If the data remains out of alignment after a
byte 0,O at the intersection of row 0 and column 0. predetermined range of alignment attempts have been
Similarly the data location in the lower right hand cor- made, the decoding procedure is terminated. If the data
ner of the matrix may be identified as byte 31,15 at the is determined to be in alignment as a result of the origi-
intersection of row 31 and column 15. 50 nal alignment check or the subsequent recheck, the

In accordance with the present invention data to be check byte data is then validated.
stored is moved out of data source 10 in blocks of 434 Validation of the row checksum byte in location 0,15
bytes which is stored in matrix 24 shown in FIG. 2. will be described in greater detail to serve as an illustra-
These 434 bytes of data are stored in matrix 24 in 31 tion of the validation performed for the remaining
rows and 14 columns from locations 0,l to 30,14. The 55 checksum bytes. During encoding, the byte in location
remaining locations in columns 0 and 15 as well as the 0,15 is set equal to the numerical sum of the binary data
rest of row 31 are used by encoder 20 to store data for in all column locations in row 0, except the alignment
error correction purposes. byte. Since the value of this byte is fixed, it may be left

The data stored in column 0 by encoder 20 are align- out of the sum.
ment bits. The information stored in these bytes is not 60 The sum of the digital data in locations 0,l through
used, but the physical pattern of bits is used to deter- 0,14 is compared to the checksum data in location OJ5.
mine the alignment of the various system components as If these are equal, there is a strong probability that there
will be described in greater detail with reference to were no errors in the data in row 0. If the sum of the
FIG. 3. data in location 0,l through 0,14 does not equal the data

The data stored in each row location in column 16 by 65 in location 0,15, there was an error in either the digital
encoder 20 are check bytes representing a predeter- data or in the checksum. The difference between the
mined function of the data stored in the other column sum of the data in locations 0,l through 0,14 and the
locations of that row, except the alignment byte in col- data in location 0,15 will be referred to herein as the

5
5,170,4OO

6
row 0 checksum error. Until further checksum valida- the data in location 31,15 does not equal the sum of the
tions are made, the column location or locations of the data in the appropriate locations in column 15 or row
error or errors in row 0 cannot be determined. 31, the checksum data was corrupted and the digital

After similar checksum validations are performed for data in the data matrix from locations 0,l to location
rows 1 through 30, all rows in which there was corrup- 5 31,14 cannot be validated without first attempting to
tion in the original digital data have been located by validate the appropriate checksum data. The validation
row. Checksum validations are then performed for the is an iterative or recursive process in which the valida-
data in each column beginning with column 1. tion of the data in some locations, for example the

In particular, the data in locations in column 1 from checksum checksums, may lead to the ability to validate
0,l through 30,l are summed. This sum is compared 10 data in other locations, such as the digital data to be
with the checksum byte in location 31,l. If the values decoded.
are equal, there is a strong probability that there were If column 0 is used for alignment bytes, it may be
no errors in the data in column 1. If the value in location particularly convenient to use the data in location 0,O
31,l is not equal to the sum of the data in column 1 in for the row checksum checksum data and the data in
locations 0,l through 30,1, there was an error in either I5 location 31,15 for the column checksum checksum data.
the digital data in this column or in the checksum data If column 0 is not used for alignment bytes, location
at the last location in the column. The difference be- 31,15 may conveniently be used as a checksum byte for
tween the sum of the data in column 1 in locations 0,l the row checksum bytes in column 15 and location 31,O
through 30,l and the data in location 31,l will be re- may be used as a checksum byte for the column check-
ferred to herein as the column 1 checksum error. 20 sum bytes in row 31. The actual locations for the row

If there is one error indication in a row checksum and column checksum data as well as the row checksum
byte for a particular row and an error indication in a and column checksum checksum bytes are not critical
column checksum byte for a particular column, there is except that they must be disbursed throughout the ma-
a strong probability that the data in the location at the trix to reduce the opportunity for corruption of many
intersection of that row and column was corrupted. 25 such locations.
That is, if row checksum 0 and column checksum 1 each Once successful alignment checks and/or realign-
indicate an error, there is a strong probability that the ment and successful checksum validation and/or cor-
data in location 0,l at the intersection of row 0 and rections has been made, the 512 byte data block may be
column 1 was corrupted. stripped of all alignment and check sum bytes. The

If the magnitudes of the checksum errors for a partic- 30 remaining digital data matrix from location 0,l through
ular digital data byte location are equal, there is a strong 30,14 should then be equal to the original digital data
probability that the value of the data in that location encoded by encoder 20 and may be moved to data store
differs from its uncorrupted value by that magnitude. 12.
The value in that location will then be corrected by the A sample set of programs to implement a demonstra-
magnitude of the checksum error and revalidated. In 35 tion of the present invention have been written in the
particular, if the row 0 checksum error equals the col- conventional programming language known as "C" and
umn 1 checksum error, then the data in location 0 , l can are included herewith, and incorporated by this refer-
probably be corrected by adding or subtracting the ence herein, as Program Listing A.
value of the checksum error to the data in location 0,l While this invention has been described with refer-
so that revalidation results in zero checksum errors. 40 ence to its presently preferred embodiments, its scope is

In addition, location 31,15 may be used as a checksum not limited thereto. Rather, such scope is only limited in
byte for either the row checksum bytes in column 15 or so far as defined by the following set of claims and
the column checksum bytes in row 31. If the value of includes all equivalents thereof.

PROGRAM LISTING A

#include <\c88\stdio.h>
Xdefine ROWS 32
#define COLS 16
#define SYNCH (OxAB)
unsigned char dat[ROWs][COLS];

void calcCheck(m)
unsigned char m[ROWS][COLS];
(

/* 512 bytes */
/* calculate check bytes for data in m */ */ /*-------------------------- CalcCheck

int row,col;
unsigned char c;
sfor (row-0; rowCROWS; row++)

(
m[row][O] = SYNCH;
m[rowl[COIS-i] = 0 ;
1

for (col=l; colcCOLs-1; col++)

for (row=O; row<ROWS-1; row++)
m[ROWS-l][col] = 0;

(
for (col=l; col<coLs-1; col++)

(

/* zero out checksum fields */

/* row checksums */
/* column checksums */

c = m[row][col];

7
m[row][COLS-l] += c;
m[ROWS-l][col] += C;
1

5,170,4OO
8

/* calc row checksums */
/* calc column checksums */

/* checksum last row */ for (col=l; Col<COLS-l; col++)

m[O][OI = 0 ;
for (row-0; row<ROWS; row++) /* checksum last col */

/* calcCheck */ 1 /*--------------------------
void genData (m) /* generate pseudo data into matrix m */
unsigned char m[ROWS][coLs];
(
int row,col;
unsigned char c;
c = 0;
for (ro-0; rou<ROWS-l; row++)

1 /*--------------------------
void writeData ()
(
int testFile, halfK;
testFile = creat ("test. 00118) ;
if (testFile == -1)

1

m[ROWS-l][COLS-l] += m[ROWS-l][col];

m[o][O] += m[row][COLS-1);

*/ genData

for (col=l; col<CoLS-1; col++)
m[rou][col] = c++;

/* genData */
*/ Wr-teData --------------c-----------

(
printf("\nError: Can't create 'test.0018");
exit (1) ;
1

if (write(testFile,dat,sizeof(dat)) == -1)
for (halfK=O; halfK<256; halfK++) /* write 128K bytes */

(
printf ("\nError: Can't write 1test.001818) ;
exit(1) ; . .
1

close(testFi1e);
1 /* writeData */
main ()
(
genData (dat) ;
calcCheck(dat);
writeData () ;
1 /* end of enc.c */

/f generate pseudo data */

/* main */

#define LIVE-DATA 1 /* FALSE => 'test.001', else lcrcx.001' */
#define DEBUG 1
#define ROWS 32
#define COLS 16
#def ine SYNCH (unsigned char) (OxAB) /* has msb, lsb, C transitions */
Wifdef DESMET
include <\~88\mtdio.h>

/* M-I86 or TURBOC */ #else
include <8tdio.h>
include <stdlib.h>
include <io.h>
include <fcntl.h>
ifdef M-I86
include <sys\types.h>
endif
include <sys\stat.h>
define TRUE 1
define FALSE 0
#endif
if LIVE-DATA

char *inFileName = ncrcx.00181;
char *gudFileName = ncrcx.gudll;
char *badFileName = "crcx.bad";

9
5,170,4OO

10
#else

char *inFileName = Vest.001";
char *gudFileName = ntest.gudl*;
char *badFileName = %est.badn;

Xendif /* LIVE-DATA */
int inFile, gudlile, badFile;
int record=O, copy=O, totalBlocks=O, corrections=O;
int goodBlocks=O, badBlocks=O, badChecks=O;
int badRows, badcols, badRow, rowCheckOk, colCheckOk, wasBadBlock, badsynchs;
int rellligned;
unsigned char badColNum[COLS];
unsigned char block€idr[6];
unsigned char rowCheckSum[ROWS], colCheckSum[COLS];
unsigned char dat[RoWS][coLS]; /* 512 bytes corrected data */
erroneous data */
int aligned (m)
unsigned char m[];
{
unsigned char *p, *q;
badsynchs = 0;
for (p=m+COLS; p-.<ROWS*COLS; p+=COLS)

unsigned char CrC[ROWS*COLS]; /*
/ /-------------------------- aligned

(

1

if (*p 1- SYNCH)
badSynchs++; /* this block only */

if (badSynchs==O)
return (TRUE) :

if ((badsynchs-1 && p-m!=(COLS*(ROWS-i))) I I checkSums(m))
I
badchecks++ ;
wasBadBlock - TRUE;
for (p=m+COLS; p-m<ROWS*COLS; p+=COLS)

*p = SYNCH;
return (TRUE) ;

/* all blocks */

1
if (reAligned > 3)

return (FALSE) ;
for (p=m+COLS, q=p+COLS; p-m<(ROWS*COLS-COS); p+=cOLS, q+=COLS)

if (*psSYNCH && *ql=SYNCH && *(q-l)==SYNCH)

/* don't get into infinite loop */

I
WasBadBlock = TRUE;
reAligned++;
for (q=m+ROWS*COLS-1; q>p; q--) / * shift right */
return(aligned(m)) ; /* recheck */
1

i f (*p=SYNCX && *q!=SYNCH && *(q+l)-=SYNCH)
(
WasBadBlock = TRUE;
reAligned++;
for (q=p+2 ; q< (m+ROWS*COLS) ; q++) /* shift left */
return (aligned (m)) : /* recheck */

return (FALSE) ; /* aligned */
/ 1 /--------------------------

int checkSume (a) /* check row sumcheck fields */
unsigned char r[ROWs][COLS]; /* set badCols, badftows, badColNum, badRow */

/ * return TRUE if block Ok, else FALSE */ (
int row,col,rowOk,colOk,i;
unsigned char c;
for (i=O; i<ROWS; i++) rowCheckSum[i] = 0;
for (i=o; i<COu; i++) colCheckSum[i] = 0;
for (row-0; row<ROWS-1; row++)

*q = *(q-l);

else

*(q-l) = *q;

1

c h e c u m s

(
for (col=l; col<COLS-1; col++)

(

11
5,170,400

12
c = m[row][col];
rowChecksum[row] += c;
colCheckSum[col] += c;
1

1

colCheckSum[COLS-1] += m[row][COLS-11;

rowCheckOk = TRUE;

rowCheckOk = FALSE;

for (row=O; rOW<ROWS; row++)

if (colChecksum[COLS-11 E= m[ol[Ol)

else

for (col=l; col<COLS-1; col++)
rowCheckSum[ROWS-1] += m[Rows-l][col];

if (rowCheckSum[ROWS-1] == m[ROWS-l][COLS-l])
colcheckok = TRUE;

else
colcheckok = FALSE;

badRows = 0;
rowok = TRUE;
for (row=O; row<ROWS; row++)

(
if (rowCheckSum[row] != m[row][COLS-l])

(

/* calc row checksums */
/* calc column checksums */

/* 'row checksum' col */

/* 'co1 checksum' row */

1

rowok = FALSE;
badRow - row; /* if col checksum row bad, it must be the */
badRows++ ; /* last row number left in this variable */
)

1
badcols = 0;
colok = TRUE;
for (col=l; col<COLS-1; col++)

if (m[ROWS-l][col] != colCheckSum[col])
(
colOk = FALSE;
badColNum[col] = TRUE;
badCols++;
1

badColNum[col] = FALSE;
else

return(row0k CC colok); /* checksums */
int checkData(m) / * generate pseudo data into matrix m */
unsigned char m[Rows][coLS];

/ /-------------------------- CheckData

int row,col, ok;
unsigned char c;
c = 0; Ok = TRUE;
for (row=o; roweROWS-1; row++)

for (col=l; coleCOLS-1; col++)
if (m[row][col] I = c++)

Ok = FALSE;
return (Ok) ;

correctByte) /*--------------------------
int correctByte(data,row,col)
unsigned char data[][COLS];
int row, col;
(
int i;
unsigned char rowcheck, colCheck, rowchar, colChar;
rowcheck = colCheck = 0;
data[row][col] = 0;
for (i=l; i<COLs-l; i++)

for (i=O; ieROWS-1; i++)

rowchar = data[row][COLS-1] - rowcheck;
colChar = data[ROWS-l][col] - colcheck;
if ((rowChar==colChar) I I colCheckOk)

/* checkData */
*/

rowcheck += data[row][i];

colCheck += data[i][col];

/* across the rows */
/* down the columns */

13
5,170,400

14
{
data[row][col] = colchar;
return (TRUE) ;

if ((badCols5-1) && rovCheck0k)
else

{
data[row][col] = rowchar;
return (TRUE) ;
1

return (FALSE) ;
else

/* correctByte */
/ correct1 1 /--------------------------

int correctl(data) /* only get here for a bad block (ie., bad checksum)
unsigned char data[][COLS];
(
int i;
unsigned char rc;
#if DEBUG
if (checkSums(data)) /* if data already Ok

{
printf (n\nError(correctl) : checksums Ok at entrancett) ;
exit (1) ;
1

return (FALSE) ;

lendif
if ((badRows>l LL badRow!=ROWS-1) I I (badRows>l && badcolel))

if (badRows-1 && badCols==O && IrowCheckOk) /* bad char in row checksums
t
badchecks++;
rc = 0 ;
if (badRow==ROWS-1) goto out;
data[badRow][COLS-1] = 0;
for (i=O; icROWS; i++)

rc += data[i][COLS-11;
data[badRow][COLS-11 = data[O][O] - rc;
if (checkSums(data))

return (TRUE) ;
1

out:;

for (i=COLS-2; i>O; i--)
if (badColNum[i])

{
if (!correctByte(data,badRow,i))

else
return (FALSE) ;

{
if (badRow==ROWS-1)

*/

*/

*/

/ * correct */

/* no more errors */

/* col checksum row
(
badcheckst+;
if (checkSums(data))

1
return (TRUE) ; /* else try to correct the data

1
1

return(checkSums(data)? TRUE: FALSE); /* correct1

*/

*/

*/

wasBadBlock = FALSE;
rehligned = 0;

/* may be set by aligned() */

15
if (aligned(src))

(
#if DEBUG

if (reAligned)

else

move (src, dest) ;
alignment = TRUE;
1

else
(

if DEBUG
printf (" Not Aligned, ") ;

Wendif
alignment = FALSE;
1

printf (" Re-Aligned, ") ;

printf (Aligned, ") ;
Wendif

5,170,4OO
16

if (checkSums(src) && (wasBadBlock==FALSE))

#if DEBUG

#endif

else

(
goodBlockst+;

printf("CheckSums Ok, "1 ;

1

(
wasBadBlock = TRUE;
badBlockm++l

#if DEBUG
printf(V2d/t2d Rovs/Cols, ",badRows,badCols);

I

/* may have already been set by aligned() */

Wendif

i = checkData(src) ;
#if DEBUG
if (i)

else

#endif

if (!alignment)
(

#if DEBUG
printf ("\nn) ;

writeBlock(src,badFile);
return (FALSE) ;
1

if (!wasBadBlock)
(
writeBlock(src,gudFile);

#if DEBUG
printf (", Correct\ntt) ;

Wendif
return (TRUE) ;
1

if (checkSums(dest))
(
writeBlock(dest,gudFile);

#if DEBUG
printf(", Corrected SYNCH\n");

Wendif
return (TRUE) :
1

else
(

printf (Data Ok") :

printf (" Data Bad") :

Wendif

/* SYNCH error that was corrected by align() */

5,170,4OO
17

if (correct1 (deet))
(
vriteBlock(dest ,gudFile) ;

if DEBUG
printf(", Corrected\n");

#endif
return (TRUE) ;
1

else

18
/* bad block that's aligned */

t
#if DEBUG

printf ("\nH) ;
#endif

writeBlock(dest,badFile);
return (FALSE) ;
1

1
Yifndef TURBOC
printf("\nError(corrected): Why did I get here?");
exit (1) ;
Yendif
1 /*--------------------------
void move (f , t)
unsigned char *f, *t;
t
int i;
for (i=O; i<ROWS*COLS; i++)

*t++ = *f++;
1 /*--------------------------
void openFiles()
(
#if def DESMET
inFile = open(fnFileName,O);
#else
inFile - open(inFileName,O-RWNLY[O-BINARY);
Pendif
if (inFile - -1)

/* corrected */
*/ move ..

/* temporarily */
/* move */

*/ OpenFiles

/* read */
/* read */

(
printf("\nError: Can't open '%s'",inFileName);
exit (1) ;
1

Yifdef DESMET
gudFile - creat(gudFi1eName);
badFile = creat (badFileName) ;
Uendif
#if def TURBOC
gudFile = creat(gudFileName,O~CREAT(O_TRUNC(O~BINARY~S~IWRITE);
badFile - creat(badFileName,O~CREAT~O_TRUNC~O~BINARY(S~IWRITE);
#endif
Uifdef M-I86
gudFile = open(gudFileName,O~CREAT~O~TRUNC~O~BINARY~O~WRONLY);
badFile = open(badFileName,O_CREAT~O~TRUNC~O~BINARY~O~WRONLY);
#endif
if (gudFile == -1)

(
printf("\nError: Can't create 'Osln,gudFileName);
exit (1) ;
1

(
printf("\nError: Can't create '%s'",badFileName);
exit (1) ;
1

if (badFile == -1)

/* OpenFiles */

/* size = ROWS*COLS */
/ readBlock 1 /--------------------------

int readBlock(p)
unsigned char *p;
(
int i;

19
if ! LIVE-DATA
record++ ;
#else
i = read(inFile,blockHdr,6);
if (i == -1 I 1 i - 0)

if (i!=6)
return (0) ;

5,170,400

(
printf("\nError(readBlock): Invalid header");
exit (1) ;
1

(
printf("\nreadBlock: End of Tape record");
return (0) ;
1

if (blockHdr[O]==Ox80)

record = *(int *)(&blockHdr[2]);
copy = (int) ((unsigned char) block€Sdr[13) :
lendif

i = read(inFile,p,ROWS*COLS);
if (i.== -1 1 1 i == 0)

else
return (0) ;

if (i!=ROWS*COLS)

20

/* using real data */

/* LIVE-DATA */

(
printf ("\nError (readBlock) : Premature End of File, i=%d", i) ;
return(0) ;
1

(
if DEBUG

printf("Record %04x, Copy 002x: ",record,copy);

totalBlocks++;
return (i) ;
1

else

#endif

/* ReadBlock */
*/

1 /*--------------------------
void writeBlock(buffer,fp)
char *buffer;
int fp; /* file pointer */
(
#if LIVE-DATA

WriteBlock

if (write(fp, blockHdr, 6) == -1)
I
printf ("\nError(writeBlock) : Can't write block€Idrn) ;
exit (1) ;
1

lendif
if (write(fp,buffer,ROWS*COLS) == -1)

(
printf("\nError(writeBlock): Can't write buffer");
exit (1) ;
) /* writeBlock */

/ main -----------------c------------------------ 1 /--------------------------
main ()
(
printf("dec.c, (c) 0s Ron Dotson; correcting '%s'm,VERSION,inFileName);
printf(" to '%s'\nn,gudFileName);
openFiles () ;
while (readBlock(crc))

(
if (corrected(crc,dat))

corrections++;
1

close(inFile) ; close (gudFile) ; close (badFile) ;

5,170,4oO
21 22

printf("\nZd total blocks: %d Good, ",tOtalBloCks,qoodBlocks);
printf("%d Bad, Zd corrected",badBlocks,corrections);
printf(" (approx. Zd badChecks)",badChecks);
1 /* end of dec.c */ /* main f/

What is claimed is:
1. A method of error detection and correction in the

storage and recovery of digital data, comprising the
steps of:

encoding data to be stored in a matrix format;
adding row checksum locations to the matrix in a first

column in which each row checksum location is in 15
a particular row and the data stored therein repre-
sents a predetermined mathematical relationship
with the remaining locations in that row;

adding column checksum locations to the matrix in a
single row in which each column checksum loca- 2o
tion is in a Darticular column and the data stored
therein represents a predetermined mathematical
relationship with the remaining locations in that
column;

adding row alignment locations to each row in the
matrix in a second column in which each such
location includes predetermined alignment data;

adding a row checksum checksum location;
adding a column checksum checksum location;
wherein one of the column checksum checksum or

row checksum checksum is located at the intersec-
tion of the row of column checksums and the col-
umn of row checksums;

wherein the other of the column checksum checksum
or row checksum checksum is located in the col-
umn of row alignment locations;

storing the encoded matrix of digital data;
removing the encoded matrix of digital data from

storage;
then monitoring the alignment of the data in each row

alignment location to determine alignment accu-
racy and attempting to realign any row in which
the data in the alignment location indicates mis-
alignment;

comparing the data in each checksum row and col-
umn location to determine if that data accurately
reflects the appropriate predetermined mathemati-
cal relationship with the locations related thereto;

attempting to correct the data in locations in which
comparison of the data in the checksum row and
column location indicates an error may have oc-
curred; and

decoding the matrix by stripping out all checksum
row and column and row alignment locations.

2. A system for the storage and recovery of digital
data with error detection and correction, comprising in
combination:

means for encoding data to be stored in a matrix
format by adding row checksum locations to the
matrix in a first column in which each row check-
sum location is in a particular row and the data

25

30

35

40

45

50

55

60

stored therein represents a predetermined mathe-
matical relationship with the remaining locations in
that row and by adding column checksum loca-
tions to the matrix in a single row in which each
column checksum location is in a particular column
and the data stored therein represents a predeter-
mined mathematical relationship with the remain-
ing locations in that column;

means for adding row alignment locations to each
row in a second column in the matrix before the
matrix is stored in which each such location in-
cludes predetermined alignment data;

means for adding a row checksum checksum location
in which the data stored therein represents a prede-
termined mathematical relationship with the row
checksums;

means for adding a column checksum checksum loca-
tion in which the data stored therein represents a
predetermined mathematical relationship with the
column checksums;

wherein one of the column checksum checksum or
row checksum checksum is located at the intersec-
tion of the row of column checksums and the col-
umn of row checksums;

wherein the other of the column checksum checksum
or row checksum checksum is located in the col-
umn of row alignment locations;

means for storing the encoded matrix of digital data;
means for removing the encoded matrix of digital

data from storage;
means for monitoring the alignment of the data in

each row alignment location after the matrix is
removed from storage to determine alignment ac-
curacy;

means for attempting to realign any row in which
monitoring of the data int he alignment location
indicates that a misalignment error may have oc-
curred

means for comparing the data in each checksum row
and column location to determine if that data accu-
rately reflects the appropriate predetermined math-
ematical relationship with the locations related
thereto;

means for attempting to correct the data in locations
in which comparison of the data in the checksum
row and column location indicates an error may
have occurred; and

means for decoding the matrix by stripping out all
checksum row and column locations and row
alignment locations.

* * * * *

65

