
United States Patent [191 [ i l l  Patent Number: 5,008,882 
Peterson et al. [45] Date of Patent: Apr. 16, 1991 

1541 MEI’HOD AND APPARATUS FOR 
ELIMINATING UNSUCCESSFUL TRIES IN A 
SEARCH TREE 

[75] Inventors: John C. Peterson, Alta Loma; 
Edward Chow, San Dimas; Herb S. 
Madm, Marina del Rey, all of Calif. 

[73] Assignee: California Institute of Technology, 
Pasadena, Calif. 

[21] Appl. No.: 86,722 
[22] Filed: Aug. 17, 1987 
[51] Int. (3 .5  ................................................ H04J 3/24 
[52] U.S. Cl. ................................... 370/94.3; 370/94.1 
[58] Field of Search ....................... 370/60, 94, 85,  86, 

370/88,89,54,95,60.1,94.1, 85.1, 85.12, 85.13, 
85.7, 85.15, 95.1, 94.3 

PI References Cited 
U.S. PATENT DOCUMENTS 

4,247,892 1/1981 Lawrence ............................. 364/20 
4,345,326 8/1982 Dieudonne et al. .................. 370/60 
4,736,363 4/1988 Aubin et al. .......................... 370/60 
4,739,476 4/1988 Fiduccia .............................. 364/200 
4,797,882 VI989 Maxemchuk .......................... 370/88 
4,805,166 2/1989 Ardon et al. .......................... 370/54 

SOURCE NODE 

NODE PROCESSOR 61 
HYPERS WITCH 

PROCESSOR 

4,811,214 3/1989 Nosenchuck et al. .............. 364/200 
4,814,980 3/1989 Peterson et al. .................... 364/200 

Primary Examiner-Douglas W. Olms 
Assktant Examiner-Wellington Chin 

1571 ABSTRACT 
A circuit switching system in an M-ary, n-cube con- 
nected network completes a best-first path from an 
originating node to a destination node by latching valid 
legs of the path as the path is being sought out. Each 
network node is provided with a routing hyperswitch 
sub-network, (“HSN’) connected between that node 
and bidirectional high capacity communication chan- 
nels of the n-cube network. The sub-networks are all 
controlled by routing algorithms which respond to 
message identification headings (“headers”) on mes- 
sages to be routed along one or more routing legs. The 
header includes information embedded therein which is 
interpreted by each sub-network to route and histori- 
cally update the header. A logic circuit, available at 
every node, implements the algorithm and automati- 
cally forwards or back-tracks the header in the network 
legs of various paths until a completed path is latched. 

51 Claims, 7 Drawing Sheets 

DESTINATION NODE 

NODE PROCESSOR 

NODE MEMORY 

IN TERMED I ATE NODE 



U.S. Patent Apr. 16, 1991 Sheet 1 of 7 5,008,882 

. FIG I 



U.S. Patent Apr. 16, 1991 

FIG: 2 

Sheet 2 of 7 5,008,882 

(2/0 200 

I 



US. Patent Apr. 16, 1991 Sheet 3 of 7 5,008,882 

Q 

.L 

‘ I  

L 
W 
0 
0 z 
W 
I- 

0 
W 
E 
U 
W 
I- z 

a - 

- 



U.S. Patent 

0 -  
0 -  .- 0 

a - 

Apr. 16, 1991 

- - - 

Sheet 4 of 7 

l i ( j  i 

0 

. 
u 

5,008,882 

. d LLJ 

a 
2 



U.S. Patent 

Lc) 

Apr. 16, 1991 Sheet 5 of 7 

(ri 

2 

0 . 0 . .  

5,008,882 

v) 
3 c 
E 



U.S. Patent Apr. 16, 1991 Sheet 6 of 7 5A 108,882 



US. Patent Apr. 16, 1991 Sheet 7 of 7 

MQ) tom 
11 
LLm 

0 v) 
0 "r--- II II 11 

I o  

c 

5,008,882 



5,008,882 
1 2 

In an application entitled “Torus Routing Chip” in- 
vented by Chares L. Seitz and William J. Dally, filed on 
Dec. 18, 1986, and assigned to the same assignee as this 
application, another deadlock free routing system in- 

5 vention is disclosed. Instead of reading an entire data 
packet into an intermediate processing node before 
starting transmission to the next node, the routing of this 
latter invention forwards each flow control unit (flit) of 

so-called ,6wormhole,, routing results in a reduced mes- 
sage latency when compared under the same conditions 
to store-and-forward routing. Another advantage of 
wormhole routing is that the communication does not 
use up the memory bandwidth of intermediate nodes, 

METHOD AND APPARATUS FOR ELIMINATING 
UNSUCCESSFUL TRIES IN A SEARCH TREE 

1. ORIGIN OF THE INVENTION 
The invention described herein was made in the per- 

formance or work under a NASA contract, and is sub- 

202) in which the Contractor has elected to retain title. 
ject to the provisions Of Law 96-517 (35 the packet to the next node as soon as it arrives. This 

BACKGROUND OF THE INVENTION 
2. Field of the Invention 
The field of this invention relates to data transfer 

through data-driven switching networks among ‘On- 15 and a packet does not interact with the processor or 
current computers memory of intermediate nodes along its route. Packets 

within the routing network until they reach 

More particularly the 
field relates to improved routing algorithms for switch- 

by communication channels between nodes, which 
channels terminate in the switching networks. 

are moved by self-timed routing elements and remain 

their destination. If a routing network at a node is 
20 blocked, the packet pauses in the network and does not 

advance until that node’s network is not busy and the 
packet can advance further. 

In the invention of this application, a message header 
is sent initially to form a completed path through any 

ing networks which link M-ary llSube nodes together 

3. Brief Description of the Prior Art 
Concurrent computing systems connected in a cube 

codiguration are disclosed and claimed in applications 
assigned to the assignee of this application. For exam- 
P k  a c o m m n t  computing system in which 
computers, each with a computational processor and a 
message-handling PrOCeSSOr, are connected as a hyper- 

25 number of nodes between an originating and a destina- 
tion node. The completed path is a virtual circuit for 
pipelining of data between the originating and destina- 

cube is described and claimed in an application entitled 
“Concurrent Computing Through Asynchronous Com- 
munication Channels,” filed on July 12, 1985, and as- 30 SUMMARY OF THE INVENTION 
signed to California Institute of Technology. The iden- A circuit switching system in an M-ary, n-cube con- 
tified application is referred to herein as the Seitz et al, netted network completes a path from an originating 
Cosmic Cube application. The mdes are computers node to a destination node by latching valid portions of 
comprised of processors and memory, and the nodes the path as the path is being sought out. Each node in 
communicate with each other by bidirectional commu- 35 the network is provided with a routing, or hyperswitch 
nication links only along the edges of the cube. sub-network, (“HSN”) connected between that node 

In an application assigned to the assignee hereof, and bidirectional high capacity communication chan- 
entitled “Method and Apparatus for Implementing a nels of the n-cube network. The sub-networks are all 
Maximum-Likelihood Decoder in a Hypercube Net- controlled by routing algorithms which respond to 
work” filed on Sept. 27, 1985, having Ser. NO. 781,224 40 message identification headings ((‘headers”) On mes- 
by Fabrizio Pollara-Bozzola, convolutional codes are sages to be routed from an originating node along one 
decoded by the accumulated metric and survivor steps or more routing legs to Some destination node in the 
of the Viterbi algorithm. The improved system divides n-cube network. n e  header includes information em- 
the decoding operation in parallel among all prOCeSSOrS bedded therein which is interpreted by each sub-net- 
which are assigned unique States of the trellis to corn- 45 work to route and historically update the header so that 
pute at different stages on the trellis. In this and Seitz et one of a great number of possible paths is elected and 
al Cosmic Cube application, X, Y, and Z indicate direc- latched in a highly efficient manner. A logic circuit, 
tions of communication in the CUbe.  Each node is as- available at every node, automatically forwards or 
signed a different binary coded identification label, back-tracks the header until a completed path is latched. 
which labels are uniquely ordered in the network. A 50 The header is never buffered at an intermediate node. 
destination descriptor accompanies each block of data Instead, the header is either forwarded to the next avail- 
and that destination descriptor is modulo-two added to able node or it is backtracked to the l&t forwarding 
the local label of a receiving node in order to control node. Backtracking is done in an expedient manner by 
message routing. using backtrack status signals. 

Routing logic at every HSN implements the switch- 
assigned to the assignee hereof, entitled “Concurrent ing system’s common adaptive routing algorithm and 
Hypercube Computing System with Improved Message assures that a completed path exists from the originating 
Passing” filed on Apr. 1, 1986, naming J. C. Peterson et node through the various routing legs to the destination 
a1 as inventors. In the latter application, separate con- node before data enters the high capacity communica- 
trol channels in addition to bidirectional communica- 60 tion channels. If any one leg of a message’s contem- 
tion channels link each adjacent node together. plated path is not available (“BUSY”), other possible 

As each of the above-identified applications suggest, legs at that busy node are computed through a best first 
the communication time and the amount of communica- search. If all possibilities are busy, the message does not 
tion and control channel wiring are significant factors in advance, and the routing logic informs the last success- 
the application of concurrent computing nodes to cube- 65 ful node about the congestion. The header at the last 
connected systems. Deadlock-free routing is achieved successful node’s network is updated with the dynamic 
in all of these applications by routing along successive congestion history and the status of other untried, or 
dimensions. virgin paths, are thereafter automatically checked by 

tion nodes. 

Message routing is employed in another application 55 



5,008,882 
3 

the adaptive routing algorithm. Paths already attempted 
in an unsuccessful manner are pruned, i.e., are not re- 
tried again during the continuation of that one routing 
cycle. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 a sixteen node hypercube network (M=2, 

n=4); 
FIG. 2 is a simplified block diagram showing a node 

and its associated hyperswitch subnetwork which in- 
cludes hyperswitch processors and crossbar switches in 
accordance with the invention; 

FIG. 3 is a simplified sketch depicting the steps in- 
volved in establishing a completed path from an origi- 
nating node though an intermediate node and to a desti- 
nation node in accordance with this invention; 

FIG. 4 is a simplified diagram showing adaptive rout- 
ing and a message header useful in explaining the rout- 
ing paths in an 8-node hypercube switching system in 
accordance with this invention; 

FIG. 5 is a more detailed block diagram of a plurality 
of hyperswitch sub-networks at a node; 

FIG. 6 is a block diagram of a hyperswitch proces- 
sor’s routing control unit in accordance with this inven- 
tion; and 

FIG. 7 is a chart useful in explaining the routing 
algorithms of the invention. 

DETAILED DESCRIPTION OF THE DRAWING 
FIG. 1 depicts sixteen identical computers (“nodes”) 

with each computer shown simply as a circle. The 
(N= 16) computers are connected in an array of N=Mn 
(for M = 2) processors, with each processor connected 
directly to its n neighbors in n dimensions of a cube. The 
presentation of FIG. 1 depicts a four-dimensional space 
diagram. Solutions to computer problems are solved by 
the various nodes of FIG. 1 operating concurrently. 
Before describing the circuit switching features of this 
invention in detail, it is believed that some general back- 
ground is in order. 

Performance of tasks among various nodes (such as 
the sixteen nodes depicted in FIG. 1) is available 
through either a minimal or a high degree of interaction 
between tasks. Systems which have this wide latitude of 
interaction, are generally designated as loosely coupled 
systems. The performance of such systems depends 
largely on the efficiency of communication between the 
processing nodes. Hypercube-connected computer sys- 
tems are scheduled to contain as many as a million 
nodes, or higher, in future systems. These high-num- 
bered nodes present aggregate transmission require- 
ments in the gigabit per second range. 

In the aforementioned Peterson et a1 application, 
each node includes a dedicated input/output (I/O) con- 
trol subprocessor which is reserved exclusively for 
handling messages between processisng nodes. In Peter- 
son et all a full duplex bidirectional communication link 
is used for message passing between nodes along the 
edges of the n-dimensional cube. Status and control 
lines are also connected between each of the neighbor- 
ing nodes. Each bidirectional link terminates in a trans- 
ceiver at each node, which transceiver is controlled by 
the I/O subprocessor. FIFOs may be used at each trans- 
ceiver location to transmit/receive data. Status and 
control lines, between neighboring nodes, determine the 
status of a neighbor’s FIFO and the presence of a com- 
munication link between two adjacent nodes so that a 
message can be passed between the two neighboring 

4 
nodes The I/O subprocessor controls message routing 
between neighboring nodes by gaining priority over a 
communication link and in accordance with the status 
of FIFO’s at those neighboring nodes. 

Even with a dedicated I/O subprocessor, because of 
the software overhead, the effective bandwidth for 
transmission between neighboring nodes is only 20 
megabits/second (Mbit/s) compared to the 100 Mbit/s 
available in hardware bandwidth. When a message 

10 needs to be rerouted through an intermediate node, due 
to the interrupt latency, 40 microseconds per hop is 
incurred. Because there is only one I/O control proces- 
sor and a single shared bus for all the 1/0 channels, only 
one channel per node can be served at a time. Thus, the 

15 maximum utilization of channels in an N-node hyper- 
cube is only N, which is significantly less than the maxi- 
mum hardware limitation of N*logMN. Also, a fixed 
e-cube routing algorithm is used in the hypercube com- 
puter to avoid deadlock This fixed e-cube algorithm, as 

20 reported by C. Lang, “The Extension of Object-Ori- 
ented Languages to a Homogeneous Concurrent Archi- 
tecture,” Department of Computer Science, California 
Institute of Technology, Technology Report, 
5014:TR:82, 1982 pp. 118-124, creates hot-spots for 

25 lower order channels and it is not fault tolerant. 
In summary, the previously known hypercube com- 

munication limitations are: 
(a) High message communication latency. 
(b) Low channel utilization. 

30 (c) Static routing algorithm. 
(d) Not fault tolerant. 
(e) Parallel links have too many wires. 
The hyperswitch sub-network (HSN) of this applica- 

tion is a high-speed serial data driven switching net- 
35 work with dynamic routing algorithms which are well 

suited for hypercube computer systems. The approach 
for this invention is based on the Distributed Dynamic 
Network (DDN) model reported by E. Chow and S. Y. 
Kung, “Distributed Dynamic Network for VLSI Paral- 

40 lel Computers,” University of Southern California 
Technique Report, 1986. This type of network has the 
advantages of both static and dynamic networks. The 
static network characteristics enable the hyperswitch 
sub-network to keep locality, increase the number of 

45 I/O links and provide multiple paths between two com- 
municating nodes. The dynamic network characteris- 
tics provide high permutability, short message latency 
and capability to explore other computational problem 
mapping models. The combined characteristics of the 

50 static and dynamic networks enable the HSN to be 
highly fault tolerant and to utilize the full hardware 
communication bandwidth. 

A dynamic routing algorithm with congestion learn- 
ing and avoidance capability has been developed for the 

55 HSN. Because multiple paths exist between hypercube 
nodes, this dynamic routing algorithm enables messages 
to select the best-first available path which does not 
repeat previously experienced congested paths. Thus, 
possible collision can be avoided and the shortest path 

In this application a completed path from an originat- 
ing node through any number of intermediate nodes to 
a destination node is latched by the use of status and 
control lines before any data transmission commences. 

65 Each node, in accordance with this invention, includes 
a custom circuit as an intelligent switching element 
which uses a routing control unit with an automatic 
routing and logic algorithm to optimally locate a com- 

5 

60 setup time can be achieved. 



5,008,882 
5 6 

pleted path through the cube-connected network. For FIG. 2 depicts a block diagram of any one of the 
simplicity sake such a cube-connected network is called identical hypercube nodes 200. Each node includes a 
a hypercube, and the automatic routing and logic is node processor 210 and its associated node memory. 
termed a hyperswitch sub-network (“HSN”). Every Each node has associated therewith a hyperswitch sub- 
node includes an identical hyperswitch sub-network, or 5 network 220, each of which includes a plurality of sub 
HSN. processors 222 and a channel interface and crossbar 

In accordance with the invention, a search tree in a switches unit 225. Each dimension of the cube provides 
hypercube network is pruned by eliminating paths al- a separate communication path into and out of each 
ready attempted unsuccessfully and then the untried, or node. Those paths are shown simply as paths 1, 2, 
virgin, territories are systematically explored to select 10 through n where n is the dimension of the cube. 
one of many possible paths. Once a complete path has Each HSN, such as HSN 220, has two separate oper- 
been traced and reserved, the path sections are latched ating modes. These two modes are called a “path setup” 
to form a complete path for message transmission from mode and a “data transmission” mode. For purposes of 
the originating node to the destination node. n e  corn- describing this invention, we shall focus primarily on 
pleted path can span many nodes, and since it is latched 15 the Path s t u p  mode, Or routing mode for each hyper- 
by the hyperswitch sub-network before any data is switch. 
transmitted; transmitted data need not enter any inter- The protocol for the HSN is as follows: 
mediate node for interaction with that node’s processor (a) The Source node HSN Sends a header word with 
or memory during its transmission. Data may be pipe- the destination node’s address embedded therein to 
lined UP to the hardware limits for the communication 20 its selected next-neighbor HSN and reserves the 
paths. path through which the header travels. 

In FIG. 1, assume that a message has originated at the (b) The intermediate HSN evaluates the header, rer- 
upper-left node of the inner cube (node number 0 as outes this header to its selected next-neighbor HSN 
shown within the node’s circle) and that the message is which is not busy, and then switches the local 
destined for the rear rightmost lower node in the outer 25 crossbar Switch to COnnect the header inbound 
cube (node number 15). A visual inspection readily channel to the outbound channel. If all the selected 
reveals that there are numerous paths available between HSNs are busy, then this intermediate HSN will 
any such two or more remotely located nodes. For send backtrack status (by status lines, such as line 
example, simply to reach the outer cube from the inner 100, FIG. 1) to the previous HSN. 
cube may involve anywhere from a minimum of one to 30 (C) Step (b) is repeated until the header reaches its 
many, many hops or possibilities depending upon destination node. 
whether nodes are revisited more than once. (d) The destination HS sends an acknowledgment 

The vast number of possibilities can be reduced pro- back (by status lines) to the source HSN through 
the intermediate node’s HSNs. Network connec- vided some rules of travel are defined. Even with travel 

large. For example, if thirty-two nodes are connected in FIG. 1) is set and information (data messages) can 
start to be transmitted. a five-dimensional cube and travel is always routed 

node one hop at a time, there are one hundred twenty two bits of encoded information passed back through 
possibilities between node to node 31. For the sixteen- 40 the special status links 100. These two bits are inter- 

rules, however, the number of possib es remains very 35 tion (pipeline through communication path 125, 

from the lowest-order node to the next highest-order The StatuS in the hyperswitch sub-network is 

node example in FIG. 1, there are twenty-four possible 
paths between node 0 and node 15. Table 1 shows these 

preted in the path setup mode and the data 
transmission mode* In the path setup mode, the status 

twenty-four possible paths. Comparable tables may be 
readily prepared for the possible paths between any two 45 
given nodes. 

bits are: 
&Ready to receive header 
01-Ready to receive data 
10-Header backtracked to the previous node 
1 I-Header error, retransmit header TABLE 1 

1. 0 to 1 to 3 to 7 to 15 Initially, the hyperswitches are in path setup mode. 
2. 0 to 1 to 3 to 11 to I5 After the header is received by a destination HSN, the 

50 status is changed to 01. Then the HSN enters data trans- 
mission mode. In the data transmission mode, the status 

3. 0 to 1 to 5 to 7 to 
4. 0 to 1 to 5 to 13 to I5 
5. 0 to 1 to 9 to 11 to I5 
6. 0 to 1 to 9 to 13 to I5 bits are: 
7. 0 to 2 to 3 to 7 to 15 &Break pipeline to source 
8. Oto 2 to 3 to 11 to I5 01-Ready to receive data 
9. 0 to 2 to 6 to 7 to 

10. 0 to 2 to 6 to 14 to 
11. Oto 2to 10to I 1  to I5 1 1-Data error, retransmit data packet 
12. 0 to 2 to 10 to 14 to 15 This protocol fully utilizes the intelligent distributed 
13. 0 to 4 to 5 to 7 to I5 crossbar capability of the HSN. No intermediate node’s 

16. Oto 4 to  6 to 14 to 15 60 During the path setup process, for the above- 
17. 0 to 4 to 12 to 13 to I5 described protocol no information can be transferred. 
18. 0 to 4 to 12 to 14 to 15 Thus channels, as far as data transmission is concerned, 

are idle during this path setup phase. For a regular 19. 0 to 8 to 9 to 11 to IS 
20. 0 to 8 to 9 to 13 to I5 
21. Oto 8to 1Oto 11 to 15 problem with known communication patterns, the rout- 
22. 0 to 8 to 10 to 14 to 15 65 ing pattern can be put into the header word, and the 
23. 0 to 8 to 12 to 13 to I5 intermediate HSNs will set the sub-network accord- 

ingly. For a related approach see the distributed routing 
scheme in the dynamic network proposed by C. Wu, 

:: 55 10-Wait for next data packet 

processor will be interrupted if it is not necessary. 14. 0 to 4 to 5 to 13 to I5 
15. 0 to 4 to 6 to 7 to I5 

24. 0 to 8 to 12 to 14 to I5 



5.008,882 
7 

and T. Feng, “On a Class of Multistage Interconnection 
Network,” IEEE Trans. on Computer, August 1980. 
For an irregular problem with possible collisions, an 
intelligent path-finding algorithm with congestion 
avoidance capability is described and claimed herein. 
The algorithms of this invention can find a shortest path 
in the shortest amount of time, and each hyperswitch 
circuit has the intelligent algorithms built into logic 
routing hardware so as to minimize path setup latency. 

The routing protocol of this invention involves a 
header word for each message. A header 420 is shown 
in FIG. 4 and will be described in more detail hereinaf- 
ter. Suffice it to say at this point that the header includes 
channel history, node destination, and distance por- 
tions. These portions are used by an intelligent hyper- 
switch and a routing protocol that is defined as an in- 
formed best-first heuristic search algorithm. The desti- 
nation portion defines the ultimate node’s identification 
for which the message is intended. The distance and 
history portions of the header allows the hyperswitch 
processors in the cube-connected network to keep track 
of the progress of the system as they establish a com- 
pleted path from an originating to a destination node. 

The basic search model is predicated on the following 
goal: 

Goal To reach the destination node using the shortest 
path in the shortest amount of time (best-first search). 

Heuristic Search Procedure: 
(i) Only visit virgin areas of the network following a 

backtracked header status reception. These virgin 
areas are evaluated by using the channel history 
flag. 

(ii) Perform a channel latch on the first available 
channel of all terminal channels that terminate in a 
destination node. This implies that all penultimate 
nodes in the graph must be attempted for visits. 

(iii) If an outbound channel is found blocked, all the 
successor links are considered blocked for the pur- 
pose of the channel history status. 

The heuristic search strategy outlined above is an 
informed search (Le., uses current dynamic history sta- 
tus to direct the search parameters). This type of search 
is particularly useful where the number of search states 
(nodes or search states) grows exponentially with prob- 
lem size, as is proven hereinafter. 

STATEMENT: Let H(n) be a hyperswitch sub-net- 
work connected using a hypercube topology that uti- 
lizes dynamic routing with backtracking capability for 
the header during the path setup process. Let there exist 
a node x(i) and let C(i) be the associated collision factor 
encountered by a message header such that x(i) is a 
distance of i from the destination node and that x(i) is 
forced to return the header to the last forwarding node. 

TO PROVE: That there exists a fixed number of 
virgin paths that may be used by a backtracked header 
such that it does not encounter the already discovered 
congested nodes on a message track. This number of 
virgin paths is a function of i and n where n is number 
of hops between source and destination. 

PROOF: 
Node x(i) has i! paths to destination node, where i is 

the number of hops from x(i) to destination node. Node 
x(i+ 1) that precedes node x(i) has (i+ l)!. paths to desti- 
nation, where (i+ 1) is the number of hops from node 
x(i+ 1) to destination. When a header backtracks from 
node x(i) to node x(i + 1) it gains (i + 1)4! = (i)*(i)! paths 
to destination. It is assumed that i is selected such that 
smallest i satisfies: (i!)> =(C(i)+ I), here C(i) is the 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
collision factor at x(i). Number of paths outside the i! 
paths belonging to x(i) are: (i) (i!)-(i!) (i - 1). 

Number of virgin paths outside the i! paths belonging to 
node x(b: 
= {(I!) ( i)  - ((i  - I)!) (i - 1) (n - I))) 

Number of virgin paths k”ATHS(i + 1) available to node 
x(i + 1) are: 
= ((i - l)![i*i - (i - 1)(n - 111) - (number of times header 
returned at x(i  + 1)) 

- - { ( i  - I)! [i’i - (i - 1) (n - I)]) 

***PED*** 

The probability that a path will be successfully 
formed is based on computing the probability of suc- 
cessfully latching an outbound channel in a series of 
steps at each intermediate node. Let the process of 
latching a channel in hop n be denoted by event E(n). 

We are interested in the probability that a series of 
events (E(l), E(2), ... E(n)) will occur exactly in that 
order, thus forming a given path between the source 
and the destination node. Probability (events E( l), E(2). 
. . E(n) will occur in that order in n trials at n intermedi- 
ate nodes) 

where probability p(E(2)/ E( 1)) is conditional probabil- 
ity that event E(2) occurs en that event E(l) has oc- 
curred. This is essentially true since a header can only 
try to latch a channel in hop 2 if and only if it has al- 
ready latched a channel in hop l. Hence the sequence of 
occurrence is important in computing the overall proba- 
bility of success (i.e., E(l) cannot occur before E(2)). 
Nodes closer to the destination node contribute a pro- 
gressively decreasing probability of success and hence 
need to be pruned more exhaustively than earlier nodes 
(nodes that are closer to the source node). In addition, 
the effective number of retries for the header at each 
node is given by: 

Expected number of retries at x(i) = 1/ VPATHS(i)*- 

This is the expected number of retries that can be antici- 
pated at node x(i) with a collision factor of C(i). 

Using a static routing technique, each message, when 
originated, is provided with a destination node address 
that identifies the destination node by its binary identi- 
fier. As a message header reaches any node, an exclu- 
sive or (“EXOR’) of the message header’s destination 
identifier with that node’s address identifier will be all 
0’s only if the message is at its destination node. A bi- 
nary 1 in any of the dimensional locations of the EXOR 
result shows the message is not at its destination. In the 
examples given in Table 1, the apriori path setup in- 
cludes from top to bottom the lowest numbered paths to 
the highest numbered paths which must progressively 
be traversed to reach the destination node. While the 
number of hops is constant throughout Table 1, the 
identity of nodes being traversed is progressively in- 
creasing. Thus, if one scans Table 1, it will be noted that 
lines 1 and 2 show the lowest numbers of a collection of 
progressively increasing nodes which will ultimately 
reach node IS. The hops in this lowest progressive 
order are from node 0 to 1 to 3 then through either node 
7, or node 11 to node IS. The second most optimal paths 
are shown at lines 3 and 4, etc. Once the possibilities 

P(0. 



5,008,882 
9 10 

from node 1 are exhausted, the table shows that the conjunction with the information supplied in Tables 
paths from node 0 to node 2 will be explored. No. 1 and 2. Table 2, hereinafter, is a representative 

A simplified explanation will be used to explain the example of the above-noted steps wherein it is assumed 
optimality of the search algorithms of this invention. that the originating node is node number 0 and the 
Two algorithms will be explained and those algorithms 5 destination node is node number 15. The information 
are designated as the k algorithm and the k*(k--) a b -  shown in Table 2 is the same as that of Table 1 and also 
rithm. In both of the search algorithms, all nodes tra- includes descriptive symbols. For example, a left to 
versed along the entire message track are visited exactly right (+) indicates that a path has been est&- 
once. lished between the adjacent nodes, the symbol of an * 

Algorithm k Definition 10 > indicates that no path was found, and a right to left 
arrow (+) indicates a backtrack. An arrow with a slash 

Goal: To latch the first available terminal channel to (+) indicates that a node other than an ultimate node 
the destination node using the first accessible penulti- has been tried Once unsuccessfu~~y and thus is not tried 

again. mate node. 

reach all given penultimate nodes. TABLE 2 

where c 

Search Criteria: At most one attempt will be made to 15 

Time Complexity: Order of (k + C1) hops 1 . 0 - 1 - 3 - 7  *> I5  

k=number of channels per node log(N) 2. 0 - 1 -+ 3 - I 1  * > 1 5  
c t 

2 0 3 .  0 - 1 - 5 - 7 15 Cl=number of terminal channels busy 
Therefore,Algorithm k hasaperformanceon theorder 4, - 1 - 5 - 13 ., 15 
of k+k. c t 

5 . 0 - 1 - 9 - 1 1  15 
Algorithm k*(k- 1) Definition 6 . 0 - 1 - 9 - 1 3  15 

1s Goal: To latch first available terminal channel to the 25 7, - - - 
destination node using the first accessible penultimate 8. 0 - 2 - 3 - 11 15 
node. 9 . 0 - 2 - 6 - 7  15 

Search Criteria: Every possible attempt will bemade 10 0 - 2 - 6 - 14 *> 15 

Time Complexity: Order of (k+C2) hops 30 

k=number of channels per node=log(N) 
C2 = (number of terminal channels busy)2 

t t 

to reach all the given penultimate nodes. c c t 

**End first trial unsuccessfully** 

where 
As shown in Table 2 at line 1 paths were latched from 

node 0 to 1 to 3 to penultimate node 7. No path from 7 
Therefore algorithm k*(k- 1) has a performance on the to 15 was available. In accordance with the k alogrithm, 
order of k+ k*k and hence is more exhaustive than 35 a penultimate node such as node 7 is tried once only and 
Algorithm k. it is not again checked during any one trial. The unsuc- 

The table of FIG. 7 shows a comparison of the num- cessful trial at node 7 is noted in the history section of 
ber of hops required for these algorithms as a function the header and, as shown in line 2, the next available 
of terminal load (depicted by the number of terminal route from 3 to 11 was checked. That route was also 
channels that are busy at the destination node at a given 4o found unavailable. Again, the history section is updated 
instant). to reflect that 11 was an unsuccessful trial. Since no 

Starting first with an explanation of the k algorithm, further possibilities from node 3 (other than 7 and 11) 
the steps are an orderly sequence which includes: are available, the header is backtracked away from 3 to 

node 1 where the next unexplored lowest-ordered path 
45 is checked. In line number 3, the path from node 1 to 

node 5 is latched but the path from 5 to 7 is not tried 
because 7, a penultimate mode was not earlier successful 
when tried. (See line 1). 

Assume that the path from node 5 to 13 is not avail- 
50 able because all channels at node 13 are busy, the busy 

condition of node 13 is stored in the header history and 
penultimate node 13 will not again be tried during this 
search cycle. At this point the search history reflects the 
fact that the first four lowestorder trials have been ex- 

55 hausted and that channels at nodes 7, 11 and 13 are 
eliminated from further trials during this search cycle. 
Lines 5 and 6 of Table 2 are latched to node 9 but those 
from 9 to 15 go through nodes 11 and 13 and these are 
not tried further because nodes 11 and 13 have already 

60 been eliminated from the search tree. The search at line 
6 is now backtracked to the root node 0. Next, at line 7, 
a path is established from node 0 to node 2. At node 2 
the paths through node 7 or node 11 have already been 
eliminated so they are not tried. Table 2 shows a suc- 

65 cessful trial from node 2 to node 6. At node 6 one path 
to node 15 is through node 7 which is already elimi- 
nated. Node 6 also has available to it a path through 
node 14 and thus that path is checked. Assume that 

Step No. Action 
0 initialize pointers to root or 

originating node; 
start with the root node (i = n - 1); 
scan message header node i 
starting from lowest available 
channel if b, = 0 
locate first available channel; lowat 
available channel = first available 
channel; adjust pointers; 
rf (first available channel = unlatched) 
then latch first available channel 
and transmit header to node (i - 1); 
hop = hop + 1; else go to step 2; 
If no avulable channel at node (i) 
then if (i # n - I)  then backtrack to 
node (i + 1); history vector [bm- 1 . . . bi 

hop - I; no. of tncs left at node 
(i + 1) = (fan-out at node (i + 1)- # of 
bits = 1 in history vector) 

If (number of tries left at node (i + 1) 
> 0) then i = i + 1; go to step 2; else 
go to step 5. 

I 
2 

3 

4 

5 

. . . b13] = [ O n - l .  . . O n + l I , .  . . bl; hop 

= n-hop - i - 1 
6 

Having explained in simple terms the operation ofthe 
k algorithm, a representative example will be used in 



5,008,882 
11 

node 6 checks node 14 and a check from 14 to 15 shows 
that channel 14 is busy. At this point the instant search 
trial is terminated because all of the penultimate node 
paths go through eliminated possibilities. Accordingly, 
the search trial will again restart with the lowest order 5 
channel paths as shown by line 1 of Table 2 and repeats 
in the above-described manner until a successful path 
has been latched from an origin to the destination node. 

The k+(k- 1) algorithm is a more exhaustive search 
than the k algorithm. The following description of the 10 
sequence of steps applies to the k*(k- 1) algorithm. 

ACTION 

STEP NO. 
0 

1 

2 

SUB-STEP 
2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.1 

2.8 

Initialize pointers to root node 
(node i); 
(i = n); initial history vector 
(b(n) . . . b(l)] = [0 . . . 01; hop = 0; 
f o r ( i = I ; i <  = n ; i + + )  
b(i) = 0; 
chan-step(i) = 1; 
return-hdrs-fwd(i) = 0 
hdr-returned-back(i) = 0; 
1 = n; 
hop = 0. 
While still not at destination node, 
visit each penultimate node i - 1 times 
precisely. Start with lower channels 
and progressively move the header 
forward to the child specified by 
chan-step(i). If all channels 
evaluated by chan-step(i) cannot be 
latched, move back to the next level 
parent until a parent is reached 
where unused channels are found. All 
nodes traversed along the entire 
message track are visited exactly 
once. 

While (i > 0), 
using dst-node as index and 
chan-step(i) as offset, evaluate the 
next out-chan(i) and the immediate 
child of i that will be targeted for 
transmission 
out-chan(i) = child& chan_step(i)); 
next-avail-chan(i) - out-chan(i); 
if (nextavail-chan(i) = = unlatched) 
latch(next-avail-chan(i)); 
xmit(hdr,child(i,out-chan(i)); 
/*xmit to child of node io/ 
i = i -  I 
else if (nextavail-chan(i) = = 
latched) 
if Mi)  = = 0) 
switch (chanstep(i)) 
case '1': 
chan-strp(i) = ch-tep(i) + 1; 
break; 
case '2' 
if (i > 2) 
break; 

if (i > 2) 
chanstep(i) = 1; 
break; 
case *l': 
while (chahstep(i) = = 1 && b(i) = = 1) 
if (i ! = n) 
Mi) = 1; 
xmit-back0ldr,parent(i)); 
i+ +; 
hdr-returned-back(i)+ +; 
if Mi)  == 0) 
if (chahstep(i) < 2 
chan-step(i)+ +; 
else if (chanstep(i) = = 2 && i > 2) 
chan-step i) = i; 
else if (Mi) = = 1) 

case li': 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
-continued 

ACTION 

if chan-step(i) = i) 
chan-step(i) = chan-step(i) - I ;  
else if (chan-step(i) = = i - 1 && i 
>2) chan-step(i) = 1; 

(i + I); 

if (retumhdrs-fwd(i) = = 0 &% i > = 3) 
templ = i. 
Prune the sub-tree to be visited in 
future (ahead of time) by looking the 
no. of times the header was returned 
at this node in the past. This 
consideration removes possibilities 
that otherwise may be revisited. 
while (i > = 3) 
if (hdr-returned-back <2) 
chanstep(i  - I )++;  
else if mdr-returned-back = = 2) 
chahstep(i  - 1) = i - I; 

i = templ; 
If the header returned back was 
already a returned header (reflected 
by a positive value for the field 
return-hdrs-fwd at node i), then some 
further pruning ahead of visiting 
future nodes is necessary. 
else if (return_hdrs-fwd(i) > 0 && i 
>= 3) 
temp2 = i 
while (i > = 3) 
chan-step(i - 1) = 2; 

i = temp2. 

2.9 retumhdrs-fwd(i) = hdr-returned-back 

hop = hop -1; 

3 

i = i - l ;  

4 

i = i - l ;  

Table 3 uses the symbology of Table 2 and explains a 
representative example of this second algorithm, k* 
(k- I), for a message header from node 0 to node 15. 

TABLE #3 
0 - 1  - 3  - 7 * >  IS 

0 1 3 - 11 *> IS 

0 1 - S - 13 *> 15 

0 1 S - 7 *> I5 

0 1 - 9 - 13 *> 15 

0 1 9 - 11 *> 15 

0 - 2 - 10 -+ 14 *> I5 

0 2 IO -+ 11 *> 15 

0 2 - 6 - 14 '> 15 

0 2 6 - 7 *> IS 

0 - 8  4 1 2 - 1 4  > I5 

0 8 12 -+ 13 *> 15 

c 

c c 

t 

c t 

t 

t c t 

c 

t + 

c 

c t + 

c - 4 4 

**End first trial unsuccessfully** 

In Table 3 second trials at nodes 7,11,13 and 14 were 
made. This approach differs from the k algorithm of 
Table 2 because in the k algorithm a penultimate node is 
tried one time only. In the k*(k- 1) algorithm a penulti- 
mate node is tried k- 1 times. 

Referring to FIG. 1, note that a completed path from 
node 3 through node 11 to node 15, for example, re- 
quires that node 11 establish a connection within itself 
between one incoming channel (from node 3) to an 



5,008,882 
13 

outgoing channel (node 11 to node 15). At node 11, 
other processes may be on-going which may have 
caused the outbound channel from node 11 to node 15 
to be busy. Examples of such activity at node 11, in- 
clude node ll’s formulation of a header to be routed to 
node 15, or node 11 may actually be sending data to 
node 15. In accordance with this invention, the hyper- 
switch processor at node 11 checks the outbound chan- 
nel, and finding it busy automatically reroutes the 
header without interrupting or communicating with the 
node processor at node 11. Although it has been called 
backtracking, it will be shown that the header is not 
physically backtracked. Instead a copy of the header is 
left at node 3, and status signals are used to indicate that 
a busy condition exists at node 11. Those status signals 
are applied back to node 3 by node ll’s processor. At 
node 3 the header’s channe€ history flag is automatically 
up-dated in response to those status signals. This back- 
tracking technique reduces message latency. 

FIG. 3 depicts a simplified example of the steps in- 
volved in transmitting from a source node through an 
intermediate node 175’s HSN to a destination node 180. 
The steps involved are set forth by an orderly sequence 
given by the numbers in parenthesis in Table 4 below. 
Opposite the step is a brief and mostly self explanatory 
description. 

TABLE #4 
The orderly sequence involves the following 
1. Source Node Processor (“SNP’) request its own 

2. HSP acknowledges SNP. 
3. SNP dumps data, preceded by a header, into HSP 

buffer memory. 
(4) After SNP sets DUMP signal to low, HSP takes 

the bits making up the header from the buffer mem- 
ory and sends the header out. 

(5) .  Intermediate node HSP (“IN HSP”) receives 
header. 

(6). IN HSP requests an outbound channel from 
within the intermediate node’s HSP units. 

(7). IN HSP gets an acknowledge signal from within 
itself. 

(8). Intermediate node HSP requests high speed bus 
and gets priority. 

(9). Intermediate node HSP sends header to outbound 
channel HSP. 

(10). Outbound channel HSP sends header out. 
(11). Outbound channel HSP sets channel interface 

(12). Destination node HSP receives header. 
(13). Destination HSP sets “enable to send” status. 
(14). Destination HSP interrupts destination node 

(15). Source node HSP gets “enable to send” status. 
(1 6) Source node HSP starts to send data. 
(17). Destination node HSP receives data. 
(18). Destination node HSP sets request line high 

(19). Destination node takes data from HSP to desti- 

FIG. 4 depicts a simplified 8-node network 400. Leg- 
end 410 shows the routes that are possible from an origi- 
nating node, node 0, to a destination node, node 7. An 
originating node formats a message header 420. The 
header 420 includes a serial stream of bits, which in- 
clude as a typical example, an instruction bit 421 at bit 
position number 0, a channel history field 422 at bit 

hyperswitch processor (“HSF’”). 

crossbar switch. 

processor. 

after its buffer is full. 

nation node’s memory. 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55  

60 

65 

14 
positions 1 through 11, a distance field 423 at bit posi- 
tions 12-15, another instruction bit 424 at position 16, a 
destination field 425 at bit positions 17-27 and a message 
length field 426 at the remainder of the header’s bit 
positions. The hyperswitch routing logic implementa- 
tion can be adapted to the k or k*(k-1) algorithmic 
definitions by simply changing the “distance” field in 
the header. For defining algorithm k, the distance field 
is set as the number of hops minus 1. For defining algo- 
rithm k*(k- I), the distance field is set as the number of 
hops minus 2. Quite obviously timing, framing parity 
and other information may be formatted into the serial 
bit stream of header 420. 

A series of steps are depicted in FIG. 4 and these 
steps show in a simplified way how EXOR operations 
automatically reroute a header 420 until it reaches its 
destination at node. The vertical arrows in FIG. 4 sym- 
bolically depict routing and channel history flag 
changes which will be clarified by a description herein- 
after in connection with an explanation of the routing 
logic of FIG. 6. 

FIG. 5 depicts a block diagram of the switching cir- 
cuit system of this invention capable of accommodating 
any given number of dimensions for a cube-connected 
network. Two status bits are present on leads 505 and 
506. Those status leads are into and out of each one of 
channel interface and cross bar switch units 510, 511 
and 512. Leads 515 and 516, into and out of unit 510, 
represent pipelining data lines. 

Within the unit 510, and connected to leads 515, 516 
are receiver and transmitter units 520,521. Receiver 520 
translates an incoming serial bit stream into parallel 
bytes. For example, receiver 520 may translate incom- 
ing data into bytes of eight bits each, and four bytes are 
collected in parallel as a header in routing control unit 
630. Processor control unit 535 controls the routing 
control unit 630 and also controls the node processor 
interface circuitry 548. Buffer memory 565 in hyper- 
switch processor 555 receives parallel words of thirty 
two bits each. 

Assume that a header has been received over an in- 
coming line 615, and the header is stored and inter- 
preted as such by routing control unit 645. The routing 
control unit 645 will either determine from the header 
that it is at its destination, or that it must be rerouted. If 
the header is at its destination node the data lines are 
connected through buffer memory 675, channel inter- 
face 548, and communication bus 580 into the destina- 
tion node’s memory. If the header is not at its destina- 
tion, then the header is rerouted over a header reroute 
bus 590 and through one of the other channel interface 
units 511 or 512. Routing control 630 closes a crossbar 
switch, such as switch 523, and the header goes back 
out over an appropriate cross bar link 582. 

FIG. 6 includes hardware implementation logic. The 
logic legends correspond to the routing algorithm im- 
plementation which is described in a high-level code, as 
follows: 

INITIAL CONDITIONS: 
SET FIELDS IN header: 
SET CHF = datinationddress; 
SET DIST = #-othop - 1 /* fork algorithm */; 
#-of-hop - 2 /* for k*(k - 1) algorithm */; 
SET DEST = datinationdddrcss; 
SET MLEN = #-of-256-bytes-packets; 
ROUTING LOGIC 
/* initialize data*/ 



5,008,882 
15 16 

applicable procedure discussed hereinbefore and in 
connection with FIG. 3. (See step A of FIG. 4). Node 
1’s identity is 001 and step B of FIG. 4 is applicable. At 

-continued 
INITIAL CONDITIONS: 

/* mask register is not shown, it is always ‘AND with 
the xorl-out and xor tout  */ 
RECEIVE header: 
state-register = 0; 
xorl-out = CHF XOR currentnode-ID; 
and2-out = xorl-out AND (INV statedegister); 
/* destination is next node */ 
IF DIST EQUAL TO 0 THEN 
xor2-out = DEST XOR currentnode-ID; 
IF XOR2-OUT NOT EQUAL TO 0, THEN XOR2 - OUT 
channelnumber = 
SELECT-FIRST-ONFROM-LSB-TO-MSB (xor2-out); 
IF (REQUEST (channehumber, state-register)) THEN 
TRANSMIT-HEADERTO (channelnumber); 
EXITALGORITHM: 
END-IF: ----, 
END-IF; 
SET-BACKTRACK-STATUS 
END IF: 
/* destination is two hops away */ 
IF DIST EQUAL TO 1 THEN 
WHILE (andlout  NOT EQUAL TO 0) DO 
channel-number = 
SELECT-FIRST-ONE-FROM-LSB-TO-MSB (and2-out); 
IF (REQUEST (channelaumber, state-register)) THEN 
TRANSMIT-HEADELTO (channel-number); 
EXITALGORITHM: 
END IF: 
xorl-out = CHF XOR current-node-ID 
and2-out - xorl-out AND (INV state-register); 
END-WHILE; 
SET-BACKTRACKSTATUS; 
END I F  
/* regular routing algorithm*/ 
IF DIST GREATER THAN 1 THEN 
#-of-ones = CALCULATE-NUMBEROF-ONES 
(and2-out); 
WHILE ((and2-out NOT EQUAL TO 0) AND 
(#-of-one GREATER THAN OR EQUAL TO DIST)) DO 
channel-number- = 
SELECT-FIRST-ONESROM-LSB-TO-MSB (and2-out); 
IF (REQUEST (channel-number, state-register)) THEN 
TRANSMIT-HEADELTO (channel-number); 
EXITALGORITHM 
END-IF; 
xorl-out = CHF XOR currentsode-ID; 
and2-out = xorl-out AND (INV state-register); 
#-of-one = CALCULATE-NUMBEROF-ONES 
(and2-out); 
END-WHILE 
SET-BACKTRACLSTATUS; 
END-IF: - . 
END-OF-ENCODED-ROUTING-LOGIC. 

the header must either be forwarded on another outzo- 

the identity register 600, in node 1, is an identity signal 
5 “001” for node 1. The destination node is “1 11” or node 
7. EXOR gate 610 receives these two input terms and 
the summation is “1 10” which appears on the input lead 
to gate 611. 

The distance as shown by legend 410, FIG. 4, is a 
10 total of three hops so the distance field is set to one less 

than three or two, which is “010”. Distance field decod- 
ing circuit 615 enables the greater-than-one lead 616 
which applies a true condition to AND gate 630. 

History register 601 is initialized to an all “1” condi- 
l5 tion and its output is “1 11”. Gate 611 applies its output 

“1 10” to circuit 612. Circuit 612 may be any well known 
circuit which functions to count the number of ones 
supplied from gate 612. The answer of two is applied to 
the A term of a difference circuit 613. The B term to 

2o difference circuit 613 is the distance field, or 2. Since 2 
is not less than 2, circuit 613 applies another true condi- 
tion to gate 630, and in response thereto an output lead 
from a ones-select circuit 618 is cleared to reflect the 
condition of an input signal selected by multiplexer 617. 

Multiplexer 617 applies the output from gate 611 as 
an input term to circuit 618. Circuit 618 selects the first 
1 from the right. The first one from the right, as shown 
by step B in FIG. 4, is reflected as a term “010”. Gate 

3o 635 has two input terms, the node’s identity ‘‘001” and 
the output from select circuit 618. The logic operation 
of gate 635 designates “Oll”, or node 3, as the next 
channel select. The processor at node 1 responds by 
moving the header to node 3 and reserving the circuit 

35 section between node 1 and node 3. The status lines are 
used to make that selection as was described earlier. 

At node 3 the procedure of logic routing circuit 630, 
FIG. 6, is repeated by an identical logic routing circuit 
at node 3. The header next tries to go to node 7, its 

40 destination, as shown by step C in FIG. 4. A busy chan- 
nel from node 3 to node 7 is present, step D in FIG. 4, 
and the header does not wait at node 3. Instead a status 
line from node 3 back to node 1 sets the channel history 
flag in the copy of the header left in register 625 at node 

45 1 to reflect this busy condition and to inform node 1 that 

25 

ing channel from node 1, or it must be back-trackezto 
node 0 .The channel busy status signal from node 3 to The routing logic circuit 630 which implements the 

above is depicted in FIG. 6, the operation of which will 
now & described. Outputs from the routing circuit 630 
of FIG. 6 determine whether Or not a header received in 50 That input 

appears as a sipa1 On lead 602 at register 
the history state register and the 

a header storage device 625, is to be moved forward, is history portion Of the header at node 1. The status his- 
to be backtracked, or is at its destination. A move for- tory register 601 is now changed to read 101. The chan- 
ward command for the header will appear as an output nel history portion previously contained all l’s, and the 
signal from gate 635. A backtrack signal appears as an middle 1 Was responsible for getting the header to 
output signal from gate 645, and a destination output is 55 “busy” node 3, so that middle 1 is changed to a zero. At 
presented on lead 665. node 1, the operation reflected at step D in FIG. 4 

Obviously each node knows its own unique identity o m ~ s  and the header is now routed to node 5. 
and that node’s identity is stored in an identity register At node 5 the header is again supposed to be routed 
600, FIG. 6. m e  node’s identity is applied as one term to node 7 but again encounters a busy channel. All of 
to an Exclusive-OR function shown simply as an 60 node l’s outgoing channels are now exhausted so the 
EXOR gate 610, FIG. 6. The other input term to the header’s history portion at node 0 must be updated to 
EXOR gate 610 is the channel history field from a re- reflect that nodes 1,3 and 5 have been pruned or elimi- 
ceived header that is placed into the header storage nated from any further consideration for this one selec- 
device 625. The node’s identity is also applied as an tion attempt. The logic routing circuit 630 does not 
input term to a second Exclusive-OR function shown as 65 select the route from node 0 to node 4 at this time, as a 
gate 620. check of the operation reveals that the channel selected 

As an example, assume that node 0 originated a is for node 2. The channel history “110” is passed to 
header and transmitted it to node 1 pursuant to the node 2 where it is again EXORed by that node’s routing 



17 
5,008,882 

18 
control circuit 630, and the described operation repeats. 
At node 2 the pruned, or eliminated status of node 3 
causes the header to be routed to node 6 rather than 
node 3. As shown by legend 400, a path from node 6 to 
node 7 is available and thus the header reaches its desti- 
nation at node 7. 

At node 7, that node’s routing control circuit 630, via 
zero detect circuit 650, recognizes that the header has 
reached a destination node. An output from the destina- 
tion correct lead 665 is sent back through the status lines 
from node 7, to node 6. The status lines indicate “01” at 
this time as an indication that the destination node is 
ready to receive data. A completed pipeline data path 
has now been latched because the sections from node 0 
to 2 and from 2 to 6 were held as the header progressed 
through those node’s HSNs. Data transmission, as de- 
scribed from node 0 to node 7 can now occur over a 
high speed data line 430. The data line 430 is symboli- 
cally shown in FIG. 4 as a dashed line passing through 
dots on nodes 2 and 6 to indicate that it is a virtual link 
that needs no interaction with the node processors at 
nodes 2 and 6 nor does it require any further reaction 
with the hyperswitch processors at those nodes. 

The above description present the hest mode contem- 
plated in carrying out our invention. Our invention is, 
however, susceptible to modifications and alternate 
constructions from the embodiments shown in the 
drawings and described above. Consequently, it is not 
the intention to limit the invention to the particular 
embodiments disclosed. On the contrary, the invention 
is intended and shall cover all modifications, sizes and 
alternate constructions falling within the spirit and 
scope of the invention, as expressed in the appended 
claims when read in light of the description and draw- 
ings. 

What is claimed is: 
1. A method of searching for a best-first path from an 

originating computer (“node”) through any number of 
intermediate node(s) to a destination node, when said 
nodes are connected in a cube-configured network hav- 
ing a plurality of path sections interconnecting the orig- 
inating, intermediate and destination nodes, comprising 
the steps of: 

trying individual path sections of the network in a 
preferred order of paths which lead from the origi- 
nating to the destination node; 

eliminating from the order of paths to be tried, those 
path sections terminating at a destination node and 
found busy; and 

latching the first non-busy terminal path section of 
the preferred order which completes a path from 
the originating to said destination node. 

2. A method in accordance with claim 1 wherein the 

during any one complete search cycle through said 
network. 

5. A method in accordance with claim 1 wherein said 

originating a message header at said originating node; 

forwarding said header over the paths in said pre- 

6. A method in accordance with claim 5 and further 

embedding, in said header, information reflecting 
path sections which have been eliminated from any 
further tries. 

7. A method in accordance with claim 6 and further 

embedding, in said header, routing information which 
controls the path sections over which the header is 
routed. 

8. A method in accordance with claim 1 and further 
20 comprising: 

establishing a system-wide routing alogrithm at every 
node; and 

performing said steps of trying, eliminating, and 
latching in accordance with said routing algorithm. 

9. A method in accordance with claim 8 and further 

dynamically changing the order of paths to be tried 
during any one search cycle based upon the busy 
and non-busy conditions of path sections tried dur- 

10. A method in accordance with claim 1 wherein the 
destination node in said network is connected to a plu- 
rality of penultimate nodes, and wherein said trying step 
further comprises: 

searching for a complete path using a search criteria 
where at most one attempt will be made to reach all 
given penultimate nodes. 

11. A method in accordance with claim 1 wherein the 
destination node in said network is connected to a plu- 

40 rality of penultimate nodes and wherein said trying step 
further comprises: 

searching for a complete path using a search criteria 
where every possible attempt will be made to reach 
all of the penultimate nodes. 

12. A method in accordance with claim 10 wherein an 
intermediate node comprises a plurality of input lines 
and at least an equal number of output lines and com- 
prising the further steps of: 

searching for a non-busy path at every one of the 

13. A method in accordance with claim 12 and fur- 

trying step comprises: 
5 

and 

ferred order. 

10 comprising: 

15 comprising: 

25 
comprising: 

30 ing said search cycle. 

35 

45 

50 output lines from said intermediate node. 

ther comprising: 
sending over-the input line that requested a search of 

the output lines, a signal indicative of a busy condi- 
tion at all of said output lines at said intermediate 
node. 

14. A method in accordance with claim 11 wherein an 
intermediate node comprises a plurality of input lines 
and at least an equal number of output lines and com- 

searching for a non-busy path at every one of the 

15. A method in accordance with claim 14 and fur- 

sending over the input line that requested a search of 
the output lines, a signal indicative of a busy condi- 
tion at all of said output lines at said intermediate 
node. 

eliminating step further comprises the step of: 55 
considering as eliminated from further tries all path 

sections located between the originating node and 
the node where the busy path section is found. 

3. A method in accordance with claim 1 and further 

reserving as a partially completed path, each SUCCSS- 
fully tried path section in any given one of said 
preferred order, until said first non-busy terminal 
path is latched to fully complete said path. 

4. A method in accordance with claim 1 and further 65 

storing information at the busy nodes reached during 
any given try to eliminate any retry of such node@) 

comprising the additional step of: 60 prising the further steps of: 

output lines from said intermediate node. 

ther comprising: 

comprising: 

_. 



5,008,882 
19 20 

16. A method in accordance with claim 8 and further 

implementing the routing algorithm in logic cir- 

providing identical logic circuitry at every node. 
17. A method in accordance with claim 16 wherein 

originating a message header at said originating node; 

forwarding said header over the paths in said pre- 10 

18. A method in accordance with claim 17 and fur- 

embedding, in said header, information reflecting 

23. A circuit switching system in accordance with 

means at every node receiving a message to be routed 
for checking the availability or busy status of out- 
going channels from the receiving node; and 

means at said receiving node responsive to said 
checking means for altering said channel history 
flag of said message in order to reflect the status as 
checked by said status checking means 

24. A circuit switching system in accordance with 

means at said receiving node for determining from 
said channel history flag of said message, the rout- 
ing for said message along one of a plurality of 
outgoing channels from said node; and further 

said status checking means is responsive to said deter- 
mining means for checking the status of said one 
outgoing channel. 

25. A circuit switching system in accordance with 
claim 23 wherein said receiving node is positionally 

20. A method in accordance with claim 17 and fur- located between said originating and said destination 
node, and further wherein: 

establishing a system-wide routing algorithm at every said routing algorithm presumes that all network 
node; and 25 connections between said intermediate node and 

performing said steps of trying, eliminating, and said destination node are blocked if all outgoing 
latching in accordance with said routing algorithm. channels from said intermediate node are blocked. 

21. A circuit switching system for completing a plu- 26. A circuit switching system in accordance with 
rality of data-handling sections of a communication link 
between connected in a cube-configured network, with 30 means assigning a unique numerical node identifier to 
any node being capable of originating a message header every node in said cube-connected network; and 
having embedded therein an identifier of a destination said best-first routing algorithm routes each given 
node so that data may be sent from said originating to message through the nodes, if available, which 
said destination node after a connected communication results in the lowest accumulated total of the nu- 
link has been completed therebetween, said system 35 merical identifiers for said nodes. 
comprising: 27. A circuit switching system in accordance with 

means at every node receiving said header for com- claim 26 and wherein in said system is further character- 
pleting, a best-first section of said communication ized by: 
link, if available, between an originating, intermedi- said best-first routing algorithm routes each given 
ate and destination nodes, or if said best-first output 40 message through the nodes having said lowest 
sections at any node(s) receiving said header are accumulated total of said numerical identifiers and 
busy, delivering a congestion signal to the last suc- if said nodes are not available through the next 
cessful forwardly node: and lowest accumulated total. 

means at every node including the last successful 28. A circuit switching system in accordance with 
forwarding node responsive to said congestion 45 claim 22 and further characterized as: 
signal for automatically rerouting said header each message-receiving node having means available 
along other sections of the communication link in thereat for ascertaining for said message: a current 
said cube-configured network until a completed node identifier (“ID’), the number of hops (“H’) in 
high speed data communication link is established the cube-connected network between the current 
between the originating and destination nodes. node and the destination node (“D”), and the origi- 

22. A circuit switching system having a best-first nating, or source, node identifier; and where the 
message routing algorithm for a plurality of cube-con- number of hops (H) are the number of possibilities 
nected nodes, said system comprising: for linking together circuit sections for a desired 

means at any node for originating a message having communication link, and a hop is a movement from 
embedded therein a destination node identifier and 55 one node to another. 
a channel history flag reflecting the message’s 29. A circuit switching system in accordance with 
progress through the network as it moves toward claim 28 and further comprising: 
said destination node; a routing logic at every node in said cube-connected 

means at every node for executing said best-first rout- network for routing said messages in accordance 
ing algorithm in accordance with the channel his- 60 with said routing algorithm. 
tory flag of a message amving at any given node to 30. A circuit switching system in accordance with 
seek the best-first route for said message through claim 29 wherein said node identifiers are accumulated 
said network; and to form a sum for each of several available paths be- 

means at each node transversed by said message for tween the originating and the destination nodes, and 
latching a completed circuit through said cube- 65 wherein said system further comprises: 
connected network in accordance with an exe- means at every intermediate node, i, for locating the 
cuted channel history portion of said message rout- lowest available channel (based upon said node 
ing algorithm. identifier values) equal to the first available chan- 

comprising: claim 22 and further comprising: 

cuitry; and 
5 

said trying step further comprises: 

and 

ferred order. claim 23 and further comprising: 

ther comprising; 

path sections which have been eliminated from any 15 
further tries. wherein 

19. A method in accordance with claim 18 and fur- 

embedding, in said header, routing information which 
ther comprising: 

controls the path sections over which the header is 20 
routed. 

ther comprising: 

claim 25 and further comprising: 

50 



21 
5,008,882 

22 
nel, where the term i designates a node that is i 36. A searching system for locating a best-first path 
hops away from the destination node. from an originating computer (“node”) through any 

31. A circuit switching system in accordance with number of intermediate node(s) to a destination node, 
claim 30 wherein a completed path requires hops from when said nodes are connected in a cube-configured 
node to node and wherein said system is characterized 5 network having a plurality of path sections intercon- 
by further comprising: necting an originating, intermediate and destination 

means at node, i, which is a node i hops away from a nodes, comprising: 
destination node, for performing the following means for checking, in a preferred order, the status of 
steps: individual path sections of the network which lead 

(a) if first available channel is not busy then latch said 10 from the originating to the destination node; 
first available channel; means for eliminating from the order of paths to be 

(b) transmit header to node i- 1; and checked, those path sections which terminate at a 
(c) change hop to hop+ 1. destination node and which are found busy; and 
32. A circuit switching system in accordance with means for latching the first non-busy terminal path 

section of the preferred order which completes a 
means at node i for performing the additional steps of: path from the originating to said destination node. 
(a) if first available channel is busy then at node (i) 37. A search system in accordance with claim 36 

(b) backtrack header to node i+l ,  where backtrack means for considering as busy all path sections 10- 
cated between the originating node and the node 
where a busy path section is found. 

(c) set channel history flag ( b n - i ,  . . . bi . . . 38. A searching system in accordance with claim 36 

(d) set hop to equal hop- 1; and means for reserving as a partially completed path, 
(e) try a number of alternate channels at node 25 each successfully tried non-busy path section in 

(i+l)=(fan out at node (i+l)-number of bits any given one of said preferred order, until said 
equaling one in channel history flag equal to n-hop- latching means latches the first non-busy terminal 
i- 1). path to fully complete said path. 

33. A circuit switching system in accordance with 3o 39. A searching system method in accordance with 

means at node i+ 1 for determining if the number of means for storing information at the busy nodes 

claim 30 and further comprising: 

where (i) is less than or equal to (n- 1); 

means to start the steps from the node that for- 2o 
warded the header to node i; 

b0)=(0,-1. . . Oi+l. . . li. . . lo); 

wherein the eliminating means further comprising: 

and further comprising: 

claim 32 and further comprising: claim 26 and further comprising: 

possible channels at node i+ 1 is greater than zero, 
then i is equal to i+ 1; and then perform the locat- 
ing step identified in claim 30 otherwise perform 35 
the steps identified in claim 32. 

34. A circuit switching system for a plurality of cube- 

a search tree for a cube-connected network of a 2n 
hypercube having nodes located at branching fac- 
tors formed by communication lines, wherein the 
number of branches is variable, with a branching, 
or fan-out, factor of (N) in the first hop, (N- 1) in 
the second hop, (N-2) in the penultimate hop, and 
1 in the last hop; 

a search tree algorithm means at each node for locat- 
ing a completed path through said search tree from 
an originating to a destination node; and 

means at each node responsive to execution of said 
search tree algorithm for latching a completed path 50 
through said search tree. 

connected computers nodes, said system comprising: 

45 

35. A circuit switching system for a cube-connected 
network of a plurality of concurrently-operable com- 

reached during any given status check, which in- 
formation eliminates any retry of such node(s) dur- 
ing any one complete search cycle. 

40. A searching system in accordance with claim 36 
wherein said status checking means further comprises: 

means at said originating node for originating a mes- 

means for forwarding said header over the paths in 

41. A searching system in accordance with claim 40 

means for embedding, in said header, information 
which diverts the header away from path sections 
which have a busy status. 

42. A searching system in accordance with claim 40 

means for embedding, in said header, routing infor- 
mation which controls the path sections over 
which the header is routed. 

43. A searching system in accordance with claim 36 

sage header; and 

said preferred order. 

and further comprising: 

and further comprising: 

and further comprising: 
puters nodes, said switching system comprising: means for establishing a system-wide routing algo- 

said eliminating and latching means are controlled by 

44. A searching system in accordance with claim 43 
wherein said algorithm establishing means further com- 

means for dynamically changing the order of paths to 
be checked during any one search cycle based 
upon the busy and non-busy status of path sections 
actually checked during one search cycle. 

45. A searching system in accordance with claim 36 
wherein the destination node in said network is con- 
nected to a plurality of penultimate nodes, and wherein 
said status checking means further comprises: 

means at an originating node for formulating a mes- 55 
sage format including a message destination por- 
tion and a circuit tranversing history portion in the 
message format; 

means at said originating node for applying said mes- 
sage to said cube-connected network in accordance 60 prises: 
with a predetermined routing algorithm; 

means at every node in said cube-connected network 
for executing said routing algorithm when said 
message arrives at any individual node; and 

means at each node involved in the execution of said 65 
routing algorithm for storing that node’s participa- 
tion of the execution of the routing algorithm in 
accordance with the message’s history portion. 

rithm at every node; and further wherein 

said routing algorithm. 

__  



23 
5,008,882 

24 
means for sending back to the last forwarding node a 

signal indicative of a busy condition at all of said 
output lines at said intermediate node. 

49. A searching system in accordance with claim 46 
wherein the destination node in said network is con- 5 wherein an intermediate node comprises a plurality of 

said status checking means further comprises: 

means responsive to a search criteria where one status 
check only is made at every given penultimate 
node. 

46. A searching system in accordance with claim 36 

netted to a plurality of penultimate nodes and wherein input lines and at least an number Of Output lines 
and comprising: 

means for searching for a non-busy path at every one 
of the output lines from said intermediate node. means responsive to a search criteria where every 

possible path leading to Of the 10 50. A searching system in accordance with claim 49 

means for sending back to the last forwarding node a 
penultimate nodes is attempted. and further comprising: 

47. A searching system in accordance with claim 45 
wherein an intermediate node comprises a plurality of 
input lines and at least an equal number of output lines 
and comprising: 

means for searching for a non-busy path at every one 
of the output lines from said intermediate node. 

48. A searching system in accordance with claim 41 

signal indicative of a busy condition at all of said 
output lines at said intermediate node. 

51. A searching system in accordance with claim 43 

for logic circuitry implementing the routing algo- 

15 
and further comprising at every node: 

rithm. 
and further comprising: * * * * *  

20 

25 

30 

35 

40 

45 

50 

55 

65 


