CONTINUOUS, LINEARLY INTERMIXED FIBER TOWS AND COMPOSITE MOLDED ARTICLE THEREFROM

Inventors: Paul E. McMahon, Mountainside; Tai-Shung Chung, Summit; Lincoln Ying, Bridgewater, all of N.J.

Assignee: Cytec Technology Corp., Wilmington, Del.

Appl. No.: 07/975,141

Filed: Nov. 12, 1992

Related U.S. Application Data

Continuation of application No. 07/657,348, Feb. 15, 1991, abandoned, which is a continuation of application No. 06/770,376, Aug. 29, 1985, abandoned, which is a continuation of application No. 06/589,825, Mar. 15, 1984, abandoned.

Int. Cl. D02G 3/02; B32B 9100

U.S. Cl. 428/1364; 428/1366; 428/1367; 428/1373; 428/1374; 57/1243; 57/1244; 50/1195

Field of Search 428/364, 366, 428/373, 373, 379; 57/243; 57/244; 50/195

References Cited

U.S. PATENT DOCUMENTS

2,964,900 12/1960 Hicks, Jr. 57/140
3,252,484 5/1966 Meyer et al. 139/426
3,358,436 12/1967 Niihara et al. 57/162
3,380,131 4/1968 Gray et al. 28/1
3,406,790 4/1969 Graf et al. 28/1
3,619,448 11/1971 Palfreyman 264/103
3,873,389 3/1975 Daniels 156/181
3,978,267 8/1976 Selwood 428/360
4,051,800 10/1977 Gres et al. 57/140
4,084,399 4/1978 Kanemaru et al. 57/244

References Cited

4,159,618 7/1979 Sokaris 57/251
4,226,059 10/1980 Mountney et al. 57/244
4,343,146 8/1982 Nelson 57/208
4,347,279 8/1982 Saji et al. 428/294
4,410,385 10/1983 Murphy et al. 156/181
4,457,345 7/1984 von Blueck et al. 57/252
4,539,249 9/1985 Curzi 428/175

FOREIGN PATENT DOCUMENTS

894875 11/1982 Belgium
7901172 1/1979 France
2166629 12/1974 Germany
483536 1/1973 Japan 264/147
5110871 1/1976 Japan 264/147
5149948 4/1976 Japan
1200342 7/1970 United Kingdom
1228573 4/1971 United Kingdom
2090882 7/1982 United Kingdom

OTHER PUBLICATIONS

NASA Tech Brief, Fall 1982, by Robert Baucom, p. 98.

Primary Examiner—Terrel Morris
Assistant Examiner—Cheryl Juska
Attorney, Agent, or Firm—Kristin H. Neuman; Michael J. Kelly; Claire M. Schultz

ABSTRACT

The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

12 Claims, 2 Drawing Sheets
CONTINUOUS, LINEARLY INTERMIXED FIBER TOWS AND COMPOSITE MOLDED ARTICLE THEREOF

This is a continuation of application Ser. No. 07/657,348 filed on Feb. 15, 1991, now abandoned which is a continuation of U.S. application Ser. No. 06/770,376 filed Aug. 29, 1985, now abandoned which is a continuation of U.S. application Ser. No. 06/589,825 filed Mar. 15, 1984, now abandoned, to which priority is claimed under 35 U.S.C. Section 120.

This invention was made with government support under contract No. NAS1-15749 awarded by the National Aeronautics and Space Administration (NASA). The Government has certain rights in this invention.

BACKGROUND OF INVENTION

This invention relates to processes for preparing fibers useful in forming composite articles. More particularly, this invention relates to carbon fiber-containing fiber blends which are useful in preparing composite articles.

Carbon fiber-containing tapes and rovings have been known for several years. See, for example, U.S. Pat. Nos. 3,704,485, 3,873,389, and 3,795,944, as well as U.S. Pat. Nos. 3,993,726 and 3,728,424.

Also it is known to intermix two similar or different types of fibers, particularly to obtain high bulk. See for example, U.S. Pat. Nos. 4,219,997, 4,218,869, 3,959,962, 3,968,638 and 3,958,310. And the combining of different types of fibers has been facilitated using various types of fluid jets. See, e.g., the '310 patent and U.S. Pat. No. 4,147,020. However, in the '020 patent, after combining the yarns are cut into short lengths.

U.S. Pat. No. 4,226,079, issued Oct. 7, 1980, discloses the combining of two different types of fibers, in order to produce a bulk yarn. The fibers are intermixed in a jet intermixing zone. However, the fibers disclosed in the patent are polyester and polyamide. No disclosure is made of the combining of carbon and thermoplastic fibers.

U.S. Pat. No. 3,175,351 discloses a method of bulking continuous filament yarns. In addition, it is disclosed that the two yarns which are combined may be of different compositions. However, none of the compositions is a carbon fiber.

U.S. Pat. No. 3,859,158 discloses the preparation of carbon fiber reinforced composite articles by forming an open weave of a carbon fiber and coating with a carbonaceous material. U.S. Pat. No. 4,368,234 discloses complex woven materials used for reinforcement which are formed from alternating bands of graphite fibers and low modulus fibers. However, the woven materials disclosed in this patent are subsequently impregnated with a thermosetting resin and cured.

Commonly assigned U.S. Pat. No. 4,479,999 to Buckley and McMahon, discloses an improved woven fabric comprised of fusible and infusible fibers wherein the infusible fibers include graphite or carbon fibers, and the fusible fibers are thermoplastic in nature. According to the patent, fusible and infusible fibers are woven into a fabric and thermally bonded together by heating above the melting point of the fusible fiber. This patent application does not disclose, however, the preparation of linearly intermixed fiber tow products or that such products are useful in forming composite articles. The patent application also does not disclose the preparation of such materials using a gas jet intermixing means.

In the prior art, there were two distinct methods of forming carbon fiber-containing composites. The first and older method involved simply forming a tape or fabric prepreg by painting or coating carbon fiber tows or fabric with a solution and/or low viscosity melt of a thermosetting material which was then cured. The second process involved the extrusion of carbon fiber tapes impregnated with high melting, thermoplastic polymers. These tapes or fabrics were then used in forming the composite. However, the prepregs formed by both of these processes were somewhat difficult to handle. Specifically, prior art thermoplastic tapes were stiff and "boardy" and could not be draped across intricately shaped molds. While thermoset prepregs were somewhat more flexible, they were often quite tacky and difficult to handle. As a result, the use of both types of tapes was limited.

Accordingly, it is an object of this invention to prepare fibrous blends which are useful in forming thermoplastic carbon fiber composites.

It is another object of this invention to prepare materials, e.g., fabrics, which may be formed into fiber composites.

These and other objectives are obtained by employing the process of the instant invention.

SUMMARY OF INVENTION

Basically, the process of this invention involves (a) forming a carbon fiber tow from a multitude of carbon fibers; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tows for use. The intermixed tows may then be employed in forming various carbon fiber-containing composites.

The fiber blends prepared according to the instant invention are flexible and handleable and have good draping properties, so that they can be used to form intricately shaped articles. In addition, because of the intermixing of the two fibers, good wetting of the carbon fiber by the thermoplastic material is obtained when appropriate heat and pressure are applied to the mold. Good wetting is obtained in large measure because of the substantially uniform distribution of the thermoplastic fiber and the carbon fiber within the fiber blend. Specifically, the products of the instant invention find particular utility in end use applications where a small radius of curvature in the final product is desired. For example, using the prior art tapes, it was not possible in many instances to prepare articles which had 90° bend, because the tapes would crack or deform at the bend line. However, the processes of the instant invention may be employed with radii of curvature as low as 0.002 in.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagramatic view of the various devices used in carrying out one of the processes of the instant invention.

FIG. 2 is a diagramatic view of the various devices used in carrying out another version of the processes of the instant invention.

FIG. 3 is a perspective view of the gas spreading means used in carrying out a part of the the process of the instant invention.

FIG. 4 is a perspective view of the same device with the top removed.

DETAILED DESCRIPTION OF INVENTION

The thermoplastic polymers which are useful in carrying out the instant invention constitute virtually any type of relatively high molecular weight thermoplastic polymer, including polyethylene, polypropylene, polyester, the various polyamides, polyimides, polyamidimides,
polyetherimides, polysulfones (e.g., polyether sulfones), polyether ether ketones, polybutylene terephthalate and the like. The melting point of the polymer must be at least 50°F and preferably at least 200°F above ambient conditions. Higher melting temperatures insure that there will be no undue sticking or binding of the spun fibers prior to use. In addition to one component polymer systems, mixtures of various thermoplastic polymers may also be employed to advantage where specific combinations of properties are desired.

Of particular importance are the liquid crystal polymers or LCPs. Examples of these polymers include the wholly aromatic polyester resins which are discussed in the following publications: (a) Polyesters of Hydroxybenzoic Acids, by Russell Gilkey and John R. Callewell, J. of Applied Polymer Sci., Vol. II, Pages 198 to 202 (1959), (b) Polyarylates (Polyesters From Aromatic Dicarboxylic Acids and Bisphenols), by G. Bier, Polymer, Vol. 15, Pages 527 to 535 (August 1974), (c) Aromatic Polyester Plastics, by S. G. Cottis, Modern Plastics, Pages 62 to 63 (July 1975); and (d) Poly-(Oxybenzoyl Systems): Homopolymer for Coatings; Copolymers for Compression and Injection Molding, by Roger S. Storm and Steven G. Cottis, Coatings Plast. Preprint, Vol. 34, No. 1, Pages 194 to 197 (April 1974). See also, U.S. Pat. Nos. 3,039,994; 3,169,121; 3,321,437; 3,553,167; 3,637,595; 3,651,014; 3,723,388; 3,759,870; 3,767,621; 3,778,410; 3,787,370; 3,790,528; 3,829,406; 3,890,256; and 3,975,487.

Other polyesters are disclosed, for instance, (a) Polyester X7G-A Self Reinforced Thermoplastic, by W. J. Jackson, Jr., H. F. Kuhffuss, and T. F. Gray, Jr., 30th Anniversary Technical Conference, 1975 Reinforced Plastics/Composites Institute, The Society of the Plastics Industry, Inc., Section 17-D, Pages 1 to 4, (b) Belgian Pat. Nos. 838,935 and 828,936, (c) Dutch Pat. No. 7505551, (d) West German Pat. Nos. 2520819, 2520820, 2722120, 2834535, 2834536 and 2834537, (e) Japanese Pat. Nos. 43-223; 2132-116; and 3021-293, and (f) U.S. Pat. Nos. 3,991,083; 4,991,014; 4,057,597; 4,066,620; 4,075,262; 4,083,829; 4,093,595; 4,112,212; 4,118,372; 4,130,345; 4,130,702; 4,146,702; 4,153,779; 4,156,070; 4,159,365; 4,160,755; 4,161,470; 4,169,933; 4,181,792; 4,183,895; 4,184,996; 4,188,476; 4,191,681; 4,201,856; 4,219,461; 4,224,433; 4,226,970; 4,230,817; 4,232,143; 4,238,598; 4,238,600; 4,239,913; 4,242,496; 4,245,084; 4,247,514; 4,256,624; 4,265,802; 4,267,289; 4,269,965; and 4,279,803; and 4,299,756.

The polyesters and copolyesters which are preferred consist essentially of structural units having recurring groups of the formula

\[\text{I: } -O--R_1--O- \]

\[\text{II: } -\text{C}--R_2--\text{C}- \]

\[\text{III: } -O--R_3--O- \]

wherein units I and II, if present, are present in substantially equimolar amounts; R1, R2, and R3 are radicals selected from the group of 1) single and fused six-membered aromatic carbocyclic ring systems wherein the chain-extending bonds of the ring system if attached to the same ring, are positioned 1,3- or 1,4- (preferably 1,4-) to each other, and if attached to different rings, are preferably in positions parallel and oppositely directed, and 2) multiple six-membered aromatic carbocyclic ring systems in which the individual rings are joined by a chemical bond or a trans-vinylene group and in which the chain extending bonds of each ring are in the 1,3- or 1,4- (preferably 1,4-) positions; R2 may also be

\[\text{I: } -O--R_2--O- \]

wherein A is a divalent radical containing one or two bicyclic in-chain atoms; and R3 may also be

\[\text{I: } -O--R_3--O- \]

and of 2) are

\[\text{I: } -O--R_3--O- \]

The foregoing ring systems, except for R3, as indicated below are also intended to include one or more substituents, e.g., chloro, bromo, fluoro, or lower alkyl (1-4 carbon atoms) on the ring or rings. The R3 aromatic ring systems should preferably be unsubstituted when only one kind of unit I and one kind of unit II are used, i.e. when a homopolymer is formed to insure obtaining oriented fibers. In the case of copolymers, it is preferred that the R3 aromatic ring systems be unsubstituted because of thermal or hydrolytic instability and/or cost of the R3-ring substituted copolymers. Also included are those (co)polymers wherein up to 25 mol %, preferably up to 5 mol %, based on the total I, II and III units, are aromatic polymer-forming units (i.e., units
wherein the chain extending functional groups are attached to aromatic rings) not conforming to those described above and which do not interfere with the anisotropic melt forming capability of the polymers. A non-limiting list of these units includes

\[\text{units being within the range of 4:1 to 1:4. In the second type,} \\
\text{the polymers consist essentially of the recurring units} \\
\text{units being within the range of 4:1 to 3:2. With each type of} \\
\text{polymer, up to 25 mol percent of non-conforming units may} \\
\text{be present as described above.} \\
\]

A list of useful dicarboxylic acids includes terephthalic acid, 4,4′-bibenzoic acid, 4,4′-oxydibenzoic acid, 4,4′-thiodibenzoic acid, 4-carboxyphenoxyacetic acid, 4,4′-trans-stilbenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, ethyleneoxy-4,4′-dibenzoic acid, isophthalic acid, the halogen and methyl substituted derivatives of the foregoing dicarboxylic acids, 1,4-trans-cyclohexanedicarboxylic acid, 2,5-dimethyl-1,4-trans-cyclohexanedicarboxylic acid, and the like.

A nonlimiting list of phenolic carboxylic acids includes 6-hydroxy-2-naphthoic acid, 4-hydroxy-4′-carboxy azobenzene, furalic acid, 4-hydroxybenzoic acid, 4-(4′-hydroxyphenoxyl)benzoic acid and 4-hydroxybenzoic acid and the alkyl, alkoxy and halogen substituted versions of these compounds.

Of the (co)polymers containing only type III units, the polymers consisting essentially of the recurring units
polyesters and poly(ester-amide)s which are suitable for use in permeation chromatography and other standard techniques by polymerizing methylacryloxy benzoic acid utilizing tin oxide (e.g., dibutyl tin oxide), diaryl tin oxide, titanium p-acetoxybenzoic acid and p-acetoxycinnamic acid and the cations previously described, they can be readily processed by common molding films. Alternatively, light scattering techniques by polymerizing methylacryloxy benzoic acid utilizing an acid oligomer reactants are provided. When poly(ester-amide)s are to be formed, an amine group may be provided.

In addition, it is possible to prepare anisotropic polymers by polymerizing methacrylic benzoic acid utilizing an alkali metal hydroxide and free radical initiators as described in U.S. Pat. Nos. 4,112,212, 4,130,702 and 4,160,755. Useful phenolic-carboxylic acid derivatives include p-acetoxybenzoic acid and p-acetoxyphenylactic acid and the like.

In addition, it is possible to prepare anisotropic polymers by polymerizing methacrylic benzoic acid utilizing an alkali metal hydroxide and free radical initiators as described in U.S. Pat. Nos. 4,112,212, 4,130,702 and 4,160,755. Useful phenolic-carboxylic acid derivatives include p-acetoxybenzoic acid and p-acetoxyphenylactic acid and the like.

A nonlimiting list of various polyesters and copolyesters includes: poly(methyl-1,4-phenylene 2,5-dimethyl-trans-hexahydropolycarbonate); copoly(methyl-1,4-phenylene trans-hexahydropolycarbonate/terephthalate) (8/2); copoly(chloro-1,4-phenylene trans-hexahydropolycarbonate/terephthalate) (9/1) and (8/2); copoly(ethyl-1,4-phenylene terephthalate/2,6-naphthalate) (7/3); copoly(tert-butyl-1,4-phenylene/3,3',5,5'-tetramethyl-4,4'-biphenylene/terephthalate) (7/3); copoly(chloro-1,4-phenylene/3,3',5,5'-tetramethyl-4,4'-biphenylene/terephthalate) (7/3).

The liquid crystal polymers including wholly aromatic polyesters and poly(ester-amide)s which are preferred for use in the present invention commonly exhibit a molecular weight of about 5,000 to 17,000. Such molecular weight may be determined by gel chromatography, titration titillation, ultraviolet titillation, titration spectrophotometry, titration calorimetry, titration titillation, ultraviolet spectrophotometry, titration spectrophotometry, and titration titillation, ultraviolet spectrophotometry, titration spectrophotometry, and titration spectrophotometry. The wholly aromatic polyesters and poly(ester-amide)s which are preferred for use in the present invention commonly exhibit a molecular weight of about 2,000 to 200,000, and preferably about 10,000 to 50,000, and most preferably about 20,000 to 25,000. The wholly aromatic poly(ester-amide)s which are preferred for use in the present invention commonly exhibit a molecular weight of about 5,000 to 50,000, and preferably about 10,000 to 30,000; e.g., 15,000 to 17,000. Such molecular weight may be determined by gel permeation chromatography and other standard techniques not involving the solutioning of the polymer, e.g., by end group determination via infrared spectroscopy on compression molded films. Alternatively, light scattering techniques in a pentfluorophenol solution may be employed to determine the molecular weight.
bromine is more stable on aromatic rings than on aliphatic can vary widely. However, in order to prepare satisfactory vinylidene chloride, vinyl pyridine and the like. Other such that the second Godet roll revolves slightly slower than preparing these fibers, which differ with respect to the have strength and stiffness properties which are poor in by weight in pentafluorophenol at 60° C. filament denier (higher counts are required with lower denier polymer components may include substitution of at least s employed. The modulus of the fiber should be in the range of 50,000 to 500,000 psi. The thermoplastic fiber also must exhibit a melting point of more than 50° F., preferably more than 200° F., above ambient temperatures. And of course, the fiber must melt and fuse at temperatures no higher than about 1,000° F., preferably no higher than 800° F., in order to be useful herein. The weight ratio of the two fibers which are intermixed can vary widely. However, in order to prepare satisfactory composites, it is necessary that sufficient thermoplastic polymer fiber be employed to obtain complete wetting of the carbon fibers. Generally, no less than about 30 percent, by volume, of the thermoplastic polymer fibers may be employed. The maximum amount of thermoplastic polymer depends upon the strength properties which are required. In general, when less than about ten percent, by volume, of the carbon fiber is present, the resulting composite products have strength and stiffness properties which are poor in relation to products containing higher amounts of carbon fibers. Preferably about 20 to about 60 percent, by volume, of the carbon fiber material should be present in the combined tow. In addition to the carbon fiber and the thermoplastic fibers which are used herein, it is possible to add to the fiber blends of the instant invention other non-thermoplastic fibers as reinforcing fibers. Examples of these materials include the various types of fiberglasses and ceramic fibers. In the event additional reinforcing fibers are added, it is possible to reduce the amount of the carbon fiber which is used to as low as approximately 10 volume percent. However, the maximum combined amount of the added reinforcing fiber plus the amount of the carbon fiber which is employed should not exceed the upper limit specified above for the carbon fiber alone. In FIG. 1 of the instant invention, a carbon fiber tow (1) is obtained having the properties specified above. The fibers from the carbon fiber tow are passed through a fiber guide (3) and onto a first Godet roll (4). The first Godet roll is synchronized with a second Godet roll (11) at rates of speed such that the second Godet roll revolves slightly slower than the first Godet roll. Hence, the fibers between the two Godet rolls, which are subsequently spread and intermixed during the process of the invention, remains in a low tensioned (approaching tension-free) state which provides for effective fiber intermixing. Individual thermoplastic polymer fibers, such as polybutylene terephthalate fibers, are mounted on a bobbin rack (2) and the fibers are fed through a fiber guide (3) onto the first Godet roll (4). A tension comb may be employed after the fibers leave the bobbin and before they are brought into contact with the Godet roll. This tension comb serves to improve the contact of the fiber with the Godet roll and to increase the width of the fiber tow. At this point in the process neither the carbon fibers nor the thermoplastic fibers are intermixed or are in contact. Rather, both are wrapped separately around the first Godet roll (4) to provide tension control. After leaving the Godet roll, the individual fibers separately pass through a fiber guide (5) to maintain directional control. After leaving the fiber guide (5), the thermoplastic polymer fibers pass through a fiber comb (6). The fiber comb having a plurality of spaced-apart fingers acts to maintain as separate the various fine yarns of the thermoplastic polymeric fiber so as to preserve separation of the individual fibers.
fibers, on the other hand, after heating the fiber guide (5), are directed into a gas banding jet (7).

The gas banding jet shown in FIGS. 3 and 4 is used to uniformly spread the fiber tow. A gas “banding” jet can also be used as an intermixing means whereby the gas jet serves to uniformly intermix the two fiber tows. The banding jet consists of a gas box (40) into which compressed air or another gas is fed through a conventional adjustable gas metering means (41). The preferred pressure of gas flow into the gas jet is in the range of approximately 0.5 to 10 psi. One, or more than one, gas exit ports (44) are provided to cause gas from within the gas box to impinge in a generally perpendicular fashion upon the fiber tow which passes across the exit ports. Preferably the exit ports are V-shaped and pointed in the direction of movement of the fiber tow across the box.

As shown in FIG. 4, the gas banding jet is provided with shims (46) or other means to allow a gas box cover (48) to be attached, so that a flow channel for the fibers is provided. The gas box cover is held in place by convenient attachment means, such as clamps (49).

In an alternative process shown in FIG. 2 both the thermoplastic fiber and the carbon fiber are subjected to gas banding jet treatment (26) and (27). However, particularly with lower molecular weight, less high melting polymers, such as polybutylene terephthalate, a fiber comb having a plurality of spaced-apart fingers, as described above, may be employed in place of the banding jet.

After the fibers are spread by banding jets or banding jets in combination with combs, they are intermixed using an intermixing means (8). In FIG. 1 the intermixing means is a pair of stationary rods or bars. The fibers from the spread carbon fiber tow and the fibers from the spread thermoplastic tow or yarns both initially come into contact together on the bottom of the first stationary rod or bar. The fibers then are deflected across the top of the second stationary bar or rod and, as a result, are intermixed. In order to ensure complete intermixing, it is necessary that both fibers be uniformly spread across their entire width and that the area within which both fibers are spread be virtually identical. Finally, it is necessary that intermixing be undertaken in a relatively tension-free state. If high tension is imparted to either of the fiber tows, full (or optimal) intermixing may not occur. After passing the fiber guide under the stationary bars, the combined fiber tow may be further intermixed using an air entanglement jet as described above.

After intermixing, the fibers pass through a comb (9) to maintain dimensional stability and through twist guides (10) to impart a slight twist to the intermixed fibers. The twist is imparted in order to maintain the intermixing of the fibers. Instead of using an actual half-twist, false-twisting of the fibers using methods well known in the art may be employed. In the alternative, a fiber wrap may be used to hold the intermixed fibers together. The overlap wrap may be of any convenient type of fiber. However, it is preferred that the overlap wrap consist of a relatively small quantity of thermoplastic fibers.

The mixed fibers are then wrapped around a second Godet roll (11) which, as pointed out above, serves in conjunction with the first Godet roll to provide a relatively tension-free zone to allow fiber intermixing. The fibers are then taken up by a takeup roll (12) for storage. Of course, it is possible to impart false-twisting or actual twisting or to wrap the fiber tow with another fiber either before or after the Godet roll. In addition, the intermixed fibers may be made stable by application of an appropriate fiber finish which serves to hold the intermixed fibers together and enable easier handling in subsequent operations, such as weaving.

FIG. 2 is similar to FIG. 1 but is the process most preferred when a liquid crystal type polymer or other higher melting point polymer is used. In FIG. 2 a carbon fiber roll (21) feeds carbon fiber through tension comb (22) and onto Godet roll (25). Liquid crystal fibers from a roll (23) are fed through a guide (24) and onto the same Godet roll (25). Separation is maintained between both fibers on the Godet roll. As pointed out above, the first Godet roll (25), when used in combination with the optional second Godet roll (35), serves to maintain the fibers in a relatively tension-free state during the intermixing process. High tension during intermixing must be avoided to assure that complete intermixing occurs.

After the carbon fibers and the liquid crystal fibers leave the first Godet roll they are both fed into gas banding jets (26) and (27) through guides (28) and (29), respectively. In the gas banding jet the fibers are spread to a uniform width. The fibers then pass through a second set of fiber guides (30) and (31) and are intermixed using the stationary, longitudinally extended bars shown at (32). In general, intermixing occurs as the thermoplastic bundle is fed onto the same bar in the same area as the carbon fiber. At this point in the processing, the width of both tows is the same, and as they are brought simultaneously into contact with the same area of the bar, intimate intermixing occurs. In an alternative intermixing process, the two fiber tows are fed simultaneously into a gas jet or other gaseous intermixing device in a relatively tension-free state. In addition, the fibers may be fed into a gas jet for further intermixing after they have been treated on the stationary bars. In the gas intermixing means a jet of air impinges on the fibers, preferably perpendicular to their direction of flow.

Following intermixing, the fibers are fed through twist guides (33) to add at least a half-twist per yard to the fiber to ensure dimensional stability. Fibers then pass through a guide (34) onto a second Godet roll (35) and from there onto a take-up roll (36).

In use, the intermixed fibers may be filament wound, or otherwise assembled and placed on a mold, and heated under pressure to the flow temperature of the thermoplastic polymer to form composite articles which are useful in a variety of end uses where there is a small radius of curvature requiring substantial bending and shaping of the compositions of the instant invention. The only limiting factor in forming carbon fiber shaped articles using the compositions of the instant invention is the “bendability” of the carbon fiber itself. Therefore, utilizing the compositions of the instant invention, it is possible to prepare materials having a minimum radius of curvature of about 0.002 in., preferably as low as 0.003 in. However, with prior art thermoplastic tapes, the minimum radius of curvature is about 0.005 in. (Even then fiber directionality or alignment is distorted.) As structural elements formed from the fiber tows of this invention are heated under pressure above the melting point of the thermoplastic fiber, these fibers melt and fuse the carbon fibers together forming a consolidated composite product containing well-dispersed reinforcing fibers. Using the fiber blends of the instant invention, it is possible to prepare recreational articles, such as tennis
The fibers of the instant invention find particular utility in filament winding applications. As pointed out above, in the prior art it was extremely difficult to prepare composite articles utilizing the prior art fiber tapes. These tapes, which are prepared on extremely large scale, are difficult to handle on a small scale, and it is particularly difficult to form them into intricately shaped articles. While the prior art employed the filament winding process with success, this process was limited to use of carbon fibers in combination with thermosetting resins if long, thin rods were to be prepared. In the prior art process, the graphite was wound onto a mold after applying a thermosetting coating or coated with the thermosetting material after winding. As a result, however, it was often difficult for the thermosetting material actually to penetrate and/or achieve good wetting of closely wound fibers. Using the process of the instant invention in a modified filament winding procedure, it is possible to prepare intricately shaped articles when the fiber blends are oriented in directions not parallel to the long axis of the article, utilizing thermoplastic polymers in conjunction with carbon fiber reinforcement. This modified filament winding process begins with the use of the intertwined tows of the instant invention. These tows may be fed directly to a filament winder. As the filament winder moves around or up and down the mandrel or form, the carbon fiber/thermoplastic fiber tow is applied directly to the mold and heated using a radiant heater or other suitable means for immediately melting and fusing the thermoplastic polymeric fibers within the carbon fiber tow. In other words, the carbon fiber/thermoplastic fiber tow should be heated under pressure as soon as or soon after it meets the mandrel. After full melting and resolidification occurs, the mandrel either may be dissolved using a suitable solvent, may be pulled from the product, or the mandrel may actually become a part of the product.

Another unique use for the fiber blends prepared according to the instant invention is in forming woven fabrics utilizing standard techniques. According to this process, two parallel, longitudinally extended, staggered stationary bars and feed through fiber guides into an entanglement jet, which was similar in design to the gas banding jet and operated at a gas pressure of 7 psi. Following intimate intermixing of the two tows, the fibers were taken up on a takeup roll at a takeup speed of 7-8 m/min.

Test composite panels (3½"x10") were prepared using two layers of the intermixed fiber tow. Each layer was prepared by first wrapping a heated drum with a Kapton film and then filament winding parallel rows of the fiber blend prepared above onto the Kapton wrapped drum. A layer of Kapton film was then placed over the drum, and the entire wrapped drum was heated so as to temporarily fuse the fibers together. The composite containing the 25 fused layers was placed in a pressure mold, heated to 312 to 315°C and held at this temperature for five minutes without application of significant mold pressure. The mold pressure was then increased to 500 psi at 315°C and held under temperature and pressure for thirty minutes. The material was then cooled to 70°C and removed from the mold. The resulting material contained 51.4% by volume of carbon fiber and had a panel thickness of 0.1027".

Utilizing the same process, an eight ply 3½"x10" composite panel was prepared having a carbon fiber volume of 60.3%, a panel thickness of 0.035". The composites were evaluated for tensile, flexural and compression properties with the following results:

<table>
<thead>
<tr>
<th>Test</th>
<th>Property</th>
<th>Temperature</th>
<th>Strength (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° Tensile(1)</td>
<td>Strength (ksi)</td>
<td>RT</td>
<td>224.4 ± 5.0</td>
</tr>
<tr>
<td>Modulus (Msi)</td>
<td>19.2 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexural(2)</td>
<td>Strength (ksi)</td>
<td>RT</td>
<td>202 ± 23</td>
</tr>
<tr>
<td>Modulus (Msi)</td>
<td>16.8 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0° Compression(2)</td>
<td>Strength (ksi)</td>
<td>RT</td>
<td>100.6 ± 7.5</td>
</tr>
<tr>
<td>Modulus (Msi)</td>
<td>21.1 ± 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90° Flexural</td>
<td>Strength (ksi)</td>
<td>RT</td>
<td>5.9 ± 0.2</td>
</tr>
<tr>
<td>Modulus (Msi)</td>
<td>0.01 ± 0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Fiber volume normalized to 62%
(2) Performed on 8 ply. Remainder of tests performed on 25 ply.

EXAMPLE 2

Utilizing the same carbon fiber as described in Example 1, an approximate 50% by volume polybutylene terephthalate from a polyacrylonitrile precursor and is available from Celanese Specialty Operations, Hercules and Union Carbide.

Bobbins containing the LCP polymeric fiber tow and the Celion fiber tow were spaced apart on a bobbin rack. Fibers from both bobbins were fed onto and separately wrapped around a Godet roll, so that upon mixing the mixed tow would contain approximately 50% by volume of liquid crystal polymer and approximately 50% by volume of carbon fiber. The LCP polymeric fiber was subjected to a 50 gram weight on a tensioning device prior to being wrapped around the Godet roll, in order to maintain smooth tracking on the roll. After leaving the Godet roll, both fibers were separately subjected to air jet banding treatments utilizing an air jet which impinged air approximately perpendicular to the fiber through V-shaped nozzles. The jet for the liquid crystal polymer was operated at 5 psi, while the carbon fiber jet was operated at 4 psi. After leaving the banding jets, the fibers were brought together over the top and underneath of closely wound products.

TABLE I

<table>
<thead>
<tr>
<th>Test Temperature</th>
<th>Properties</th>
<th>0° Tensile(1)</th>
<th>Flexural(2)</th>
<th>0° Compression(2)</th>
<th>90° Flexural</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Strength (ksi)</td>
<td>224.4 ± 5.0</td>
<td>202 ± 23</td>
<td>100.6 ± 7.5</td>
<td>5.9 ± 0.2</td>
</tr>
<tr>
<td>Modulus (Msi)</td>
<td>19.2 ± 0.4</td>
<td>16.8 ± 0.4</td>
<td>21.1 ± 1.3</td>
<td>0.01 ± 0.04</td>
<td></td>
</tr>
</tbody>
</table>

(1) Fiber volume normalized to 62%
(2) Performed on 8 ply. Remainder of tests performed on 25 ply.
late (PBT)/carbon fiber blend was prepared. The polybutylene terephthalate material had a density of 1.34 g/cc and a denier of 1520 g/9000 m. The polybutylene terephthalate had a draw ratio of 2.25:1, an initial modulus of 24 g, a tenacity of 5.3 g/denier, an elongation of 28%, a melting point of 227° C. and a denier per filament of 2.7. Seventeen packages of 33 filament count yarn were employed on a banding jet of the type described in Example 1, operating at 19 bars. Intermixing was aided by the use of a second gas wrap around a second Godet roll and taken up at a speed tenacity of 5.3 g/denier, an elongation of 28%, a melting point of 227° C. and a denier per filament of 2.7. Seventeen packages of 33 filament count yarn were employed on a banding jet of the type described in Example 1, operating at 19 bars. Intermixing was aided by the use of a second gas wrap around a second Godet roll and taken up at a speed 8.7-9.8 m/min. In order to minimize tension during the intermixing process, the second Godet roll was operated at a slightly slower speed than the first Godet roll.

TABLE II

<table>
<thead>
<tr>
<th>Process History</th>
<th>Test</th>
<th>Strength</th>
<th>Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Room Temp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-2 ply at 468°F, 200 psi for 5 min., and reprocessed at 486°F, 300 psi for 20 min. Fiber volume was 51.6% and panel thickness was 0.019", 8-ply at 468°F, 300 psi for 10 min. and reprocessed at 486°F, 300 psi for 2 min. Fiber volume was 49.5%, and thickness was 0.0415", Processed three times: 1. 300 psi for 30 min at 471°F, 2. 500 psi for 15 min at 471°F, 3. 500 psi for 15 min at 469°F, Fiber volume was 61.4%, and panel thickness was 0.0402" (8-ply panel).</td>
<td>0° Flex 938 ± 34 (136 ± 5)</td>
<td>115.2 ± 2.1 (16.7 ± 0.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0° Compression</td>
<td>659 ± 83 (95.6 ± 12)</td>
<td>130.4 ± 7.6 (18.9 ± 1.1)</td>
<td></td>
</tr>
<tr>
<td>Short Beam Shear</td>
<td>39.9 ± 2.1 (5.2 ± 0.3)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0° Tensile</td>
<td>1518 ± 34 (220 ± 5)</td>
<td>150.4 ± 4.8 (18.9 ± 0.7)</td>
<td></td>
</tr>
<tr>
<td>0° Tensile</td>
<td>1525 ± 83 (221 ± 12)</td>
<td>164.9 ± 4.1 (23.9 ± 0.6)</td>
<td></td>
</tr>
</tbody>
</table>

An approximate 50/50% by volume blend was prepared based upon the carbon fiber described in Example 1 and a polyether ether ketone (PEEK) thermoplastic polymer. The fiber prepared from the PEEK had a density of 1.3 g/cc, a melting point of 338° C., an initial modulus of 53 grams, a tenacity of 2.7 g/denier, an elongation of 63%, and in 10 filaments per package tows a dpf of 367 (g/19000 m). Four (10 filaments per package) tows were placed on a creel and all packages were merged into a single polybutylene terephthalate fiber tow on a Godet roll. Maintained separately, but on the same Godet roll, was one package of 3000 filament count carbon fiber to provide a total approximate blend of 50/50 by volume carbon fiber/PBT.

The polybutylene terephthalate tow was fed through a fiber comb having approximately 30 teeth, while the carbon fiber tow was fed through a gas banding jet operating as described in Example 1, at a pressure of about 2%-3% psi. After leaving the jets extended rods by feeding both tows into the same area on the bars. Intermixing was aided by the use of a second gas banding jet of the type described in Example 1, operating at 2½-3½ psi. After leaving the banding jet, the fibers were fed through a second fiber comb which was arranged parallel to the direction of flow of the fiber, so as to provide a tensioning path to aid in intermixing. After leaving the comb, the fibers were fed through twist guides to provide approximately a one-half twist per yard, so as to maintain the fibers in their intermixed state. The fibers were then wrapped around a second Godet roll and taken up at a speed of 7-8 m/min. In order to minimize tension during the intermixing process, the second Godet roll was operated at a slightly slower speed than the first Godet roll.

3½x104 panel composites were prepared generally as described in Example 1 and evaluated with the results as shown in the attached table. Differences in processing conditions are noted in Table II.

A sample of the PBT/carbon fiber blend prepared above was wrapped with a 100 denier polybutylene terephthalate yarn as described above at four wraps per in. to form a compact yarn suitable for fabric weaving. The PBT fabric wrap was chosen, so that it would form a part of the matrix upon composite fabrication. The resulting wrapped yarn was then divided into 96 different yarn segments and placed on spools mounted on a special XD loom, using a plain weave pattern. The resulting woven fabric was then woven on a modified Draper 6" wide fabric was then woven on a modified Draper XD loom, using a plain weave pattern. The resulting woven product had dimensions of 16 ends per inchx15 picks per inch and weighed 16 oz./yd2. The fabric was 35 mils in thickness, was soft but compact, and exhibited good dimensional stability. Satisfactory fiber composites having irregular shapes are prepared from the resulting fabric.

EXAMPLE 3

An approximate 50/50% by volume blend was prepared based upon the carbon fiber described in Example 1 and a polyether ether ketone (PEEK) thermoplastic polymer. The fiber prepared from the PEEK had a density of 1.3 g/cc, a melting point of 338° C., an initial modulus of 53 grams, a tenacity of 2.7 g/denier, an elongation of 63%, and in 10 filaments per package tows a dpf of 367 (g/19000 m). Four (10 filaments per package) tows were placed on a creel and the fibers were blended together on a Godet roll, but maintained separately from the carbon fiber which was also wrapped around a Godet roll. The PEEK fiber was then directed through a fiber comb as described in Example 2 and into a gas banding jet. The carbon fiber after leaving the Godet roll also entered a gas banding jet. Both jets were operating at a pressure of about 3 psi. After leaving the jets the fibers were intermixed above and below two parallel,
longitudinally extended rods and fed through a second parallel fiber comb, twisted to maintain dimensional stability, fed over a second Godet roll and taken up at a speed of 7-10 m/min. A satisfactory composition resulted.

What is claimed is:

1. A continuous, linearly intermixed fiber tow useful in forming composite molded articles which comprises an intimately, uniformly and continuously intermixed blend of about 90 to about 30% by volume, based on the total fiber content, of spun, continuous, individual, thermoplastic polymer fibers having a melting point of at least about 50° C. and about 10 to about 70% by volume, based on the total fiber content, of continuous, individual, carbon fibers wherein there is a substantially uniform distribution of the thermoplastic fibers and the carbon fibers within the intermixed tow.

2. The linearly intermixed tow of claim 1 wherein the thermoplastic fibers are present in an amount from about 80 percent by weight to about 40 percent by weight based upon the weight of the tow.

3. The linearly intermixed tow of claim 2 wherein prior to being intermixed with thermoplastic fibers, the carbon fibers are contained in a tow having a bundle denier of from 300 to about 100,000.

4. The linearly intermixed tow of claim 2 wherein prior to being intermixed with thermoplastic fibers, the carbon fibers are contained in a tow having a filament count of from 3,000 to about 24,000.

5. The linearly intermixed tow of claim 1 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 10 to about 150,000 filaments.

6. The linearly intermixed tow of claim 2 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 10 to about 150,000 filaments.

7. The linearly intermixed tow of claim 3 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 10 to about 150,000 filaments.

8. The linearly intermixed tow of claim 4 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 10 to about 150,000 filaments.

9. The linearly intermixed tow of claim 1 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 100 to about 10,000 filaments.

10. The linearly intermixed tow of claim 2 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 100 to about 10,000 filaments.

11. The linearly intermixed tow of claim 3 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 100 to about 10,000 filaments.

12. The linearly intermixed tow of claim 4 wherein the thermoplastic fibers, prior to intermixing, are contained in a tow containing from about 100 to about 10,000 filaments.

* * * * *