US005790567A

L]
United States Patent 19 (111 Patent Number: 5,790,567
Bolotin et al. 451 Date of Patent: Aug. 4, 1998
[54] PARALLEL PROCESSING SPACECRAFT 5,140,611 8/1992 Jones et al. ..cvrrireremrencrevraenns 3751219
COMMUNICATION SYSTEM 5,239,543 8/1993 Janssens 370/458
5274634 12/1993 Babiarzceoceimececoneen 370/422
tors: . Bolotin. ia; A 5410568 4/1995 SChiliDE ..ccorsurrmsrsrerrsserrsen 370/342
[75] Inventors: Gary S. Bolotin Mo¥1€0v1a James 5,513,191 4/1996 Takechi et al.ccoeevervenrenens 371/37.1
Deonaldson. Glendale; Huy H. Luong, :
Alhambra; Steven H. Wood. Los 3530831 #1906 Tanshashi o " Srorse1
Angeles, all of Calif. 550, anahashiiiiennieinniienn
) . . Primary Examiner—Paul P. Gordon
[73] Assignee: California In§htute of Technology. Assistant Examiner—Robert J. Dolan
Pasadena, Calif. Attorney, Agent, or Firm—Fish & Richardson P.C.
[21] Appl. No.: 519,786 571 ABSTRACT
[22] Filed: Aug. 28, 1995 An uplink controlling assembly speeds data processing
s using a special parallel codeblock technique. A correct start
[51] Imt. CL® .. HO3M 13/00; HO4B 7/204; sequence initiates processing of a frame. Two possible start
HO4B 7/185; HO4J 3/24 sequences can be used; and the one which is used determines
[52]1 UK. Cl i 371/37.01; 370/341; 370/342; whether data polarity is inverted or non-inverted. Processing
370/349 continues until uncorrectable errors are found. The frame
[58] Field of Searchrviennn 371/37.1. 37.01. ends by intentionally sending a block with an uncorrectable
371/37.02; 370/242, 341. 342, 347, 349 error. Each of the codeblocks in the frame has a channel ID.
. Each channel ID can be separately processed in parallel.
[56] References Cited This obviates the problem of waiting for error correction
ATENT UMENT: processing. If that channel number is zero, however. it
UsS. P DOC S indicates that the frame of data represents a critical com-
Re. 35414 12/1996 Murakami et al. 348/416 mand only. That data is handled in a special way, indepen-
4,145,573 3/1979 Amold ...covcenmnrsonnieenns 370/323 dent of the software. Otherwise, the processed data further
4205324 5/1980 Patel 3715501 handled using special double buffering techniques to avoid
4485470 11/1984 Reali 370/337 problems from overrun. When overrun does occur, the
4,665,532 5/1987 Fukudaet al.cvirerreemreenes 375/292 system takes action to lose only the oldest data
4,979,174 12/1990 Cheng et al.cciriiivnicnreecsenes 371/41 :
4,990,924 2/1991 McMullen et al. e 342/359
5,022,051 6/1991 Crandall et al. 375,292 19 Claims, 10 Drawing Sheets
To Engineering From Uplink To Downlink TosFrom Solid
SubsyTsmms Receiver Transmitter State Recorder
CRITICAL SRAM
CONTROL [+ HCD ASIC RSDLASIC [« 35 1) SSRIU ASIC
RELAYS {Uglink, PROM (Downiirik,) (Seld Siale
IVF. Fault Spacecraft Recorder I'F,
START-UP Detection Unit) Clock) soi!thfaro "‘m"
PROM || in e_r ‘ar.rn =}
{W/EDAC) RSbL
(6ekw max)[\, ¢
SRAM
{32 kwj
1750A ISR
COMPUTER _I__*
XBA ASIC XBA ASIC
(Remole Term {Bus Controller
mode) mode}
UTvG SRAM UTMC SRAM
BCRTM {w/EDAC) BCRTM (W/EDAC)
CHIP (32 kw) CHIP (32 kw)
h 1\
y A 4
TorFrom XCEIVER [XCENVER I
Engineering
Subsytems. 15538 Bus
Science

instrumants

U.S. Patent Aug. 4, 1998 Sheet 1 of 10 5,790,567

To Engineering From Uplink To Downlink To/From Solid
Subsystems Hecher Transmitter Siate Recorder
CRITICAL)

CONTROL [*>] HCD ASIC ASDL ASIC <3 oo SSFI ASIC
RELAYS (Uplink, PROM (Downlink, (Solid State
Recorder IF,
I/F, Fault Spacecraft software daia
START-UP | = Detection Unit) Clock) - intertace 16
PROM ™7) RSDL)
(w/EDAC) | ry
(64kw max)|\ 1
202
SRAM
(32 kw)
1750A I1SB
COMPUTER
XBA ASIC XBA ASIC
(Remote Term. = (Bus Controller
mode) mode)
A
Y Y Y
UTMC SRAM utve SRAM
BCRTM (W/EDAC) BCRTM (W/EDAC)
CHIP (32 kw) CHIP (32 kwj
A A
¥ ¥
To/From XCEIVER XCEIVER
Engineering
Subsytems. 15538 Bus
Science
Instruments

FIG. 1

5,790,567

U.S. Patent Aug. 4, 1998 Sheet 2 of 10
2‘\1 From CDU'S
N s]
p D
PROMEDAC | ROM Data
'y
L1 6
CRCS
™ HCD ”
- ~| CRC >
~——7+18
|
S INT
Y —
168 -
T 1SB SLAVE fe— ~,,
< INTERFACE ADDRESS
4 _ | DECODER
- - Decodes
ISB Interface, AN
Y / N y
b CHIP BOUNDARY 169
20

FIG. 2

U.S. Patent Aug. 4, 1998 Sheet 3 of 10 5,790,567

28

26 30

_/ L N

ACQUISITION IDLE
SEQUENCE COMMAND LINK TRANSMISSION UNIT SEQUENCE
(5's or A’s) (CLTU) (5's or A's)

START [7 TAIL

SEQUENCE TC TRANSFER FRAME SEQUENCE

(EB9Oh or 146Fh) (IN CODEBLOCKS) (5's or A's)
(2 bytes}) (8 bytes)
/

OODEBLOCK | CODEBLOCK CODEBLOCK
DATABITS | GHECK paTABITS | CHECK DATABITS o o o
(7 bytes) BITS (7 bytes) BITS (7 bytes)

Y1 byte) y (1 byte) y
/
46 48,50
HEADER (optional)
(5 bytes) , (248 bytes max) (2 bytes)
N\ / \
38 40

42

FIG. 3

5,790,567

Sheet 4 of 10

Aug. 4, 1998

U.S. Patent

¥ "Old

(0:g)eWoIpuis D

joulgeidiinpy D

\ jon3e1buig _||J_ 7
8§ \

96

aumssosmom

XN

pesd Ovad
9gL12
abo1 | N Uanll
1100 f\AOUmVU HEHIO 0:61
[Jesoo3sd
St
\U/ 061

0:G1

/q_w_s;mvc_mao

¢S

vs

0Ss

y

ve "Old

8V
J

vy
9t
\

/

1= u

na “ sig xumbo

Ained 7

siig eieg O1 95

plai4 |0JJuoD JoLg

piat4 UOIBLLIOJ|

U.S. Patent Aug. 4, 1998 Sheet 5 of 10 5,790,567

: » APE
Address Decoder > » ARE
A(20:0) > > - - XSCBC”BAHE%[E)EC
- . - : » SSRIU RSEL
N f—— o I
SURAMEN > >
SUROM » : » SCBCRAMDEC
WRSTRB > > »> » XBARAMDEC
> » SSRIUMSEL
P > >
I0On > » PROMDEC
> HCDRDSEL(63:0)
> » HCDWRSEL(63:0)

e
N

70

FIG. 5

U.S. Patent Aug. 4, 1998 Sheet 6 of 10 5,790,567

Test Points

600 300 HCDCRG chip boundry
T TS T T T T E T T |
DataO— | i
cbu - Clock [i —? : Start Sequence Detector & Ambiguity Resolver :
A Lock OH 1 ! :
Or Wmux| _LL__ '
u| Data 0+ ! :
{ Clock i . i
B ! Bit Count
/B | Lok O i 5 4-| oun E
602,'DataD___ : - ;6 Bit Count l !
Spt% Clock [F—— : O ' |
4. L ock O— |)= - Control i
| seacg——— | il 302 !
604 T 7 Invert Expected Zeroesl ’/ :
oy
! 605 Serial to Parallel 84-bils HCD Status |—T>
| Y 1 Status
: 64t 610 HCD Controf :
| — 7 bit |Lcokup _j Error Detecti]
| sonoone o rl@ eS|
i T . 178
: ‘ 64l G114 ~ . :
! 1 304 Corrected Data Command Buffe:
1618 48 Y ~—620 Memory
CRC , - Cmd
E eFcMask |, | (o - 64-bit Register | g~ ‘}\
l CRC State Control}| Double —022]/62 1] :7 6
: a8 CBufferi || S4-bil Register | ., ’i/
r
: oo l’62 3 :
! u Mux - T7 2
I |
[

- Relay Control
S m— s e TETTT
_ = 1
S/C Eng To ISB Interface

Subsystems
interface

306 20

U.S. Patent Aug. 4, 1998 Sheet 7 of 10 5,790,567

80

84 86

/ 88

Start Sequence
detected

LOCK signal
asserted

DECODE
STATE
{(perform EDAC,
place Codeblocks
in Jdala bulifers)

SEARCH
STATE
(search for
Starl Sequence}

LOCK signal Uncorrectable error
deasserted detected in Codeblack

\82

LOCK signal
deasserted ™~ go

FIG. 7

98

\ N\)z /100

VERSION] BYPASS | CONTROL | SPARE | SPAGE |VIRTUAL| spang | FRAME | FRrane
NUMBER| AAG | COMMAND CRAFT | CHANNEL LENGT14 Sze)

FLAG 1D D NUMBER| = 40 bits
(2 bits)|(1 bits)| (1 bits) | (2 bits)}(10 bits} (6 bits)| (2 bits)| (8 bits)| (8 bits)

FIG. 8

5,790,567

Sheet 8 of 10

Aug. 4, 1998

U.S. Patent

SHIALSIOI N\

Na4 aoH
(0:2)LNIMS |- = (0-LHENINMS
LNOLNIMS 1NOLINIMS (O EMMSHINNIND (0-EMSIWINNIND
NN - AN (OB INTANIND | (0-EINIANIND
INAONJLSY |
XIHLVIA LdNYHALNI DIH3NID NAa4
INONJLSY
L3S 3HVEX ¢ 1SHYaxX
OHOLISTH |« 0)o4D
‘£-01LSHMS - (£-0)1SHMS HOANOd | HONO
1O0RMOD -« 1008000 WO 1« HOd
LOOHNHVIA - LOOGNHYM 099! |« le:3;31 211
415 13534 |- —
13S3HIS |- 1s42s
MI01SH [~ A10LSYH
ETES):
TOHINGO 1LY | — 11y
13634 N4 NIALS |-
{0-2)HLSNQ |-
. S3L 473s Nd4
HETY3H HLTV3IH HLTY3HAIA |- HLW3H43a
-« (0-1)LOISHSSMS (0-111D71SHSSSHD |- (0-1)1D718HSSSHD
(0-111LD15HSS = (0-1)LD1SHSS (0-1)LDISHSS |- (0-1)L0754S3T
< {0-2)ANIHdMS (0-Z)3NIHISHD | <€ (0-2)3NIYdSYD
(0-2)3NIHd {(0-2)3WIdHd (0-2)aNIHC 1 |- (0-2)3WIYd
-« INMNOMS INMNOSHD | 3NANOSHD
ANMNO - INMNO ANIMINOT g ININOT
-« LEHLTHMS TBHLTHSHD | LAH1THSHD
L1EHLTH - L18H1TH 1OHLIHT |- 18H1THT
JOHINCO —
— ONIHLS SSOHO SHALSOIY
Na4 goH i

_

/

6 "Old

U.S. Patent Aug. 4, 1998 Sheet 9 of 10 5,790,567

60
LOCK 1 In Lock L

64
GLOCK Bign B pu B pn B au B et

62
DATA o T Lo ——

FIG. 10

ADDRESS(20:0), AR Valid ﬁ' - < ;
(driven by Master)

DATA(15:0), DP ¢< Vaiid ‘
(driven by Slave) :)

READWRITEn \ _\

{driven by Master) J ‘)
\
Address Valid (ADVn) /v/l/

(driven by Master)
Data Transfer Acknowledge \..\/
(DTACKnN)

(driven by GSlave)

FIG. 11

ADDRESS(20:0), AP Valid 7/9—‘6
{driven by Master) e
DATA(15:0), DP ——< Valid

(driven by Master)

READWRITEN
{driven by Master}
|
Address Valid (ADVn) \
(driven by Master) T /—y
Data Transfer Acknowledge \————-»SY/
{DTACKnN)

(driven by Slave)

FIG. 12

U.S. Patent Aug. 4, 1998 Sheet 10 of 10 5,790,567

Valid
Hardware
404 Command
402

400 ILock 406 Received

[s[>

InActive Search DecodeCmd
000 001 11 1

Decode
011

ColdBoot
408

410

FIG. 13

5,790,567

1

PARALLEL PROCESSING SPACECRAFT
COMMUNICATION SYSTEM

Statement as to Federally Sponsored Research

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in which the
Contractor has elected to retain title.

FIELD OF THE INVENTION

This invention describes an assembly for improving speed
and accuracy of communications in a satellite uplink system.

BACKGROUND AND SUMMARY

Size. weight and power requirements are important when
designing a spacecraft. Heavier payloads are more expen-
sive to launch. Package size is also important, since space-
craft size is proportional to its weight.

One of the important functions carried out by such a
satellite system is called uplink communications. Signals are
transmitted from a ground station up the “link” to the
satellite. These signals represent all useful functions that can
be carried out with the satellite. The signals include control
functions of the satellite as well as communication to or via
the satellite. This communication is carried out using any
well-known format. Previously, the communication was
carried out using a number of chip sets to receive and buffer
the information appropriately. These chip sets used a lot of
power, and even with so much power being used, still was
slow and space-inefficient.

Tt is an object of the present invention to form a system
which carries out these functions in an improved way.

One aspect of the present invention receives and decodes
uplink commands and also carries out various other
functions, including determining direct-to hardware
commands, and interface functions with the programmable
read-only memory. The inventors of the present invention
recognized that combining these functions in the same
device produces some economies since there is certain
coupling between various functions.

Another aspect uses a special data format and parallel
processing algorithm to determine start sequences in uplink
information. This system also carries out error detection and
cotrection within a decoding block. This parallel processing
technique is facilitated by the special data format used
according to the present invention.

Another aspect uses a special and unique double-buffering
method to maintain read/write status and to resolve over-run
between the incoming data and the data which can be
processed.

Yet another aspect provides a mechanism for allowing
critical functions to be carried out using a technique which
bypasses the usual software interpretation of commands.

Yet another aspect uses a special technique to determine
errors, and that same technique to end a portion of a
message.

BRIEF DESCRIPTION OF THE DRAWING

These and other aspects of the invention will now be
described in detail with reference to the accompanying
drawings, wherein:

FIG. 1 is a block diagram of a command and data
subsystem utilizing an assembly according to one aspect of
this invention.

10

15

20

25

30

35

45

50

55

65

2
FIG. 2 is a functional block diagram of the assembly.
FIG. 3 is a diagram of the format of uplink data.

FIG. 3A is a diagram of the format of one code block of
data.

FIG. 4 is a functional diagram of an error detection and
correction circuit.

FIG. 5 is a block diagram of an address decoder.

FIG. 6 is a block diagram of a hardware command
decoder and critical controller.

FIG. 7 is a flow diagram showing the reception of data.

FIG. 8 is a block diagram of a frame header within any
one code block.

FIG. 9 is a block diagram of a fault detection unit.

FIG. 10 is a diagram of signals received during uplink
reception.

FIG. 11 is a fiow diagram of inter subassembly bus
interface protocol during a read cycle.

FIG. 12 is a flow diagram of inter subassembly bus
interface protocol during a write cycle.

FIG. 13 is a flow diagram of the reception of a critical
enable.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 shows a block diagram of the command and data
subsystem of the present invention to decode uplink com-
mands sent from the ground station to the space vehicle on
which the device is installed.

A flight computer 10 controls associated devices over
subassembly bus 12. The computer is preferably a 1750A
low-power computer but any other similar computer which
is suitable for space installation can be used.

The satellite controls a number of controlled functions.
Many of these controlled functions are under the control of
the critical control relay assembly 200. Control relays 200
include a plurality of latching-type relays. These relays are
highly noise immune, and are very reliable. The control
relays 200 are used, for instance, to control the payload, or
in other circumstances where high reliability is necessary.

Control relays 200 are controlled by a hardware command
decoder module 14. This module 14 is one of the described
systems according to the present invention. Module 14
carries out uplink processing. interface with the program-
storing programmable read only memory (“PROM”). and
fault detection. The techniques of operation described herein
allow all of these functions to be combined into a single 256
pin chip. The way in which this is carried out is described
herein.

The assembly starts up from a start-up memory, here
PROM 202. The PROM 202 includes the error detection and
correction program and assembly therein. This system can
use any well-known error detection and correction system.

The inventors recognized that one of the speed and power
drains in the prior art has the processing and operation time
necessary to carry out the error correction and detection. It
has sometimes taken as long as 64 clock cycles to process
the uplink data. Accordingly, the speed of uplink data has
been limited by the processing time for the error correction.

The present invention carries out a number of operations
to avoid this problem. The present invention teaches that the
data is arranged into a plurality of transfer frames within
each uplink message unit. Each of the transfer frames
represents one code block that can be independently

5.790.567

3

decoded. Each transfer frame includes a channel number.
Each of the channel-numbered code blocks is applied. in
parallel, to one of a plurality of decoders. Therefore. the
transfer code blocks are decoded in parallel by a plurality of
decoders; each decoded while another one of the code
blocks is being decoded. Essentially, therefore, these bits are
clocked in, serial-to-parallel converted, and processed in
parallel. The unique transmission protocol enables this par-
allel clocking as described above. Since the 64 units are
processed in parallel. the speed of the communication is not
limited by hardware.

Various other communications are also controlled by
other associated hardware, which will described herein for
completeness. The Reed-Solomon downlink assembly 204
controls downlink coding using the Reed-Solomon protocol.
Solid state RIU chip 208 forms an interface to the Reed-
Solomon downlink. A remote terminal mode interface 214
allows operation as a remote terminal. while a bus controller
216 allows operation as a bus controller.

FIG. 2 shows a block diagram of the hardware command
decoder 14 which is the main subject of this invention. The
command decoder 14 communicates with the intersubas-
sembly bus 12, as shown therein. The data received from the
uplink has previously been communicated to the bus accord-
ing to any known technique. The way in which the operation
is carried out is described herein.

Intersubassembly bus interface 20 includes a slave inter-
face 168 and an address decoder 169.

Data from PROM 202 is received at PROM EDAC 24.
Unit 24 includes the error data and correction unit which
checks the data for errors, and corrects any data that has
errors therein.

A number of different kinds of commands and informa-
tion can be passed from the uplink to the command decoder.
A particularly important kind of command is called a critical
enable. The critical enable confrols a relay in the critical
control relay assembly 200. One example of such a critical
enable would be. for example. a command to deliver the
payload.

The preferred technique of the present invention reserves
the channel number 0 to indicate that the command block
includes critical commands or critical enables. The critical
controlier 18 determines if a critical enable is contained
within the uplink data. If a critical enable is contained in the
received data, the hardware command decoder 16 decodes
the critical enable and outputs a signal, via relay control 631,
to control the states of critical control relays 200. These,
then. control the engineering subsystems. The assembly 14
can support direct ground control of up to 32 relays and 24
discrete outpats.

The operation for processing a critical enable according to
the present invention bypasses the usual software decoding.
Each signal according to the present invention is associated
with a channel. The channel can indicate the destination
and/or time slot for the signal. According to the present
invention, channel 0 is reserved for special operation. A
signal that is labeled with channel 0 indicates that the data
in that block is intended for a critical function. That channel
command is virtual in the sense that it does not really
indicate a channel; instead it indicates that no channel or
channel decoding will be used.

If there is no critical enable contained in the data, the
non-critical control relay data is passed to the inter subas-
sembly bus interface 20. The data is buffered and addressed
and passed to the main computer 10 over the inter subas-
sembly bus 12 that includes intersubassembly slave assem-

10

15

20

25

30

35

45

50

55

65

4

bly 168 and address decoder 169. A fault detection unit 22
periodically performs system checks as described herein to
determine if the assembly 14 is operating properly.

A primary function of the assembly 14 is to decode uplink
data received at an uplink receiver 8. The uplink error
correction uses a well-known EDAC system as specified in
the Consultive Committee for Space Data Systems
(CCSDS) telecommand standard. The data has previously
been formatted in accordance with the CCSDS TeleCom-
mand standard, discussed herein with reference to FIGS. 3
and 3A.

The CCSDS-encoded uplink data stream shown in FIG. 3
includes three data structures: an acquisition sequence 26, a
command link transmission unit 28 and an idle sequence 30.
Acquisition sequence 26 is an alternating pattern of ones and
zeros. Acquisition sequence 26 is used at the start of an
uplink session to provide a sequence that allow the asyn-
chronous uplink receiver to lock onto the data stream. The
acquisition sequence is a minimum of two bytes in length.to
allow proper acquisition.

The command link transmission unit 28 includes the
actual data being sent to the spacecraft. Unit 28 has three
parts: a start sequence 32, a transfer frame 34 and a tail
sequence 36. Start sequence 32 preferably includes 16 bits
of reserved information. That value is preferably EB90 hex
if the data polarity is positive. and its complement 146F hex
if the data polarity is negative. Start sequence 32 hence
identifies the beginning of a command link transmission unit
28 and tells the system the polarity of the data.

A telecommand transfer frame 34 follows the start
sequence 32. Each telecommand transfer frame 34 has a five
byte frame header 38, a frame data field 40 formed of a
plurality of code blocks which is a maximum of 248 bytes,
and a two byte optional check-sum 42. Each telecommand
transfer frame 34 is composed of several telecommand code
blocks 44. The code black 44 has 56 information bits 46 (7
data bytes), 7 check bits 48 and one fill bit 50. See FIG. 3A.
The check bits are generated using a modified Bose-
Chaudhuri-Hocquenghem (BCH) code. This code is speci-
fied in the CCSDS telecommand standard and is well known
to those of ordinary skill in the art.

The telecommand tail sequence 36 marks the end of the
transfer frame. It has 64 bits with the reserved sequence
value 5555 5555 5555 5555 hex if the data polarity is
positive, and its complement AAAA AAAA AAAAAAAA
if the data polarity is negative. The tail sequence 36 iden-
tifies the end of a command link transmission unit 28.

Idle sequence 30 marks the end of the complete package
of data. Like the acquisition sequence 26, the idle sequence
30 is an aiternating pattern of ones and zeros. It allows the
uplink receiver to maintain a lock on the signal in the
absence of actual data being transmitted.

The uplink data received by the assembly 14 may be
inverted or non-inverted. If the assembly 14 determines that
the start sequence 32 is 146F hex, the polarity of the data is
judged to be negative and all subsequent data received will
be inverted by the assembly 14 before being written into
software buffers. If the assembly 14 determines that the start
sequence 32 is EB9) hex, the polarity is judged to be
positive and therefore no inversion is needed.

An additional layer of security is also available in the
units. Start sequence 32, which can one of two reserved
values as described above, can be used to determine the start
of any command link transmission unit. However, certain
commands, such as commands to the control relay, require
enhanced security. According to this mode, an enhanced

5,790,567

5

start sequence is preferably used to detect the start of an
enhanced security command link transmission unit. The
enhanced start sequence reduces an probability of the assem-
bly 14 mistakenly detecting a command link within a stream
of random data. This enhanced start sequence can be, for
example, the initial start sequence 32 followed by an addi-
tional start sequence which must follow the start sequence
32. The probability of detection can be accordingly mini-
mized.

FIG. 4 is a diagram of one of the error detection and
correction units 24 that is included in the assembly 14 of
FIG. 1. Preferably. 64 of these units are provided, so that the
error correction and detection unit 24 provides error detec-
tion and correction functions on incoming data in parallel.
The acquisition or start sequences is stripped from the data
so that only the code blocks 44 are serially run through the
error detection and correction logic of the error detection
and correction unit 24.

Each code block 44 contains seven parity check bits 48.
which allow error detection and correction to be performed
on the code block 44. The error detection and correction unit
24 receives data on the Dataln port 52 and outputs corrected
data on the DataQut port 54. The data correction is carried
out in any known way., using any of the known data
correction techniques which are described in the CCSDS
telecommand standard. The system of FIG. 4 shows the
correction logic. along with use of check bits and multiplex-
ers to produce the data correction and detection.

The error detection and correction logic can operate in
one of two user-selectable modes. In the first mode, single
bit errors will be corrected and double bit errors can be
detected but not corrected. They cause the error detection
and correction unit to set a flag indicating that an uncor-
rectable error has occurred. In this mode, triple bit errors
may not be detected at all. In the second mode, single,
double or triple bit errors will be detected but there is no
error correction. If the uplink channel is very noisy. the user
might want triple bit error detection. If the uplink channel is
not very noisy. the user might prefer to have double bit error
detection and single bit error correction. Single bit error
detection and correction allows the ermror detection and
correction unit 24 to correct a single bit error through the use
of correction logic and the inter subassembly bus 12 is
notified of a correctable error through a correctable detected
error signal 56. If, however. the error detection and correc-
tion unit 24 detects more than one error. the errors will not
be corrected, and the inter subassembly bus 12 will be
notified of an uncorrectable error 58 by forcing bad parity on
the inter subassembly bus 12.

The mode can be software controlled, or can be controlled
by uplink commands.

The operation of detecting data is shown and explained
with reference to the operational flow diagram of FIG. 7.
The command decoder is idle at 79. A lock signal is received
from the uplink receiver at step 80. The lock signal indicates
that the input data to the command decoder is valid. When-
ever the lock signal is de-asserted, the data is no longer
valid, causing the command decoder to ignore the data.
Once lock is asserted at step 80, however, the system enters
a search state at step 84 to search for a start sequence in the
uplink sequence. When a valid start sequence is detected at
step 86, the hardware command decoder is commanded into
a decoding state 88. Decoding state 88 initiates error cor-
rection and detection. Each code block is placed in a data
buffer that is software accessible.

Any code block with an uncorrectable error causes the
hardware command decoder to transition back to the search
state 84 at step 90 to search for another start sequence.

10

15

20

25

30

35

45

50

55

65

6

The tail sequence that ends one of the units actually
includes an uncorrectable error therein: 55555 55555 55555
hex. This produces a double-bit error. The hardware recog-
nizes this double-bit error, and sets the uncorrectable error
flag. Note that the fill bit in the tail sequence 36 is set to “1”
and that the code blocks 44 have the fill bit set to “0”. The
acquisition sequence 26 also has the fill bit set to “1”. A “1”
in the fill bit position is required for detection of the tail
sequence 36, and a “0” in the fill bit position is required for
detection of a code block 44.

The uplink receiver interface is a serial, synchronous
interface which receives data transmitted from an uplink
station and passes it on to the DataIn port 52 of the error
detection and correction unit. FIG. 10 illustrates three types
of signals received by the uplink receiver. Lock signal 60
indicates if the uplink receiver is locked and producing valid
data. The assembly 14 only decodes the uplink data 62 when
the lock signal 60 is asserted and ignores uplink data 62
when the lock signal 60 is de-asserted. Clock signal 64 is
used to clock in the uplink data 62. The assembly 14 can
support an uplink data rate of up to 200,000 bits per second.

The transfer frame header has the structure shown in FIG.
8. The information included in the transfer frame header is
crucial for processing the actual information of the transfer
frame. Virtual channel number 100 is specified in the
transfer frame header. As described above, the virtual chan-
nel ID bits 100 are usually used to identify the transfer
frame, and to allow it to be logically multiplexed from a
single physical telecommand data channel 98 into 64 logical
channels.

The assembly 14 imposes two restrictions on the use of
these channels: (1) virtual channel 0 is reserved for hardware
commands which toggle the critical enables independent of
the software; and (2) when using virtual channel 0, the
command link transmission unit 28 may contain only one
transfer frame 34.

Once the assembly 14 detects a start sequence 32, it
checks the virtual channel ID bits 100 in the frame header 38
in the first transfer frame 34. When a virtual channel ¢
transfer frame is detected, the assembly 14 checks to deter-
mine if the spacecraft ID bits 102 in the frame header are
correct. If they are correct. the assembly 14 writes the
critical enables specified in the frame data field and places
the code block in the data buffer.

When a non-virtual channel 0 transfer frame is detected,
the assembly 14 simply places the code block 44 in the
software data buffer without checking any of the other bits
in the frame header 38. The critical enables described above
control the hardware function independent of the software,
and do so with a high measure of reliability.

The user can set the spacecraft ID via ten input pins on the
assembly 14. Anywhere from one to eight critical enables
can be set with a single transfer frame 34. However, as
described above, only a single transfer frame can be
included in the message.

The assembly 14 contains a mask bit for each critical
enable. The mask bits are controlled from the ground via
virtual channel 0 commands. The ground can allow flight
software control of a critical enable via the mask bits.

A block diagram of the preferred hardware command
decoder is shown in FIG. 6. Serial data can be received on
either channel CDUA 600 or CDUB 604. The equalization
signal 602 determines which of the two elements is receiv-
ing valid data. Multiplexer 300 determines the proper
output, and produces output data as 606. The output data is
converted from serial to parallel by converter 302.

5,790,567

7

The output data is divided by channel numbers as
described above. and then detected and error comected by
error detector and comector module 612, which includes a
number of separately-operating modules as described above.
The output corrected data 614 is then tested for various
things. The virtual channel IO determines whether the data
includes any critical control enables. If so, the information
is controlled as discussed herein. If no critical enables are
contained, however, data is transferred to the 64 bit registers
620 and 622. These double registers buffer the data in a new
and advantageous way as described herein.

The output 621 of register 620 and the output 623 of
register 622 are connected in parallel to a multiplexer 72.
Double buffer controller 306 controls which of the two
registers are outputting data.

When a register is full. it begins outputting the data
through the multiplexer to the processor. At the same time,
the other register should be filling. Each register can hold
one-64 bit code block. However, what happens when the
data comes in at too fast a rate: i.e., the data comes in so fast
that new data arrives before the data in one of the registers
has been completely emptied?

According to the present invention, double buffer con-
troller 306 detects new data incoming while an old register
is full. Double buffer control 306 then controls the appro-
priate register to keep only the newer data. and to discard the
older data. In this way, if data is to be lost, it is the oldest data
that is lost. .

More specifically, double buffer controller 386 hence
serially reads the data from buffers 76 and outputs the data
to multiplexer 72 which transmits the data to the inter
subassembly bus interface 20 for transmission over the inter
subassembly bus 12 to computer 10. Each data buffer has
four 16 bit registers and thus can hold one 64 bit code block
44. At any point in time, one buffer is the active buffer
receiving the written data while software is reading data
from the other buffer. The assembly 14 also contains a status
register 78 which allows software to determine which buff-
ers are full. If the buffers have been overrun, if the receiver
is in lock and if any errors have been detected in the data.
The assembly 14 can also be programmed to interrupt the
host processor whenever it fills a buffer.

Start detection is performed according to the diagram in
FIG. 13. The system searches for a lock signal 402 while in
the inactive state 400. Once a lock signal 402 has been
received, the system transfers to the search state 404. If the
lock signal is no longer valid. the system reverts back to the
inactive state 400.

The system searches for data in the search state 404. Upon
receipt of the data 406, the system transfers to the decode
command state 408 where the critical controller checks the
data to determine if a critical enable is contained in the data.
If a critical enable is contained in the data, the command is
decoded 410 by the hardware command decoder 16. If an
uncorrectable error is found at any state, the system reverts
back to the search state 404. If the lock signal is de-asserted
during the decode state 410, the system reverts to the
inactive state 400.

The assembly 14 requires very few external support chips
to function, Critical control relays 200 are provided external
to the assembly 14 so that virtual channel 0 commands can
be carried out. The assembly 14 provides only digital
outputs with 6 mA drive capability to control the critical
enable relays. Therefore, drive circuits for the relays are
required. External drivers are not typically required,
however, since all of the assembly 14 outputs have 6 mA

15

25

35

45

50

55

65

8

drivers. Where a large capacitive load is to be driven,
however, external buffering may be required. Also, if the
start-up PROM 202 is used, PROM chips 202 are preferably
provided externally. An external decoder chip is also
required to generate the chip selects from the PROMs.

The inter subassembly bus interface 20 connects the
assembly 14 to the computer 10 through the inter subas-
sembly bus 12. The inter subassembly bus interface 20
generates all necessary timing sequences so that data can be
properly transferred via the intersubassembly bus to the
computer 10. The inter subassembly bus interface has two
components: an inter subassembly bus slave interface and
address decoder. Both of these functions are well known in
the art. and off-the-shelf components can be used for car-
rying this out.

The inter subassembly bus slave interface 20 generates a
signal to indicate data as stable on the assembly 14, during
read or, as correctly written by the addressed assembly 14 on
a write cycle. It also gencrates coarse grain address range
error signals, wherein no chip selects are given, generates a
small grain address range error generation signal for unde-
fined address spaces, generates odd data parity on reads,
inhibits the stability signal until data parity is stable, and
inhibits a write operation if a parity error occurs during a
write.

FIG. § is a block diagram of an address decoder 70. The
address decoder 70 connects directly to the inter subassem-
bly bus interface 20. The address decoder 70 works with the
inter subassembly bus interface input bus 74 and generates
the decode signals necessary for writing data to any of the
Command and Data subsystem (“CDS”)hardware. The
decodes required for the registers 76 of the assembly 14 are
also implemented by this block. CDS chip selects are
generated from the inter subassembly bus address bus
combinationally, i.e., they are not latched. Chip selects are
not given in the event of a course grain address range error
or an address parity error.

The address decoder 70 generates various CDS address
decodes and internal hardware command decoder/critical
controller register selects and write strobes. Inputs to this
block are the EFC address, address parity, RDIR,
SUROMER, critical controller bit SUROM and the write
strobe from the inter subassembly bus block. All outputs of
the address block are combinational decodes of these inputs.

Protocol for the inter subassembly bus interface read
cycle is illustrated in FIG. 11 and protocol for the inter
subassembly bus interface write cycle is illustrated in FIG.
12

The assembly 14 provides a variety of fault detection
related functions independent of uplink functions which are
often nceded in spacecraft data systems. All of these func-
tions operate independently and the user has the option of
either using or disabling each function. An example of a
fault detection unit is illustrated in FIG. 9.

The fault detection unit provides a sophisticated watchdog
timer. Software must write three specific data words to three
specific non-contiguous addresses within a fixed amount of
time to prevent system reset.

The fault detection unit also provides interrupt control
support. Eight input pins are provided which can be con-
nected to generic interrupt sources by the user. The eight
inputs are logically ORed together to produce a single
interrupt that can be connected to the host processor. Reg-
isters are provided which allow software to determine the
source of the interrupt, to clear the interrupt, and to indi-
vidually mask each interrupt source. A reset control is

5,790,567

9

provided which allows up to six different reset sources, three
of them definable by the user, each of which will produce a
reset of the host subsystem. Eight discrete inputs and eight
discrete outputs are provided which support the exchange of
system “health” and other information between redundant
systems.

The assembly 14 also provides a software interface to
start-up PROM. The interface supports up to 64 Kwords (16
bit words) of PROM. The assembly 14 was designed to
interface with the Harris HS6617-RH 8kx8 PROM or its
equivalent.

Although only a few embodiments have been described in
detail above. those having ordinary skill in the art will
readily realize that many modifications are possible without
departing from the advantageous teaching therein. For
example, a hardware embodiment has been described above
for carrying out various functions. Many advantages of the
present invention are obtained from the hardware operation.
However it should be understood by those having ordinary
skill in the art that certain of these advantages and functions
can also be carried out in software. For example, a special
purpose digital signal processor could be appropriately
programmed with firmware to carry out the functions of this
assembly. It should be understood that these systems are not
limited, therefore, to hardware. Other similar modifications
would also be apparent to those having ordinary skill in the
art, and are intended to be encompassed within the following
claims.

What is claimed is:

1. A spacecraft communications system, comprising:

a communication element on the spacecraft for receiving

communication;

said element receiving and decoding communications that

are in the form of a plurality of frames, each frame
including a plurality of code blocks. each code block
including a channel number identifier indicating a
channel number associated therewith and a package of
data associated with the identified channel number, a
plurality of code blocks being associated with each said
frame; and

a plurality of error detection and correction modules, each

error detection and correction module receiving a
single code block of the frame. and each code block of
the frame being error detected and corrected by said
each module in parallel, whereby error detection and
correction is carried out in parallel.

2. A system as in claim 1 wherein each error detection and
correction unit includes an associated channel number, each
channel number of the code block is associated and applied
to a predetermined data comrection unit having a predeter-
mined number.

3. A system as in claim 2 wherein one of the channel
numbers is reserved for a special function other than one of
the error detection and correction modules.

4. A system as in claim 3 wherein said reserved channel
number is reserved for control of critical control elements.

5. A system as in claim 4 wherein said communication
element identifies whether non-critical information is
present in the frame.

6. A system as in claim 4 wherein said reserved channel
number is the channel numbered zero.

7. A system as in claim 4 wherein the critical control
element is for delivery of a payload.

8. A system as in claim 4 further comprising a plurality of
latching relays. each latching relay controlling delivery of a
specified critical function.

10

15

20

25

30

35

45

55

65

10

9. A communications system adapted for operation in a

space vehicle, comprising:

a first communication on the space vehicle element.
receiving a stream of data. and receiving data com-
manding examination of the data, and searching the
data for a reserved start sequence, a first reserved start
sequence indicating that non-inverted data is to follow.
and a second reserved start sequence that inverted data
is to follow;

a receiving clement, receiving subsequent data after
receiving said start sequence, and either inverting said
data or using said data as is depending on which of said
first or second start sequence followed;

an error detecting element error detecting said data and
correcting said data if less errors than a predetermined
amount are found therein;

a buffer structure, holding the error-corrected data. and
applying the error-corrected data as a communication
to a communication element.

10. A system as in claim 9 wherein said stream of data
includes a tail sequence, said tail sequence ending a valid
code word by forcing a uncorrectable error.

11. A system as in claim 9 wherein said buffer structure is
a double buffer assembly, including two, serially clocked
buffer assemblies, each buffer assembly alternately receiv-
ing units of computer data, while the computer reads infor-
mation from the buffer assembly which is not receiving said
computer data.

12. A system as in claim 11 wherein said buffers are
controlled by a double buffer controller, said double buffer
controller including an element for detecting an overrun end
data, and which, when overrun is detected, discards oldest
data in favor of newly-incoming data.

13. A system as in claim 9 further comprising an identi-
fication bit which indicates whether said data is critical data
or not, critical data being stored directly in said buffer
structure, and non-critical data being processed.

14. A system as in claim 13 wherein said identification is
a channel number, which when having a predetermined
reserved value indicates that the data is a critical enable, and
which when having another of a plurality of unreserved
values related to a final destination of said data indicating a
non-critical enable.

15. A system as in claim 14 wherein said error detecting
element includes a plurality of separate error detection units,
each operating in parallel, and each receiving a block of data
having a specified channel number.

16. A system as in claim 14 wherein said unreserved
values include a channel number indicating which of a
plurality of parallel-processed channels the data belongs to.

17. A system as in claim 16 wherein said parallel pro-
cessing is carried out by the error detecting element unit.

18. A spacecraft communications system, comprising:

a decoding element on the spacecraft, recognizing a
predetermined reserved start sequence in a series of
data. and decoding subsequent data into a frame of
information, said frame of information including a
plurality of code blocks, each said code block having
identifying information including a channel number;

a critical enable decoder. responsive to a reserved said of
one channel numbers, for decoding said channel num-
ber and determining if the channel number is one which
indicates that the message includes a critical enable
command therein;

5,790,567

11

an instruction buffer receiving contents of the code block;
and

a further processor, processing the instructions in the
buffer to carry out the function commanded by the
critical enable if a critical enable is defined therein. and
otherwise to pass the instructions to a further process-
ing element. along with the channel number. to decode
the instructions.

19. A spacecraft buffering system comprising:

a first element on the spacecraft for receiving a series of
uplink commands;

an uplink command data processing device, processing
said uplinks command to convert said command into
parallel command units;

10

12

a first buffer, operating to store a first parallel command
unit while said unlink command data processing device
is converting said command;

a second buffer, operating to store said parallel command
unit while said uplink command;

a double buffering controller. commanding a first buffer to
fill while a second buffer is being read out, and includ-
ing an overrun detection circuit, said overrun detection
circuit determining if more data is coming in than can
be read out, said overrun detection circuit including a
data removal mechanism which removes data that has
been overwritten.

* ok ok Xk ok

