
I11111 111111ll111 Ill11 Ill11 IIIII 11111 IIIII 11111 IIIII IIIII 111111 1111 1111 1111
US006484214Bl

(12) United States Patent (io) Patent No.: US 6,484,214 B1
Sundermier (45) Date of Patent: Nov. 19,2002

(54) METHOD FOR DISTRIBUTED OBJECT
COMMUNICATIONS BASED ON
DYNAMICALLY ACQUIRED AND
ASSEMBLED SOFTWARE COMPONENTS

(75) Inventor: Amy Sundermier, Apache Junction, AZ
(US)

(73) Assignee: McDonnell Douglas Helicopter
Company, Mesa, AZ (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(*) Notice:

(21) Appl. No.: 09/035,202

(22) Filed: Mar. 5, 1998

(51) Int. C1.7 G06F 9/00
(52) U.S. C1. .. 709/332; 7171165
(58) Field of Search 7091203, 332,

7091221, 219, 310, 331; 71712, 162, 165,
167; 707110

(56) References Cited

U.S. PATENT DOCUMENTS

5,339,430 A * 811994 Lundin et al. 7091332
5,347,632 A 911994 Filepp et al.
5,365,606 A 1111994 Brocker et al.
5,548,724 A 811996 Akizawa et al.
5,568,612 A 1011996 Barrett et al.
5,572,643 A 1111996 Judson
5,579,222 A 1111996 Bains et al.
5,659,683 A 811997 Kawano et al.

5,761,499 A * 611998 Sonderegger 707110
5,768,510 A * 611998 Gish 7091203
5,790,796 A * 811998 Sadowsky 7091221
5,845,119 A * 1211998 Kozuka et al. 71712
5,918,015 A * 611999 Suzuki et al. 7091219

5,659,751 A * 811997 Heninger 7091332

FOREIGN PATENT DOCUMENTS

EP 0 817 035 A2 111998
WO WO 97100475 111997
WO WO 97122925 611997

OTHER PUBLICATIONS

PCT/US99104144 Search Report.
The Emergence of Distributed Component Platforms by
Krieger et al.; “Computer” Mar. 1998 pp. 43-53.

* cited by examiner

Primary ExaminerSt . John Courtenay, I11
Assistant Examiner-Van Hoa Nguyen
(74) Attorney, Agent, or Fi rmStou t , Uxa, Buyan &
Mullins, LLP; Donald E. Stout; Kenton R. Mullins

(57) ABSTRACT

A method for acquiring and assembling software compo-
nents at execution time into a client program, where the
components may be acquired from remote networked serv-
ers is disclosed. The acquired components are assembled
according to knowledge represented within one or more
acquired mediating components. A mediating component
implements knowledge of an object model. A mediating
component uses its implemented object model knowledge,
acquired component class information and polymorphism to
assemble components into an interacting program at execu-
tion time. The interactions or abstract relationships between
components in the object model may be implemented by the
mediating component as direct invocations or indirect events
or software bus exchanges. The acquired components may
establish communications with remote servers. The acquired
components may also present a user interface representing
data to be exchanged with the remote servers. The mediating
components may be assembled into layers, allowing arbi-
trarily complex programs to be constructed at execution
time.

30 Claims, 9 Drawing Sheets

I DATABASE I

86 \
\
\
\

CLASS B
I

f \

/
/

LOCAL FILE SYSTEM

APPLET --
CLIENT

62 90

U S . Patent Nov. 19,2002 Sheet 1 of 9

\

cc
W
I-
3
a
2
0
0

US 6,484,214 B1

CY
w
I-
3
a
3
0
0

a

U S . Patent Nov. 19,2002 Sheet 2 of 9

..._
1 . . .
.
-1. :0:
:0:
:0:
.!- -
:E.
:a:
:a:
:I-:

w
:0;

N
Lo

-L

US 6,484,214 B1

- -

U S . Patent Nov. 19,2002 Sheet 3 of 9 US 6,484,214 B1

I WEB SERVER I

I /

1-1
r* APPLET 62

CLIENT

MEDIATOR ONE WEB SERVER

/
/

/
/

/
60

62 / / ’ 72 \74
/

/

70

Fig/ 4
CLIENT

U S . Patent

I

m

CK
I-
W
LT

m
c/)

0
4
i

Nov. 19,2002

W a:

v)
P

I

Sheet 4 of 9

P

US 6,484,214 B1

0

-
w
Z
0
CL
0
I- a
n
-
W
E

0
I-
v)
W
LLI

cn P v) w
LLI
3
c7
LL
z
0
0

2
0
E
CI)
W >
LL
t-
W
LT

w

I-
I-
2 a
Z -

U S . Patent Nov. 19,2002 Sheet 5 of 9 US 6,484,214 B1

CLASS A WEB SERVER I
CLASS A 0

\
86 /) i\

60
L

\
\
\
\
\
\

I DATABASE I
-92 M ED I ATOR

I I CLASS B WEB SERVER I /
I I I

62

I LOCAL FILE SYSTEM
I

90

U S . Patent Nov. 19,2002 Sheet 6 of 9 US 6,484,214 B1

CLIENT
ACQUIRES AND 70

ASSEMBLES

RETRIEVES FROM

62 STORES TO
+ CONFIGURES

92
86 88

J 60

I CLIENT

APPLET

M ED1 ATOR

CLASS A

86

/’
/

/

-90 CLASS C

6 CLASS B

I
60

U S . Patent Nov. 19,2002 Sheet 7 of 9 US 6,484,214 B1

+
Z

0
f\

r:
cl - 7- W

\

v)
W
Y
0 > z

0
t-
F
3

t-
3
0

a n 7
0

U S . Patent Nov. 19,2002 Sheet 8 of 9 US 6,484,214 B1

YI-
0

e

U S . Patent Nov. 19,2002 Sheet 9 of 9 US 6,484,214 B1

“:‘d I
\ m
\

0 m
7

-0
(D

r3
v--

-\

US 6,484,214 B1
1 2

METHOD FOR DISTRIBUTED OBJECT
COMMUNICATIONS BASED ON

DYNAMICALLY ACQUIRED AND
ASSEMBLED SOFTWARE COMPONENTS

Frequently, CORBA servers are used to put an object-
oriented front end on a legacy system or database. The
details of interacting with the legacy system are encapsu-
lated within the CORBAserver’s objects so the client can be

s written more simply. Distributed 00 programs can integrate
a corporation’s existing software much faster than rewriting
the legacy systems, so the benefits of an integrated software
environment or data warehouse can be achieved without
investing years in developing a new version of business-

The invention described herein was made in the perfor-

NCCW-0076 and is subject to the provisions of Section 305
of the National Aeronautics and Space Act of 1958 (42
U.S.C. 2457). i o critical applications.

mance of work under NASA Cooperative Agreement No.

BACKGROUND OF THE INVENTION CORBA objects are statically located on the server. Cli-
ents access the CORBA object’s data and behavior by

1. Field of the Invention
The present invention relates generally to compositional

software and, more particularly, to methods for dynamically
acquiring and assembling software components in distrib-
uted object environments.

remote method invocations. The client obtains a reference to
a remote CORBA object, and then interacts with the
CORBAobject. This Programming style works very well for
providing an object-oriented interface to a non-00 legacy
system, because the legacy system is encapsulated by the
CORBA objects on the server.

Combining Java with CORBA Provides an incredibly
“Compositional Software,” which refers to software that is Powerful Programming environment. CORBA Provides
assembled from components. Proponents of this technology cross-language support, which is very important for inter-
envision a future where software engineers assemble appli- acting with legacy systems and Servers in other 1aWuages.
cations from catalogs of software components, similar to the Java Provides Portability and mobility. Portability allows
way that hardware engineers design boards by selecting Java Programs to be run on any system having a Java Virtual
integrated circuits from catalogs, The goal of building 25 Machine. Mobility allows the programs to be downloaded
applications by assembling components is to simplify soft- On demand.
ware development so that average programmers do not have Java software offers portability, which allows the software
to be extensively educated or exceptionally skilled. An to run on any platform. When Java applets are combined
anticipated shortage of software engineers and programmers 3o with remote method invocation, then some very interesting
in the future means that software should be made easier and web-based applications can be built. A Java graphical fron-
quicker to build to meet the demand for ever more sophis- tend can communicate with object-oriented servers using
ticated and flexible applications. CORBA or the Java-to Java Remote Method Invocation

the prior art, app~ication-bui~d environments were (RMI). Now the Java client can provide access to data such
operating system dependent, because the GUI components 35 as airline reservation systems or control remote devices such
generated were mapped to services supported by the win- as large telescopes Or roaming unmanned vehicles. The
dowing system, With the introduction of java, a language client uses remote method invocations to interact with a
designed to run on any hardware platform and on any server, and the Server may encapsulate a legacy system, a
operating system, components can now be generated that database, Or any arbitrary comP~ter-controlled function.
will work on any system with the Java Virtual Machine. The 40 The advantage here is that the portability and mobility of
Java Virtual Machine provides a runtime environment for Java applets makes it possible to give virtually anyone
Java that shields the Java program from the idiosyncrasies of access to the application who has access to the Internet. The

standard classes to implement objects, and inherited code by programmers and administrators physically close
from standard base classes is written to function the same on 45 (usually) to the database or computer-controlled equipment.
all platforms. The Java environment guarantees that a Java An interesting and useful feature of object-oriented soft-
application written with components will work the same no ware is the ability of an object to masquerade as different
matter where it is run. This is necessary particularly for the types. This feature is called “polymorphism.” There are
World Wide Web (WWW) environment, where the client restrictions to this ability, and the restrictions are set by the
may be any computer that has a browser. 50 class hierarchies to which the object belongs. The ability of

The Common Object Request Broker Architecture an object to masquerade as another type is determined by the
(CORBA) is a conventional technology that allows objects class hierarchy(ies) to which the object belongs. An object
within distributed object-oriented programs to invoke meth- can only masquerade as a superclass of the object’s class.
ods remotely. The significance of this technology is that Hierarchies allow classes to be constructed that are subtypes
distributed programs may be written as if all the objects were 5s or refinements of existing classes.
located in the same process space, so that the programming An object-oriented system may be represented by an
becomes simpler using CORBA compared to previously Object Model. An Object Model is a graphical picture used

ports language and operating system independent remote system and the interactions between the objects. Graphical

2. Description of the Related Art
Recently there has been a growing interest in the area of 2o

any given operating system. The Java program extends back-end server is still controlled, maintained, and upgraded

available distributed techniques. In addition, CORBA SUP- by software designers to describe the classes of objects in the

method invocation, allowing the client to perform method 60 modeling languages such as Unified Modeling Language
invocations on server objects written in different languages (UML) are well-known in the object-oriented industry for
or running on different platforms. CORBA provides net- describing the classes of objects, attributes, operations and
working independence the way that the Java Virtual relationships. The object model is a design. The source code
Machine provides operating system independence. for an object implements the interaction with another object

Distributed object-oriented (00) programs based on 65 by referring to the object’s attribute values or calling opera-
CORBA allow general purpose applications to be developed tions. The interactions are determined at design time and
across multiple heterogeneous systems and databases. fixed at compile time.

US 6,484,214 B3
4 3

SUMMARY OF THE INVENTION

Amethod for distributed object communications based on
dynamically acquired and assembled software components
is disclosed. This invention provides a method for incre-
mentally acquiring additional software components which
can then be assembled according to the logic represented
within one or more mediating components. The acquired
components may then initiate communications with remote
servers and/or may provide a component-specific user inter-
face.

The present invention includes three main features. First,
components are written in a language that supports
portability, polymorphism and mobility so that they may be
acquired via downloading from one or more networked
servers, databases or file systems and instantiated prior to
being assembled. Second, mediating component(s) provide
implementation of the knowledge representation of the
interactions of other components therefore assuming respon-
sibility for coordinating interactions between the acquired
and assembled components. Third, the components acquired
may then initiate communications with remote servers and/
or provide a user interface.

The present invention, together with additional features
and advantages thereof, may best be understood by reference
to the following description taken in connection with the
accompanying illustrative drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of two networked computers
which may be used with the present invention.

FIG. 2 is an illustration of an environment which may be
used with the present invention.

FIG. 3 is an illustration of an initial step of the invented
process when a client computer acquires a program from a
server.

FIG. 4 is an illustration of dynamically acquiring a
mediating component, Mediator One.

FIG. 5 is an illustration of the Object Model implemented
by the Mediator One component.

FIG. 6 is an illustration of the Mediator One component
dynamically acquiring components representing classes or
subclasses from the Object Model.

FIG. 7 is an illustration of relationships from the Object
Model implemented by Mediator One as direct method
invocations on assembled components.

FIG. 8 is an illustration of a relationship between two
components from the Object Model implemented by Media-
tor One as events.

FIG. 9 is an illustration of the Object Model relationships
implemented within the Mediator One components as
method invocations and events.

FIG. 10 is an illustration of acquired and assembled
components of Class A, Class B, and Class C communicat-
ing with remote servers.

FIG. 11 is an illustration of acquired and assembled
components of Class A, Class B, and Class C presenting user
interfaces.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EMBODIMENTS

Referring now more particularly to the drawings, FIGS.
1-11 illustrate exemplary implementations of the present
invention. The present invention presumes the existence of

computers, networks, computer languages, and networking
protocols. The physical configuration of the computer or
network, the computer operating system, networking proto-
cols and computer languages are relatively unimportant as

5 long as they support the technology needed for the invention
to function correctly. Someone skilled in the art would
understand that this invention may be applied to other
environments and configurations than the ones described
within the exemplary FIGS. 1-11. For example, the present
invention could function over wireless networks, or for
computers without data storage devices. The figures
described within this document are not exhaustive of all
possible ways in which the invention may be applied, but
illustrate a presently preferred embodiment and typical uses
which can be understood by someone skilled in the field of
object-oriented computer languages and distributed commu-
nications technology. The terms given to the participating
entities within the figures were chosen for illustrative pur-
poses only, and someone skilled in the art would understand
that the terms shown in the figures do not limit the invention.

The term “client” refers to any executing program which
requests or receives data from an external source, and the
term “server” refers to the external source supplying the
data. An external source may be on the same physical

25 computer or may be accessed over a network connection.
External sources include databases, file systems, networked
servers such as CORBA or RMI servers, or typically any
source not located within the client process’s addressable
virtual memory space. A program may function as both

3o client and server, depending on its role in a communication
exchange.

Objects do not randomly interact in an object-oriented
system. Their interactions are predefined by an Object
Model. As explained previously, in the prior art an Object

35 Model is a graphical representation of the interactions
between classes of objects in an object-oriented system. The
Object Model is a picture that helps software designers
describe the way in which objects will interact. In a prior art
object-oriented system the knowledge represented in the

4o Object Model is embedded into the code of each of the
objects in the system. The objects in the system refer to each
other’s methods and properties directly, and this direct
referencing among objects is the way interactions between
the objects occur.

Although the prior art views an Object Model as a useful
picture to describe the code a programmer should write, the
present invention views an Object Model for a system as a
knowledge representation for the application program. In
accordance with the present invention, an Object Model

so describes the types of objects allowed in the system and the
way the objects can interact with each other. By building an
object-oriented system differently, one can make some great
leaps in flexibility. A system can be implemented in accor-
dance with the present invention by creating an object that

55 represents the knowledge of the Object Model, which will be
referred to as a Mediator Component.

The Mediator Component contains all relevant knowl-
edge of the way components interact in the system. All of the
other components in the system will communicate with the

60 Mediator Component, and the Mediator Component will
disseminate information or directions in the form of mes-
sages or operation calls to the other components as needed.
The components in the system no longer refer directly to
each other, but instead have knowledge and interactions only

Primarily, in accordance with the present invention, com-
ponents do not have to know about each other or make

10

15

20

45

65 with the Mediator Component.

US 6,484,214 B3
5

assumptions about each other. The Mediator Component
assumes all responsibility for creating and managing the
components necessary to perform the function or functions
modeled by the Mediator Component’s knowledge.

The Mediator Component is to some extent a special type
of component. A comparison can be made between software
component-based engineering and hardware engineering
where an Electrical Engineer chooses integrated circuit (IC)
chips from a catalog and plugs them into a circuit board.
Modem hardware engineering designing techniques have
helped to speed up the process of designing hardware a great
deal. Using this analogy, the Mediator Component as
described within the context of the present invention is in
some ways analogous to the circuit board of hardware
design. The circuit board provides the interactions between
ICs in the form of circuit connections or signals, and the
Mediator Component describes the interactions between
components in the form of method calls or messages.
Continuing with this analogy, consider that a circuit board to
do the same function may be supplied by a different vendor.
The new vendor may have combined different ICs in a
different way on its circuit board, but the circuit board may
be interchangeable with the previous manufacturer’s circuit
board if the same function is performed and the same
external interfaces are supported. In a similar way, a Media-
tor Component may be replaced with a different Mediator
Component that performs the same function. In other words,
Mediator Components of the present invention can also be
subclasses or subtypes. This means that the logic of the
interactions between components in a system, the Object
Model, can be represented by one or more Mediator Com-
ponents in the system. Further, the Object Model can be
replaced at execution time depending upon which Mediator
Component is invoked. And because of polymorphism, the
invoking component doesn’t have to know which subclass
of Mediator is being used to perform the function.

The Mediator Component represents the knowledge of
how components interact to form a system. An object-
oriented program treats a Mediator Component like any
other object. The objects managed by the Mediator Com-
ponent may themselves be Mediator Components. A com-
plex system may be built from layers of Mediator
Components, where each layer represents a subset of knowl-
edge of how components interact to perform a function. The
knowledge can be partitioned so that the interactions
between Mediator Components are no more complex than
the interactions between regular components. The encapsu-
lation of knowledge and interactions may be partitioned
itself so that the entire Object Model is not represented by
one Mediator Component in a complex system. The Media-
tor Component chosen at execution time for each function
may be chosen by the context of the execution environment
or may be chosen by the user or by other factors. The
program is therefore dynamically constructed from compo-
nents that come together at execution time, possibly from
many different remote servers or databases. The mobility of
Java (or future languages) is essential in accordance with the
present invention to support this dynamic construction from
networked and distributed systems.

The present invention implements a novel approach of
using the mobility of Java to construct programs dynami-
cally. An applet in accordance with the present invention can
load additional classes and instantiate new objects during
execution. Methods can then be executed on the newly
instantiated objects. This approach allows a Java program to
add code to itself by loading and invoking newly created
objects. Since the new objects may then repeat the process,

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

6
loading and invoking additional objects again, the evolving
program that is executed may bear little resemblance to the
program that was originally downloaded from the web
server.

The present invention recognizes, however, that in order
to perform a useful function, a program cannot randomly
change. There must be some knowledge guiding the creation
and invocation of the objects making up the evolving
program. The mobility of Java is an important aspect of the
present invention, because a Java environment provides the
ability for a program to acquire and assemble components
dynamically at execution time. The Mediator Component(s)
of the present invention make the resulting assembly of
components meaningful and useful in carrying out some
function. The present invention combines code mobility
with Mediator Components to provide a mechanism for
dynamically acquiring and assembling components at
execution time in a meaningful way.

In the prior art a Design Pattern is an abstract description
of the way a group of cooperating objects can be used to
solve a problem. AMediator pattern, which is a conventional
type of design pattern, comprises an abstract description or
recommendation of an object managing interactions
between a group of interrelated objects so that the individual
objects do not have to directly refer to one another. A
problem of managing complex interactions between objects
is addressed by the Mediator pattern.

A Mediator pattern of the prior art can be defined as a
graphical diagram presenting an abstract recommendation.
The Mediator Component of the present invention, on the
other hand, is an actual component that represents the
knowledge of an Object Model. Moreover, the Mediator
Component of the invention comprises source code which is
implemented to represent the knowledge.

Mediator Components in accordance with the present
invention contain the knowledge of the system. The Media-
tor Components of the present invention can have additional
roles as well. For example, Mediator Components of the
present invention may have to verify that a component they
intend to use to fill a role will actually support all of the
required interactions. Before blindly accepting a component
for a role, a Mediator Component may have to examine the
component to see what interactions it generates or supports.
Techniques have existed in some object-oriented systems or
languages for providing examination capabilities. Reflection
and Introspection are conventional techniques or concepts
which relate to the ability of a system to examine the
interface of an object or component dynamically at runtime
and to actually interact with the object or component based
on the information gained from examination. These capa-
bilities can be used by Mediator Components to verify that
given components provide the methods needed for interac-
tion with other components in the Mediator Component’s
Object Model. AMediator Component can also adapt some-
what to a component based upon the information discov-
ered. The power of Introspection and Reflection are pre-
ferred in accordance with the present invention for truly
robust and flexible dynamic systems. Using these
techniques, Mediator Components of the present invention
are not limited to the flexibility provided by polymorphism
alone.

The Mediator Component or components of the present
invention are used to represent the Object Model for the
system. The addition of a dynamically downloadable rep-
resentation of the knowledge of the system in the form of
one or more Mediator Components, in accordance with the

US 6,484,214 B1
7 8

present invention, makes dynamic assembly of components language that can incrementally find and incorporate within
possible. The Mediator Component can acquire and the executing program additional components from net-
assemble Java Components from many different remote worked resources, and the incrementally acquired compo-
servers. These Java Components can then contact CORBA nents can interface with networking protocols or distributed
servers for remote communication and services and can also 5 object middleware like CORBA to provide a mechanism for
provide interactions with the user in the form of graphical component-based communication with remote servers,
windows and widgets. Since the Mediator Component is a FIG. 3 illustrates one of the first steps of the method of the Java Component itself, it can be dynamically acquired and presently preferred embodiment. The client program or downloaded as well, allowing the user to control the way the computer 60, which generally corresponds to one of the functions are implemented by components. The flexibility

10 client computers 41, 43, 45 of FIG. 2, acquires a starting or provided by the combination of polymorphism, mobility, initializing component, represented in this example by a remote invocation, reflection and introspection, and knowl- Java Applet 62 downloaded from a web server 65, which edge representation, in accordance with the present generally corresponds to the web server 48 of FIG. 2. An invention, provides the ability to create software on-the-fly. important point illustrated by FIG. 3 is that the environment A user is no longer bound by the decisions made at design
15 must support the ability for a client 60 to acquire a down- time by a programmer. Code can be acquired at execution loaded software component 62 from a server 65. The choice time and examined for suitability of use for a particular role. of computer language is relatively unimportant in the pres- In accordance with the present invention, code can be ently preferred embodiment, as long as the language chosen combined in ways unforeseen by the programmers as long as shares characteristics with Java such as mobility, portability the desired interactions for the roles are supported. Even

Mediator Components can be acquired and combined in 20 and polymorphism.

unforeseen ways, so that software can be dynamically con-
strutted without a programmer from component repositories

FIG. 4 illustrates a subsequent step in the Process of the
Present invention. The downloaded Program from FIG. 3, in

the acquired component is
named Mediator One 70. In the presently preferred embodi-

or catalogs. this example a Java applet 62, now acquires a new compo-

FIG, 1 illustrates two computers 15, 17 connected by a 25 Ilent. In this
network 19, The computers 15, 17 are shown having pro-
cessors 21,23, random access memories 25,27, data storage ment the Applet 62 acquires One and Only One mediating

connected internally by respective buses 37, 39, The net- process. Someone skilled in the art would recognize that the
work access devices 33, 35 provide the capability of trans- 30 Applet 62 and Mediating component 70 may be combined

netted to the network 19 and communicating by the Same Applet 62 to function as a Mediator Component. One skilled
protocol. The invention described herein was developed for in the art recognize that the Applet 62 may
use with multiple computers connected on a network, acquire an unrestricted number of components before con-

devices 29, 31 and network access devices 33, 35 all component 70 before continuing to the next step in the

mitting to and receiving data from other computers con- into the Same component in a simp1e system, the

Although only two computers 15, 17 are shown in this 35 tinuing to the next step in the process Of the presently
figure, the present invention does not require than one preferred embodiment. This figure shows a simp1e
computer or restrict the maximum number of computers
which may participate.

FIG, 2 illustrates a typical environment of use of the

for
The web server 65 for the mediating component 70 is

shown here with multiple additional components 72,74,78.

represent client computers on the Internet that may use web ‘Ontact and components from an
browsers to access web pages. The communication protocol unrestricted number Of servers.
used in this example for web page access and retrieval is FIG. 5 provides an exemplary Object Model for purposes
HyperText Transfer Protocol (HTTP). The box 48 labeled of demonstration only. This figure does not directly dem-
“Any WWW Server” represents computers on the Internet 45 onstrate a step in the process of the present invention. The
that serve web pages and related data to the client computers purpose of a Mediator Component is to arbitrate or mediate
41, 43, 45. A web page may contain a reference to a Java interactions between other components in the system. Since
applet that will be downloaded when the web page is the continued illustration of an exemplary use of the present
downloaded. The block 52 labeled ‘‘File System or Data- invention requires a choice of an arbitrary Object Model, the
base” shows that Java programs, classes, and components 50 rest of the example will make use of this arbitrary choice.
like JavaBeans may be accessed from a web server’s file One skilled in the art would recognize that this choice of

invention. The boxes 41,43,45 labeled “Any WWW Client” 40 In the process Of acquiring components, the 62 may

system or from a database. The Java program, after being object model is arbitrary and not singularly or particularly
downloaded to the client computer, may access data from the important or limiting with respect to the present invention
file system or database 52. The Java program may also described and illustrated herein. An important point illus-
establish communications with remote object servers using 5s trated by this figure is that the Mediator Component imple-
an Object Request Broker or Java-to-Java Remote Method ments the knowledge represented by an Object Model to
Invocation (RMI). control and mediate component interactions. The Object

mis figure shows one possible environment for imple- Model which is implemented depends upon the desired
mentation of the present invention. The choices illustrated in function of the Mediator Component in the context of a
FIG, 2 such as java, CORBA, RMI, H ~ P , and so on, are not 60 particular application of the invention, but the invention
the only choices of technology that may be combined to itself does not depend on the specific Object Model chosen
form an environment for implementation of the invention. by the application Programmer.
Other choices may provide an equally valid environment so The Object Model chosen for Mediator One component
long as the environment provides a mechanism for transfer- 70 includes one instantiation of a Mediator One 74 and
ring an initial client-executable program such as a Java 65 Mediator Two 76 class or subclass component, and option-
Applet to the client computer from a remote server such as ally multiple instantiations of Class A 78, Class B 80, and
an Internet web server, the client program is written in a Class C 82 class or subclass components. The relationships

US 6,484,214 B3
9 10

shown within the object model are implemented within the
Mediator One component 70, as will be explained subse-
quently with reference to the following figures. The term
“instantiation” refers to a process of filling in the template of
a generic or parameterized class to produce a class from
which one can create instances. An “instance” is defined as
something to which things can be done. An instance is
defined as having state, behavior, and identity. The structure
and behavior of similar instances are defined in their com-
mon class. The terms “instance” and “object” are generally

knowledge of an Object Model. They manage the interac-
tions of other components and provide an implementation
for the interactions. The interactions between components
are typically represented in the Object Model as relation-

5 ships in modeling languages, so in this figure the “invokes”
relationship role is an interaction between components of the
Mediator One class and components of the Class A class. In
FIG. 7, a solid line with an arrow represents a method call
or operation call typical of object-oriented programming
where the direction of the call is indicated by the direction _ _

interchangeable. of the arrow. Some relationships between components can
Components are shown in the Object Model in FIG. 5 by be implemented using method calls. One skilled in the art

rectangular boxes labeled with their respective class names. would recognize that the figure represents only one possible
Components are top-level concepts in the Object Model, and choice of implementing the relationships from the Object
each component may actually be implemented by multiple Model within the Mediator One component 70.
objects that are not visible outside the boundaries of the FIG, 8 illustrates that the Mediator One component 70
component’s public interface. Relationships are shown in may implement Some interactions as indirect data exchanges
the Object Model as lines connecting components, and or event monitoring. To illustrate this concept, in this figure
illustrate the possible abstract interactions between compo- a Class A component 86 produces an event representing the
nents. The labels on the relationship lines show the role 2o “Input From” relationship role from the Object Model, This
played by the component in the interaction. For example, event is recognized by the Mediator One component 70,
Mediator One components 74 may invoke Class A compo- which then converts the event to an event representing the
Dents 78. Class A components 78 may be invoked by “Input To” relationship role from the Object Model. The
Mediator One components 74. The interactions may be “Input T ~ ” event is recognized by the Mediator T~~ corn-
implemented in many different ways as illustrated in FIGS. 2s ponent 92 and is used to start processing to handle that event.
7, 8 and 9. The relationships shown in FIG. 5 are abstrac- A purpose of this figure is to illustrate one possible way in
tions. FIGS. 7, 8, and 9 illustrate choices of particular which the Mediator one component 70 may implement
mechanisms for implementing the abstract interactions of interactions from the Object Model as indirect exchanges or
FIG. 5

FIG. 6 illustrates a subsequent step in the process of the
present invention, based upon the arbitrary Object Model
chosen for the Mediator One component 70. The Mediator
One component 70 now acquires components representing
the classes in its Object Model. The components acquired
may be chosen at the same or different times under user
direction, preprogrammed logic, database query results, or
other mechanisms. An important point illustrated in FIG. 6
is that components representing the classes are chosen by
some mechanism and are preferably acquired from servers.
The example shows only one Class A component 86, one
Class B component 88, and one Class C component 90 being
acquired, but this is an arbitrary choice for illustrative

events. This concept is important to the invented process
30 because dynamically acquired components may have no

knowledge of each other; therefore direct method calls may
not be an option for implementing some interactions. This is
one way that the process of the present invention differs
from conventional object-oriented software systems. In the

35 Object Model of this example, Class A components 86 can
interact with Mediator Two components 92, even though
Class Acomponents 86 may not have been written with this
intention. As long as Class A components 86 produce an
“Input From” event that can be detected and converted by

40 Mediator One components 70, the Class A component 86
can fulfill the requirements of the “Input From” relationship
role. The Mediator Component can route the events or data

purposes only. The example also shows the components representing the required relationships to the appropriate
being acquired from different locations such as web servers, objects according to its knowledge of its Object Model. This
database or local file systems, but this is not necessary if, for 45 allows dynamically acquired components such as Class A
example, one location can serve multiple classes of objects. components 86 to be used in a system even if the Class A
The example also shows a component of each class in the components 86 were not originally written with such an
Object Model being acquired, but there is no absolute intended use. The purpose of the Mediator Components
necessity or advantage in acquiring all components at the within the context of this invention is to control, direct,
same time in the general case. For example, the Mediator 50 propagate, or route interactions, both direct and indirect,
One component 70 may acquire a component of Class A, between other software components according to an imple-
Class B, and a Mediator Two component 92. Then at some mentation of knowledge represented by an Object Model.
later time, the Mediator Two component 92 may acquire a One skilled in the art would recognize that data exchange
component 90 of Class C. One skilled in the art would protocols, events, software bus technology and other mecha-
recognize that these choices were made for the example only 55 nisms for implementing indirect component interactions
and do not restrict the implementation of the process of the under the control of Mediator Components are choices made
present invention. for functionality and/or convenience for specific implemen-

FIG. 7 illustrates that the Mediator One component 70 tations and do not limit the present invention to these
may implement some interactions as direct method or opera- alternatives.
tion calls typical of object-oriented programs. In this figure, 60 FIG. 9 illustrates one possible implementation of Object
the Mediator One component 70 is implemented to call Model relationships using a combination of direct invoca-
methods directly on the Class Acomponent 86 to implement tions and indirect techniques such as events or software bus
the “invokes” relationship role from the Object Model, for data exchanges. One skilled in the art would recognize that
example. the choices of implementation shown here are chosen for

Apurpose of this figure is to illustrate the role of Mediator 65 illustration only and do not limit or restrict the choices for
Components within the process of the present invention. The implementing any other Object Model’s relationships when
Mediator Components contain implementations of the implementing the present invention. This figure is included

US 6,484,214 B1
11

for the purpose of continuing discussion of an exemplary use
of the present invention.

FIG. 9 uses solid lines with arrows to represent method
calls and dashed lines with arrows and rectangular shadowed
boxes to represent events or data exchanges. The direction of
the arrow represents the direction of the communication
exchange.

In this example, the abstract relationship “Mediator One
Invokes Class AiClass A Invoked By Mediator One” is
implemented as a direct method call by the Mediator One
component 70 on the Class A component 86. The Class A
component 86 must provide a method call (for example,
“InvokeMe”) as part of its public interface and if the
Mediator One component 70 has an instance of Class A
called ComponentA it could then interact with ComponentA
by executing a statement such as “ComponentA.Invoke
Me(. . .)” where the ellipses in the parenthesis represent
possible arguments to the method call. In this example, the
implementation of this abstract relationship provides for the
interaction to be initiated only by the Mediator One com-
ponent 70, and the name of the role played by the Class A
component 86 in the interaction (“Invoked By” in the Object
Model of FIG. 5) suggests that the initiation of the interac-
tion is unidirectional. The role of the Class A component 86
is passive in this relationship, therefore the Class A compo-
nent 86 does not initiate an interaction in the implementation
diagram of FIG. 9.

To continue with the example, the abstract relationship
roles “Mediator One Retrieves From Class B” and “Media-
tor One Stores To Class B” are implemented as direct
method calls by the Mediator One component 70 on the
Class B component 88, so the Mediator One component 70
initiates the interactions described by the “Retrieves From”
and “Stores To” relationship roles. The roles played by the
Class B component 88 in these relationships (“Stored To”
and “Retrieved From” in the Object Model of FIG. 5) are
passive. Similarly, the abstract relationship role “Mediator
One Configures Mediator Two” is also implemented as a
direct method call by the Mediator One component 70 on the
Mediator Two component 92 while the relationship role
“Mediator Two Configured By Mediator One” is passive and
not shown in the implementation diagram of FIG. 9.

The abstract relationship roles “Class A Input Fromnnput
To Mediator Two” describe the idea that the Class A
component 86 can produce data that is used by the Mediator
Two component 92. In this case, the interaction is imple-
mented by indirect exchanges using the Mediator One
component 70 as a middleman. The Class A component 86
generates an event called “Input From” when it has pro-
duced data. This event is intercepted by the Mediator One
component 70, as shown by the dashed lines in FIG. 9. Once
the Mediator One component 70 has intercepted this event,
it knows (because it represents the knowledge of the Object
Model of FIG. 5) that an “Input From” event generated by
the Class A component 86 means that the Mediator Two
component 92 must play the “Input To” role next. In this
example, the abstract role “Input To Mediator Two” is
implemented as a direct method call from the Mediator One
component 70 on Mediator Two component 92. The abstract
relationship, shown in the Object Model between the Class
A component 86 and the Mediator Two component 92, is
actually implemented in FIG. 9 as a two step process
mediated by the Mediator One component 70. The Mediator
One component 70 changes the event produced by the Class
A component 86 into a method call on the Mediator Two
component 92, thereby providing the support for the abstract
relationship to be implemented indirectly using mediation.

12
Similarly, the abstract relationship roles “Mediator Two

Output Fromioutput To Class A” describes the idea that the
Mediator Two component 92 can produce data that is then
used by the Class Acomponent 86. This abstract relationship

5 is implemented in the same way as the “Input Fromnnput
To” but the direction of the interaction is reversed. In the
case of the “Output Fromioutput To” relationship, the
Mediator Two component 92 generates the event “Output
From” to implement the “Output From” relationship role,
and the event is intercepted by the Mediator One component
70. The Mediator One component 70 then calls a method on
the Class A component 86 to implement the “Output To”
relationship role.

The next set of abstract relationships to consider is the
15 pair “Mediator Two Retrieves FromiRetrieved From Class

B” and “Mediator Two Stores Toistored To Class B”. In this
case, the Class B component 88 is performing a passive role
in both relationships shown in the Object Model of FIG. 5 .
The Mediator Two component 92 initiates both interactions

2o by generating events named “Retrieves From” or “Stores
To” as shown in the implementation diagram of FIG. 9. The
events are intercepted by the Mediator One component 70,
which then uses direct method calls “Retrieves From” and
“Stores To” to complete the two step process of mediation.

25 In the example shown in this Object Model in FIG. 5, both
the Mediator One component 70 and the Mediator Two
component 92 have the same abstract relationships with the
Class B component 88 (“Retrieves From” and “Stores To”).
The implementation of the abstract relationships is different

3o in FIG. 9, however, because the interaction between the
Mediator Two component 92 and the Class B component 88
is a two step process that uses the Mediator One component
70 to the Class B component 88 interaction as its second
step. The use of the same methods for implementing differ-

35 ent abstract relationships is a simplification for this specific
example only, and is explained here for clarification in
understanding the purpose of the Mediator Components of
the present invention.

The last set of abstract relationships within the Object
Model of FIG. 5 are the “Mediator Two Converts To/Con-
verted To Class C” and “Class C Converted FromiConverts
From Mediator Two” interactions. The Mediator Two com-
ponent 92 plays an active role in the “Converts To” abstract
relationship role so this role is implemented as a direct

4~ method call on the Class C component 90. The Class C
component 90 plays a passive role in the “Converted To”
relationship role so nothing is initiated by the Class C
component 90 in the implementation diagram of FIG. 9.
Finally, the Class C component 90 plays an active role in the

50 “Converted From” abstract relationship role and as shown in
FIG. 9, this role is implemented as an event “Converted
From” generated by the Class C component 90 and inter-
cepted by the Mediator Two component 92, the other
participant in this relationship. As shown by this final

55 abstract relationship implementation, events of the present
invention do not always result in a two step process of event
to method call conversion involving mediation. In accor-
dance with the present invention, events may sometimes be
intercepted by the other components participating in the

The purpose of this explanation is to show how the Object
Model of FIG. 5 can be mapped to the implementation
diagram of FIG. 9. The Object Model of FIG. 5 comprises
an arbitrary choice for the purpose of illustrating a use of the

65 present invention, and FIG. 9 is one possible way to imple-
ment the example Object Model using direct method invo-
cations and events mediated by the Mediator One compo-

10

60 abstract relationship.

US 6,484,214 B3
13

nent 70. The conversion of a graphically represented Object
Model into a Mediator Component was explained in detail
to show how the Mediator Component functions within the
system to convert knowledge of component interactions into
implemented communications between components using
both direct invocations such as methods and indirect inter-
actions such as events. One skilled in the art would recog-
nize that the arbitrary choice of Object Model in FIG. 5 and
the implementation diagram in FIG. 9, for example, are not
particularly important or limiting with respect to the present
invention.

FIG. 10 illustrates a subsequent step in the process of the
present invention. Participating components 86, 88 and 90
that have been acquired and assembled by the Mediator One
component 70 and the Mediator Two component 92 may
then establish communications with remote servers. For the
purpose of this example, the servers are shown to be a
distributed object CORBA server 102, a Java RMI server
104, and a database server 106. Each of the components 86,
88 and 90 may establish communications with one or more
of the servers 102, 104, 106 using any networking or
communication protocol it was implemented to use, includ-
ing protocols that are not object-oriented in nature. Each of
the components 86, 88 and 90 handles all the details
necessary to communicate with the server(s) it requires to
implement its function or functions. The details of commu-
nication and data exchange for each server are encapsulated
within the respective downloaded components 86, 88 and
90. This encapsulation of server information is an important
advantage of the present invention over previous methods of
client-server communications or architectures. The client
can acquire components at execution time to communicate
with any type of server. The only restriction is that the
components must implement public interfaces recognizable
to the acquiring and assembling Mediator Component(s) as
classes within the Mediator’s Object Model. Since the client
can acquire components at execution time, the client can
interact with servers and protocols that were unknown at the
time the client was designed, an important advantage over
the prior art in client-server communications.

The object-oriented public interface presented and used
by the Mediator Component to support component interac-
tions is one way that a non-objectoriented external source
can be made to appear like a distributed object server. The
component communicating with the external source can
perform the function of converting data of any arbitrary type
into objects for use within the Mediator’s Object Model.

Although the Mediator classes are not shown in the
illustrated exemplary embodiment as communicating with
servers, it should be noted that there is nothing within the
invention to restrict mediating components from also estab-
lishing communications with servers.

FIG. 11 illustrates an advantage of the present invention
over the prior art in client-server communications. The
components acquired by the client can also provide the user
interfaces 111, 113, 117 needed for the user to interact with
the servers. The graphical user interface displays necessary
to collect information from the user to send to each server or
to display the data received from the server is preferably not
part of the client applet or Mediator Components. In the
prior art, the client programs typically had graphical widget
implementation and graphical event handling source code
written at design and implementation time that limited the
way the user could interact with servers. If a server wanted
to pass additional data to the client and the graphical screens
in the client program could not display the data, then the
client program had to be modified to display the new data.

14
This created coupling between client and server that was
determined at design time and was frequently inconvenient
when additional features or data was desired. The present
invention avoids this problem by delegating any server-

s specific user interactions to the dynamically acquired and
assembled components. The client is therefore less coupled
to the server at design time because user interactions are
removed from design-time source code.

Although the Mediator classes are not shown in the
illustrated example as providing a user interface, it should be
noted that there is nothing within the scope of the present
invention to restrict mediating components from also pro-
viding user interfaces. This may actually be highly desirable
in an interactive system where the user is expected to initiate
or control the timing of component interactions. In this case,
the Mediator Component provides a user interface that
allows the user to control the invocation of methods or
generation of events or data exchanges.

Programs of the present invention can be constructed at
execution time. The present invention implements a concept

2o of a dynamically downloaded Mediator Component to rep-
resent knowledge of the object interactions in the system.
The present invention further discloses a concept of building
layers of Mediators to represent complex systems where
each layer may be acquired and assembled at execution time,

2s which enables arbitrarily complex systems to be dynami-
cally constructed. The downloaded components of the
present invention can then initiate communications with
remote servers or with the user. The dynamically acquired
and assembled component programs of the present invention

30 can therefore provide services and features to the user that
are completely unknown or unanticipated to the higher
layers of assembling mediators.

Although an exemplary embodiment of the invention has
been shown and described, many other changes, modifica-

35 tions and substitutions, in addition to those set forth in the
above paragraphs, may be made by one having ordinary skill
in the art without necessarily departing from the spirit and
scope of this invention.

What is claimed is:
1. A method in an object-oriented computer system for

acquiring and assembling components at execution time
within a networked environment, the assembled components
establishing communications with remote networked
servers, the assembled components presenting a user inter-
face for interaction with a program user, said method com-

executing a client program capable of acquiring and
assembling at least one component at execution time
from a networked server;

acquiring at least one component by the client program at
execution time from at least one networked server;

assembling the at least one component by the client
program at execution time according to implemented
knowledge of component classes or types;

the client program mediating component interactions
between assembled components according to imple-
mented knowledge of abstract relationships between
component classes or types, wherein the abstract rela-
tionships are managed by the client program;

establishing communications by the at least one acquired
and assembled component with at least one remote
server according to encapsulated knowledge of at least
one communication protocol; and

presenting a user interface by the at least one acquired and
assembled component and interacting with the user of
the client program for at least one of an encapsulated
server-specific data exchange and a presentation
requirement.

4o

4s prising the following steps:

so

ss

6o

65

US 6,484,214 B1
15 16

2. A method in an object-oriented computer system for 4. The method as set forth in claim 3, wherein the step of
acquiring and assembling components at execution time the client program acquiring a mediating component is
within a networked environment, the assembled components preceded by a step of the client program acquiring an

bling other components, the assembled components estab- s execution of the client Program.
lishing communications with remote networked servers, the

action with a program user, said method comprising the
following steps:

providing additional knowledge for acquiring and assem- initializing component from a network server during the

5 . The method as set forth in claim 3, wherein the step of

prises a step of the initializing component acquiring the
mediating component from a network server during the
execution of the client program.

assembled components presenting a user interface for inter- the client Program acquiring a mediating component corn-

executing a client program capable of acquiring and 10
assembling at least one component at execution time
from a networked server;

acquiring by the client program at least one mediating
at execution time from at least One net-

worked server;
instantiating and invoking by the client program the at

least one mediating component at execution time
according to implemented knowledge of component
classes or types;

acquiring by the at least one mediating component at least 20
one additional component at execution time from at
least one networked server;

assembling by the at least one mediating component the
at least one additional component at execution time
according to implemented knowledge of component zs and invoked by the
classes or types;

tions between assembled components according to
implemented knowledge of abstract relationships
between component classes or types, the abstract rela- 30
tionships being managed by the at least one mediating
component;

establishing by the at least one additional component

6, The method as set forth in claim 3, wherein:
the first encapsulated knowledge of predetermined com-

ponent classes or types comprises a first object model;
and

the second encapsulated knowledge of predetermined
component classes or types comprises a second object
model.

7. The method as set forth in claim 3, wherein:
the first encapsulated knowledge of predetermined com-

ponent classes or types is different from the second
encapsulated knowledge of Predetermined component
classes or types comprises a second object model.

8. The method as set forth in claim 3, wherein the
additional component can only be instantiated and invoked
by the mediating component and cannot be the instantiated

program.
9. The method as set forth in claim 3, wherein:

the at least one mediating component mediating interac- the first Of predetermined 'Om-

ponent classes or types facilitates the instantiation and
invocation of the mediating component; and

Of Predetermined com-
ponent classes or types does not facilitate the instan-
tiation and invocation of the additional component.

10. The method as set forth in claim 3, wherein the step

the first

communications with at least one remote Server accord- Of instantiating and invoking by the mediating component
ing to encapsulated knowledge of at least one commu- 3s the additional component is followed by a step of the
nication protocol; and additional component establishing a communication link

with at least one remote server in accordance with the

nent

presenting by the at least one additional component at

gram user of the client program for at least one of an
encapsulated server-specific data exchange and a pre- 4o
sentation requirement.

least one user interface and interacting with the pro- second Of predetermined
Or

11. The method as set forth in claim 3, wherein:
the step of the mediating component acquiring an addi-

tional component comprises a step of the mediating
component acquiring a plurality of additional compo-
nents from a network server during the execution of the
client program; and executing a client program, the client program having a 4s

first encapsulated knowledge of predetermined compo- the step of instantiating and invoking by the mediating
nent classes or types; component the additional component comprises a step

the client program acquiring a mediating component from of instantiating and invoking by the mediating compo-
nent the plurality of additional components during the a network server during the execution of the client

program, the mediating component having a second so execution of the client program, the plurality of addi-
encapsulated knowledge of predetermined component tional components being instantiated and invoked by

the mediating component in accordance with the sec- classes or types;
ond encapsulated knowledge of predetermined compo- instantiating and invoking by the client program the nent classes or types held by the mediating component. mediating component during the execution of the client 12. The method as set forth in claim 11, wherein the step program, the mediating component being instantiated

and invoked by the client program in accordance with ss of instantiating and invoking by the mediating component
the first encapsulated knowledge of predetermined the plurality of additional components is followed by a step
component classes or types held by the client program; of the plurality of additional components establishing com-

munication links with a plurality of remote servers in

3. Amethod of acquiring components at execution time in
a distributed computing environment, comprising the fol-
lowing steps:

the mediating component acquiring an additional
Dent from a network Server during the execution of the accordance with the second Of

client program; and
instantiating and invoking by the mediating component 13. The method as set forth in claim 12, wherein the step

the additional component during the execution of the of the plurality of additional components establishing com-
client program, the additional component being instan- munication links comprises a step of each of the plurality of
tiated and invoked by the mediating component in additional components establishing a communication link
accordance with the second encapsulated knowledge of 65 with a different remote server.
predetermined component classes or types held by the 14. The method as set forth in claim 3, the mediator
mediating component. assuming responsibility for coordinating interactions

60 predetermined component classes or types.

US 6,484,214 B3
17

between the plurality of additional components, wherein at
least a portion of the plurality of additional components
communicate directly with the mediator component and
wherein the mediator component disseminates information
and directions in the form of messages and operation calls to
the at least a portion of the plurality of additional compo-
nents.

15. The method as set forth in claim 3, wherein at least
one of the plurality of additional components comprises an
additional mediator component.

16. The method as set forth in claim 3, and further
comprising the following steps:

the mediator component acquires the additional mediating
component from a network server during the execution
of the client program, the additional mediating com-
ponent having a third encapsulated knowledge of pre-
determined component classes or types;

instantiating and invoking by the mediator component the
additional mediating component during the execution
of the client program, the additional mediating com-
ponent being instantiated and invoked by the client
program in accordance with the second encapsulated
knowledge of predetermined component classes or
types held by the mediator component;

the additional mediating component acquiring another
additional component from a network server during the
execution of the client program; and

instantiating and invoking by the additional mediating
component the other additional component during the
execution of the client program, the other additional
component being instantiated and invoked by the addi-
tional mediating component in accordance with the
third encapsulated knowledge of predetermined com-
ponent classes or types held by the mediating compo-
nent.

17. Amethod of acquiring and assembling components at
execution time in a distributed computing environment,
comprising the following steps:

executing a client program, the client program having a
first encapsulated knowledge of predetermined compo-
nent classes or types;

the client program acquiring a mediating component from
a network server during the execution of the client
program, the mediating component having a second
encapsulated knowledge of predetermined component
classes or types;

assembling by the client program the mediating compo-
nent during the execution of the client program, the
mediating component being assembled by the client
program in accordance with the first encapsulated
knowledge of predetermined component classes or
types held by the client program;

the mediating component acquiring an additional compo-
nent from a network server during the execution of the
client program; and

assembling by the mediating component the additional
component during the execution of the client program,
the additional component being assembled by the medi-
ating component in accordance with the second encap-
sulated knowledge of predetermined component
classes or types held by the mediating component.

18. The method as set forth in claim 17, wherein:
the first encapsulated knowledge of predetermined com-

ponent classes or types comprises a first object model;
and

the second encapsulated knowledge of predetermined
component classes or types comprises a second object
model.

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

18
19. The method as set forth in claim 17, wherein:
the first encapsulated knowledge of predetermined com-

ponent classes or types is different from the second
encapsulated knowledge of predetermined component
classes or types comprises a second object model.

20. The method as set forth in claim 17, wherein the
additional component can only be assembled by the medi-
ating component and cannot be assembled by the client
program.

21. The method as set forth in claim 17, wherein:
the first encapsulated knowledge of predetermined com-

ponent classes or types facilitates the assembling of the
mediating component; and

the first encapsulated knowledge of predetermined com-
ponent classes or types does not facilitate the assem-
bling of the additional component.

22. The method as set forth in claim 17, wherein the step
of the client program acquiring a mediating component is
preceded by a step of the client program acquiring an
initializing component from a network server during the
execution of the client program.

23. The method as set forth in claim 22, wherein the step
of the client program acquiring a mediating component
comprises a step of the initializing component acquiring the
mediating component from a network server during the
execution of the client program.

24. The method as set forth in claim 17, wherein the step
of the at least one component establishing a communication
link with at least one remote server comprising a step of the
at least one component establishing a communication link
with a plurality of remote servers in accordance with encap-
sulated knowledge of a plurality of communication proto-
cols.

25. The method as set forth in claim 17, wherein the step
of assembling the at least one component comprises a step
of assembling the at least one component in accordance with
an implemented knowledge of component classes and types.

26. The method as set forth in claim 17, and further
comprising the following steps:

the at least one component presenting a user interface; and
the at least one component interfacing with a user of the

27. The method as set forth in claim 26, wherein the step
of the at least one component interfacing with a user of the
client program comprises a step of the at least one compo-
nent interfacing with a user of the client program in order to
enable an encapsulated server-specific data exchange.

28. The method as set forth in claim 26, wherein the step
of the at least one component interfacing with a user of the
client program comprises a step of the at least one compo-
nent interfacing with a user of the client program in order to
facilitate a presentation requirement.

29. The method as set forth in claim 17, wherein the step
of assembling the at least one component comprises a step
of assembling the at least one component in accordance with
an object model.

30. The method as set forth in claim 29, wherein the step
of assembling the at least one component comprises a step
of the client program assembling the at least one component
being assembled by the client program in accordance with
implemented knowledge of component classes or types held
by the client program.

client program.

* * * * *

