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[571 ABSTRACT 

Multi-dimensional data contained in very large databases is 
efficiently and accurately clustered to determine patterns 
therein and extract useful information from such patterns. 
Conventional computer processors may be used which have 
limited memory capacity and conventional operating speed, 
allowing massive data sets to be processed in a reasonable 
time and with reasonable computer resources. The clustering 
process is organized using a clustering feature tree structure 
wherein each clustering feature comprises the number of 
data points in the cluster, the linear sum of the data points in 
the cluster, and the square sum of the data points in the 
cluster. A dense region of data points is treated collectively 
as a single cluster, and points in sparsely occupied regions 
can be treated as outliers and removed from the clustering 
feature tree. The clustering can be carried out continuously 
with new data points being received and processed, and with 
the clustering feature tree being restructured as necessary to 
accommodate the information from the newly received data 
points. 
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probability-based measurement function is used to evaluate 
clustering decisions, and each cluster is represented as a 
probability distribution. Several aspects of these approaches 
need justification before they can be used for data clustering 

5 in very large databases. They typically try to handle metric 
and nonmetric attributes at the same time and in the same 
way. For example, the approach in the paper by McKusick 
and Thompson, “COBWEBI3: A Portable Implementation,” 
NASA Ames Research Center, Artificial Intelligence 
Research Branch, TR FIA-90-6-18-2, June, 1990, handles 
both “nominal” attribute (e.g., color = red, blue, or yellow) 
and “numeric” attribute (e.g., diameter =O..lO) similarly. It 
is not clear whether this is appropriate. Such approaches also 
typically compute the probability for a combination of 
attribute values by simply multiplying the probabilities of 
each individual attribute value. This is under the assumption 
that probability distributions on separate attributes are sta- 
tistically independent of each other. In reality, this assump- 
tion is far from true. The correlation between attributes 
prevails, and sometimes this kind of correlation is exactly 

The probability distribution representations of clusters 
make updating and storing the clusters very expensive to 
support, especially if the attributes have a large number of 
values, because their time and space complexities are not 
only relevant to the number of attributes, but also relevant to 
the number of values for each attribute. 

Often the tree that is built to identify clusters is not 
height-balanced and the tree size is not bounded. See Dou- 

3o glas H. Fisher, “Knowledge Acquisition via Incremental 
Conceptual Clustering,” Machine Learning, Vol. 2, No. 2, 
1987. This may cause the time and space complexities to 
degrade dramatically with skewed data input. 

Clustering analysis in the statistics literature uses 
35 distance-based approaches. That is, a distance-based mea- 

surement function is used to evaluate clustering decisions, 
and each cluster is represented either by all the data points 
in the cluster or by a representative center if one exists. Only 
metric attributes are considered, and the notion of distance 

4o is based on a natural notion of resemblance such as Euclid- 
ian distance or Manhattan distance. 

The problem is formalized as follows. Given the desired 
number of clusters K, a dataset of N points, and a distance- 
based measurement function (e.g., the average distance 

45 between pairs of points in a cluster), a partition of the dataset 
is sought that minimizes the value of the measurement 
function. This is a nonconvex discrete optimization problem. 
Due to an abundance of local minima, there is typically no 
way to find a global minimal solution without trying all 

so possible partitions. The following methods have been pro- 
posed for finding the global minimum, a local minimum or 
just a good solution: 

1. Exhaustive Enumeration (EE): There are approxi- 
mately KN/K! ways of partitioning a set of N data points into 

5s K subsets. So, in practice, though this approach can find the 
global minimum, it is infeasible except when N and K are 
extremely small. 

2. Iterative Optimization (IO): This approach starts with 
an initial partition, then tries all possible moving or swap- 

60 ping of data points from one group to another to see if such 
a moving or swapping improves the value of the measure- 
ment function. Like beam searching with beam size =m or 
deepest gradient hill climbing, it cannot guarantee finding 
the global minimum, but it can find a local minimum. 

65 However, the quality of the local minimum it finds is very 
sensitive to the initially selected partition, and the worst case 

10 

2o sought. 

2s 

1 
METHOD AND SYSTEM FOR DATA 
CLUSTERING FOR VERY LARGE 

DATABASES 

This invention was made with United States Government 
support awarded by NASA, Grant No. NAGW 3921 and 
NSF, Grant No. IRI-9057562. The United States Govern- 
ment has certain rights in this invention. 

FIELD OF THE INVENTION 

This invention pertains generally to the field of informa- 
tion processing systems and methods and particularly to the 
clustering of data from large databases to determine useful 
patterns therein. 

BACKGROUND OF THE INVENTION 

There is a growing emphasis on exploratory analysis of 
large datasets to discover useful patterns. Organizations are 
investing heavily in “data warehousing” to collect data in a 
form suitable for extensive analysis, and there has been 
extensive research on exploratory analysis of “data mining” 
algorithms. 

For a data mining method to be successful in a database 
environment, it must scale well in terms of time and space 
requirements as the dataset size increases While scalability 
is the essential requirement for dealing with very large 
datasets, several other characteristics are highly desirable: 
(1) Generality: the method should be applicable to a variety 
of domains; (2) Summarization: the method should extract 
patterns and represent them in more compressed uniform 
formats, so that traditional database facilities can be used to 
manage and query the data at this higher level of abstraction; 
(3) Interactiveness: the method should be able to accept 
feedback from users to interactively fine-tune the search for 
patterns; and (4) Incrementality: The method should be 
capable of working with data that is input incrementally, not 
necessarily all at once. 

Given a very large set of multi-dimensional data points, 
the data space is usually not uniformly occupied by the data 
points. Instead, some places in the space are sparse while 
others are crowded. Data clustering identifies the sparse and 
the crowded places, and hence discovers the overall distri- 
bution patterns of the dataset. Therefore, by using clustering 
techniques, a better understanding can be obtained of the 
distribution patterns of the dataset and the relationship 
patterns among data attributes to improve data organizing 
and retrieving. It is also possible to visualize the derived 
clusters much more efficiently and effectively than the 
original dataset. Indeed, when the dataset is very large and 
the dimensions are higher than two, visualizing the whole 
dataset in full dimensions is almost impossible. 

Generally, there are two types of attributes involved in 
data to be clustered: metric and nonmetric. Informally, a 
metric attribute is an attribute whose values satisfy the 
requirements of Euclidian space, i.e., self identity (for any 
value X, X=X) and triangular inequality (there exists a 
distance definition such that for any values X1, X2, X3, 
distance (Xl,  X2) + distance (X2, X3) 2 distance (Xl,  X3). 
A nonmetric attribute does not satisfy these requirements. 
Thus, the two types of attributes are intrinsically different 
with respect to computational characteristics. 

Data clustering has been studied in the statistics, machine 
learning, and database communities with different methods 
and different emphasis. 

Most data clustering algorithms in the machine learning 
literature use probability-based approaches; that is, a complexity is still exponential. 
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3. Hierarchical Clustering (HC): Hierarchical Clustering measurement value to decide if the neighbor is better or 
is divided into two distinct classes: agglomerative and worse. This is a drawback for use in very large databases, as 
divisive. Agglomerative clustering (bottom-up clumping) can be illustrated by an example: Assume N=1000 and 
starts with a partition of N clusters, each containing exactly K=10, Then the graph has about 100010/10!=2,76 
one data point. Then, it repeatedly merges the closest pair of 5 nodes, Each node in the graph has 10 * (1o00-10)=9900 
clusters until there are exactly K clusters. Divisive clustering neighbors, hsume that CLARANS only searches a small 
(top down splitting) starts with all data Points in one cluster. 
Then, it repeatedly chooses a cluster to split into two until 

portion of the graph, say 100 nodes, and halts. Assume that 
for each node it searches, on average, only a small portion 

it Obtains Either way, the of the neighbors, say 25, are checked, Then, the entire 
i o  dataset must be scanned 25 times for a single node; 2500 procedure can be formalized as a binary tree being build up 

bottom-up or top-down. It is generally agreed that the scans of the dataset are needed for the 100 nodes searched. computation needed for agglomerative clustering is compa- 
rable with that for divisive clustering. Examining the com- It is thus expected that CLARANS Will not scale well as 
plexity of agglomerative clustering, it is found that: (1) this K and N increase, and that the results will be sensitive to the 
clustering tree is not height-balanced; (2) each merging step data distribution which makes the method essentially inap- 
needs O(N:) painvise comparisons where Ni is the number 15 plicable when the dataset is so large that it does not fit in 
of currently formed clusters; (3) there are totally N-K available main memory. 
merging steps. HC can not guarantee finding the global Another potential limitation of CLARANS is its use of 
minimum or a local minimum, but generally, it can find a medoids to represent clusters. The advantage of using 
good partition. This good partition might be even better than medoids as cluster representatives is that the search space is 
Some local minima. There has been much work On improv- 2o reduced from about KN/K! to about NK/K!, because there are 

C,“ ways of selecting a set of K medoids from N data ing the O(N:) painvise comparisons in each merging step. 
With some reasonable distance measurements, the best time 
and space comp~exity of a practical HC algorithm is O(N2). 
Thus, the approach does not scale well as data size increases, 

points. However, medoids are not 
tives. For 

good representa- 
suppose that data points are 

Clustering has been recognized as a very useful data 25 distributed along the circumference of a circle. Then, every 
data point in the cluster satisfies the medoid definition, but 
none represents the cluster as well as the centroid. Thus, 
when the data distribution in a cluster is such that none of the 
points is really central, medoids tend to distort the cluster- 

mining method in recent years, Ng and Han have presented 
a clustering algorithm, referred to as cLARANs, that is 
based on randomized search, see ~~~~~~d T, N~ and ~ i ~ ~ ~ i  
H ~ ~ ,  “Efficient and Effective Clustering Methods for spatial 
Data Mining,” Proc. of 20th VLDB Conf., 1994, pp. 3o ing. 
144-155. A cluster is represented by its medoid, which is the 
most centrally located data point within the cluster. The 
clustering process is formalized in terms of searching a In accordance with the present invention, multidimen- 
graph in which each node is a potential solution, sional data contained in very large databases can be effi- 
Specifically, a node is a K-partition represented by a set of 35 ciently and accurately clustered to determine patterns therein 
K medoids, and two nodes are neighbors if they only differ and extract useful information from such patterns. The 
by one medoid. CLARANS starts with a randomly selected Processing system and method of the Present invention may 
node. For the current node, it checks at most the specified be used to filter visual images from signal infOrmation 
‘‘maxneighbor’’ number of neighbors randomly, and if a obtained from satellites, medical scanning machines, and the 
better neighbor is found, it moves to the neighbor and 4o like, to provide desired portions of the image signal data to 
continues; otherwise it records the current node as a “local a user. The Processing system and method of the Present 
minimum,” CLARANS stops after the specified “numlocal’’ invention are well suited to function with conventional 
number of the so-called ‘‘local minima” have been found, computer processors having limited memory capacity and 
and returns the best of these. conventional operating speed, allowing massive data sets to 

CLARANS is thus an 10 method, with the following 45 be processed in a reasonable time and with reasonable 
specific choices: (1) cluster representatives are medoids; (2) 
instead of beam size =cc and checking all neighbors, it sets The present invention is statistical and distance-based and 
beam size = maxneighbor and checks at most maxneighbor is well suited to working with metric data. The clustering 
neighbors randomly; and (3) it runs the beam searching problem is particularly formulated in a way that is appro- 
numlocal times with different initial partitions to try to priate for very large datasets: The goal is to cluster a given 
reduce the sensitivity to the initial selection. (typically very large) dataset using a given amount of 

The solutions that CLARANS finds are not guaranteed to memory as accurately as Possible while keeping the input/ 
be either global minimal or local minimal because it does not output costs low. The invention recognizes that the available 
search all possible neighbors. Unless maxneighbor or num- memory may well be much smaller than the size of the 
local are set to be sufficiently large, there is no assurance of 5s dataset. 
even finding good partitions. Theoretically, the graph size is In addition, the present invention has several advantages 
about NK/K!, and the number of neighbors for each node is over previous distance-based approaches. The invention 
K(N-K), so as N and K increase, these values grow dra- utilizes a local (as opposed to a global) method in that each 
matically. In Ng and Han, supra, based on experimentation, clustering decision is made without scanning all data points 
numlocal is set to 2 and maxneighbor is set to be the larger 60 or all currently existing clusters. It uses measurements that 
of 1.25%K(N-K) or 250. With numlocal=2 and maxneigh- can reflect the natural “closeness” of points and, at the same 
bor =1.25% K(N-K), which part of the graph is searched time, can be efficiently and incrementally calculated and 
and how much of the graph is examined depends heavily maintained during the clustering process. 
upon the data distribution and the choice of starting points The present invention exploits the important observation 
for each iteration. 65 that the data space is usually not uniformly occupied, and 

For every neighbor it checks, CLARANS has to scan the hence not every data point is equally important for clustering 
whole dataset to calculate the increase or decrease of the purposes. It differentiates the crowded and sparse regions in 

SUMMARY OF THE INVENTION 

resources. 
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the data space. In accordance with the invention, a dense 
region of points is treated collectively as a single “cluster” 
at some level of granularity. Thus, the problem of clustering 
the original dataset is reduced into that of clustering a much 
smaller derived subcluster set. Points in sparsely occupied 5 
regions can be treated as “outliers” and removed, preferably 
at the option and under the control of the user. Because of 
these features, the invention performs especially well on 
skewed data, and is quite insensitive to the order in which 
the data points are received. 

The invention makes full use of available computer 

mize accuracy) while minimizing inputioutput costs (to 
maximize efficiency). The clustering and reducing process is 
organized and characterized by the use of an inmemory, 15 intended clusters to be found in the data. 
condensed, height-balanced and highly occupied clustering 
feature tree structure. The clustering features corresponding 
to each cluster form the leaves of the tree. The clustering 
feature for each cluster comprises the number of data points 
in the cluster, the linear sum of the data points in the cluster, 20 present invention, 

present invention, if the amount of available memory in the invention with respect to an increasing number of data 
computer system is M bytes, the space complexity is on the points per cluster, 
order of M, i.e., O(M), and the time complexity is FIG. 18 is a graph illustrating the scalability of the present O(dNBlog,(M/P)), where d is the data dimensionality, N is 25 invention with respect to an increasing number of clusters. the number of data points in the dataset, and B is the tree 

FIG. 19 is an illustrative view of the results of the cluster branching factor determined by the page size P. 
processing carried out by the present invention on the data 
of FIG. 11 wherein the intended clusters to be found are The invention may be carried out with an incremental 

method that does not require the whole dataset in advance, 3o illustrated in FIG, 
and with only one scan of the dataset being required. The 
number of clusters, K, can be either specified by the or FIG. 20 is an illustration of the results of the clustering 
a natural value determined from the dataset, This flexibility obtained by the present invention on the data set of FIG. 13. 
is important because: (1) for a very large multi-dimensional FIG. 21 is an illustrative view of the results of the 
dataset, it is usually not easy to predict the correct K before clustering of the present invention on the data set of FIG. 15. 
doing the clustering, and (2) if a poor K is chosen, even with 35 FIG. 22 is an illustrative view of the results of the 
the exhaustive calculation of the optimal partition of data clustering with the present invention on the noisy data set of 
into K groups, the results will not satisfactorily reflect the FIG. 16. 
reality. FIG. 23 is an image of a scene of trees with a partly cloudy 

formance according to their knowledge of the dataset by FIG. 24 is an image of the same scene as in FIG. 23 taken 
controlling several parameters. in the visible wavelength band. 

Further objects, features and advantages of the invention FIG. 25 is an image of parts of the scene of FIGS. 23 and 
will be apparent from the following detailed description 24 corresponding to tree branches, sunlit leaves, and 
when taken in conjunction with the accompanying drawings. 45 shadows, as filtered by applying the present invention to 

correlate the images of FIGS. 23 and 24. 

FIG. 9 is a flow chart showing the control flow of a 
refinement algorithm used in phase 4 of the present inven- 
tion. 

FIG, 10 is an illustrative view of a data set showing an 

FIG, 11 is an illustrative view of a data set showing actual 
data on which the invention is carried out to find the 
intended clusters of FIG, 

FIG. 12 is another example of intended clusters to be 
found by the processing of the present invention. 

the present invention to find the intended clusters of FIG. 12. 
FIG. 14 is a further example of a data set showing 

FIG. 15 is an illustrative view of the actual data set to be 
processed by the present invention to find the clusters of 
FIG. 14. 

to be processed by the 

of intended clusters, 

memory to derive the finest possible subclusters (to maxi- l3 is the data to be processed by 

FIG, 16 is a noisy data set 

and the square sum Of the data points in the In the FIG, 17 is a graph illustrating the scalability ofthe present 

Furthermore, the invention allows users to tune the per- 4o sky background taken in the near infrared band. 

BRIEF DESCRIPTION OF THE DRAWINGS 
DETAILED DESCRIPTION OF THE 

INVENTION 
In the drawings: 
FIG. 1 is a diagram of a processing system for carrying 

out data clustering in accordance with the present invention. so 
FIG, 2 is an illustrative diagram of clusters organized by 

a clustering feature (CF) tree. 
FIG, is an illustrative diagram showing the relationship 

of the clusters in the CF tree of FIG. 2. 
FIG. 4 is a chart showing the arrangement of the phases 

of operation of the present invention. 

1 of the system of the present invention. 

algorithm as used in Phase 1 of the system of the Present 
invention. 

FIG. 7 is a flow chart showing the control flow of phase 
2 in the present invention. 

FIG. 8 is a flow chart showing the control flow of a 65 
hierarchical clustering algorithm that may be used in phase 
3 of the present invention. 

The present invention may be utilized to extract useful 
information from various instruments and systems which act 
as a data source. The processing system of the present 
invention is shown for illustrative purposes in FIG. 1 receiv- 
ing data to an input interface 50 from a variety of data 

5s sources. Typical data sources include an instrument 51 that 
provides an analog output signal on a line 52 which is 
converted to digital data in an analog-to-digital converter 53 

transmission link 55 that provides digital data directly to the 
FIG. 6 illustrates the operation of a CF tree rebuilding 60 interface 50, recorded data storage equipment 57, such as 

readers for magnetic disks, CD-ROMs, magnetic tape, etc., 
and a digital data generator 58, which functions to provide 
signal data in digital form that can be provided directly to the 
input interface 50. 

The instrument 51 can comprise any of various types of 
instrument systems which provide signals indicative of some 
physical characteristic, such as television cameras, X-ray 

is a flow chart showing the flow for phase before being provided to the input interface 50, a data 
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tomography systems, magnetic resonance imaging (MRI) 
(2) 

112 
systems, infrared scanners, X-ray scanners, visible light N -  - c (XZ -XO)Z microscopes, electron microscopes, and the like. In certain ( i=l ) 

( N ( N - 1 )  . 

R =  cases, signal data may be obtained from more than one 
instrument examining the same space. For example, a par- 5 
titular Scene may be scanned by both a camera sensitive to 
visible light and an infrared camera, so that spatially corre- 
lated data obtained by examining different spectral charac- 
teristics of the same scene at the same time is provided by 
the instrument(s) 51 through the digitizer 53 to the input 10 
interface 50. Moreover, information obtained in substan- 
tially “real time” by the instrument 51 may be correlatable 
with the data received from the recorded data storage 
equipment 57, the digital data generator 58, or the data The radius is the average value of distances from member 
transmission link 55. All of such data, which may have 15 points to the centroid. The diameter is the average value of 
spatial or time correlation, is provided to a processor 60, a painvise distances within the cluster. They are two alterna- 
computer system capable of appropriate Processing, such as tive measures of the tightness of the cluster around the 
image processing. An example of a computer system which centroid, 
may be utilized for image processing is an HP 90001720 Next, between two clusters, five alternative distances for 
workstation running under the HP-UNIX operating system. 20 measuring the closeness of clusters are defined: 

Definition 3: Given N d-dimensional data points in a 

cluster: {X,}, where i=1,2, . . . , N,the diameter, D, of 
the cluster is defined as: 

+ 

(3) 
112 

N N -  - c c (XZ -X,)Z 
i-1 j-1 

D =  

Associated with the processor 60 is a user interface 61 of 
conventional design, a main random access memory (RAM) 
62 having a memory capacity of “M’  bytes, an ancillary 
memory 63, which may be a hard disk, floppy disk, etc., 
which has a limited capacity of “ R ’  bytes, and an output 25 

from the processor 60 to a variety of output devices, such as 
a CRT display 67 or a hard copy printer 68. Further, the data 
from the output interface 65 can be provided through a data ”” 

Definition 4: Given the centroids of two clusters: 20, 
and 20,, the centroid Euclidian distance, DO, of the 
two clusters is defined as: 

interface 65. The output interface 65 can provide signal data DO=((?01-?02)2)?/2. (4) 

+ 
Definition 5: Given the centroids of two clusters: x o ,  

transmission link 70 to remote equipment for further j” 
processing, analysis, or display. In addition, the data from 
the outuut interface 65 can be urovided to a data storage 

and 20,, the centroid Manhattan distance, D1, of the 
two clusters is defined as: 

I - -  4 
system 71, such as magnetic tape or disks. 

utilized to obtain meaningful restructuring of signal data to 
enhance desired information, find correlation between 
variables, and extract patterns from data even in the presence 
of substantial noise. A aarticular examale of the imalemen- 

As described further below, the present invention can be 35 Dl = KO1 - x o 2 1  = 1=1 boy) -xok’l. 

where ~ ~ ~ , ( ~ ~ - ~ ~ , ( i ) l  is the absolute difference of go, and 
+ xoz in the i-th dimension. 

tation of the present invention is in image filtering wherein 40 
two-dimensional signal data is provided from an instrument, 
such as a video camera, or similar device, which contains 
several signal patterns but in which only data corresponding 
to some of the patterns is desired. 

definitions from statistics are presented below. Some data 
transformations that can be optionally applied are also 
discussed. Standard terminology of vector spaces and vector 
operations, such as vector addition, vector subtraction, and 
vector dot product, are used. For a further explanation of 
such terminology, see, Richard Duda and Peter E. Hart, 
Pattern Classification and Scene Analysis, Wiley, 1973. 

First, centroid, radius and diameter for a cluster are 
defined. 

For purposes of explaining the invention, some basic 45 

55 

Definition 6: Given N, d-dimensional data points in a 

cluster: {Xi} where i=1,2, . . . , N,, and N, data points 

in another cluster: {X,} where j=N,+l, N,+2, . . . , 
N,+N,, the average inter-cluster distance, D2, of the 
two clusters is defined as: 

+ 

+ 

112 

Definition 7: Given N, d-dimensional data points in a 

cluster: {X,} where j=N,+l, N,+2, . . . , N,+N,, the 
average inter-cluster distance of the cluster formed by 
merging the given two clusters, D3, is defined as: 

+ 

(7) 
Definition 1: Given N d-dimensional data points in a 112 

N1+N2 Ni+Nz - + + [ z1 j &  (Xz-Z)2  j cluster: {X,}, where i=1,2, . . . , N, the centroid XO of 
the cluster is defined as: 

( N I + N Z ) ( N I + N Z - I )  ’ 

0 3  = 

60 
N -  - xz Definition 8: Given N,, d-dimensional data points in a 

cluster: {X,}, where i=1,2, . . . , N,, and N, data points 

in another cluster: {X,} where j=N,+l, N,+2, . . . , 
+ 65 N,+N,, The variance increase distance of the cluster 

formed by merging the given two clusters, D4, is 
defined as: 

x* = i=l + 
N ’  

+ 
Definition 2: Given N d-dimensional data points in a 

cluster: {X,}, where i=1,2, . . . , N,the radius, R, of the 

cluster with respect to the centroid 20 is defined as: 
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N I  
c 
i=l 

2 In the material that follows, the concepts of a Clustering 
Feature and a CF Tree are introduced. These are at the core 
of incremental computation and maintenance of clustering 
information in the present invention. 

A Clustering Feature is a triple that summarizes the 
Ni+Nz - information that is maintained about a cluster. All the 

properties of clusters defined above can be computed from 

Definition 11. Given N d-dimensional data points in a 

[-  x, ii=l - 

2 lo 

"1iN2 [ z -  ij=N;,' x, ] 
. it. 

1s 
j=NI+1 

+ 
The average intra-cluster distance D3 between two clus- 

ters is actually the diameter D of the merged cluster. For 

clarity of concept and algorithm descriptions, 20, R and D 

cluster: {Xi} where i=1,2, . . . , N, the Clustering 
Feature (CF) vector of the cluster is defined as a triple: 

(13) 

where N is the number of data points in the cluster, L S  is the 

linear sum of the N data points, i.e., ZF=lXi ,  and SS is the 

are used only as properties of a single cluster, and DO, D1, 2o 
D2, D3, and D4 are used as properties between clusters. 

different dimensions without affecting the relative place- 

CF=(fl Z'SSS) 

+ 
In carrying out the present invention, it is possible to 

Preprocess data by weighting Or shifting the data along 

ment. For example, to normalize the data, one can shift the 2s 'quare sum Of the 

weight the data by the inverse of the standard deviation in 
each dimension. In general, such data preprocessing may not 
be necessary. Preprocessing may be used to avoid biases 
caused by some dimensions. For example, the dimensions 30 

clustering process. On the other hand, it may be inappro- 
priate to use such preprocessing if the spread is indeed due 
to natural differences of clusters. Preferably, a user who From the CF definition and the CF additivity theorem, it 
knows the meaning of the data can decide whether normal- 3s is apparent that the CF vectors of clusters can be stored and 
ization is appropriate. Thus, it is preferred to leave the data calculated incrementally and accurately as clusters are 
transformation option to the user. The following two merged. It also can be Proven that, given the CF vectors of 
(optional) operations are Preferably available in accordance clusters, the corresponding 20, R, D, DO, D1, D2, D3, and 
with the present invention. 4o D4's can all be calculated. The following is a list of formulas 

Definition 9: A weighting operation 3 for a which can be used to calculate 20, R, D, DO, D1, D2, D3, 

+ 

+ 
data points, i.e.2 ZF=lx: ' 

data by the mean value along each dimension, and then (CF Additivity Theorem): Assume that CF1= 
+ 

(N,,LS,,SS,), and CF,=(N,,LS,,SS,) are the CF vectors of 
two disjoint clusters. Then the CF vector of the cluster that 
is formed by merging the two disjoint clusters is: 

with large spread dominate the distance calculations in the CF,+CF,=~N,+N,,ZS,+ZS,,SS,+SS,~ (14) 

The Proof consists of straightforward algebra. 

d-dimensional vector space is represented as a 
d-dimensional vector of positive weight values: 

and D4 from the corresponding CF vectors. 

+ N -  
xz W=[W('), w('), . . . , ~ ( 4 1 ,  where w(')'O, j=1, . . . , d, 4s 

is the weight value for the j-th dimension. The weight- 

ing operator 3 is applied to a d-dimensional data point 

X=[X(O, X('), . . . , X(] in the following way: 

- 
centroidXO = - N - 

LS 
+ N 

= -  

I I? 
I I  ' 

N -  - c (XZ -XO)Z so 
radius R = ( i=l ) (9) 

+ 
Definition 10: A moving operator M for a d-dimensional 

vector space is represented as a d-dimensional vector of 
1/2 

+ 5s 
positive or negative moving values: M=[m(O, m('), . . . , m(4] N N -  - 
where m('), j=1, . . . , d, is the moving value for the j-th c c (XZ -X,)Z 

+ 
dimension. The moving operation W is applied to a 

+ 
d-dimensional data point X=[X('),X('), . . . , XC4], in the 6o 
following way: N(N - 1) - 

- - 2 1 n  

+ +  
W, M and any combinations of them are reversible linear 6s 

transformations and the following equations are easy to 
prove: 



11 
-continued - -  

centroid Manhattan distance D1 = KOl -XOzl - -  
LSI LSZ 

, 112 

N I  Ni+Nz - - 
i=l j=NI+1 

intercluster = 

distance 0 2  I 
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to radius or diameter for all leaf nodes in a given tree.) The 
tree size is a function of the threshold T. The larger T is, the 
smaller the tree size. In accordance with the present 
invention, it is preferred that a node fit in a page of memory. 

5 Assume the selected page size is P bytes: then B will be 
Pisizeof(non1eaf entry), and L will be (P-2*sizeof(pointer)) 
isizeof(1eaf entry). Once the dimension of the data space is 
given, the sizes of leaf and nonleaf entries are known. P is 
a parameter which can be varied for performance tuning. 

Such a CF tree will be built dynamically as new data 
lo objects are inserted. It serves several purposes. First, it is 

used to guide a new insertion into the correct subcluster for 
clustering purposes, just as a B+-tree is used to guide a new 
insertion into the correct position for sorting purposes. 
Second, it is a much more condensed representation of the 

is dataset because each entry in the leaf node is not a single 
data point but a subcluster whose diameter (or radius) is 
under a specific threshold T. Third, it is a tool that helps to 
reduce the aroblem of clustering the original data aoints to - -  l l i  

~ ( N I  + Nz)*(SSi + SSz) - 2*(LSi + LSz)’ 
(NI +Nz)(Ni  + N z -  1) 

the problem of clustering the dLrived T-iatisfyingsubclus- 
ters in its leaf nodes. 

However, each node can only hold a limited number of 
entries due to its size, so it does not always correspond to a 
natural subcluster. Occasionally, two subclusters which 
should have been in one cluster are split across nodes. 
Depending upon the order of data entry and the degree of 

2s skewness, it is also possible that entries for two subclusters 
which should not be in one cluster are kept in the same node. 
These infrequent but undesirable anomalies caused by page 
size are remedied in Phase 3 of the method in accordance 
with the invention with a global (or semi-global) algorithm 

30 that clusters the leaf entries across nodes. Another undesir- 
able artifact is that if the same data point is inserted twice, 
but at different times, the two copies might be entered into 
distinct leaf clusters. This problem can be addressed with an 
additional pass over the data (Phase 4), as discussed below. 

Apseudo-code of the algorithm for inserting an entry into 
- 2  - 2  - - a CF tree is presented below. To understand the algorithm, 

it is important to note that an entry in a leaf node does not 
denote a single point, but rather a cluster of data points 
whose diameter (or radius) is under the given threshold 

In the present invention, the “cluster,” composed of a set 4o value T. Given an entry ‘‘Ent”, the system Proceeds as 
fOllOWS: 

1. Identifying the appropriate leaf Starting from the root, 
it recursively deScends the CF tree by choosing the closest 
child node according to the distance metric (DO, D1, D2, D3, 
Or D4, as defined above). 

2. Leaf modification: When it reaches a leaf node, it finds 
the closest leaf entry, say L,, and then tests whether L, can 
“absorb” the new entry “Ent” and still satisfy the threshold 
condition. That is, if we treat “ E d ’  as a cluster and merge 
it with the cluster denoted by entry L,, the resulting cluster 

A CF tree is a height-balanced tree with two parameters: so must satisfy the threshold condition. Note that the CF vector 
of the new cluster can be computed from the CF vectors for 
L,and “Ent”. If the threshold condition is satisfied, the CF 
vector for Li is updated to reflect this. If not, a new entry for 
the singleton cluster containing “Ent” is added to the leaf. If 

= ( 
and variance increase distance 

Ni+Nz - 
NI+Nz [ - e x& ] 

0 4 -  X k - i k = l  N I  + Nz - 
k= 1 

2 

N I  e [ x, - ii=l - 

i=l 

c 
3s 

LSI + LSZ 
N I *  (s) + N z *  (s) - (Nl + w *  (-) . 

of data points, is represented by the CF vector, and only the 
CF vector need be stored in the memory of the computer 
system. This cluster CF vector summary is not only efficient, 
because it stores much less than all the data points inside the 
cluster, but also accurate, because it is sufficient for calcu- 
lating all the measurements of the clusters that are needed 4s 
for making clustering decisions in accordance with the 
invention, The fact that CF vectors can be maintained 
accurately and incrementally is a particular advantage of the 
present invention. 

a branching factor B and a threshold T. FIG. 2 shows a CF 
tree of branching factor ~ = 2  and FIG, 3 shows the relation- 
ships of the clusters for this tree. Each nonleaf node contains 
at most B entries of the form [CF,, child,], where i=l ,  2, . . 
, , B, ‘‘child;’ is a pointer to its i-th child node, and CF, is the 5s there is space on the leaf for this new entry, we are done, 
CF vector of the subcluster represented by this child, Thus, is done Otherwise we must the leaf ‘Ode. Node 
a nonleaf node represents a cluster made of all the subclus- by choosing the farthest pair Of entries as seeds, and redis- 

tributing the remaining entries based on the closest criteria. 
3. Modifying nodes on the path to the leaf Each nonleaf 

represented by entry 6o describing the cluster of points corresponding to that sub- 
tree, ~f~~~ inserting U E ~ ~ X  into a leaf, we must update the CF 
information for each nonleaf entry on the path to the leaf. In 
the absence of a split, this simply involves updating CF 
vectors to reflect the addition of “Ent”, and is straightfor- 

into the parent node, to describe the newly created leaf. If the 
parent has space for this entry, at all higher levels, we only 

ters represented by its entries. A leaf node contains maxi- 

CFi is the CF vector Of the 
i. In addition, each leaf node has two pointers, “prev” and 
‘‘next’’ which are used to chain all leaf nodes together to 
enable efficient scans. It also represents a cluster made up of 
the subclusters represented by its entries. But all entries in 

of the following: radius R is less than T, or diameter D is less 
than T. (Of course, the requirement is the same with respect 

mally entries Of the form [CFil, where i=l, 2, ’ ’ ’ 2 L, and entry in the tree is a pointer to a subtree plus a CF vector 

a leaf node must satisfy a threshold requirement, that is one 65 ward, A leaf split requires us to insert a new Donleaf entry 
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need to update the CF entries to reflect the addition of “Ent”. 
In general, however, we may have to split the parent as well, 
and so on up to the root. If the root is split, the tree height 
increases by one. 

4. A Merging Refinement: Splits are caused by the page 
size, which is independent of the clustering properties of the 
data. In the presence of skewed data input order, this can 
affect the clustering quality, and also reduce space utiliza- 
tion. A simple additional merging step often helps ameliorate 
these problems: Suppose that there is a leaf split, and the 
propagation of this split stops at some nonleaf node N,, i.e., 
N, can accommodate the additional entry resulting from the 
split. We now scan node N, to find the two closest entries. If 
they are not the pair corresponding to the split, we try to 
merge them and the corresponding two child nodes. If there 
are more entries in the two child nodes than one page can 
hold, we split the merging result again. During the 
resplitting, in case one of the seeds attracts enough merged 
entries to fill a page, the rest of the entries are put with the 
other seed. In summary, if the merged entries fit on a single 
page, we free a node space for later use, create one more 
entry space in node N,, thereby increasing space utilization 
and postponing future splits; otherwise we improve the 
distribution of entries in the closest two children. 

Insert An Entry To CF Tree 

Status function Insert-Into-CF-Tree 

if (CurNode is Nonleaf Node) { 
(Node**Root,Node**NewNode,Node *CurNode,Entry Ent,Float T) { 

Ci = ClosestLChild (CurNode,Ent); 
Result = Insert-Into-CF-Tree 
(Root,NewNode,Ci,Ent,T); 
if (Result==NO SPLIT) { 

Update-CF (CurNode,Ci,Ent); 
return NO-SPLIT, 
1 

else { 
Update-CF (CurNode,Ci,Ent); 
NewEnt = Make-Entry_From_Node( *NewNode); 
*NewNode = InsertLTo-NonleafLNodeMightL 
Split (CurNode,NewEnt); 
if (*NewNode==NULL) { 

Merge-ClosestLButLNotLJustLSplitLPair- 
MightLResplit (CurNode); 
return NO-SPLIT: 
I 

else { 
if (CurNode==*Root) { 

*Root=Create-New_Root(CurNode, 
*NewNode); 
return NO-SPLIT, 
I 

else return SPLIT; 
1 i 

I 
i 

else {/* CurNode is Leaf Node */ 
Li = ClosestLEntry (CurNode,Ent); 
If (Absorb (Li,Ent) Satisfies T) { 
Absorb (Li,Ent); 
return NO-SPLF, 
I 

else { 
*NewNode = InsertLTo-LeafLNode-MightLSplit 
(CurNode,Ent); 
if (*NewNode==NULL) return NO-SPLIT; 
else return SPLF, 
1 

FIG. 4 shows the architecture of the present invention 
including all major phases. The following summarizes the 
role of each phase and the relationships between the phases. 
The parameter settings and other implementation details are 
discussed further below. 

14 
The main task of Phase 1 is to scan all data and build up 

an initial in-memory CF tree using a given amount of 
memory and recycling space on disk. This CF tree should 
make the best use of the available memory, and reflect the 

s clustering information of the dataset with the finest possible 
granularity under the space limit. With crowded data points 
grouped as fine subclusters, and sparse data points removed 
as outliers, this phase creates an in-memory summary of the 
data. Subsequent clustering computations in Phases 2 and 3 

i o  will be: (1) fast because (a) no I/O operations are needed, 
and (b) the problem of clustering the original data is reduced 
to a smaller problem of clustering the subclusters in the leaf 
nodes of the initial CF tree; (2) accurate because (a) a lot of 
outliers are eliminated, and (b) the remaining data is 

is reflected with the finest granularity that can be achieved 
given the available memory; and (3) less order sensitive 
because the entries in the leaf nodes of the CF tree form an 
input order containing much more data locality compared 
with the arbitrary original data input order. 

In addition, since Phase 1 can accept data either from a 
static file or from a dynamic pipe, Phase 1 can be run in 
parallel with data generation. 

Phase 2 is an optional phase. The global or semi-global 
clustering methods that we apply in Phase 3 have different 

zs input size ranges within which they perform well in terms of 
both speed and quality. For example, HC performs well for 
a set of less than 1000 data objects whereas CLARANS 
performs well for a set of less than 5000 data objects. So, 
potentially, there is a gap between the size of Phase 1 results 

30 and the best performance range of the Phase 3 process. 
Phase 2 serves as a cushion between Phase 1 and Phase 3 and 
bridges this gap: we scan the leaf entries in the initial CF tree 
to build a smaller CF tree, while removing outliers and 
grouping crowded subclusters into larger ones. Since the 

35 entries in the initial CF tree form an input order with good 
data locality with respect to clusters, the obtained CF tree is 
quite insensitive to the original data input order. 

The clustering processes for a set of data points can be 
readily adapted to work with a set of subclusters, each 

40 described by its CF vector. In Phase 3, the set of leaf entries 
from the previous phase are re-clustered using an in-memory 
clustering algorithm. Several points are worth noting: 

1. Any of the algorithms available in the literature (e.g., 
CLARANS, HC, etc.) can be used. 

2. Whatever the algorithm, it can be modified to utilize the 
information in the CF vector and the locality in the CF 
tree. 

3. The good locality of the leaf entries from Phase 2 
means that the output of this phase is not much affected 
by the original input order of the data. 

Phase 4 is optional and at the cost of additional passes 
over the data. It refines the clusters further to correct the 
minor and localized inaccuracies that might have been 

20 

45 

55 caused because Phase 3 clusters at a coarse granularity. 

PHASE 1 

FIG. 5 shows the control flow in Phase 1. It is assumed 
that M bytes of main memory and R bytes of disk space are 

60 available. The goal is to cluster the incoming data in the best 
possible manner while using at most this much (primary and 
secondary) memory. The input is the original dataset and the 
output is an in-memory CF tree, which the system of the 
invention tries to make as fine as possible while fitting in the 

65 available main memory. Phase 1 starts with a small initial 
threshold value, say T, scans the data, and inserts points into 
the tree. If it runs out of memory before it finishes scanning 
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the data, it then increases the threshold value, and re-builds 
a new, smaller CF tree with the leaf entries of the old tree. 

-continued 

The preferred re-building algorithm, and a resulting reduc- 
ibility theorem, will now be discussed. 

(ti+,,Ti+,, ClosestPath, CurrentEntry); 
if (Status==YES && ClosestPath<CurrentPath) 

FitLInLPathLInLNewTree(ti+,, Ti+,, 
ClosestPath, CurrentEntry); 
else FitLInLPathLInLNewTree (ti+,, Ti+,, 
Currentpath, 
CurrentEntry); 

Assume ti is a CF tree of threshold Ti. Its height is h, and 

to use all the leaf entries in ti to re-build a CF tree, ti+,, of 

or equal to Si. Assume within each node in CF tree ti, the 

5 

its size (or number of nodes) is Si. Given Ti+, 5Ti,  we want 

threshold Ti+,. The size of ti+,, Si+,, should be smaller than I 
FreeLNonNeededLNodesLAlongCurrentPathLInLOldTree 

CurrentPath=NextPathLOfLOldTree (ti, Currentpath); 
entries are labeled contiguously from 0 to nk-l, where nk is 10 
the number of entries in that node. Then (i,, i,, . . . , ih-,) can 
uniquely represent a path from the i,-th entry in the root 
node (level 1) to the ih-,-th entry in some nonleaf node 
above the leaf level (level h). In other words, each leaf node 
corresponds to a path uniquely, and there is an order existing 15 that: (1) in 
in leaf nodes. Thus, Path (Or leaf ( i~(l) ,  iz(l), . . . 3 general, by increasing the threshold, a smaller tree can be 
ih-i(l)) is before (Or Path (Or leaf (ii(”, iz(2), . . . 3 built; and (2) if a CF tree uses up all M/P pages of memory, 
ih-,(’)) if i,(’)=i,(’), . . . , ij-l(l)=ij-l(z),and i>’)<iY)(05.i5h- with log,(M/P) reserved pages of memory, the tree can be 
1). For simplicity, we Will use the terms Paths and leaf nodes transformed to a smaller new tree of higher threshold. 
interchangeably. The CF tree re-building algorithm may now 20 of the leaf entries are not 

which illustrates the operation of the algorithm. After all the leaf entries of the old tree have been re-inserted 
The algorithm scans and frees the old CF tree path by path (Or written out to disk), the scanning of the data (and 

from left to right, and at the Same time, creates the new CF insertion into the new tree) is resumed from the point at 
tree path by path from left to right, The new tree starts with 25 which it was interrupted. In the present invention, preferably 
NULL, and the “current path” starts with the leftmost path no data point in the original dataset is read twice, and an 
of the old tree, ne nodes (or spaces) are attached to the new increase in the threshold value and re-building of the CF tree 

of the threshold and the rate at which it is increased may be is no extra space growth in the new tree compared with the 
30 heuristically chosen, and are parameters that can be tuned old tree. Each leaf entry in the “Currentpath” of the old tree for performance, 

is tested against the new tree to see if it can fit in (i.e., either A good choice of threshold value can greatly reduce the 
number of rebuilds. Since the initial threshold value To is absorbed by an existing leaf entry, or created as a new leaf 

entry without splitting) with the new threshold in the “Clos- increased dynamically, it can be adjusted for its being too 
estPath” that is found topdown in the new tree. If yes and the 35 low, But if the initial is too high, a less detailed CF tree 
“ClosestPath” is before the “Currentpath”, then it fits in the will be obtained, than is feasible with the available memory, 
“ClosestPath” in the new tree without creating any new so T, should be set conservative~y, T, may thus be set to 
node, and the space in the “Currentpath” is left available for by default; although a howledgeable could 
later use; otherwise it fits in the ‘‘Currentpath” in the new change this, 
tree without creating any new node. Once all leaf entries in suppose that T~ turns out to be too small, and the 
the “Currentpath” are processed, we can free the non-needed 40 algorithm subsequently ~ n s  out of memory after N~ data 

“Currentpath” to the next path in the old tree if one still formed (each satisfying the threshold condition with respect 

to the “Currentpath” need to exist simultaneously both on and the tree that has been built up so far, an estimate of the 

needed for the tree transformation is h pages. Once the approach may preferably be used to select T,+,, 

(4, 

I 
ti+, = FreeLEmptyLNodesLInLNewTree (ti+,); 
I 

The reducibility theorem defined above 

discussed below, 
be described with reference to the simple picture of FIG. 6, re-inserted into the new CF tree, but are written out to disk, 

tree exactly the Same as they are in the old tree, so that there is triggered when the main memory is The 

nodes the “Currentpath” in the Old tree, and set 

Only the nodes corresponding 

points have been scanned, and Ci leaf entries have been 

to Ti). Based on the portion ofthe data that has been scanned 

extra space 45 next threshold value Ti+, is needed. The following heuristic 

exists. During the 

the new tree and On the Old tree, so the 

transformation is finished, it is likely that there are empty 
‘Odes in the new tree and they be removed. Based On 

1, Choose Ti+, so that Ni+,=Min(2Ni, N), That is, whether 
N is known, choose to estimate Ti+, at most in proportion to 

this algorithm, we can obtain the following theorem easily: 
Assume we re -bdd  CF tree ti+, of threshold ti+, from CF 

tree ti of threshold Ti by the above algorithm. Lets ,  and si+,, 
be the sizes of ti and ti+, respectively. If Ti+, ZTi? then 
Si+, 5% and the transformation from ti to ti+, needs at most 

extra Pages Of where 
A pseudo-code for the CF tree re-building algorithm 

the data Seen thus far, 
2. Intuitively, it is preferable to increase the threshold 

based on some measure of volume. There are two distinct 
notions of volume that are used in estimating threshold. The 
first is average volume, which is defined as V,=rd where r is 

5s the average radius of the root cluster in the CF tree, and d 
is the dimensionality of the space. Intuitively, this is a 
measure of the space occupied by the portion of the data 
seen thus far (the “footprint” of seen data). A second notion 
of volume is packed volume, which is defined as Vp=Ci*Tt, 

60 where Ci is the number of leaf entries and T t  is the maximal 
volume of a leaf entry. Intuitively, this is a measure of the 
actual volume occupied by the leaf clusters. Since Ci is 

AttachLNodesLToLNewTreeAsCurrentPathLInLOldTree essentiallv the same whenever the CF tree runs out of 

is the height Of ti. 

follows: 

void function Re-buildLCF_Tree(t,, ti+,, Ti+,) { 
ti+, = NULL, 
Currentpath = PathLOfLOldTree (ti, (0, . . . ,O)); 
while (Currentpath exists) { 

(ti+,, ti, Currentpath); 
foreach leaf entry CurrentEntry in Currentpath of 
OldTree do { 

Status = CanLFitLInLClosestPathLInLNewTree 

memory (since a fixed amount of memory is used), V, can 

The assumption can be made that r grows with the number 
of data points Ni. By maintaining a record of r and the 

65 be approximated by T t .  
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number of points N,, r,,, can be estimated using least square 
linear regression. Define the expansion factor f=Max(l.O, 
rL+,rL/rJ, and use it as a heuristic measure of how the data 
footprint is growing. The use of Max is motivated by the 
observation that for most large datasets, the observed foot- 
Print becomes a constant quite quickly (unless the input 
order is skewed). Similarly, by making the assumption that 
V, grows linearly with N,, T,,, may be estimated using least 
squares linear regression. 

outliers absorbs all entries that can be absorbed into the 
current tree without causing the tree to grow in size. In case 
none of the potential outlier entries is absorbed, they are 
very likely the real outliers. Thus, further heuristic outlier 
re-absorbing conditions can be defined dynamically in terms 
of changes of T and changes of the amount of data scanned 
to avoid frequent re-absorbs of the data, 

It may be noted that the entire cycle - insufficient main 
memory triggering a re-building of the tree, insufficient disk 

3. Traverse a path from the root to a leaf in the CF tree, 10 space and dynamic heuristics triggering a re-absorbing of 
outliers, etc, - could be repeated several times before the 
dataset is fully scanned, This effort must be considered in 
addition to the cost of scanning the data in order to the 
cost of Phase accurately, 

It may also be noted that, when the algorithm runs out of 
main memory, it may well be the case that still more data 
points can fit in the current CF tree, without changing the 
threshold. However, some of the data points that are read 
may require the splitting of a node in the CF tree. A simple 
variation of the present invention is to write such data points 
to disk (in a manner similar to how outliers are written), and 

The advantage of this approach is that, in general, more data 
points can fit in the tree before a rebuild is required. 

5 

going to the with the most points in a “greedy” 
the 

distance (Dm~fi) between the two entries On this leaf. 
To build a more condensed tree, it is reasonable to expect 
that the threshold value should at least increase to D,,,, so 1~ 
that these two entries can be merged. 

4. Multiply the T,,, value obtained through linear regres- 
sion with the expression factor f, and adjusted it using D,,, 
as follows: TL+,=Max(D,,,, f * TL+,). To ensure that the 
threshold value grows monotonically, in the very unlikely 20 
case that T,,, thus obtained is less than T, then we choose 

attempt to find the most crowded leaf node. 

I to proceed reading the data until disk space runs out as well. 

Tz+l = TZ* - 
2s 

PHASE 2 

(NG:  r 
(This is equivalent to assuming that all data points are 

really just a crude approximation; however, it is rarely called input is the CF tree Produced at the end of Phase 1 and its 
for.) 3o output is a smaller CF tree in which the total number of leaf 
ne available R disk (ancillary) memory is used for entries falls below a desired value. Given the threshold value 

dealing with outliers, which are clusters of low density that and the number of leaf entries in the tree produced at the end 
are judged to be unimportant with respect to the of Phase 1, and the desired number of leaf entries in Phase 
clustering pattern in the data. a special case, no disk 3, a new initial (target) threshold value T may be estimated 
memory may be available, i,e,, R=O, mis is handled by not 3s using a heuristic reasoning process. Just as Phase 1 scans all 
considering any entry to be an outlier in Phase 1. When the data and builds a CF tree in memory, Phase 2 scans all leaf 
CF tree is rebuilt by re-inserting leaf entries into a new tree, entries from Phase and 
the size of the new tree is reduced in two ways, First, the number of leaf entries is under the desired number. 
threshold value is increased, thereby allowing each leaf Note that this additional optional phase further eliminates 
entry to ‘‘absorb” more points. Second, Some entries are 40 outliers - some entries that were originally entered into a 
treated as potential outliers and written out to disk. A leaf leaf may now be detected to be outliers. This Phase also 
entry in the old tree is considered to be a potential outlier if yields a CF tree that is even less sensitive to the original data 
it has “far fewer” data points then the average leaf at present. order than the CF tree of Phase 1, since the entries inserted 
The number of data points in a leaf entry is known from the into it are ordered by clustering locality. 
CF vector for this entry. The average over all leaf entries in 45 
the tree can be calculated by maintaining the total number of 
data points and the total number of leaf entries in the tree as The undesirable effect of splitting triggered by page size 
inserts are made to the tree. What is considered to be “far (see above) can produce results unfaithful to the actual 
fewer”, may also be chosen heuristically and is a selected clustering patterns in the data. This is remedied in Phase 3 
value (e.g., a selected ratio of data points in the leaf entry to so by using a global or semi-global algorithm to cluster all leaf 
the average number of data points in each leaf entry). entries. It is possible to use any of the conventional clus- 

The potential outlier entries are preferably checked after tering algorithms in this phase. However, since the input is 
all the data has been scanned to verify that they are, indeed, a set of CF vectors, rather than just a set of data points, it is 
outliers - an increase in the threshold value or a change in desirable to adapt these algorithms to take advantage of the 
the distribution due to the new data read after a potential ss extra information. (Of course, by using the centroid as the 
outlier is written to disk could well mean that the potential representative of a cluster, each cluster can be treated as a 
outlier entry no longer qualifies as an outlier. Ideally, all single point and any desired conventional clustering algo- 
outliers are processed in one pass after scanning all the input rithm can then be used without modification.) 
data. However, it is possible to run out of disk space for Two conventional clustering algorithms are examples of 
potential outliers while re-building CF tree t, from CF tree 60 suitable algorithms. An adapted HC algorithm allows the 
t,, while there is still some data to be scanned. In this case, user to find the clusters by specifying the number of clusters, 
disk space is freed by scanning the entries on disk and K, or the diameter (or radius) threshold T. FIG. 8 shows the 
re-absorbing them into the tree. In this way, the potential control flow of Phase 3 implemented using an HC algorithm 
outliers written out before the current re-building pass might supporting D2 and D4 distance definitions with a timeispace 
well be absorbed into the current tree, because the threshold 65 complexity of O(N2). Adapted CLARANS is a random 
value has increased and/or new data has come in. This search algorithm applicable to data subclusters instead of 
periodic attempt to free disk space by re-absorbing potential just data points. The quality measurement is defined as the 

uniformly distributed in a d-dimensional sphere, and is FIG. 7 shows the control flow of the optional Phase 2. Its 

a CF tree whose 

PHASE 3 
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average diameter over all clusters. The user must specify the is increased, but it is usually possible to keep the number of 
number of clusters, K, in advance. re-builds to about 5. The analysis of Phase 2 CPU costs is 

similar. As for I/O, the system scans the data exactly once in 
PHASE 4 Phase 1 and not at all in Phase 2. There is some cost 
is a set of clusters that captures 5 associated with writing out noise entries to disk and reading 

the major distribution pattern in the data, There are two them back during a re-build. Considering that the amount of 
why the clustering at this point may be capable of disk available for noise handling is typically about 20% of 

re-organizes the relative clustering of leaf entries in the tree the ‘lo Of Phase is at most three times the Of 

corresponds to a cluster of points in the original data, and it on the above analysis - which is actually rather pessimistic 
may be that these points should not be clustered together. - the Of Phases and linearly with N. 
Second, another undesirable artifact is that if the same data There is no I/O in Phase 3, and the input to Phase 3 is 
point appears twice in the original dataset, but in different always bounded by a given maximum size, thanks to Phase 
places, the two copies might be entered into distinct leaf 15 2. The cost of Phase 3 is therefore bounded by a constant that 
clusters. depends upon the maximum input size chosen for this phase. 

ne result of Phase 

improvement, First, Phase 3 utilizes a global algorithm that 

produced by Phase 2, However, each such leaf entry actually 10 reading in the data, and the 110 cost of Phase 2 is nil. Based 

M, and that there are usually no more than about 5 re-builds, 

Both of these problems can be addressed with an addi- 
tional pass over the data, Note that, up to this point, the 

In Phase 4, the system 
data point in the proper 

the dataset again and puts each 
the time taken is propor- 

original data has only been scanned once, although the tree tional to N*K2 which can be further improved with smart 
and outlier information (whose size is at most M+R) may 20 “nearest neighbor” solutions, and the I/O cost is one scan of 

the dataset. have been scanned multiple times. 
FIG. 9 shows the control flow of Phase 4. Phase 4 uses the 

centroids of the K clusters produced by Phase 3 as seeds, and 

to obtain a set of K new clusters. Not only does this allow 

ensures that all copies of a given data point go to the same 

TABLE 1 

redistributes the data points based on the “closest” criterion 25 

points belonging to a single cluster to migrate, but also it 

cluster. As a bonus, during this pass each data point can be D s i  100000 0% 100 clusters in a 
labeled with the seed of the cluster that it belongs to, if it is 10 x 10 grid 

a sine curve 

each additional pass, it is possible to choose the centroids of randomly 

a 10 x 10 grid 
seeds. The process converges to a minimum with distortion 35 DS5 100000 10% 100 clusters along 
as the quality measure. Empirically, it is observed that, a sine curve 
generally, only a few passes are needed to reach a local DS6 117541 10% 100 clusters created 

randomly 

Descriptions about Datasets 

No. Clusters/ 
Noise % Dist. Pattern No’ 

30 DS2 100000 0% 100 clusters along desired to identify the data points in each cluster. 
Phase 4 can be extended with further passes if desired. For D S ~  97095 0% 100 clusters created 

100000 10% 100 clusters in the new clusters produced by the previous pass as the new DS4 

minimum, and the first refinement pass is the most effective 
one. With the clusters from Phase 3 capturing the data 
overview, and the refinements in Phase 4 correcting the 40 Six types of 2-dimensional datasets were created to test 
localized misplacement of data Points caused by the coarse the invention. Table 1 above gives brief descriptions of each. 
granularity in Phase 3, the final solution is very likely to be Each dataset contains points in a co~~ection of “intended 
close to the global minimum. clusters”; the latter three datasets also contain some noise. 

The following presents an example illustrating the per- The data for each intended cluster was generated by a 
formance of the invention. 45 normal distribution random number generator. The noise is 

Suppose that N is the number of data points in the original distributed uniformly in the data space. DS1, DS2 and DS3 
dataset, M is the available memory in bytes, R is the are designed to test how the invention performs on, respec- 
available disk space in bytes for outlier handling, P is the tively: (1) a uniform pattern, (2) a skewed pattern, and (3) a 
page size, K is the number of clusters found, TS is the tuple random pattern. There is no noise in DS1, DS2 and DS3. 
size, ES is the CF entry size, and B is the tree branching so Datasets DS4, DS5 and DS6 correspond to DS1, DS2 and 
factor determined by the page size P, i.e., approximately, DS3, respectively, but about 10% ofthe data in each of these 
P=B * ES. The time spent in Phase 1 under these conditions sets is uniformly distributed “noise”. Tuples in a dataset are 
can be evaluated in the following way. The maximum depth randomized to avoid any specific input order. FIGS. 10 to 15 
of the tree is log,(M/P). To insert a given d-dimensional provide graphical displays of the intended clusters and the 
point, it is necessary to follow a path from root to leaf, 5s generated data for datasets DS1, DS2 and DS3. In each 
touching l+log,(M/P) nodes. At each node it is necessary to figure, a cluster is plotted as a circle whose center is the 
examine (at most) B entries, looking for the ‘‘closest’’ entry; centroid, whose radius is the standard deviation, and whose 
the cost per entry is proportional to d (since it contains a label is the number of data points. FIG. 16 illustrates dataset 
d-dimensional vector). The cost of this step is, therefore, DS5, which is essentially dataset DS2 with 10% noise. 
proportional to d*N*B(l+log,(M/P)). In case the system 60 There are many possible variations of the invention 
runs out of main memory, the system must rebuild the tree. depending on the selection of the parameters listed above. 
The tree size is at most M/P pages, and there are at most These include, e.g.: 2 threshold definitions, a threshold for 
M/ES leaf entries to re-insert. The cost of re-inserting these diameter or radius; 4 quality definitions, weighted average 
entries is therefore proportional to d*M/ES * B(l+log,(M/ diameter or radius of all clusters, weighted total diameters or 
P)). The number of times the system is forced to re-build the 65 radii of all clusters; 5 distance definitions, centroid Euclidian 
tree (each time incurring the above cost) depends upon the distance DO, centroid Manhattan distance D1, average inter- 
choice of the initial threshold value T and how the threshold cluster distance D2, average intra-cluster distance D3, and 
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variance increase distance D4; 2 improved global or semi- leaf entries stored in the CF tree. Intuitively, outliers are 
global algorithms, Adapted HC and Adapted CLARANS (as supposed to be the "noise" in the data. If the outlier entries 
well as others that may be utilized, if desired). For purpose do exceed the normal entries, then it is very likely that the 
of exemplification, T may be selected as the threshold for threshold value is too small, and some meaningful entries 
diameter, and clustering quality may be selected as the s are misclassified as outliers. By increasing the threshold and 
weighted average diameter of all clusters. In the following, re-building the tree, entries currently classified as outliers 
several variations of the invention are discussed, as well as can be reabsorbed, the experiments, as a rule of thumb, it 

In the experiments, the option of noise handling is provided, branching factor). 

2. From the and 22 it than 25% of the average number of data points per leaf entry. 
appears that the best value for B is e =2.718. However, such 
analysis fails to take into account a very important phenom- As noted above, the use Of medoids as 'luster represen- 
enon: with the Same threshold value, the Same amount of tatives tends to distort the clustering if the medoid is not 
data and the same data input order, the smaller the value for centrally located. Table 3 below shows the Performance 
B, the larger the tree grows. This happens because a smaller differences between using AdaPted-HC and using Adapted- 
B value means less information is available at each level to CLARANS in Phase 3. Adapted-HC is slower but more 
guide where a newly inserted point belongs in the tree. Thus, accurate. It is used for all the remaining examples described 
a data point that could have been absorbed by an existing below. 
leaf entry, if directed to the appropriate leaf, could well go 
to the wrong leaf node and cause a new leaf entry to be 20 
generated. Consequently, with the same amount of memory, 

the effect Of varying Some Of the parameters (such as Seems reasonable to set M=5% of N*TS and R=20% of M, 

and Phase 10 and a leaf entry is considered to be noise if it contains less is an important parameter affecting Phase 
Of the time costs Of Phases 

TABLE 3 

and the same threshold estimation, a smaller B value tends 
to cause more re-builds and eventually requires a higher 

quality. 2s  Adapted-HC CLARANS 

Performance Differences between 
Adapted-HC and Adapted-CLARANS 

Adapted- threshold value, hence affects the clustering efficiency and 

Since B is determined by P, Table 2 below shows P's Dataset Time (sec) Quality Time (sec) Quality 
effects on Phase 1 and final clustering quality for datasets 
DS1, DS2 and DS3. It suggests that smaller (larger) B values 

final cluster quality. These experiments suggest that P=1024 3o 
is a good choice for the test datasets and this page size is 
used for the remaining experiments. 

DS1 109.44 1.88109 51.11 2.0756 
DS2 46.09 1.99792 45.18 2.32123 

decrease (increase) Phase 1 time but degrade (improve) the DS3 62.38 3.36464 46.36 4.65939 

Two distinct ways of increasing the dataset size were used 
to test the scalability of the present invention. For each of 
DS1, DS2 and DS3, a range of datasets were created by 

35 keeping all the dataset parameters the same except for 
increasing the number of data points in each cluster, or in 

DS1 Phase 1 Phase 1 Phase 1 Final other words, the lower and higher bounds for the number of 
P Time (sec) Entries Threshold Quality points in each cluster, ni and n,. Table 4 shows the type of 

dataset, ni and n,, the dataset size N, the total running time 
4o for all 4 phases, and the quality ratio (the average diameter 

1024 26.96 1033 1.35444 1.88109 of clusters found by the present invention), D, divided by the 
4096 49.74 1145 1.07137 1.88023 actual diameter of real clusters in the dataset, DJ. In FIG. 

TABLE 2 

Branching Factor and Page Size Effects 

64 19.12 87 4.51948 2.8154 
2,03387 1,8871 25 6 17.89 482 

17, the times are plotted against the dataset s izeN to show 
the present invention is linearly scalable as N grows this DS2 Phase 1 Phase 1 Phase 1 Final 

P Time (sec) Threshold Entries Quality 
45 way. 

64 20.38 221 4.51818 2.00592 
25 6 16.99 176 2.33908 1.99794 

1024 27.26 1473 1.58284 1.99792 TABLE 4 
4096 43.53 1671 1.34242 1.99792 

DS3 Phase 1 Phase 1 Phase 1 Final 
P Time (sec) Threshold Entries Quality 

64 21.84 238 6.22641 4.02912 
25 6 18.17 1169 2.99922 3.50851 

4096 48.66 1372 2.08865 3.26607 

- - 
Dataset nl,nh N Time D O C ?  

1024 26.24 121s 2.38206 3.36464 , l "2  

55 

DS1 50..50 SK 9.78 - 1.94 

Scalability with Respect to 
Increasing n, and n,, 

D 

I."., 

100..100 10K 9.65 - 1.88 
2.00 

The distance definitions DO, D1, D2, D3 and D4 may now 

Di, and in Phase 3 we use D,. All 25 combinations were used 
be considered. Suppose that in Phase 1 and Phase 2 we use 250..250 25K 15.3 - 1.88 

2.01 

for clustering datasets DS1, DS2 and DS3 using the present 60 500..500 50K 25.67 - 1.86 
invention. It was found from this experiment that D3 should 1.99 

750..750 75K 37.47 - 1.87 not be used in Phase 1 and Phase 2. Use of D3 in Phase 1 

value to finish, which degrades efficiency and quality. There 

The disk space R for outliers is assumed to be less than M 
because the outlier entries should never exceed the normal 

and 2 tends to require more re-builds and a higher threshold 2.00 

1000..1000 lOOK 47.64 - 1.87 
2.00 are no significant differences for other combinations. 65 
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TABLE 4-continued TABLE 5 

Scalability with Respect to 
Increasing n, and n,, Scalability with Respect to 

Increasing K 5 
n u - - 

D - - Dataset nl,nh N Time D O C ?  

Dataset K N Time Do,? 
2500.. 2500 

DS2 50..50 

100..100 

250..250 

500..500 

750..750 

1000..1000 

2500.. 2500 

DS3 0..100 

0..200 

0..500 

0..1000 

0..1500 

0..2000 

0..5000 

250K 

SK 

10K 

25K 

50K 

75K 

lOOK 

250K 

SK 

10K 

25K 

50K 

75K 

lOOK 

250K 

108.56 

10.48 

9.54 

16.9 

27.21 

36.4 

46.25 

106.29 

9.18 

10.13 

16.11 

27.39 

38.9 

47.87 

108.11 

1.87 
2.00 

1.98 
1.99 

1.97 
1.98 

1.99 
1.99 

1.99 
1.99 

2.00 
2.00 

1.99 
2.00 

1.99 
2.00 

4.10 
4.42 

3.73 
4.78 

3.53 
4.65 

3.34 
4.27 

3.3s 
4.22 

3.73 
4.60 

3.69 
4.52 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

10 DS1 4 4K 

36 36K 

15 64 64K 

100 lOOK 

2s 

196 196K 

256 256K 

DS2 4 4K 

30 

40 40K 

100 lOOK 

3s  

120 120K 

5.91 6.24 1.92 
2.00 

14.08 17.94 1.89 
2.00 

20.65 29.18 1.87 
1.99 

29.77 46.43 1.87 
2.00 

41.5 72.66 1.87 
2.00 

53.06 105.64 1.87 
2.00 

65.88 148.03 1.87 
2.00 

8.48 8.8 - 1.98 
1.99 

18.4 23.06 1.99 
2.00 

29.2 46.68 1.99 
2.00 

37.49 60.54 1.99 
1.99 

44.66 81.41 2.00 
2.00 

200 200K 49.73 103.38 2.00 
n fin 

As for quality stability, in Table 4, since each result is 
obtained with a distinct dataset, the stability of the D’s does 
not directly indicate the present invention’s stability. The 45 
stability of D’s can be affected by both the dataset and the 
present invention’s stability. If the Dact’s is taken as a rough 
indication of the dataset stability, then when the datasets are 
relativelystable, such as the DS1 group or the DS2 group, 
(as their Dact)s are stable), it may be concluded that the 50 
present - invention has a very stable clustering because the 
D’s of the clusters found by it are stable for these datasets. 

For each DS1, DS2 and DS3, a range of datasets was also 
created by keeping all the dataset parameters the same 
except for increasing the number of clusters, K. Table 5 ss 
shows the type of dataset, K, the dataset size N, the running 
time for the first 3 phases, as well as for all 4 phases and the 
quality ratio. In FIG. 18, the times are plotted against N to 
show that the running time for the first 3 phases is linearly 
scalable as N grows this way. Since both N and K are 60 
growing, and Phase 4’s complexity is now O(K*N) (it can 
be improved using smart “Nearest Neighbor” solutions to 
almost reach the linear scalability), the total time is not 
strictly linear with N. As for the quality stability, the similar 
conclusion can be reached that when the datasets are stable 65 
(as indicated by their D,,,‘s) , the present invention is shown 
to have a very stable clustering quality while scaling up. 

L.UU 

240 240K 59.97 132.29 2.00 
2.00 

DS3 5 SK 8.27 8.68 5.26 
6.43 

SO 50K 18.54 24.76 3.24 
4.52 

75 75K 24.51 36.08 3.48 
4.76 

100 lOOK 32.58 50.13 3.64 
4.57 

150 150K 43.52 76.97 3.69 
4.26 

200 200K 53.86 107.67 4.32 
4.49 

250 250K 67.56 146.8 - 4.84 
4.98 
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TABLE 6 

Performance of the 
Clustering System of the Invention 

CLUSTERING SYSTEM 

Space Used 
Dataset Time (sec) Quality (bytes) 

DS1 109.44 1.88109 80*1024 
DS1’ 148.54 1.87865 80*1024 
DS2 46.09 1.99792 80*1024 
DS2’ 122.28 1.99792 80*1024 
DS3 62.38 3.36464 80*1024 
DS3’ 141.05 3.67888 80*1024 

Table 6 presents the performance of the present invention 
with respect to running time, clustering quality, space 
needed to do the clustering and input order sensitivity. In the 
table, DSl’, DS2’ and DS3’ are DS1, DS2 and DS3, 
respectively, but input in an order that reflects the clustering 
locality. They are used to test the input order sensitivity of 
the present invention. Besides the numeric quality measure- 
ments shown in the table, FIGS. 19 to 22 provide visual 
results of the clusters found by the system of the present 
invention for the data sets of FIGS. 11, 13, 15 and 16. 

The following illustrates how important noise handling is 
in the clustering process. Table 7 illustrates the performance 
of the present invention on noisy datasets with respect to 
running time. The system of the present invention discards 
some of the data points as noise when the noise handling 
option is chosen. It is not clear whether ignoring points 
classified as “noise” results in loss of some clustering 
information. Nonetheless, FIG. 22 provides a visual quality 
illustration of the clusters found by the present invention in 
a noisy data set (Fig. 16). It is apparent from this figure that 
the present system with noise handling is noise-robust. 

TABLE 7 

Performance of the 
Present Invention with Noise Handling 

CLUSTERING SYSTEM 
Dataset Time (sec) 

DS4 
DS4‘ 
DSS 
DSS’ 
DS6 
DS6’ 

117.16 
145.22 
47.81 
75.69 
71.34 
83.95 

In summary, the present invention is a clustering method 
well suited for very large datasets. It reduces a large clus- 
tering problem by removing outliers and concentrating on 
densely occupied portions of the data space. A height- 
balanced tree is used for clustering, and utilizes measure- 
ments that capture the natural closeness of data. These 
measurements can be stored and updated incrementally, and 
the invention achieves O(M) space complexity and 
O(dNBlog,(M/P)) time complexity. The I/O complexity is 
l i t t le more than one scan of data ,  O(N*TS/P).  
Experimentally, the invention is shown to perform very well 
on several large datasets. 

The architecture of the present invention allows interac- 
tive and dynamic performance tuning, and parallel program- 
ming. For example, one way of parallelizing the method of 
the invention is to hash the original data into H groups and 
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run Phase 1 on each of the H groups in parallel. Thus, the 
complexity of Phase 1 is improved from dNB(l+log,(M/P)) 
to d (NIH) B*(l+log,(M/PH)). Then, all leaf entries in the 
H subtrees can be fed to Phase 2. 

The clusters produced by the invention have a uniform 
format. They can be stored, sorted, indexed and queried by 
any traditional database systems. For example, one can use 
SQL to ask questions such as the following: What is the 
largest cluster? What percentage of data is in the largest 

10 cluster? How many clusters are there? How many clusters 
contain 90% of data? 

With the invention identifying the crowded places as 
clusters, for instance, it is possible to go further to explore 
the global patterns of these clusters. One immediate 

15 approach is to apply “regression” procedures on the result- 
ing clusters to extract such patterns. Another potential appli- 
cation is to use the results obtained by the invention to help 
cluster-based index building, data retrieval and query opti- 
mization. 

In a further embodiment of the invention for carrying out 
image processing, the instrument 51 (FIG. 1) comprises a 
CCD camera, and the processor 60 is an HP90001720 
PA-RISC. The results of the image processing in the pro- 
cessor 60 are printed out on a printer 68 having color 

25 printing capacity. The following example describes the data 
collection and the intended objectives of the processing, and 
the manner in which the cluster processing of the present 
invention is carried out by the processor 60 to obtain filtered 
images. 

FIGS. 23 and 24 are two similar images of trees with a 
partly cloudy sky as the background, taken in two different 
wavelengths. FIG. 23 is in the near-infrared band (NIR), and 
FIG. 24 is in the visible wavelength band (VIS). Each image 
contains 512x1024 pixels, and each pixel actually has a pair 

35 of brightness values corresponding to VIS and NIR. Soil 
scientists receive hundreds of such image pairs and they are 
only interested in the tree part of the image. They try to first 
filter the trees from the background, then filter the trees into 
sunlit leaves, shadows and branches for statistical analysis. 

40 The present invention was applied to the (NIR,VIS) pairs for 
all pixels in an image (512x1024 2-d tuples). 

Using 400 kbytes of memory (about 5% of dataset size) 
and 80 kbytes of disk space (about 20% of memory size), the 
data was filtered into 5 clusters corresponding to 

5 

2o 

30 

4s  
(1) very bright part of sky, 
(2) ordinary part of sky, 
(3) clouds, 
(4) sunlit leaves and 
(5) tree branches and shadows on the trees. SO 

This step took 284 seconds. The branches and shadows were 
too similar to be distinguished from each other, although 
they could be separated together from the other cluster 
categories. The part of the data corresponding to tree 

ss branches and shadows (146707 2-d tuples) was thus pulled 
out and the present invention applied again, but with a much 
finer threshold, to obtain two clusters corresponding to 
branches and shadows. 

This step took 71 seconds. FIG. 25 shows the parts of 
60 images that correspond to sunlit leaves 100, tree branches 

102 and shadows 104 on the trees that are obtained by using 
the present invention. Graphically, there is a very good 
correlation with the original images and the desired parts 

It is understood that the invention is not limited to the 
65 particular embodiment set forth herein as illustrative, but 

embraces such modified forms thereof as come within the 
scope of the following claims. 
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What is claimed is: 
1. Amethod of clustering data, provided by a data source, 

in a computer processor having a main memory with a 
limited capacity, comprising the steps of  

wherein, at the step of testing a new data point to determine 
if it is within the threshold, a new leaf cluster is created and 
one or more higher nodes above the leaves are split, with the 
split stopping at a higher node, then determining the two 

(a) receiving data points from the data source; 5 closest lower node entries in the node at which the splitting 
stops and if they are not the pair of lower node entries (b) determining clusters of the data points that are within corresponding to the split, attempting to merge such closest a selected threshold and determining a clustering fea- lower nodes corresponding to the two lower node entries, ture for each such cluster, the clustering feature com- comprising child nodes, and if there are more entries in the prising the number of data points in the cluster, the 

10 two child nodes than one page can hold, splitting the linear sum of the data points in the cluster, and the merging result again and if one of the child nodes has square sum of the data points in the cluster, and storing sufficient merged entries to fill a page, putting the rest of the the clustering feature for each cluster in the main entries with the other child node comprising a seed node. memory; and 4. The method of claim 2 wherein if a new data point is 

nodes leaf entries and at least One level Of increasing the selected threshold, and rebuilding a new and 
'Odes joined to the leaf nodes, the leaf entries Of the smaller clustering feature tree by reinserting the leaf entries 

the next highest nodes in the tree above the leaves 5 ,  The method of claim 4 wherein, when main memory 
comprising 'Onleaf 'Odes that are each joined to a 20 becomes filled, a leaf entry in the tree which has a selected 
selected number of different leaves, the selected num- number fewer data points than an average leaf entry is 

comprising a branch number, each 'Onleaf 'Ode designated as an outlier, and including the step of writing the 

comprising the clustering features of each leaf to which removing it from the main memory, 
the nonleaf node is joined and pointers indicating the 25 6, me method of claim 5 wherein after data points 
leaves to which the node is joined, and further available from the data source have been received and added 

the branch number Of lower level nodes, each higher due to a new data point being read after an outlier is written 
level node distinguished by identifiers that are stored to to the disk, if the outlier entry may be absorbed into the new 
main memory which comprise the features 30 clustering, feature tree using the new threshold without 

and pointers indicating the lower nodes to which the 
higher node is joined, the tree terminating at a root 

forming a feature tree comprised Of leaf 1s received which fills the main memory in the computer, 

tree comprising the clustering features of the clusters, of the old tree into the new tree using the new threshold. 

distinguished by identifiers stored in the main memory clustering features for the outlier to an ancillary memory and 

comprising, as necessary, higher level nodes joined to to the clustering feature tree, when the threshold increases 

for each lower node to which the higher node is joined causing the tree to grow in size, absorbing the outlier into the 
new clustering feature tree, 
7. The method of claim 5 wherein the ancillarv memorv 

(1) receiving a new data point and assigning it to the source have been received, examining the outliers in the 
clustering feature tree by, starting at the root node, ancillary memory to determine if any of them can be 
assigning the data point to the lower level node that is absorbed into the leaves in the current tree as a result of 
closest to the data point in accordance with a selected increases in the threshold, and if so, erasing such outliers 
distance measurement using the clustering feature for 40 from the ancillary memory and absorbing each such outlier 
the lower level node, and continuing down through into the closest leaf entry by adding its clustering feature to 
each of the levels in the tree by assigning the new data the clustering feature of that leaf entry. 
point to the closest lower level node by a selected 8. The method of claim 5 wherein the ancillary memory 
distance measurement until the closest leaf is found in is a magnetic disk memory. 
accordance with the selected distance measurement; 45 9. The method of claim 2 wherein the selected threshold 
and is a threshold value for a radius of a cluster, and wherein in 

(2) testing the new data point to determine if the new data the step of testing the new data point, a new radius of the leaf 
point is within the threshold to the closest leaf entry in cluster is determined with the new data point included in the 
accordance with a selected distance measurement and, cluster and the resulting new radius is compared to the 
if the new data point is within the threshold, revising so threshold value. 
the clustering feature for the closest leaf entry by 10. The method of claim 2 wherein the selected threshold 
adding to it the clustering feature values for the new is a threshold value for a diameter of a cluster, and wherein 
data point and writing the revised clustering feature for in the step of testing the new data point a new diameter of 
the closest leaf entry to main memory, and if the new the leaf cluster is determined with the new data point 
data point is not within the threshold, identifying the 5s included in the cluster and the resulting new diameter 
new data point as a new cluster and a new leaf entry, compared to the threshold value. 
and if the leaf node containing the new leaf entry 11. The method of claim 2 wherein, after all data points 
cannot accommodate the total number of leaf entries, available from the data source have been received and 
splitting the leaf node to form two leaf nodes which 
comprise the leaf entries, and then updating all of the 60 (1) given a desired number of leaf entries in the clustering 
clustering feature identifiers for higher nodes which are feature tree, comparing the actual number of leaf 
on a path to the leaf node and if a split of a leaf node entries in the clustering feature tree to the desired 
has occurred, splitting higher nodes if necessary to number and if the actual number exceeds the desired 
accommodate the split leaf node so that the branch number, selecting a new threshold in accordance with 
number is not exceeded. a selected distance measurement which is expected to 

3. The method of claim 2 wherein each node in the result in a clustering feature tree which has less than the 
clustering feature tree has a given page size in memory, and desired number of leaf entries; 

processed, further comprising the steps of: 

65 
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(2) freeing the non-leaf nodes of the clustering feature 
tree; 

(3) using the new threshold distance, grouping leaf entries 
which are within the threshold of each other into single 
leaf entries and writing the clustering feature of such 5 terminating at a root 'Ode. 

clustering feature tree with the new leaf entries so 
determined; 

(4) comparing the number of leaf entries in the new 
clustering feature tree to the desired number of leaf 10 
entries and, if the number is equal to or less than the 
desired number, stopping the processing, and if the 
number is greater than the desired number of leaf 
entries, increasing the threshold to provide a revised 
threshold, and rebuilding a new and smaller clustering 1s 
feature tree until the clustering feature tree has less than 
or equal to the desired number of leaves. 

distinguished by identifiers that are stored to main memory 
which comprise the clustering features for each lower node 
to which the higher node is joined and pointers indicating the 
lower nodes to which the higher node is joined, the tree 

new leaf entries to main memory, and forming a new 17. The system Of l6 further comprising: 
(1) means in the Processor for assigning a newly received 

data point to the clustering feature tree by, starting at 
the root node, assigning the data point to the lower level 
node that is closest to the data point in accordance with 
a selected distance measurement using the clustering 
feature for the node, and continuing down through each 
of the lower levels in the tree by assigning the new data 
point to the closest lower level node by a selected 
distance measurement until the closest leaf is found in 
accordance with the selected distance measurement; 
and 

to determine if the new data point is within a selected 
threshold to the closest leaf entry in accordance with a 
selected distance measurement and, if the new data 
point is within the threshold, revising the clustering 
feature for the closest leaf entry by adding to it the 
clustering feature values for the new data point and 
writing the revised clustering feature for the closest leaf 
entry to the main memory, and if the new data point is 
not within the threshold, identifying the new data as a 
new cluster and a new leaf, and if the leaf node 
containing the new leaf entry cannot accommodate the 

form two leaf nodes which comprise the leaf entries, 
and then updating all of the cluster feature identifiers 
for higher nodes which are on a path to the leaf node 
and if a split of a leaf node has occurred, splitting 

node so that the branch number is not exceeded. 

12. The method of claim 11 further comprising the steps (2) in the processor for testing the new data point 
of utilizing the clustering features of the leaf entires of the 
clustering feature tree as initial data objects and applying a 20 
selected clustering process to the leaf entry clustering fea- 
tures to provide a cluster result which has a selected number 
of clusters. 

13. The method of claim 12 further comprising the steps 
of determining the centroids of the final clusters found after 2s 
the process of claim 12, identifying such centroids as seed 
points, then reading all of the data points that have been 
utilized to form the clustering feature tree and determining 
the clusters of the data points that are closest to the seed 

cluster. 
14. The method of claim 2 further comprising the steps of 

utilizing the clustering features of the leaf entries of the 
clustering feature tree as initial data objects and applying a 

tures to provide a cluster result which has a selected number 
of clusters. 

vided by a data source, comprising: 

points and determining a clustering feature for each such 30 total number of leaf entries, splitting the leaf node to 

selected clustering process to the leaf entry clustering fea- 35 higher nodes if necessary to accommodate the leaf 

18. The system of claim 17 wherein each node in the 

wherein the means for testing a new data point to determine 
40 if it is within the threshold creates a new leaf cluster and (a) a computer processor; splits one or more higher nodes above the leaves, with the 

split stopping at a higher node, and then determines the two (b) a main memory connected to the processor; 
(c) an ancillary memory connected to the processor; closest lower node entries in the node at which the splitting 
(d) means for receiving the data points from the data stops and if they are not the pair of lower node entries 

source for access by the processor; 45 corresponding to the split, attempts to merge such closest 
(e) means in the processor for analyzing the data points to lower nodes, comprising child nodes, and if there are more 

determine clusters of the data points and to determine entries in the two child nodes than one page can hold, then 
a clustering feature for each such cluster which com- splits the merging result again and if one of the child nodes 
prises the number of data points in the cluster, the linear has sufficient merged entries to fill a page, then puts the rest 
sum of the data points in the cluster, and the square sum SO of the entries with the other child node comprising a seed 
of the data points in the cluster, and means for storing node. 
the clustering feature so determined for each cluster in 19. The system of claim 17 including means for deter- 
the main memory. mining if a new data point is received which fills the main 

16. The system of claim 15 including means in the memory in the computer, and, if so, for increasing the 
processor for forming a clustering feature tree comprised of ss selected threshold, and rebuilding a new and smaller clus- 
leaf nodes including leaf entries and at least one level of tering feature tree by reinserting the leaf entries of the old 
nodes joined to the leaf nodes, the leaf entries of the tree tree into the new tree using the new threshold distance. 
comprising the clustering features of the clusters, the next 20. The system of claim 19 wherein, when the main 
highest nodes in the tree above the leaves comprising memory becomes filled, a leaf entry in the tree which has a 
nonleaf nodes that are each joined to a selected number of 60 selected number fewer data points than an average leaf 
different leaves, the selected number comprising a branch cluster is designated as an outlier, and including means for 
number, means for storing in the main memory identifiers writing the clustering features for the outlier to an ancillary 
for each nonleaf node comprising the clustering features of memory and removing it from the main memory. 
each leaf to which the nonleaf node is joined and pointers 21. The system of claim 20 further including means for 
indicating the leaves to which the node is joined, and means 65 determining after data points available from the data source 
for forming, as necessary, higher level nodes joined to the have been received and added to the clustering feature tree, 
branch number of lower level nodes, each higher level node when the threshold increases due to a new data point being 

15, A processing system for clustering data points pro- clustering feature tree has a given page size in memory, and 
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read after an outlier is written to the disk, if the outlier may 
be absorbed into the new clustering feature tree using the 
new threshold without causing the tree to grow in size, 
absorbing the outlier into the clustering feature tree. 

22. The system of claim 20 wherein the ancillary memory 
has a limited capacity, and including means for determining 
if the capacity of the ancillary memory is filled before all 
data available from the data source have been received and 
for then examining the outliers in the ancillary memory to 
determine if any of them can be absorbed into the leaves in 
the current tree as a result of increases in the threshold, and 
if so, erasing such outliers from the ancillary memory and 
absorbing each such outlier into the closest leaf entry by 
adding its clustering feature to the clustering feature of that 
leaf entry and storing the result in the main memory. 

23. The system of claim 20 wherein the ancillary memory 
is a magnetic disk memory. 

24. The system of claim 17 wherein the selected threshold 
is a threshold value for a radius of a cluster, and wherein in 
the means for testing the new data point, a new radius of the 
leaf cluster is determined with the new data point included 
in the cluster and the resulting new radius is compared to the 
threshold value. 

25. The system of claim 17 wherein the selected threshold 
is a threshold value for a diameter of a cluster, and wherein 
in the step of testing the new data point a new diameter of 
the leaf cluster is determined with the new data point 
included in the cluster and the resulting new diameter 
compared to the threshold value. 

26. A processing system for clustering data points pro- 
vided by a data source comprising: 

(a) a computer processor; 
(b) a main memory connected to the processor, the main 

memory having a clustering feature tree stored therein 
comprised of leaf nodes including leaf entries and at 
least one level of nodes joined to the leaf nodes, the leaf 
entries of the tree comprising clustering features of the 
cluster, each clustering feature comprising the number 
of data points in the cluster, the linear sum of the data 
points in the cluster, and the square sum of the data 
points in the cluster, the next highest nodes in the tree 
above the leaves comprising nonleaf nodes that are 
each joined to a selected number of different leaves, the 
selected number comprising a branch number, each 
nonleaf node distinguished by identifiers stored in the 
main memory comprising the clustering features of 
each leaf to which the nonleaf node is joined and 
pointers indicating the leaves to which the node is 
joined, and further comprising, as necessary, higher 
level nodes joined to the branch number of lower level 
nodes, each higher level node distinguished by identi- 
fiers that are stored to main memory which comprise 
the clustering features for each lower node to which the 
higher node is joined and pointers indicating the lower 
nodes to which the higher node is joined, the tree 
terminating at a root node; 

(c) an ancillary memory connected to the processor; 
(d) means for receiving the data points from the data 

source for access by the processor; 
(e) means in the processor for receiving a new data point 

and assigning it to the clustering feature tree by, starting 
at the root node, assigning the data point to the lower 
level node that is closest to the data point in accordance 
with a selected distance measurement using the clus- 
tering feature for the lower level node, and continuing 
down through each of the levels in the tree by assigning 
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the new data point to the closest lower level node by a 
selected distance measurement until the closest leaf is 
found in accordance with the selected distance mea- 
surement; and 

( f )  means for testing the new data point to determine if the 
new data point is within a selected threshold distance to 
the closest leaf entry in accordance with the selected 
distance measurement and if so, revising the clustering 
feature for the closest leaf entry by adding to it the 
clustering feature values for the new data point and 
writing the revised clustering feature for the closest leaf 
entry to main memory, and if the new data point is not 
within the threshold, identifying the new data as a 
cluster and a new leaf entry, and if the leaf node 
containing the new leaf entry cannot accommodate the 
total number of leaf entries, splitting the leaf node to 
form two leaf nodes which are comprised of leaf 
entries, and then updating all of the clustering feature 
identifiers for higher nodes which are on a path to the 
leaf node and if a split of a leaf node has occurred, 
splitting higher nodes if necessary to accommodate the 
split leaf node so that the branch number is not 
exceeded. 

27. The system of claim 26 wherein each node in the 
zs clustering feature tree has a given page size in memory, and 

wherein the means for testing a new data point to determine 
if it is within the threshold creates a new leaf cluster and 
splits one or more higher nodes above the leaves, with the 
split stopping at a higher node, and then determines the two 

30 closest lower node entries in the node at which the splitting 
stops and, if they are not the pair of lower node entries 
corresponding to the split, attempts to merge such closest 
lower node entries, comprising child nodes, and if there are 
more entries in the two child nodes than one page can hold, 

3s then splits the merging result again and if one of the child 
nodes has sufficient merged entries to fill a page, puts the rest 
of the entries with the other child node comprising a seed 
node. 

28. The system of claim 26 including means for deter- 
40 mining if a new data point is received which fills the main 

memory in the computer, and, if so, for increasing the 
selected threshold, and rebuilding a new and smaller clus- 
tering feature tree by reinserting the leaf entries of the old 
tree into the new tree using the new threshold. 

29. The system of claim 26 wherein, when the main 
memory becomes filled, a leaf entry in the old tree which has 
a selected number of fewer data points than an average leaf 
entry is designated as an outlier, and including means for 
writing the clustering features for the outlier to the ancillary 

30. The system of claim 29 further including means for 
determining after data points available from the data source 
have been received and added to the clustering feature tree, 
when the threshold increases due to a new data point being 

ss read after an outlier is written to the ancillary memory, if the 
outlier entry may be absorbed into the new clustering feature 
tree using the new threshold, absorbing the outlier into the 
clustering feature tree. 

31. The system of claim 29 wherein the ancillary memory 
60 has a limited capacity, and including means for determining 

if the capacity of the ancillary memory is filled before all 
data available from the data source have been received and 
for then examining the outliers in the ancillary memory to 
determine if any of them can be absorbed into the leaves in 

65 the current tree as a result of increases in the threshold, and 
if so, erasing such outliers from the ancillary memory and 
absorbing each such outlier into the closest leaf entry by 

s 

i o  
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20 

4s 

SO memory and removing it from the main memory. 
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adding its clustering feature to the clustering feature of that 34. The system of claim 27 wherein the selected threshold 
leaf entry and storing the result in the main memory. is a threshold value for a diameter of a cluster, and wherein 

32. The system of claim 29 wherein the ancillary memory in the step of testing the new data point a new diameter of 
is a magnetic disk memory. the leaf cluster is determined with the new data point 

33. The system of claim 27 wherein the selected threshold s included in the cluster and the resulting new diameter 
is a threshold value for a radius of a cluster, and wherein in compared to the threshold value. the means for testing the new data point, a new radius of the 
leaf cluster is determined with the new data point included 
in the cluster and the resulting new radius is compared to the 
threshold value. * * * * *  


