
I11111 111111ll111 Ill11 Ill11 IIIII IIIII 111ll IIIII IIIII IIIII 11ll11111111111111
US005832182A

United States Patent [19] [i l l Patent Number: 5,832,182
Zhang et al. [45] Date of Patent: Nov. 3,1998

METHOD AND SYSTEM FOR DATA
CLUSTERING FOR VERY LARGE
DATABASES

Inventors: Tian Zhang; Raghu Ramakrishnan;
Miron Livny, all of Madison, Wis.

Assignee: Wisconsin Alumni Research
Foundation, Madison, Wis.

Appl. No.: 690,876

Filed: Apr. 24, 1996

Int. C1.6 .. G06F 15/18
U.S. C1. 395/10; 7071101; 3821226
Field of Search 395110, 11, 800.17,

3951703, 800; 3821226, 145; 3641581, 555;
7071101; 3481606; 3451440

5,040,133
5,179,643
5,263,120
5,325,466
5,329,596
5,375,175
5,404,561
5,423,038
5,424,783
5,440,742
5,448,727
5,555,196

References Cited

U.S. PATENT DOCUMENTS

811991 Feintuch et al. 3641581
111993 Homma et al. 3451440

1111993 Bickel 395111
611994 Kormacker 395177
711994 Sakou et al. 3821226

1211994 Kino et al. 38218
411995 Castelaz 3951800.17
611995 Davis 3951683
611995 Wong 3481606
811995 Schwanke 3951703
911995 Annevelink 7071101
911996 Asano 3641555

OTHER PUBLICATIONS

P. Cheeseman, et al., “AutoClass: A Bayesian Classification
System,” Proc. of the 5th Int’l. Conf. on Machine Learning,
Morgan Kaufman, Jun. 1988, pp. 296-306.
R. Dubes, et al., “Clustering Methodologies in Exploratory
Data Analysis,” Advances in Computers, vol. 19, Academic
Press, New York, 1980, pp. 113-228.
M. Ester, et al., “A Database Interface for Clustering in
Large Spatial Databases,” Proc. of 1st Int’l. Conf. on Knowl-
edge Discovery and Data Mining, 1995.

M. Ester, et al., “Knowledge Discovery in Large Spatial
Databases: Focusing Techniques for Efficient Class Identi-
fication,” Proc. of 4th Int’l. Symposium on Large Spatial
Databases, Portland, Maine, 1995, pp. 1-20.
D. Fisher, “Knowledge Acquisition Via Incremental Con-
ceptual Clustering,” Machine Learning, vol. 2, No. 2, 1987,
pp. 139-172 (original publication).
D. Fisher, “Iterative Optimization and Simplification of
Hierarchical Clusterings,” Technical Report CS-9541,
1995, Dept. of Computer Science, Vanderbilt University,
Nashville, Tenn., pp. 1-33.
M. Lebowitz, “Experiments with Incremental Concept For-
mation: UNIMEM,” Machine Learning, vol. 2, 1987, pp.

R.C.T. Lee, “Clustering Analysis and Its Applications,” Adv.
In Info. Sys. Sci., vol. 8, 1987, pp. 169-292.

(List continued on next page.)

103-138.

Primary E x a m i n e r a l e n R. MacDonald
Assistant ExaminerSanjiv Shah
Attorney, Agent, or F i r m q o l e y & Lardner

[571 ABSTRACT

Multi-dimensional data contained in very large databases is
efficiently and accurately clustered to determine patterns
therein and extract useful information from such patterns.
Conventional computer processors may be used which have
limited memory capacity and conventional operating speed,
allowing massive data sets to be processed in a reasonable
time and with reasonable computer resources. The clustering
process is organized using a clustering feature tree structure
wherein each clustering feature comprises the number of
data points in the cluster, the linear sum of the data points in
the cluster, and the square sum of the data points in the
cluster. A dense region of data points is treated collectively
as a single cluster, and points in sparsely occupied regions
can be treated as outliers and removed from the clustering
feature tree. The clustering can be carried out continuously
with new data points being received and processed, and with
the clustering feature tree being restructured as necessary to
accommodate the information from the newly received data
points.

34 Claims, 23 Drawing Sheets

iNPUT INTERFCICE

PROCESSOR

MEMORY
(M BYTES1

1_ DISPLAY -‘-i. PRINTER LINK ?1; STORAGE

5,832,182
Page 2

OTHER PUBLICATIONS

F. Murtagh, “A Survey of Recent Advances in Hierarchical
Clustering Algorithms,” The Computer Journal, 1983, pp.
354-359.
R. Ng, et al., “Efficient and Effective Clustering Methods for
Spatial Data Mining,” Proc. of 20th VLDB Conf., 1994, pp.
144-155.
C. Olson, “Parallel Algorithms for Hierarchical Clustering,”
Techiiical Report, Computer Science Division, University of
California at Berkeley, Dec. 1993, pp. 1-24.
El Sberif et al., Pattern recognition using neural networks
that learn from fuzzy rules Proceedings of the 37th Midwest
symposium on circuits and systems, pp. 599-602, Aug. 5,
1994.

Cheng, Fuzzy clustering as blurring, Proceedings of the third
IEEE conference on fuzzy systems, pp. 183Ck1834, Jun. 29,
1994.
Matthews et al., Clustering without a metric, IEEE transac-
tions on pattern analysis and Machine intelligence, pp.
175-184, Feb. 1991.
Kosaka et al., Tree-structured speaker clustering for fast
speaker adaptation, ICASSP-94, pp. 1/245-1/248, Apr. 22,
1994.
Frigui et al., Competitive fuzzy clustering, NAFIPS, pp.
225-228, Jun. 22, 1996.
Perrone, A novel recursive partitioning criterion, IJCNN-91,
p. 989, Jul. 14, 1991.

U S . Patent Nov. 3,1998

,51 1 5 5 i INSTRUMENT pq
I-52 I

D I GI TI ZER r” 5

Sheet 1 of 23

STORAGE 9
I-

5,832,182

DI GlTAL

GENERATOR - INPUT
62 I INTERFACE 1 /

1 /

INTERFACE

USER t-
I

DISPLAY /CRT

MEMORY
(M BYTES)

ANCILLARY I I (DISK)
MEMORY
(R BYTES)

p 7 G - l
I NTERFACE

FIG. I

U S . Patent Nov. 3,1998 Sheet 2 of 23

I

5,832,182

U S . Patent Nov. 3,1998 Sheet 3 of 23 5,832,182

U S . Patent Nov. 3,1998 Sheet 4 of 23

d)
d)
k
Y

t;

5,832,182

U S . Patent

!'

Nov. 3,1998

I

Sheet 5 of 23 5,832,182

Start CF tree t l of Initial T
I

(Continue scanning data and insert to t l 1

(I 1 Increase T.
(2) Rebuild CF tree t2 o f new T from CF tree t I :
if a leaf entry of t l is potential outlier and disk space

available, write to disk; otherwise use it to rebuild t2.

(3) tl<- t 2

Out of disk space Resu It otherwise

Reabsorb potential outliers into t l]

FIG. 5

U S . Patent Nov. 3,1998 Sheet 6 of 23 5,832,182

-0

0
\ I

I \
\

U S . Patent

Continue scan leaf entries of CF tree from Phase I :
If it is an outlier, then remove it; otherwise insert to t l .

Nov. 3,1998 Sheet 7 of 23

(I) Re-estimate the target T.
(2) Rebuild CF tree t2 of new T from CF tree t l .
(3) tl<-t2

FIG. 7

5,832,182

(I 1 Estimate the target T for phase 2.
(2) Free nonleaf nodes of CF tree from Phase I.
(3) Start CF tree t I of the target T.

I I

FIG. 9 J

Calculate the centroids of the K clusters.

4
Scan the N data points, add a data point to the cluster
corresponding to its nearest neighboring centroid.

t
No Reach the specified number of refinement passes

the specified accuracy ?

U S . Patent Nov. 3,1998 Sheet 8 of 23 5,832,182

I Pick any cluster (I] .

Determine the l i s t : I i[Z]= Nearest-Neighbor(i [I]),

i [3] = Nearest - Neighbor (i [2]),

..

i[k]= Nearest-Neighbor(i [k-I]),

iLk-11. Nearest- Neighbor (i [k]).

Merge cluster i [k-I] and i[k]

I if i[k-Z]exists,

I otherwise pick

I arbitrary i[I]

[I]<- i [k-21;

Yes

No (form a complete binary heirarchy)

Split from the heirarchy either a given number o f clusters
or clusters satisfying a given threshold.

FIG. 8

U S . Patent Nov. 3,1998 Sheet 9 of 23 5,832,182

I I I I I

.o *

0
.rr)

.o
N

' 0

0 -

LL

0 * 0
rr)

0 - 0

U S . Patent Nov. 3,1998 Sheet 10 of 23 5,832,182

0 e 0
M

0
N

C

U S . Patent Nov. 3,1998 Sheet 11 of 23 5,832,182

l-

l-

8
r

l-

i3
I-

r

I-

T

l-

f

l-

l-

I
I 1 I I I I

0
rr)

0
N

I

0 0 - 0 0 cu 0
rr)

1

U S . Patent Nov. 3,1998 Sheet 12 of 23

I , I I I
I I I
0 0 0

I cu rr)
- 0 0 - 0 8 cu

5,832,182

I I

U S . Patent Nov. 3,1998 Sheet 13 of 23 5,832,182

a0
Q
N

ii
l-

0
Q

d
8 cn

m CY

l-

1 I I I I I
0 0 0 0 0 0
0 - co a * AI

cj

0
(u

0

U S . Patent Nov. 3,1998 Sheet 14 of 23 5,832,182

0
0 -

0 al

0 a

0 e

0
AI

0

0
0 -

0
co 0

(D
0
d-

0
N

0

U S . Patent Nov. 3,1998 Sheet 15 of 23 5,832,182

U S . Patent Nov. 3,1998 Sheet 16 of 23 5,832,182

I
I
I
I

f
I
I t ' I

I

I
I
1 *
I
I

I
I
I
I

Run Time (sec)

0
0
0
0
0 cu

0
0
0
0
0
I

0

U S . Patent Nov. 3,1998 Sheet 17 of 23 5,832,182

Run Time (sec)
00

U S . Patent Nov. 3,1998 Sheet 18 of 23

L
I I I 1
0 0 0 0

I

0 * m CV

0
'd-

0
'rr)

0 'cu

-0 -

-0

5,832,182

6)

LL

U S . Patent Nov. 3,1998 Sheet 19 of 23 5,832,182

0
pr)

0
N

0 - 0 - 0
I

0
(u

I

0 m
I

0
0
In

0 cu

0

U S . Patent Nov. 3,1998 Sheet 20 of 23 5,832,182

R

I 1 I I I I
0 0 0 0 0 0

co co Tf cu 0 -

0

U S . Patent Nov. 3,1998 Sheet 21 of 23 5,832,182

1
I I I I I I

0 0 0 - 0 0 0 0
M

1
cu -

I m cu
I

0
' 0
cu

0 .o -

- 0

U S . Patent Nov. 3,1998 Sheet 22 of 23 5,832,182

U S . Patent Nov. 3,1998 Sheet 23 of 23 5,832,182

0

5,832,182
2

probability-based measurement function is used to evaluate
clustering decisions, and each cluster is represented as a
probability distribution. Several aspects of these approaches
need justification before they can be used for data clustering

5 in very large databases. They typically try to handle metric
and nonmetric attributes at the same time and in the same
way. For example, the approach in the paper by McKusick
and Thompson, “COBWEBI3: A Portable Implementation,”
NASA Ames Research Center, Artificial Intelligence
Research Branch, TR FIA-90-6-18-2, June, 1990, handles
both “nominal” attribute (e.g., color = red, blue, or yellow)
and “numeric” attribute (e.g., diameter =O..lO) similarly. It
is not clear whether this is appropriate. Such approaches also
typically compute the probability for a combination of
attribute values by simply multiplying the probabilities of
each individual attribute value. This is under the assumption
that probability distributions on separate attributes are sta-
tistically independent of each other. In reality, this assump-
tion is far from true. The correlation between attributes
prevails, and sometimes this kind of correlation is exactly

The probability distribution representations of clusters
make updating and storing the clusters very expensive to
support, especially if the attributes have a large number of
values, because their time and space complexities are not
only relevant to the number of attributes, but also relevant to
the number of values for each attribute.

Often the tree that is built to identify clusters is not
height-balanced and the tree size is not bounded. See Dou-

3o glas H. Fisher, “Knowledge Acquisition via Incremental
Conceptual Clustering,” Machine Learning, Vol. 2, No. 2,
1987. This may cause the time and space complexities to
degrade dramatically with skewed data input.

Clustering analysis in the statistics literature uses
35 distance-based approaches. That is, a distance-based mea-

surement function is used to evaluate clustering decisions,
and each cluster is represented either by all the data points
in the cluster or by a representative center if one exists. Only
metric attributes are considered, and the notion of distance

4o is based on a natural notion of resemblance such as Euclid-
ian distance or Manhattan distance.

The problem is formalized as follows. Given the desired
number of clusters K, a dataset of N points, and a distance-
based measurement function (e.g., the average distance

45 between pairs of points in a cluster), a partition of the dataset
is sought that minimizes the value of the measurement
function. This is a nonconvex discrete optimization problem.
Due to an abundance of local minima, there is typically no
way to find a global minimal solution without trying all

so possible partitions. The following methods have been pro-
posed for finding the global minimum, a local minimum or
just a good solution:

1. Exhaustive Enumeration (EE): There are approxi-
mately KN/K! ways of partitioning a set of N data points into

5s K subsets. So, in practice, though this approach can find the
global minimum, it is infeasible except when N and K are
extremely small.

2. Iterative Optimization (IO): This approach starts with
an initial partition, then tries all possible moving or swap-

60 ping of data points from one group to another to see if such
a moving or swapping improves the value of the measure-
ment function. Like beam searching with beam size =m or
deepest gradient hill climbing, it cannot guarantee finding
the global minimum, but it can find a local minimum.

65 However, the quality of the local minimum it finds is very
sensitive to the initially selected partition, and the worst case

10

2o sought.

2s

1
METHOD AND SYSTEM FOR DATA
CLUSTERING FOR VERY LARGE

DATABASES

This invention was made with United States Government
support awarded by NASA, Grant No. NAGW 3921 and
NSF, Grant No. IRI-9057562. The United States Govern-
ment has certain rights in this invention.

FIELD OF THE INVENTION

This invention pertains generally to the field of informa-
tion processing systems and methods and particularly to the
clustering of data from large databases to determine useful
patterns therein.

BACKGROUND OF THE INVENTION

There is a growing emphasis on exploratory analysis of
large datasets to discover useful patterns. Organizations are
investing heavily in “data warehousing” to collect data in a
form suitable for extensive analysis, and there has been
extensive research on exploratory analysis of “data mining”
algorithms.

For a data mining method to be successful in a database
environment, it must scale well in terms of time and space
requirements as the dataset size increases While scalability
is the essential requirement for dealing with very large
datasets, several other characteristics are highly desirable:
(1) Generality: the method should be applicable to a variety
of domains; (2) Summarization: the method should extract
patterns and represent them in more compressed uniform
formats, so that traditional database facilities can be used to
manage and query the data at this higher level of abstraction;
(3) Interactiveness: the method should be able to accept
feedback from users to interactively fine-tune the search for
patterns; and (4) Incrementality: The method should be
capable of working with data that is input incrementally, not
necessarily all at once.

Given a very large set of multi-dimensional data points,
the data space is usually not uniformly occupied by the data
points. Instead, some places in the space are sparse while
others are crowded. Data clustering identifies the sparse and
the crowded places, and hence discovers the overall distri-
bution patterns of the dataset. Therefore, by using clustering
techniques, a better understanding can be obtained of the
distribution patterns of the dataset and the relationship
patterns among data attributes to improve data organizing
and retrieving. It is also possible to visualize the derived
clusters much more efficiently and effectively than the
original dataset. Indeed, when the dataset is very large and
the dimensions are higher than two, visualizing the whole
dataset in full dimensions is almost impossible.

Generally, there are two types of attributes involved in
data to be clustered: metric and nonmetric. Informally, a
metric attribute is an attribute whose values satisfy the
requirements of Euclidian space, i.e., self identity (for any
value X, X=X) and triangular inequality (there exists a
distance definition such that for any values X1, X2, X3,
distance (Xl, X2) + distance (X2, X3) 2 distance (Xl, X3).
A nonmetric attribute does not satisfy these requirements.
Thus, the two types of attributes are intrinsically different
with respect to computational characteristics.

Data clustering has been studied in the statistics, machine
learning, and database communities with different methods
and different emphasis.

Most data clustering algorithms in the machine learning
literature use probability-based approaches; that is, a complexity is still exponential.

5,832,182
3 4

3. Hierarchical Clustering (HC): Hierarchical Clustering measurement value to decide if the neighbor is better or
is divided into two distinct classes: agglomerative and worse. This is a drawback for use in very large databases, as
divisive. Agglomerative clustering (bottom-up clumping) can be illustrated by an example: Assume N=1000 and
starts with a partition of N clusters, each containing exactly K=10, Then the graph has about 100010/10!=2,76
one data point. Then, it repeatedly merges the closest pair of 5 nodes, Each node in the graph has 10 * (1o00-10)=9900
clusters until there are exactly K clusters. Divisive clustering neighbors, hsume that CLARANS only searches a small
(top down splitting) starts with all data Points in one cluster.
Then, it repeatedly chooses a cluster to split into two until

portion of the graph, say 100 nodes, and halts. Assume that
for each node it searches, on average, only a small portion

it Obtains Either way, the of the neighbors, say 25, are checked, Then, the entire
i o dataset must be scanned 25 times for a single node; 2500 procedure can be formalized as a binary tree being build up

bottom-up or top-down. It is generally agreed that the scans of the dataset are needed for the 100 nodes searched. computation needed for agglomerative clustering is compa-
rable with that for divisive clustering. Examining the com- It is thus expected that CLARANS Will not scale well as
plexity of agglomerative clustering, it is found that: (1) this K and N increase, and that the results will be sensitive to the
clustering tree is not height-balanced; (2) each merging step data distribution which makes the method essentially inap-
needs O(N:) painvise comparisons where Ni is the number 15 plicable when the dataset is so large that it does not fit in
of currently formed clusters; (3) there are totally N-K available main memory.
merging steps. HC can not guarantee finding the global Another potential limitation of CLARANS is its use of
minimum or a local minimum, but generally, it can find a medoids to represent clusters. The advantage of using
good partition. This good partition might be even better than medoids as cluster representatives is that the search space is
Some local minima. There has been much work On improv- 2o reduced from about KN/K! to about NK/K!, because there are

C,“ ways of selecting a set of K medoids from N data ing the O(N:) painvise comparisons in each merging step.
With some reasonable distance measurements, the best time
and space comp~exity of a practical HC algorithm is O(N2).
Thus, the approach does not scale well as data size increases,

points. However, medoids are not
tives. For

good representa-
suppose that data points are

Clustering has been recognized as a very useful data 25 distributed along the circumference of a circle. Then, every
data point in the cluster satisfies the medoid definition, but
none represents the cluster as well as the centroid. Thus,
when the data distribution in a cluster is such that none of the
points is really central, medoids tend to distort the cluster-

mining method in recent years, Ng and Han have presented
a clustering algorithm, referred to as cLARANs, that is
based on randomized search, see ~~~~~~d T, N~ and ~ i ~ ~ ~ i
H ~ ~ , “Efficient and Effective Clustering Methods for spatial
Data Mining,” Proc. of 20th VLDB Conf., 1994, pp. 3o ing.
144-155. A cluster is represented by its medoid, which is the
most centrally located data point within the cluster. The
clustering process is formalized in terms of searching a In accordance with the present invention, multidimen-
graph in which each node is a potential solution, sional data contained in very large databases can be effi-
Specifically, a node is a K-partition represented by a set of 35 ciently and accurately clustered to determine patterns therein
K medoids, and two nodes are neighbors if they only differ and extract useful information from such patterns. The
by one medoid. CLARANS starts with a randomly selected Processing system and method of the Present invention may
node. For the current node, it checks at most the specified be used to filter visual images from signal infOrmation
‘‘maxneighbor’’ number of neighbors randomly, and if a obtained from satellites, medical scanning machines, and the
better neighbor is found, it moves to the neighbor and 4o like, to provide desired portions of the image signal data to
continues; otherwise it records the current node as a “local a user. The Processing system and method of the Present
minimum,” CLARANS stops after the specified “numlocal’’ invention are well suited to function with conventional
number of the so-called ‘‘local minima” have been found, computer processors having limited memory capacity and
and returns the best of these. conventional operating speed, allowing massive data sets to

CLARANS is thus an 10 method, with the following 45 be processed in a reasonable time and with reasonable
specific choices: (1) cluster representatives are medoids; (2)
instead of beam size =cc and checking all neighbors, it sets The present invention is statistical and distance-based and
beam size = maxneighbor and checks at most maxneighbor is well suited to working with metric data. The clustering
neighbors randomly; and (3) it runs the beam searching problem is particularly formulated in a way that is appro-
numlocal times with different initial partitions to try to priate for very large datasets: The goal is to cluster a given
reduce the sensitivity to the initial selection. (typically very large) dataset using a given amount of

The solutions that CLARANS finds are not guaranteed to memory as accurately as Possible while keeping the input/
be either global minimal or local minimal because it does not output costs low. The invention recognizes that the available
search all possible neighbors. Unless maxneighbor or num- memory may well be much smaller than the size of the
local are set to be sufficiently large, there is no assurance of 5s dataset.
even finding good partitions. Theoretically, the graph size is In addition, the present invention has several advantages
about NK/K!, and the number of neighbors for each node is over previous distance-based approaches. The invention
K(N-K), so as N and K increase, these values grow dra- utilizes a local (as opposed to a global) method in that each
matically. In Ng and Han, supra, based on experimentation, clustering decision is made without scanning all data points
numlocal is set to 2 and maxneighbor is set to be the larger 60 or all currently existing clusters. It uses measurements that
of 1.25%K(N-K) or 250. With numlocal=2 and maxneigh- can reflect the natural “closeness” of points and, at the same
bor =1.25% K(N-K), which part of the graph is searched time, can be efficiently and incrementally calculated and
and how much of the graph is examined depends heavily maintained during the clustering process.
upon the data distribution and the choice of starting points The present invention exploits the important observation
for each iteration. 65 that the data space is usually not uniformly occupied, and

For every neighbor it checks, CLARANS has to scan the hence not every data point is equally important for clustering
whole dataset to calculate the increase or decrease of the purposes. It differentiates the crowded and sparse regions in

SUMMARY OF THE INVENTION

resources.

5,832,182
5 6

the data space. In accordance with the invention, a dense
region of points is treated collectively as a single “cluster”
at some level of granularity. Thus, the problem of clustering
the original dataset is reduced into that of clustering a much
smaller derived subcluster set. Points in sparsely occupied 5
regions can be treated as “outliers” and removed, preferably
at the option and under the control of the user. Because of
these features, the invention performs especially well on
skewed data, and is quite insensitive to the order in which
the data points are received.

The invention makes full use of available computer

mize accuracy) while minimizing inputioutput costs (to
maximize efficiency). The clustering and reducing process is
organized and characterized by the use of an inmemory, 15 intended clusters to be found in the data.
condensed, height-balanced and highly occupied clustering
feature tree structure. The clustering features corresponding
to each cluster form the leaves of the tree. The clustering
feature for each cluster comprises the number of data points
in the cluster, the linear sum of the data points in the cluster, 20 present invention,

present invention, if the amount of available memory in the invention with respect to an increasing number of data
computer system is M bytes, the space complexity is on the points per cluster,
order of M, i.e., O(M), and the time complexity is FIG. 18 is a graph illustrating the scalability of the present O(dNBlog,(M/P)), where d is the data dimensionality, N is 25 invention with respect to an increasing number of clusters. the number of data points in the dataset, and B is the tree

FIG. 19 is an illustrative view of the results of the cluster branching factor determined by the page size P.
processing carried out by the present invention on the data
of FIG. 11 wherein the intended clusters to be found are The invention may be carried out with an incremental

method that does not require the whole dataset in advance, 3o illustrated in FIG,
and with only one scan of the dataset being required. The
number of clusters, K, can be either specified by the or FIG. 20 is an illustration of the results of the clustering
a natural value determined from the dataset, This flexibility obtained by the present invention on the data set of FIG. 13.
is important because: (1) for a very large multi-dimensional FIG. 21 is an illustrative view of the results of the
dataset, it is usually not easy to predict the correct K before clustering of the present invention on the data set of FIG. 15.
doing the clustering, and (2) if a poor K is chosen, even with 35 FIG. 22 is an illustrative view of the results of the
the exhaustive calculation of the optimal partition of data clustering with the present invention on the noisy data set of
into K groups, the results will not satisfactorily reflect the FIG. 16.
reality. FIG. 23 is an image of a scene of trees with a partly cloudy

formance according to their knowledge of the dataset by FIG. 24 is an image of the same scene as in FIG. 23 taken
controlling several parameters. in the visible wavelength band.

Further objects, features and advantages of the invention FIG. 25 is an image of parts of the scene of FIGS. 23 and
will be apparent from the following detailed description 24 corresponding to tree branches, sunlit leaves, and
when taken in conjunction with the accompanying drawings. 45 shadows, as filtered by applying the present invention to

correlate the images of FIGS. 23 and 24.

FIG. 9 is a flow chart showing the control flow of a
refinement algorithm used in phase 4 of the present inven-
tion.

FIG, 10 is an illustrative view of a data set showing an

FIG, 11 is an illustrative view of a data set showing actual
data on which the invention is carried out to find the
intended clusters of FIG,

FIG. 12 is another example of intended clusters to be
found by the processing of the present invention.

the present invention to find the intended clusters of FIG. 12.
FIG. 14 is a further example of a data set showing

FIG. 15 is an illustrative view of the actual data set to be
processed by the present invention to find the clusters of
FIG. 14.

to be processed by the

of intended clusters,

memory to derive the finest possible subclusters (to maxi- l3 is the data to be processed by

FIG, 16 is a noisy data set

and the square sum Of the data points in the In the FIG, 17 is a graph illustrating the scalability ofthe present

Furthermore, the invention allows users to tune the per- 4o sky background taken in the near infrared band.

BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE

INVENTION
In the drawings:
FIG. 1 is a diagram of a processing system for carrying

out data clustering in accordance with the present invention. so
FIG, 2 is an illustrative diagram of clusters organized by

a clustering feature (CF) tree.
FIG, is an illustrative diagram showing the relationship

of the clusters in the CF tree of FIG. 2.
FIG. 4 is a chart showing the arrangement of the phases

of operation of the present invention.

1 of the system of the present invention.

algorithm as used in Phase 1 of the system of the Present
invention.

FIG. 7 is a flow chart showing the control flow of phase
2 in the present invention.

FIG. 8 is a flow chart showing the control flow of a 65
hierarchical clustering algorithm that may be used in phase
3 of the present invention.

The present invention may be utilized to extract useful
information from various instruments and systems which act
as a data source. The processing system of the present
invention is shown for illustrative purposes in FIG. 1 receiv-
ing data to an input interface 50 from a variety of data

5s sources. Typical data sources include an instrument 51 that
provides an analog output signal on a line 52 which is
converted to digital data in an analog-to-digital converter 53

transmission link 55 that provides digital data directly to the
FIG. 6 illustrates the operation of a CF tree rebuilding 60 interface 50, recorded data storage equipment 57, such as

readers for magnetic disks, CD-ROMs, magnetic tape, etc.,
and a digital data generator 58, which functions to provide
signal data in digital form that can be provided directly to the
input interface 50.

The instrument 51 can comprise any of various types of
instrument systems which provide signals indicative of some
physical characteristic, such as television cameras, X-ray

is a flow chart showing the flow for phase before being provided to the input interface 50, a data

5,832,182
7 8

tomography systems, magnetic resonance imaging (MRI)
(2)

112
systems, infrared scanners, X-ray scanners, visible light N - - c (XZ -XO)Z microscopes, electron microscopes, and the like. In certain (i=l)

(N (N - 1) .

R = cases, signal data may be obtained from more than one
instrument examining the same space. For example, a par- 5
titular Scene may be scanned by both a camera sensitive to
visible light and an infrared camera, so that spatially corre-
lated data obtained by examining different spectral charac-
teristics of the same scene at the same time is provided by
the instrument(s) 51 through the digitizer 53 to the input 10
interface 50. Moreover, information obtained in substan-
tially “real time” by the instrument 51 may be correlatable
with the data received from the recorded data storage
equipment 57, the digital data generator 58, or the data The radius is the average value of distances from member
transmission link 55. All of such data, which may have 15 points to the centroid. The diameter is the average value of
spatial or time correlation, is provided to a processor 60, a painvise distances within the cluster. They are two alterna-
computer system capable of appropriate Processing, such as tive measures of the tightness of the cluster around the
image processing. An example of a computer system which centroid,
may be utilized for image processing is an HP 90001720 Next, between two clusters, five alternative distances for
workstation running under the HP-UNIX operating system. 20 measuring the closeness of clusters are defined:

Definition 3: Given N d-dimensional data points in a

cluster: {X,}, where i=1,2, . . . , N,the diameter, D, of
the cluster is defined as:

+

(3)
112

N N - - c c (XZ -X,)Z
i-1 j-1

D =

Associated with the processor 60 is a user interface 61 of
conventional design, a main random access memory (RAM)
62 having a memory capacity of “M’ bytes, an ancillary
memory 63, which may be a hard disk, floppy disk, etc.,
which has a limited capacity of “ R ’ bytes, and an output 25

from the processor 60 to a variety of output devices, such as
a CRT display 67 or a hard copy printer 68. Further, the data
from the output interface 65 can be provided through a data ””

Definition 4: Given the centroids of two clusters: 20,
and 20,, the centroid Euclidian distance, DO, of the
two clusters is defined as:

interface 65. The output interface 65 can provide signal data DO=((?01-?02)2)?/2. (4)

+
Definition 5: Given the centroids of two clusters: x o ,

transmission link 70 to remote equipment for further j”
processing, analysis, or display. In addition, the data from
the outuut interface 65 can be urovided to a data storage

and 20,, the centroid Manhattan distance, D1, of the
two clusters is defined as:

I - - 4
system 71, such as magnetic tape or disks.

utilized to obtain meaningful restructuring of signal data to
enhance desired information, find correlation between
variables, and extract patterns from data even in the presence
of substantial noise. A aarticular examale of the imalemen-

As described further below, the present invention can be 35 Dl = KO1 - x o 2 1 = 1=1 boy) -xok’l.

where ~ ~ ~ , (~ ~ - ~ ~ , (i) l is the absolute difference of go, and
+ xoz in the i-th dimension.

tation of the present invention is in image filtering wherein 40
two-dimensional signal data is provided from an instrument,
such as a video camera, or similar device, which contains
several signal patterns but in which only data corresponding
to some of the patterns is desired.

definitions from statistics are presented below. Some data
transformations that can be optionally applied are also
discussed. Standard terminology of vector spaces and vector
operations, such as vector addition, vector subtraction, and
vector dot product, are used. For a further explanation of
such terminology, see, Richard Duda and Peter E. Hart,
Pattern Classification and Scene Analysis, Wiley, 1973.

First, centroid, radius and diameter for a cluster are
defined.

For purposes of explaining the invention, some basic 45

55

Definition 6: Given N, d-dimensional data points in a

cluster: {Xi} where i=1,2, . . . , N,, and N, data points

in another cluster: {X,} where j=N,+l, N,+2, . . . ,
N,+N,, the average inter-cluster distance, D2, of the
two clusters is defined as:

+

+

112

Definition 7: Given N, d-dimensional data points in a

cluster: {X,} where j=N,+l, N,+2, . . . , N,+N,, the
average inter-cluster distance of the cluster formed by
merging the given two clusters, D3, is defined as:

+

(7)
Definition 1: Given N d-dimensional data points in a 112

N1+N2 Ni+Nz - + + [z1 j & (Xz-Z)2 j cluster: {X,}, where i=1,2, . . . , N, the centroid XO of
the cluster is defined as:

(N I + N Z) (N I + N Z - I) ’

0 3 =

60
N - - xz Definition 8: Given N,, d-dimensional data points in a

cluster: {X,}, where i=1,2, . . . , N,, and N, data points

in another cluster: {X,} where j=N,+l, N,+2, . . . ,
+ 65 N,+N,, The variance increase distance of the cluster

formed by merging the given two clusters, D4, is
defined as:

x* = i=l +
N ’

+
Definition 2: Given N d-dimensional data points in a

cluster: {X,}, where i=1,2, . . . , N,the radius, R, of the

cluster with respect to the centroid 20 is defined as:

5,832,182
9 10

N I
c
i=l

2 In the material that follows, the concepts of a Clustering
Feature and a CF Tree are introduced. These are at the core
of incremental computation and maintenance of clustering
information in the present invention.

A Clustering Feature is a triple that summarizes the
Ni+Nz - information that is maintained about a cluster. All the

properties of clusters defined above can be computed from

Definition 11. Given N d-dimensional data points in a

[- x, ii=l -

2 lo

"1iN2 [z - ij=N;,' x,]
. it.

1s
j=NI+1

+
The average intra-cluster distance D3 between two clus-

ters is actually the diameter D of the merged cluster. For

clarity of concept and algorithm descriptions, 20, R and D

cluster: {Xi} where i=1,2, . . . , N, the Clustering
Feature (CF) vector of the cluster is defined as a triple:

(13)

where N is the number of data points in the cluster, L S is the

linear sum of the N data points, i.e., ZF=lXi , and SS is the

are used only as properties of a single cluster, and DO, D1, 2o
D2, D3, and D4 are used as properties between clusters.

different dimensions without affecting the relative place-

CF=(fl Z'SSS)

+
In carrying out the present invention, it is possible to

Preprocess data by weighting Or shifting the data along

ment. For example, to normalize the data, one can shift the 2s 'quare sum Of the

weight the data by the inverse of the standard deviation in
each dimension. In general, such data preprocessing may not
be necessary. Preprocessing may be used to avoid biases
caused by some dimensions. For example, the dimensions 30

clustering process. On the other hand, it may be inappro-
priate to use such preprocessing if the spread is indeed due
to natural differences of clusters. Preferably, a user who From the CF definition and the CF additivity theorem, it
knows the meaning of the data can decide whether normal- 3s is apparent that the CF vectors of clusters can be stored and
ization is appropriate. Thus, it is preferred to leave the data calculated incrementally and accurately as clusters are
transformation option to the user. The following two merged. It also can be Proven that, given the CF vectors of
(optional) operations are Preferably available in accordance clusters, the corresponding 20, R, D, DO, D1, D2, D3, and
with the present invention. 4o D4's can all be calculated. The following is a list of formulas

Definition 9: A weighting operation 3 for a which can be used to calculate 20, R, D, DO, D1, D2, D3,

+

+
data points, i.e.2 ZF=lx: '

data by the mean value along each dimension, and then (CF Additivity Theorem): Assume that CF1=
+

(N,,LS,,SS,), and CF,=(N,,LS,,SS,) are the CF vectors of
two disjoint clusters. Then the CF vector of the cluster that
is formed by merging the two disjoint clusters is:

with large spread dominate the distance calculations in the CF,+CF,=~N,+N,,ZS,+ZS,,SS,+SS,~ (14)

The Proof consists of straightforward algebra.

d-dimensional vector space is represented as a
d-dimensional vector of positive weight values:

and D4 from the corresponding CF vectors.

+ N -
xz W=[W('), w('), . . . , ~ (4 1 , where w(')'O, j=1, . . . , d, 4s

is the weight value for the j-th dimension. The weight-

ing operator 3 is applied to a d-dimensional data point

X=[X(O, X('), . . . , X(] in the following way:

-
centroidXO = - N -

LS
+ N

= -

I I?
I I '

N - - c (XZ -XO)Z so
radius R = (i=l) (9)

+
Definition 10: A moving operator M for a d-dimensional

vector space is represented as a d-dimensional vector of
1/2

+ 5s
positive or negative moving values: M=[m(O, m('), . . . , m(4] N N - -
where m('), j=1, . . . , d, is the moving value for the j-th c c (XZ -X,)Z

+
dimension. The moving operation W is applied to a

+
d-dimensional data point X=[X('),X('), . . . , XC4], in the 6o
following way: N(N - 1) -

- - 2 1 n

+ +
W, M and any combinations of them are reversible linear 6s

transformations and the following equations are easy to
prove:

11
-continued - -

centroid Manhattan distance D1 = KOl -XOzl - -
LSI LSZ

, 112

N I Ni+Nz - -
i=l j=NI+1

intercluster =

distance 0 2 I

5,832,182
12

to radius or diameter for all leaf nodes in a given tree.) The
tree size is a function of the threshold T. The larger T is, the
smaller the tree size. In accordance with the present
invention, it is preferred that a node fit in a page of memory.

5 Assume the selected page size is P bytes: then B will be
Pisizeof(non1eaf entry), and L will be (P-2*sizeof(pointer))
isizeof(1eaf entry). Once the dimension of the data space is
given, the sizes of leaf and nonleaf entries are known. P is
a parameter which can be varied for performance tuning.

Such a CF tree will be built dynamically as new data
lo objects are inserted. It serves several purposes. First, it is

used to guide a new insertion into the correct subcluster for
clustering purposes, just as a B+-tree is used to guide a new
insertion into the correct position for sorting purposes.
Second, it is a much more condensed representation of the

is dataset because each entry in the leaf node is not a single
data point but a subcluster whose diameter (or radius) is
under a specific threshold T. Third, it is a tool that helps to
reduce the aroblem of clustering the original data aoints to - - l l i

~ (N I + Nz)*(SSi + SSz) - 2*(LSi + LSz)’
(NI +Nz)(Ni + N z - 1)

the problem of clustering the dLrived T-iatisfyingsubclus-
ters in its leaf nodes.

However, each node can only hold a limited number of
entries due to its size, so it does not always correspond to a
natural subcluster. Occasionally, two subclusters which
should have been in one cluster are split across nodes.
Depending upon the order of data entry and the degree of

2s skewness, it is also possible that entries for two subclusters
which should not be in one cluster are kept in the same node.
These infrequent but undesirable anomalies caused by page
size are remedied in Phase 3 of the method in accordance
with the invention with a global (or semi-global) algorithm

30 that clusters the leaf entries across nodes. Another undesir-
able artifact is that if the same data point is inserted twice,
but at different times, the two copies might be entered into
distinct leaf clusters. This problem can be addressed with an
additional pass over the data (Phase 4), as discussed below.

Apseudo-code of the algorithm for inserting an entry into
- 2 - 2 - - a CF tree is presented below. To understand the algorithm,

it is important to note that an entry in a leaf node does not
denote a single point, but rather a cluster of data points
whose diameter (or radius) is under the given threshold

In the present invention, the “cluster,” composed of a set 4o value T. Given an entry ‘‘Ent”, the system Proceeds as
fOllOWS:

1. Identifying the appropriate leaf Starting from the root,
it recursively deScends the CF tree by choosing the closest
child node according to the distance metric (DO, D1, D2, D3,
Or D4, as defined above).

2. Leaf modification: When it reaches a leaf node, it finds
the closest leaf entry, say L,, and then tests whether L, can
“absorb” the new entry “Ent” and still satisfy the threshold
condition. That is, if we treat “ E d ’ as a cluster and merge
it with the cluster denoted by entry L,, the resulting cluster

A CF tree is a height-balanced tree with two parameters: so must satisfy the threshold condition. Note that the CF vector
of the new cluster can be computed from the CF vectors for
L,and “Ent”. If the threshold condition is satisfied, the CF
vector for Li is updated to reflect this. If not, a new entry for
the singleton cluster containing “Ent” is added to the leaf. If

= (
and variance increase distance

Ni+Nz -
NI+Nz [- e x&]

0 4 - X k - i k = l N I + Nz -
k= 1

2

N I e [x, - ii=l -

i=l

c
3s

LSI + LSZ
N I * (s) + N z * (s) - (Nl + w * (-) .

of data points, is represented by the CF vector, and only the
CF vector need be stored in the memory of the computer
system. This cluster CF vector summary is not only efficient,
because it stores much less than all the data points inside the
cluster, but also accurate, because it is sufficient for calcu-
lating all the measurements of the clusters that are needed 4s
for making clustering decisions in accordance with the
invention, The fact that CF vectors can be maintained
accurately and incrementally is a particular advantage of the
present invention.

a branching factor B and a threshold T. FIG. 2 shows a CF
tree of branching factor ~ = 2 and FIG, 3 shows the relation-
ships of the clusters for this tree. Each nonleaf node contains
at most B entries of the form [CF,, child,], where i=l , 2, . .
, , B, ‘‘child;’ is a pointer to its i-th child node, and CF, is the 5s there is space on the leaf for this new entry, we are done,
CF vector of the subcluster represented by this child, Thus, is done Otherwise we must the leaf ‘Ode. Node
a nonleaf node represents a cluster made of all the subclus- by choosing the farthest pair Of entries as seeds, and redis-

tributing the remaining entries based on the closest criteria.
3. Modifying nodes on the path to the leaf Each nonleaf

represented by entry 6o describing the cluster of points corresponding to that sub-
tree, ~f~~~ inserting U E ~ ~ X into a leaf, we must update the CF
information for each nonleaf entry on the path to the leaf. In
the absence of a split, this simply involves updating CF
vectors to reflect the addition of “Ent”, and is straightfor-

into the parent node, to describe the newly created leaf. If the
parent has space for this entry, at all higher levels, we only

ters represented by its entries. A leaf node contains maxi-

CFi is the CF vector Of the
i. In addition, each leaf node has two pointers, “prev” and
‘‘next’’ which are used to chain all leaf nodes together to
enable efficient scans. It also represents a cluster made up of
the subclusters represented by its entries. But all entries in

of the following: radius R is less than T, or diameter D is less
than T. (Of course, the requirement is the same with respect

mally entries Of the form [CFil, where i=l, 2, ’ ’ ’ 2 L, and entry in the tree is a pointer to a subtree plus a CF vector

a leaf node must satisfy a threshold requirement, that is one 65 ward, A leaf split requires us to insert a new Donleaf entry

5,832,182
13

need to update the CF entries to reflect the addition of “Ent”.
In general, however, we may have to split the parent as well,
and so on up to the root. If the root is split, the tree height
increases by one.

4. A Merging Refinement: Splits are caused by the page
size, which is independent of the clustering properties of the
data. In the presence of skewed data input order, this can
affect the clustering quality, and also reduce space utiliza-
tion. A simple additional merging step often helps ameliorate
these problems: Suppose that there is a leaf split, and the
propagation of this split stops at some nonleaf node N,, i.e.,
N, can accommodate the additional entry resulting from the
split. We now scan node N, to find the two closest entries. If
they are not the pair corresponding to the split, we try to
merge them and the corresponding two child nodes. If there
are more entries in the two child nodes than one page can
hold, we split the merging result again. During the
resplitting, in case one of the seeds attracts enough merged
entries to fill a page, the rest of the entries are put with the
other seed. In summary, if the merged entries fit on a single
page, we free a node space for later use, create one more
entry space in node N,, thereby increasing space utilization
and postponing future splits; otherwise we improve the
distribution of entries in the closest two children.

Insert An Entry To CF Tree

Status function Insert-Into-CF-Tree

if (CurNode is Nonleaf Node) {
(Node**Root,Node**NewNode,Node *CurNode,Entry Ent,Float T) {

Ci = ClosestLChild (CurNode,Ent);
Result = Insert-Into-CF-Tree
(Root,NewNode,Ci,Ent,T);
if (Result==NO SPLIT) {

Update-CF (CurNode,Ci,Ent);
return NO-SPLIT,
1

else {
Update-CF (CurNode,Ci,Ent);
NewEnt = Make-Entry_From_Node(*NewNode);
*NewNode = InsertLTo-NonleafLNodeMightL
Split (CurNode,NewEnt);
if (*NewNode==NULL) {

Merge-ClosestLButLNotLJustLSplitLPair-
MightLResplit (CurNode);
return NO-SPLIT:
I

else {
if (CurNode==*Root) {

*Root=Create-New_Root(CurNode,
*NewNode);
return NO-SPLIT,
I

else return SPLIT;
1 i

I
i

else {/* CurNode is Leaf Node */
Li = ClosestLEntry (CurNode,Ent);
If (Absorb (Li,Ent) Satisfies T) {
Absorb (Li,Ent);
return NO-SPLF,
I

else {
*NewNode = InsertLTo-LeafLNode-MightLSplit
(CurNode,Ent);
if (*NewNode==NULL) return NO-SPLIT;
else return SPLF,
1

FIG. 4 shows the architecture of the present invention
including all major phases. The following summarizes the
role of each phase and the relationships between the phases.
The parameter settings and other implementation details are
discussed further below.

14
The main task of Phase 1 is to scan all data and build up

an initial in-memory CF tree using a given amount of
memory and recycling space on disk. This CF tree should
make the best use of the available memory, and reflect the

s clustering information of the dataset with the finest possible
granularity under the space limit. With crowded data points
grouped as fine subclusters, and sparse data points removed
as outliers, this phase creates an in-memory summary of the
data. Subsequent clustering computations in Phases 2 and 3

i o will be: (1) fast because (a) no I/O operations are needed,
and (b) the problem of clustering the original data is reduced
to a smaller problem of clustering the subclusters in the leaf
nodes of the initial CF tree; (2) accurate because (a) a lot of
outliers are eliminated, and (b) the remaining data is

is reflected with the finest granularity that can be achieved
given the available memory; and (3) less order sensitive
because the entries in the leaf nodes of the CF tree form an
input order containing much more data locality compared
with the arbitrary original data input order.

In addition, since Phase 1 can accept data either from a
static file or from a dynamic pipe, Phase 1 can be run in
parallel with data generation.

Phase 2 is an optional phase. The global or semi-global
clustering methods that we apply in Phase 3 have different

zs input size ranges within which they perform well in terms of
both speed and quality. For example, HC performs well for
a set of less than 1000 data objects whereas CLARANS
performs well for a set of less than 5000 data objects. So,
potentially, there is a gap between the size of Phase 1 results

30 and the best performance range of the Phase 3 process.
Phase 2 serves as a cushion between Phase 1 and Phase 3 and
bridges this gap: we scan the leaf entries in the initial CF tree
to build a smaller CF tree, while removing outliers and
grouping crowded subclusters into larger ones. Since the

35 entries in the initial CF tree form an input order with good
data locality with respect to clusters, the obtained CF tree is
quite insensitive to the original data input order.

The clustering processes for a set of data points can be
readily adapted to work with a set of subclusters, each

40 described by its CF vector. In Phase 3, the set of leaf entries
from the previous phase are re-clustered using an in-memory
clustering algorithm. Several points are worth noting:

1. Any of the algorithms available in the literature (e.g.,
CLARANS, HC, etc.) can be used.

2. Whatever the algorithm, it can be modified to utilize the
information in the CF vector and the locality in the CF
tree.

3. The good locality of the leaf entries from Phase 2
means that the output of this phase is not much affected
by the original input order of the data.

Phase 4 is optional and at the cost of additional passes
over the data. It refines the clusters further to correct the
minor and localized inaccuracies that might have been

20

45

55 caused because Phase 3 clusters at a coarse granularity.

PHASE 1

FIG. 5 shows the control flow in Phase 1. It is assumed
that M bytes of main memory and R bytes of disk space are

60 available. The goal is to cluster the incoming data in the best
possible manner while using at most this much (primary and
secondary) memory. The input is the original dataset and the
output is an in-memory CF tree, which the system of the
invention tries to make as fine as possible while fitting in the

65 available main memory. Phase 1 starts with a small initial
threshold value, say T, scans the data, and inserts points into
the tree. If it runs out of memory before it finishes scanning

5,832,182
15 16

the data, it then increases the threshold value, and re-builds
a new, smaller CF tree with the leaf entries of the old tree.

-continued

The preferred re-building algorithm, and a resulting reduc-
ibility theorem, will now be discussed.

(ti+,,Ti+,, ClosestPath, CurrentEntry);
if (Status==YES && ClosestPath<CurrentPath)

FitLInLPathLInLNewTree(ti+,, Ti+,,
ClosestPath, CurrentEntry);
else FitLInLPathLInLNewTree (ti+,, Ti+,,
Currentpath,
CurrentEntry);

Assume ti is a CF tree of threshold Ti. Its height is h, and

to use all the leaf entries in ti to re-build a CF tree, ti+,, of

or equal to Si. Assume within each node in CF tree ti, the

5

its size (or number of nodes) is Si. Given Ti+, 5Ti, we want

threshold Ti+,. The size of ti+,, Si+,, should be smaller than I
FreeLNonNeededLNodesLAlongCurrentPathLInLOldTree

CurrentPath=NextPathLOfLOldTree (ti, Currentpath);
entries are labeled contiguously from 0 to nk-l, where nk is 10
the number of entries in that node. Then (i,, i,, . . . , ih-,) can
uniquely represent a path from the i,-th entry in the root
node (level 1) to the ih-,-th entry in some nonleaf node
above the leaf level (level h). In other words, each leaf node
corresponds to a path uniquely, and there is an order existing 15 that: (1) in
in leaf nodes. Thus, Path (Or leaf (i~(l) , iz(l), . . . 3 general, by increasing the threshold, a smaller tree can be
ih-i(l)) is before (Or Path (Or leaf (ii(”, iz(2), . . . 3 built; and (2) if a CF tree uses up all M/P pages of memory,
ih-,(’)) if i,(’)=i,(’), . . . , ij-l(l)=ij-l(z),and i>’)<iY)(05.i5h- with log,(M/P) reserved pages of memory, the tree can be
1). For simplicity, we Will use the terms Paths and leaf nodes transformed to a smaller new tree of higher threshold.
interchangeably. The CF tree re-building algorithm may now 20 of the leaf entries are not

which illustrates the operation of the algorithm. After all the leaf entries of the old tree have been re-inserted
The algorithm scans and frees the old CF tree path by path (Or written out to disk), the scanning of the data (and

from left to right, and at the Same time, creates the new CF insertion into the new tree) is resumed from the point at
tree path by path from left to right, The new tree starts with 25 which it was interrupted. In the present invention, preferably
NULL, and the “current path” starts with the leftmost path no data point in the original dataset is read twice, and an
of the old tree, ne nodes (or spaces) are attached to the new increase in the threshold value and re-building of the CF tree

of the threshold and the rate at which it is increased may be is no extra space growth in the new tree compared with the
30 heuristically chosen, and are parameters that can be tuned old tree. Each leaf entry in the “Currentpath” of the old tree for performance,

is tested against the new tree to see if it can fit in (i.e., either A good choice of threshold value can greatly reduce the
number of rebuilds. Since the initial threshold value To is absorbed by an existing leaf entry, or created as a new leaf

entry without splitting) with the new threshold in the “Clos- increased dynamically, it can be adjusted for its being too
estPath” that is found topdown in the new tree. If yes and the 35 low, But if the initial is too high, a less detailed CF tree
“ClosestPath” is before the “Currentpath”, then it fits in the will be obtained, than is feasible with the available memory,
“ClosestPath” in the new tree without creating any new so T, should be set conservative~y, T, may thus be set to
node, and the space in the “Currentpath” is left available for by default; although a howledgeable could
later use; otherwise it fits in the ‘‘Currentpath” in the new change this,
tree without creating any new node. Once all leaf entries in suppose that T~ turns out to be too small, and the
the “Currentpath” are processed, we can free the non-needed 40 algorithm subsequently ~ n s out of memory after N~ data

“Currentpath” to the next path in the old tree if one still formed (each satisfying the threshold condition with respect

to the “Currentpath” need to exist simultaneously both on and the tree that has been built up so far, an estimate of the

needed for the tree transformation is h pages. Once the approach may preferably be used to select T,+,,

(4,

I
ti+, = FreeLEmptyLNodesLInLNewTree (ti+,);
I

The reducibility theorem defined above

discussed below,
be described with reference to the simple picture of FIG. 6, re-inserted into the new CF tree, but are written out to disk,

tree exactly the Same as they are in the old tree, so that there is triggered when the main memory is The

nodes the “Currentpath” in the Old tree, and set

Only the nodes corresponding

points have been scanned, and Ci leaf entries have been

to Ti). Based on the portion ofthe data that has been scanned

extra space 45 next threshold value Ti+, is needed. The following heuristic

exists. During the

the new tree and On the Old tree, so the

transformation is finished, it is likely that there are empty
‘Odes in the new tree and they be removed. Based On

1, Choose Ti+, so that Ni+,=Min(2Ni, N), That is, whether
N is known, choose to estimate Ti+, at most in proportion to

this algorithm, we can obtain the following theorem easily:
Assume we re -bdd CF tree ti+, of threshold ti+, from CF

tree ti of threshold Ti by the above algorithm. Lets , and si+,,
be the sizes of ti and ti+, respectively. If Ti+, ZTi? then
Si+, 5% and the transformation from ti to ti+, needs at most

extra Pages Of where
A pseudo-code for the CF tree re-building algorithm

the data Seen thus far,
2. Intuitively, it is preferable to increase the threshold

based on some measure of volume. There are two distinct
notions of volume that are used in estimating threshold. The
first is average volume, which is defined as V,=rd where r is

5s the average radius of the root cluster in the CF tree, and d
is the dimensionality of the space. Intuitively, this is a
measure of the space occupied by the portion of the data
seen thus far (the “footprint” of seen data). A second notion
of volume is packed volume, which is defined as Vp=Ci*Tt,

60 where Ci is the number of leaf entries and T t is the maximal
volume of a leaf entry. Intuitively, this is a measure of the
actual volume occupied by the leaf clusters. Since Ci is

AttachLNodesLToLNewTreeAsCurrentPathLInLOldTree essentiallv the same whenever the CF tree runs out of

is the height Of ti.

follows:

void function Re-buildLCF_Tree(t,, ti+,, Ti+,) {
ti+, = NULL,
Currentpath = PathLOfLOldTree (ti, (0, . . . ,O));
while (Currentpath exists) {

(ti+,, ti, Currentpath);
foreach leaf entry CurrentEntry in Currentpath of
OldTree do {

Status = CanLFitLInLClosestPathLInLNewTree

memory (since a fixed amount of memory is used), V, can

The assumption can be made that r grows with the number
of data points Ni. By maintaining a record of r and the

65 be approximated by T t .

5,832,182
17 18

number of points N,, r,,, can be estimated using least square
linear regression. Define the expansion factor f=Max(l.O,
rL+,rL/rJ, and use it as a heuristic measure of how the data
footprint is growing. The use of Max is motivated by the
observation that for most large datasets, the observed foot-
Print becomes a constant quite quickly (unless the input
order is skewed). Similarly, by making the assumption that
V, grows linearly with N,, T,,, may be estimated using least
squares linear regression.

outliers absorbs all entries that can be absorbed into the
current tree without causing the tree to grow in size. In case
none of the potential outlier entries is absorbed, they are
very likely the real outliers. Thus, further heuristic outlier
re-absorbing conditions can be defined dynamically in terms
of changes of T and changes of the amount of data scanned
to avoid frequent re-absorbs of the data,

It may be noted that the entire cycle - insufficient main
memory triggering a re-building of the tree, insufficient disk

3. Traverse a path from the root to a leaf in the CF tree, 10 space and dynamic heuristics triggering a re-absorbing of
outliers, etc, - could be repeated several times before the
dataset is fully scanned, This effort must be considered in
addition to the cost of scanning the data in order to the
cost of Phase accurately,

It may also be noted that, when the algorithm runs out of
main memory, it may well be the case that still more data
points can fit in the current CF tree, without changing the
threshold. However, some of the data points that are read
may require the splitting of a node in the CF tree. A simple
variation of the present invention is to write such data points
to disk (in a manner similar to how outliers are written), and

The advantage of this approach is that, in general, more data
points can fit in the tree before a rebuild is required.

5

going to the with the most points in a “greedy”
the

distance (Dm~fi) between the two entries On this leaf.
To build a more condensed tree, it is reasonable to expect
that the threshold value should at least increase to D,,,, so 1~
that these two entries can be merged.

4. Multiply the T,,, value obtained through linear regres-
sion with the expression factor f, and adjusted it using D,,,
as follows: TL+,=Max(D,,,, f * TL+,). To ensure that the
threshold value grows monotonically, in the very unlikely 20
case that T,,, thus obtained is less than T, then we choose

attempt to find the most crowded leaf node.

I to proceed reading the data until disk space runs out as well.

Tz+l = TZ* -
2s

PHASE 2

(NG: r
(This is equivalent to assuming that all data points are

really just a crude approximation; however, it is rarely called input is the CF tree Produced at the end of Phase 1 and its
for.) 3o output is a smaller CF tree in which the total number of leaf
ne available R disk (ancillary) memory is used for entries falls below a desired value. Given the threshold value

dealing with outliers, which are clusters of low density that and the number of leaf entries in the tree produced at the end
are judged to be unimportant with respect to the of Phase 1, and the desired number of leaf entries in Phase
clustering pattern in the data. a special case, no disk 3, a new initial (target) threshold value T may be estimated
memory may be available, i,e,, R=O, mis is handled by not 3s using a heuristic reasoning process. Just as Phase 1 scans all
considering any entry to be an outlier in Phase 1. When the data and builds a CF tree in memory, Phase 2 scans all leaf
CF tree is rebuilt by re-inserting leaf entries into a new tree, entries from Phase and
the size of the new tree is reduced in two ways, First, the number of leaf entries is under the desired number.
threshold value is increased, thereby allowing each leaf Note that this additional optional phase further eliminates
entry to ‘‘absorb” more points. Second, Some entries are 40 outliers - some entries that were originally entered into a
treated as potential outliers and written out to disk. A leaf leaf may now be detected to be outliers. This Phase also
entry in the old tree is considered to be a potential outlier if yields a CF tree that is even less sensitive to the original data
it has “far fewer” data points then the average leaf at present. order than the CF tree of Phase 1, since the entries inserted
The number of data points in a leaf entry is known from the into it are ordered by clustering locality.
CF vector for this entry. The average over all leaf entries in 45
the tree can be calculated by maintaining the total number of
data points and the total number of leaf entries in the tree as The undesirable effect of splitting triggered by page size
inserts are made to the tree. What is considered to be “far (see above) can produce results unfaithful to the actual
fewer”, may also be chosen heuristically and is a selected clustering patterns in the data. This is remedied in Phase 3
value (e.g., a selected ratio of data points in the leaf entry to so by using a global or semi-global algorithm to cluster all leaf
the average number of data points in each leaf entry). entries. It is possible to use any of the conventional clus-

The potential outlier entries are preferably checked after tering algorithms in this phase. However, since the input is
all the data has been scanned to verify that they are, indeed, a set of CF vectors, rather than just a set of data points, it is
outliers - an increase in the threshold value or a change in desirable to adapt these algorithms to take advantage of the
the distribution due to the new data read after a potential ss extra information. (Of course, by using the centroid as the
outlier is written to disk could well mean that the potential representative of a cluster, each cluster can be treated as a
outlier entry no longer qualifies as an outlier. Ideally, all single point and any desired conventional clustering algo-
outliers are processed in one pass after scanning all the input rithm can then be used without modification.)
data. However, it is possible to run out of disk space for Two conventional clustering algorithms are examples of
potential outliers while re-building CF tree t, from CF tree 60 suitable algorithms. An adapted HC algorithm allows the
t,, while there is still some data to be scanned. In this case, user to find the clusters by specifying the number of clusters,
disk space is freed by scanning the entries on disk and K, or the diameter (or radius) threshold T. FIG. 8 shows the
re-absorbing them into the tree. In this way, the potential control flow of Phase 3 implemented using an HC algorithm
outliers written out before the current re-building pass might supporting D2 and D4 distance definitions with a timeispace
well be absorbed into the current tree, because the threshold 65 complexity of O(N2). Adapted CLARANS is a random
value has increased and/or new data has come in. This search algorithm applicable to data subclusters instead of
periodic attempt to free disk space by re-absorbing potential just data points. The quality measurement is defined as the

uniformly distributed in a d-dimensional sphere, and is FIG. 7 shows the control flow of the optional Phase 2. Its

a CF tree whose

PHASE 3

5,832,182
19 20

average diameter over all clusters. The user must specify the is increased, but it is usually possible to keep the number of
number of clusters, K, in advance. re-builds to about 5. The analysis of Phase 2 CPU costs is

similar. As for I/O, the system scans the data exactly once in
PHASE 4 Phase 1 and not at all in Phase 2. There is some cost
is a set of clusters that captures 5 associated with writing out noise entries to disk and reading

the major distribution pattern in the data, There are two them back during a re-build. Considering that the amount of
why the clustering at this point may be capable of disk available for noise handling is typically about 20% of

re-organizes the relative clustering of leaf entries in the tree the ‘lo Of Phase is at most three times the Of

corresponds to a cluster of points in the original data, and it on the above analysis - which is actually rather pessimistic
may be that these points should not be clustered together. - the Of Phases and linearly with N.
Second, another undesirable artifact is that if the same data There is no I/O in Phase 3, and the input to Phase 3 is
point appears twice in the original dataset, but in different always bounded by a given maximum size, thanks to Phase
places, the two copies might be entered into distinct leaf 15 2. The cost of Phase 3 is therefore bounded by a constant that
clusters. depends upon the maximum input size chosen for this phase.

ne result of Phase

improvement, First, Phase 3 utilizes a global algorithm that

produced by Phase 2, However, each such leaf entry actually 10 reading in the data, and the 110 cost of Phase 2 is nil. Based

M, and that there are usually no more than about 5 re-builds,

Both of these problems can be addressed with an addi-
tional pass over the data, Note that, up to this point, the

In Phase 4, the system
data point in the proper

the dataset again and puts each
the time taken is propor-

original data has only been scanned once, although the tree tional to N*K2 which can be further improved with smart
and outlier information (whose size is at most M+R) may 20 “nearest neighbor” solutions, and the I/O cost is one scan of

the dataset. have been scanned multiple times.
FIG. 9 shows the control flow of Phase 4. Phase 4 uses the

centroids of the K clusters produced by Phase 3 as seeds, and

to obtain a set of K new clusters. Not only does this allow

ensures that all copies of a given data point go to the same

TABLE 1

redistributes the data points based on the “closest” criterion 25

points belonging to a single cluster to migrate, but also it

cluster. As a bonus, during this pass each data point can be D s i 100000 0% 100 clusters in a
labeled with the seed of the cluster that it belongs to, if it is 10 x 10 grid

a sine curve

each additional pass, it is possible to choose the centroids of randomly

a 10 x 10 grid
seeds. The process converges to a minimum with distortion 35 DS5 100000 10% 100 clusters along
as the quality measure. Empirically, it is observed that, a sine curve
generally, only a few passes are needed to reach a local DS6 117541 10% 100 clusters created

randomly

Descriptions about Datasets

No. Clusters/
Noise % Dist. Pattern No’

30 DS2 100000 0% 100 clusters along desired to identify the data points in each cluster.
Phase 4 can be extended with further passes if desired. For D S ~ 97095 0% 100 clusters created

100000 10% 100 clusters in the new clusters produced by the previous pass as the new DS4

minimum, and the first refinement pass is the most effective
one. With the clusters from Phase 3 capturing the data
overview, and the refinements in Phase 4 correcting the 40 Six types of 2-dimensional datasets were created to test
localized misplacement of data Points caused by the coarse the invention. Table 1 above gives brief descriptions of each.
granularity in Phase 3, the final solution is very likely to be Each dataset contains points in a co~~ection of “intended
close to the global minimum. clusters”; the latter three datasets also contain some noise.

The following presents an example illustrating the per- The data for each intended cluster was generated by a
formance of the invention. 45 normal distribution random number generator. The noise is

Suppose that N is the number of data points in the original distributed uniformly in the data space. DS1, DS2 and DS3
dataset, M is the available memory in bytes, R is the are designed to test how the invention performs on, respec-
available disk space in bytes for outlier handling, P is the tively: (1) a uniform pattern, (2) a skewed pattern, and (3) a
page size, K is the number of clusters found, TS is the tuple random pattern. There is no noise in DS1, DS2 and DS3.
size, ES is the CF entry size, and B is the tree branching so Datasets DS4, DS5 and DS6 correspond to DS1, DS2 and
factor determined by the page size P, i.e., approximately, DS3, respectively, but about 10% ofthe data in each of these
P=B * ES. The time spent in Phase 1 under these conditions sets is uniformly distributed “noise”. Tuples in a dataset are
can be evaluated in the following way. The maximum depth randomized to avoid any specific input order. FIGS. 10 to 15
of the tree is log,(M/P). To insert a given d-dimensional provide graphical displays of the intended clusters and the
point, it is necessary to follow a path from root to leaf, 5s generated data for datasets DS1, DS2 and DS3. In each
touching l+log,(M/P) nodes. At each node it is necessary to figure, a cluster is plotted as a circle whose center is the
examine (at most) B entries, looking for the ‘‘closest’’ entry; centroid, whose radius is the standard deviation, and whose
the cost per entry is proportional to d (since it contains a label is the number of data points. FIG. 16 illustrates dataset
d-dimensional vector). The cost of this step is, therefore, DS5, which is essentially dataset DS2 with 10% noise.
proportional to d*N*B(l+log,(M/P)). In case the system 60 There are many possible variations of the invention
runs out of main memory, the system must rebuild the tree. depending on the selection of the parameters listed above.
The tree size is at most M/P pages, and there are at most These include, e.g.: 2 threshold definitions, a threshold for
M/ES leaf entries to re-insert. The cost of re-inserting these diameter or radius; 4 quality definitions, weighted average
entries is therefore proportional to d*M/ES * B(l+log,(M/ diameter or radius of all clusters, weighted total diameters or
P)). The number of times the system is forced to re-build the 65 radii of all clusters; 5 distance definitions, centroid Euclidian
tree (each time incurring the above cost) depends upon the distance DO, centroid Manhattan distance D1, average inter-
choice of the initial threshold value T and how the threshold cluster distance D2, average intra-cluster distance D3, and

5,832,182
21 22

variance increase distance D4; 2 improved global or semi- leaf entries stored in the CF tree. Intuitively, outliers are
global algorithms, Adapted HC and Adapted CLARANS (as supposed to be the "noise" in the data. If the outlier entries
well as others that may be utilized, if desired). For purpose do exceed the normal entries, then it is very likely that the
of exemplification, T may be selected as the threshold for threshold value is too small, and some meaningful entries
diameter, and clustering quality may be selected as the s are misclassified as outliers. By increasing the threshold and
weighted average diameter of all clusters. In the following, re-building the tree, entries currently classified as outliers
several variations of the invention are discussed, as well as can be reabsorbed, the experiments, as a rule of thumb, it

In the experiments, the option of noise handling is provided, branching factor).

2. From the and 22 it than 25% of the average number of data points per leaf entry.
appears that the best value for B is e =2.718. However, such
analysis fails to take into account a very important phenom- As noted above, the use Of medoids as 'luster represen-
enon: with the Same threshold value, the Same amount of tatives tends to distort the clustering if the medoid is not
data and the same data input order, the smaller the value for centrally located. Table 3 below shows the Performance
B, the larger the tree grows. This happens because a smaller differences between using AdaPted-HC and using Adapted-
B value means less information is available at each level to CLARANS in Phase 3. Adapted-HC is slower but more
guide where a newly inserted point belongs in the tree. Thus, accurate. It is used for all the remaining examples described
a data point that could have been absorbed by an existing below.
leaf entry, if directed to the appropriate leaf, could well go
to the wrong leaf node and cause a new leaf entry to be 20
generated. Consequently, with the same amount of memory,

the effect Of varying Some Of the parameters (such as Seems reasonable to set M=5% of N*TS and R=20% of M,

and Phase 10 and a leaf entry is considered to be noise if it contains less is an important parameter affecting Phase
Of the time costs Of Phases

TABLE 3

and the same threshold estimation, a smaller B value tends
to cause more re-builds and eventually requires a higher

quality. 2s Adapted-HC CLARANS

Performance Differences between
Adapted-HC and Adapted-CLARANS

Adapted- threshold value, hence affects the clustering efficiency and

Since B is determined by P, Table 2 below shows P's Dataset Time (sec) Quality Time (sec) Quality
effects on Phase 1 and final clustering quality for datasets
DS1, DS2 and DS3. It suggests that smaller (larger) B values

final cluster quality. These experiments suggest that P=1024 3o
is a good choice for the test datasets and this page size is
used for the remaining experiments.

DS1 109.44 1.88109 51.11 2.0756
DS2 46.09 1.99792 45.18 2.32123

decrease (increase) Phase 1 time but degrade (improve) the DS3 62.38 3.36464 46.36 4.65939

Two distinct ways of increasing the dataset size were used
to test the scalability of the present invention. For each of
DS1, DS2 and DS3, a range of datasets were created by

35 keeping all the dataset parameters the same except for
increasing the number of data points in each cluster, or in

DS1 Phase 1 Phase 1 Phase 1 Final other words, the lower and higher bounds for the number of
P Time (sec) Entries Threshold Quality points in each cluster, ni and n,. Table 4 shows the type of

dataset, ni and n,, the dataset size N, the total running time
4o for all 4 phases, and the quality ratio (the average diameter

1024 26.96 1033 1.35444 1.88109 of clusters found by the present invention), D, divided by the
4096 49.74 1145 1.07137 1.88023 actual diameter of real clusters in the dataset, DJ. In FIG.

TABLE 2

Branching Factor and Page Size Effects

64 19.12 87 4.51948 2.8154
2,03387 1,8871 25 6 17.89 482

17, the times are plotted against the dataset s izeN to show
the present invention is linearly scalable as N grows this DS2 Phase 1 Phase 1 Phase 1 Final

P Time (sec) Threshold Entries Quality
45 way.

64 20.38 221 4.51818 2.00592
25 6 16.99 176 2.33908 1.99794

1024 27.26 1473 1.58284 1.99792 TABLE 4
4096 43.53 1671 1.34242 1.99792

DS3 Phase 1 Phase 1 Phase 1 Final
P Time (sec) Threshold Entries Quality

64 21.84 238 6.22641 4.02912
25 6 18.17 1169 2.99922 3.50851

4096 48.66 1372 2.08865 3.26607

- -
Dataset nl,nh N Time D O C ?

1024 26.24 121s 2.38206 3.36464 , l "2

55

DS1 50..50 SK 9.78 - 1.94

Scalability with Respect to
Increasing n, and n,,

D

I.".,

100..100 10K 9.65 - 1.88
2.00

The distance definitions DO, D1, D2, D3 and D4 may now

Di, and in Phase 3 we use D,. All 25 combinations were used
be considered. Suppose that in Phase 1 and Phase 2 we use 250..250 25K 15.3 - 1.88

2.01

for clustering datasets DS1, DS2 and DS3 using the present 60 500..500 50K 25.67 - 1.86
invention. It was found from this experiment that D3 should 1.99

750..750 75K 37.47 - 1.87 not be used in Phase 1 and Phase 2. Use of D3 in Phase 1

value to finish, which degrades efficiency and quality. There

The disk space R for outliers is assumed to be less than M
because the outlier entries should never exceed the normal

and 2 tends to require more re-builds and a higher threshold 2.00

1000..1000 lOOK 47.64 - 1.87
2.00 are no significant differences for other combinations. 65

5,832,182
23 24

TABLE 4-continued TABLE 5

Scalability with Respect to
Increasing n, and n,, Scalability with Respect to

Increasing K 5
n u - -

D - - Dataset nl,nh N Time D O C ?

Dataset K N Time Do,?
2500.. 2500

DS2 50..50

100..100

250..250

500..500

750..750

1000..1000

2500.. 2500

DS3 0..100

0..200

0..500

0..1000

0..1500

0..2000

0..5000

250K

SK

10K

25K

50K

75K

lOOK

250K

SK

10K

25K

50K

75K

lOOK

250K

108.56

10.48

9.54

16.9

27.21

36.4

46.25

106.29

9.18

10.13

16.11

27.39

38.9

47.87

108.11

1.87
2.00

1.98
1.99

1.97
1.98

1.99
1.99

1.99
1.99

2.00
2.00

1.99
2.00

1.99
2.00

4.10
4.42

3.73
4.78

3.53
4.65

3.34
4.27

3.3s
4.22

3.73
4.60

3.69
4.52

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

10 DS1 4 4K

36 36K

15 64 64K

100 lOOK

2s

196 196K

256 256K

DS2 4 4K

30

40 40K

100 lOOK

3s

120 120K

5.91 6.24 1.92
2.00

14.08 17.94 1.89
2.00

20.65 29.18 1.87
1.99

29.77 46.43 1.87
2.00

41.5 72.66 1.87
2.00

53.06 105.64 1.87
2.00

65.88 148.03 1.87
2.00

8.48 8.8 - 1.98
1.99

18.4 23.06 1.99
2.00

29.2 46.68 1.99
2.00

37.49 60.54 1.99
1.99

44.66 81.41 2.00
2.00

200 200K 49.73 103.38 2.00
n fin

As for quality stability, in Table 4, since each result is
obtained with a distinct dataset, the stability of the D’s does
not directly indicate the present invention’s stability. The 45
stability of D’s can be affected by both the dataset and the
present invention’s stability. If the Dact’s is taken as a rough
indication of the dataset stability, then when the datasets are
relativelystable, such as the DS1 group or the DS2 group,
(as their Dact)s are stable), it may be concluded that the 50
present - invention has a very stable clustering because the
D’s of the clusters found by it are stable for these datasets.

For each DS1, DS2 and DS3, a range of datasets was also
created by keeping all the dataset parameters the same
except for increasing the number of clusters, K. Table 5 ss
shows the type of dataset, K, the dataset size N, the running
time for the first 3 phases, as well as for all 4 phases and the
quality ratio. In FIG. 18, the times are plotted against N to
show that the running time for the first 3 phases is linearly
scalable as N grows this way. Since both N and K are 60
growing, and Phase 4’s complexity is now O(K*N) (it can
be improved using smart “Nearest Neighbor” solutions to
almost reach the linear scalability), the total time is not
strictly linear with N. As for the quality stability, the similar
conclusion can be reached that when the datasets are stable 65
(as indicated by their D,,,‘s) , the present invention is shown
to have a very stable clustering quality while scaling up.

L.UU

240 240K 59.97 132.29 2.00
2.00

DS3 5 SK 8.27 8.68 5.26
6.43

SO 50K 18.54 24.76 3.24
4.52

75 75K 24.51 36.08 3.48
4.76

100 lOOK 32.58 50.13 3.64
4.57

150 150K 43.52 76.97 3.69
4.26

200 200K 53.86 107.67 4.32
4.49

250 250K 67.56 146.8 - 4.84
4.98

5,832,182
25

TABLE 6

Performance of the
Clustering System of the Invention

CLUSTERING SYSTEM

Space Used
Dataset Time (sec) Quality (bytes)

DS1 109.44 1.88109 80*1024
DS1’ 148.54 1.87865 80*1024
DS2 46.09 1.99792 80*1024
DS2’ 122.28 1.99792 80*1024
DS3 62.38 3.36464 80*1024
DS3’ 141.05 3.67888 80*1024

Table 6 presents the performance of the present invention
with respect to running time, clustering quality, space
needed to do the clustering and input order sensitivity. In the
table, DSl’, DS2’ and DS3’ are DS1, DS2 and DS3,
respectively, but input in an order that reflects the clustering
locality. They are used to test the input order sensitivity of
the present invention. Besides the numeric quality measure-
ments shown in the table, FIGS. 19 to 22 provide visual
results of the clusters found by the system of the present
invention for the data sets of FIGS. 11, 13, 15 and 16.

The following illustrates how important noise handling is
in the clustering process. Table 7 illustrates the performance
of the present invention on noisy datasets with respect to
running time. The system of the present invention discards
some of the data points as noise when the noise handling
option is chosen. It is not clear whether ignoring points
classified as “noise” results in loss of some clustering
information. Nonetheless, FIG. 22 provides a visual quality
illustration of the clusters found by the present invention in
a noisy data set (Fig. 16). It is apparent from this figure that
the present system with noise handling is noise-robust.

TABLE 7

Performance of the
Present Invention with Noise Handling

CLUSTERING SYSTEM
Dataset Time (sec)

DS4
DS4‘
DSS
DSS’
DS6
DS6’

117.16
145.22
47.81
75.69
71.34
83.95

In summary, the present invention is a clustering method
well suited for very large datasets. It reduces a large clus-
tering problem by removing outliers and concentrating on
densely occupied portions of the data space. A height-
balanced tree is used for clustering, and utilizes measure-
ments that capture the natural closeness of data. These
measurements can be stored and updated incrementally, and
the invention achieves O(M) space complexity and
O(dNBlog,(M/P)) time complexity. The I/O complexity is
l i t t le more than one scan of data , O(N*TS/P).
Experimentally, the invention is shown to perform very well
on several large datasets.

The architecture of the present invention allows interac-
tive and dynamic performance tuning, and parallel program-
ming. For example, one way of parallelizing the method of
the invention is to hash the original data into H groups and

26
run Phase 1 on each of the H groups in parallel. Thus, the
complexity of Phase 1 is improved from dNB(l+log,(M/P))
to d (NIH) B*(l+log,(M/PH)). Then, all leaf entries in the
H subtrees can be fed to Phase 2.

The clusters produced by the invention have a uniform
format. They can be stored, sorted, indexed and queried by
any traditional database systems. For example, one can use
SQL to ask questions such as the following: What is the
largest cluster? What percentage of data is in the largest

10 cluster? How many clusters are there? How many clusters
contain 90% of data?

With the invention identifying the crowded places as
clusters, for instance, it is possible to go further to explore
the global patterns of these clusters. One immediate

15 approach is to apply “regression” procedures on the result-
ing clusters to extract such patterns. Another potential appli-
cation is to use the results obtained by the invention to help
cluster-based index building, data retrieval and query opti-
mization.

In a further embodiment of the invention for carrying out
image processing, the instrument 51 (FIG. 1) comprises a
CCD camera, and the processor 60 is an HP90001720
PA-RISC. The results of the image processing in the pro-
cessor 60 are printed out on a printer 68 having color

25 printing capacity. The following example describes the data
collection and the intended objectives of the processing, and
the manner in which the cluster processing of the present
invention is carried out by the processor 60 to obtain filtered
images.

FIGS. 23 and 24 are two similar images of trees with a
partly cloudy sky as the background, taken in two different
wavelengths. FIG. 23 is in the near-infrared band (NIR), and
FIG. 24 is in the visible wavelength band (VIS). Each image
contains 512x1024 pixels, and each pixel actually has a pair

35 of brightness values corresponding to VIS and NIR. Soil
scientists receive hundreds of such image pairs and they are
only interested in the tree part of the image. They try to first
filter the trees from the background, then filter the trees into
sunlit leaves, shadows and branches for statistical analysis.

40 The present invention was applied to the (NIR,VIS) pairs for
all pixels in an image (512x1024 2-d tuples).

Using 400 kbytes of memory (about 5% of dataset size)
and 80 kbytes of disk space (about 20% of memory size), the
data was filtered into 5 clusters corresponding to

5

2o

30

4s
(1) very bright part of sky,
(2) ordinary part of sky,
(3) clouds,
(4) sunlit leaves and
(5) tree branches and shadows on the trees. SO

This step took 284 seconds. The branches and shadows were
too similar to be distinguished from each other, although
they could be separated together from the other cluster
categories. The part of the data corresponding to tree

ss branches and shadows (146707 2-d tuples) was thus pulled
out and the present invention applied again, but with a much
finer threshold, to obtain two clusters corresponding to
branches and shadows.

This step took 71 seconds. FIG. 25 shows the parts of
60 images that correspond to sunlit leaves 100, tree branches

102 and shadows 104 on the trees that are obtained by using
the present invention. Graphically, there is a very good
correlation with the original images and the desired parts

It is understood that the invention is not limited to the
65 particular embodiment set forth herein as illustrative, but

embraces such modified forms thereof as come within the
scope of the following claims.

5,832,182
27 28

What is claimed is:
1. Amethod of clustering data, provided by a data source,

in a computer processor having a main memory with a
limited capacity, comprising the steps of

wherein, at the step of testing a new data point to determine
if it is within the threshold, a new leaf cluster is created and
one or more higher nodes above the leaves are split, with the
split stopping at a higher node, then determining the two

(a) receiving data points from the data source; 5 closest lower node entries in the node at which the splitting
stops and if they are not the pair of lower node entries (b) determining clusters of the data points that are within corresponding to the split, attempting to merge such closest a selected threshold and determining a clustering fea- lower nodes corresponding to the two lower node entries, ture for each such cluster, the clustering feature com- comprising child nodes, and if there are more entries in the prising the number of data points in the cluster, the

10 two child nodes than one page can hold, splitting the linear sum of the data points in the cluster, and the merging result again and if one of the child nodes has square sum of the data points in the cluster, and storing sufficient merged entries to fill a page, putting the rest of the the clustering feature for each cluster in the main entries with the other child node comprising a seed node. memory; and 4. The method of claim 2 wherein if a new data point is

nodes leaf entries and at least One level Of increasing the selected threshold, and rebuilding a new and
'Odes joined to the leaf nodes, the leaf entries Of the smaller clustering feature tree by reinserting the leaf entries

the next highest nodes in the tree above the leaves 5 , The method of claim 4 wherein, when main memory
comprising 'Onleaf 'Odes that are each joined to a 20 becomes filled, a leaf entry in the tree which has a selected
selected number of different leaves, the selected num- number fewer data points than an average leaf entry is

comprising a branch number, each 'Onleaf 'Ode designated as an outlier, and including the step of writing the

comprising the clustering features of each leaf to which removing it from the main memory,
the nonleaf node is joined and pointers indicating the 25 6, me method of claim 5 wherein after data points
leaves to which the node is joined, and further available from the data source have been received and added

the branch number Of lower level nodes, each higher due to a new data point being read after an outlier is written
level node distinguished by identifiers that are stored to to the disk, if the outlier entry may be absorbed into the new
main memory which comprise the features 30 clustering, feature tree using the new threshold without

and pointers indicating the lower nodes to which the
higher node is joined, the tree terminating at a root

forming a feature tree comprised Of leaf 1s received which fills the main memory in the computer,

tree comprising the clustering features of the clusters, of the old tree into the new tree using the new threshold.

distinguished by identifiers stored in the main memory clustering features for the outlier to an ancillary memory and

comprising, as necessary, higher level nodes joined to to the clustering feature tree, when the threshold increases

for each lower node to which the higher node is joined causing the tree to grow in size, absorbing the outlier into the
new clustering feature tree,
7. The method of claim 5 wherein the ancillarv memorv

(1) receiving a new data point and assigning it to the source have been received, examining the outliers in the
clustering feature tree by, starting at the root node, ancillary memory to determine if any of them can be
assigning the data point to the lower level node that is absorbed into the leaves in the current tree as a result of
closest to the data point in accordance with a selected increases in the threshold, and if so, erasing such outliers
distance measurement using the clustering feature for 40 from the ancillary memory and absorbing each such outlier
the lower level node, and continuing down through into the closest leaf entry by adding its clustering feature to
each of the levels in the tree by assigning the new data the clustering feature of that leaf entry.
point to the closest lower level node by a selected 8. The method of claim 5 wherein the ancillary memory
distance measurement until the closest leaf is found in is a magnetic disk memory.
accordance with the selected distance measurement; 45 9. The method of claim 2 wherein the selected threshold
and is a threshold value for a radius of a cluster, and wherein in

(2) testing the new data point to determine if the new data the step of testing the new data point, a new radius of the leaf
point is within the threshold to the closest leaf entry in cluster is determined with the new data point included in the
accordance with a selected distance measurement and, cluster and the resulting new radius is compared to the
if the new data point is within the threshold, revising so threshold value.
the clustering feature for the closest leaf entry by 10. The method of claim 2 wherein the selected threshold
adding to it the clustering feature values for the new is a threshold value for a diameter of a cluster, and wherein
data point and writing the revised clustering feature for in the step of testing the new data point a new diameter of
the closest leaf entry to main memory, and if the new the leaf cluster is determined with the new data point
data point is not within the threshold, identifying the 5s included in the cluster and the resulting new diameter
new data point as a new cluster and a new leaf entry, compared to the threshold value.
and if the leaf node containing the new leaf entry 11. The method of claim 2 wherein, after all data points
cannot accommodate the total number of leaf entries, available from the data source have been received and
splitting the leaf node to form two leaf nodes which
comprise the leaf entries, and then updating all of the 60 (1) given a desired number of leaf entries in the clustering
clustering feature identifiers for higher nodes which are feature tree, comparing the actual number of leaf
on a path to the leaf node and if a split of a leaf node entries in the clustering feature tree to the desired
has occurred, splitting higher nodes if necessary to number and if the actual number exceeds the desired
accommodate the split leaf node so that the branch number, selecting a new threshold in accordance with
number is not exceeded. a selected distance measurement which is expected to

3. The method of claim 2 wherein each node in the result in a clustering feature tree which has less than the
clustering feature tree has a given page size in memory, and desired number of leaf entries;

processed, further comprising the steps of:

65

5,832,182
29 30

(2) freeing the non-leaf nodes of the clustering feature
tree;

(3) using the new threshold distance, grouping leaf entries
which are within the threshold of each other into single
leaf entries and writing the clustering feature of such 5 terminating at a root 'Ode.

clustering feature tree with the new leaf entries so
determined;

(4) comparing the number of leaf entries in the new
clustering feature tree to the desired number of leaf 10
entries and, if the number is equal to or less than the
desired number, stopping the processing, and if the
number is greater than the desired number of leaf
entries, increasing the threshold to provide a revised
threshold, and rebuilding a new and smaller clustering 1s
feature tree until the clustering feature tree has less than
or equal to the desired number of leaves.

distinguished by identifiers that are stored to main memory
which comprise the clustering features for each lower node
to which the higher node is joined and pointers indicating the
lower nodes to which the higher node is joined, the tree

new leaf entries to main memory, and forming a new 17. The system Of l6 further comprising:
(1) means in the Processor for assigning a newly received

data point to the clustering feature tree by, starting at
the root node, assigning the data point to the lower level
node that is closest to the data point in accordance with
a selected distance measurement using the clustering
feature for the node, and continuing down through each
of the lower levels in the tree by assigning the new data
point to the closest lower level node by a selected
distance measurement until the closest leaf is found in
accordance with the selected distance measurement;
and

to determine if the new data point is within a selected
threshold to the closest leaf entry in accordance with a
selected distance measurement and, if the new data
point is within the threshold, revising the clustering
feature for the closest leaf entry by adding to it the
clustering feature values for the new data point and
writing the revised clustering feature for the closest leaf
entry to the main memory, and if the new data point is
not within the threshold, identifying the new data as a
new cluster and a new leaf, and if the leaf node
containing the new leaf entry cannot accommodate the

form two leaf nodes which comprise the leaf entries,
and then updating all of the cluster feature identifiers
for higher nodes which are on a path to the leaf node
and if a split of a leaf node has occurred, splitting

node so that the branch number is not exceeded.

12. The method of claim 11 further comprising the steps (2) in the processor for testing the new data point
of utilizing the clustering features of the leaf entires of the
clustering feature tree as initial data objects and applying a 20
selected clustering process to the leaf entry clustering fea-
tures to provide a cluster result which has a selected number
of clusters.

13. The method of claim 12 further comprising the steps
of determining the centroids of the final clusters found after 2s
the process of claim 12, identifying such centroids as seed
points, then reading all of the data points that have been
utilized to form the clustering feature tree and determining
the clusters of the data points that are closest to the seed

cluster.
14. The method of claim 2 further comprising the steps of

utilizing the clustering features of the leaf entries of the
clustering feature tree as initial data objects and applying a

tures to provide a cluster result which has a selected number
of clusters.

vided by a data source, comprising:

points and determining a clustering feature for each such 30 total number of leaf entries, splitting the leaf node to

selected clustering process to the leaf entry clustering fea- 35 higher nodes if necessary to accommodate the leaf

18. The system of claim 17 wherein each node in the

wherein the means for testing a new data point to determine
40 if it is within the threshold creates a new leaf cluster and (a) a computer processor; splits one or more higher nodes above the leaves, with the

split stopping at a higher node, and then determines the two (b) a main memory connected to the processor;
(c) an ancillary memory connected to the processor; closest lower node entries in the node at which the splitting
(d) means for receiving the data points from the data stops and if they are not the pair of lower node entries

source for access by the processor; 45 corresponding to the split, attempts to merge such closest
(e) means in the processor for analyzing the data points to lower nodes, comprising child nodes, and if there are more

determine clusters of the data points and to determine entries in the two child nodes than one page can hold, then
a clustering feature for each such cluster which com- splits the merging result again and if one of the child nodes
prises the number of data points in the cluster, the linear has sufficient merged entries to fill a page, then puts the rest
sum of the data points in the cluster, and the square sum SO of the entries with the other child node comprising a seed
of the data points in the cluster, and means for storing node.
the clustering feature so determined for each cluster in 19. The system of claim 17 including means for deter-
the main memory. mining if a new data point is received which fills the main

16. The system of claim 15 including means in the memory in the computer, and, if so, for increasing the
processor for forming a clustering feature tree comprised of ss selected threshold, and rebuilding a new and smaller clus-
leaf nodes including leaf entries and at least one level of tering feature tree by reinserting the leaf entries of the old
nodes joined to the leaf nodes, the leaf entries of the tree tree into the new tree using the new threshold distance.
comprising the clustering features of the clusters, the next 20. The system of claim 19 wherein, when the main
highest nodes in the tree above the leaves comprising memory becomes filled, a leaf entry in the tree which has a
nonleaf nodes that are each joined to a selected number of 60 selected number fewer data points than an average leaf
different leaves, the selected number comprising a branch cluster is designated as an outlier, and including means for
number, means for storing in the main memory identifiers writing the clustering features for the outlier to an ancillary
for each nonleaf node comprising the clustering features of memory and removing it from the main memory.
each leaf to which the nonleaf node is joined and pointers 21. The system of claim 20 further including means for
indicating the leaves to which the node is joined, and means 65 determining after data points available from the data source
for forming, as necessary, higher level nodes joined to the have been received and added to the clustering feature tree,
branch number of lower level nodes, each higher level node when the threshold increases due to a new data point being

15, A processing system for clustering data points pro- clustering feature tree has a given page size in memory, and

5,832,182
31

read after an outlier is written to the disk, if the outlier may
be absorbed into the new clustering feature tree using the
new threshold without causing the tree to grow in size,
absorbing the outlier into the clustering feature tree.

22. The system of claim 20 wherein the ancillary memory
has a limited capacity, and including means for determining
if the capacity of the ancillary memory is filled before all
data available from the data source have been received and
for then examining the outliers in the ancillary memory to
determine if any of them can be absorbed into the leaves in
the current tree as a result of increases in the threshold, and
if so, erasing such outliers from the ancillary memory and
absorbing each such outlier into the closest leaf entry by
adding its clustering feature to the clustering feature of that
leaf entry and storing the result in the main memory.

23. The system of claim 20 wherein the ancillary memory
is a magnetic disk memory.

24. The system of claim 17 wherein the selected threshold
is a threshold value for a radius of a cluster, and wherein in
the means for testing the new data point, a new radius of the
leaf cluster is determined with the new data point included
in the cluster and the resulting new radius is compared to the
threshold value.

25. The system of claim 17 wherein the selected threshold
is a threshold value for a diameter of a cluster, and wherein
in the step of testing the new data point a new diameter of
the leaf cluster is determined with the new data point
included in the cluster and the resulting new diameter
compared to the threshold value.

26. A processing system for clustering data points pro-
vided by a data source comprising:

(a) a computer processor;
(b) a main memory connected to the processor, the main

memory having a clustering feature tree stored therein
comprised of leaf nodes including leaf entries and at
least one level of nodes joined to the leaf nodes, the leaf
entries of the tree comprising clustering features of the
cluster, each clustering feature comprising the number
of data points in the cluster, the linear sum of the data
points in the cluster, and the square sum of the data
points in the cluster, the next highest nodes in the tree
above the leaves comprising nonleaf nodes that are
each joined to a selected number of different leaves, the
selected number comprising a branch number, each
nonleaf node distinguished by identifiers stored in the
main memory comprising the clustering features of
each leaf to which the nonleaf node is joined and
pointers indicating the leaves to which the node is
joined, and further comprising, as necessary, higher
level nodes joined to the branch number of lower level
nodes, each higher level node distinguished by identi-
fiers that are stored to main memory which comprise
the clustering features for each lower node to which the
higher node is joined and pointers indicating the lower
nodes to which the higher node is joined, the tree
terminating at a root node;

(c) an ancillary memory connected to the processor;
(d) means for receiving the data points from the data

source for access by the processor;
(e) means in the processor for receiving a new data point

and assigning it to the clustering feature tree by, starting
at the root node, assigning the data point to the lower
level node that is closest to the data point in accordance
with a selected distance measurement using the clus-
tering feature for the lower level node, and continuing
down through each of the levels in the tree by assigning

32
the new data point to the closest lower level node by a
selected distance measurement until the closest leaf is
found in accordance with the selected distance mea-
surement; and

(f) means for testing the new data point to determine if the
new data point is within a selected threshold distance to
the closest leaf entry in accordance with the selected
distance measurement and if so, revising the clustering
feature for the closest leaf entry by adding to it the
clustering feature values for the new data point and
writing the revised clustering feature for the closest leaf
entry to main memory, and if the new data point is not
within the threshold, identifying the new data as a
cluster and a new leaf entry, and if the leaf node
containing the new leaf entry cannot accommodate the
total number of leaf entries, splitting the leaf node to
form two leaf nodes which are comprised of leaf
entries, and then updating all of the clustering feature
identifiers for higher nodes which are on a path to the
leaf node and if a split of a leaf node has occurred,
splitting higher nodes if necessary to accommodate the
split leaf node so that the branch number is not
exceeded.

27. The system of claim 26 wherein each node in the
zs clustering feature tree has a given page size in memory, and

wherein the means for testing a new data point to determine
if it is within the threshold creates a new leaf cluster and
splits one or more higher nodes above the leaves, with the
split stopping at a higher node, and then determines the two

30 closest lower node entries in the node at which the splitting
stops and, if they are not the pair of lower node entries
corresponding to the split, attempts to merge such closest
lower node entries, comprising child nodes, and if there are
more entries in the two child nodes than one page can hold,

3s then splits the merging result again and if one of the child
nodes has sufficient merged entries to fill a page, puts the rest
of the entries with the other child node comprising a seed
node.

28. The system of claim 26 including means for deter-
40 mining if a new data point is received which fills the main

memory in the computer, and, if so, for increasing the
selected threshold, and rebuilding a new and smaller clus-
tering feature tree by reinserting the leaf entries of the old
tree into the new tree using the new threshold.

29. The system of claim 26 wherein, when the main
memory becomes filled, a leaf entry in the old tree which has
a selected number of fewer data points than an average leaf
entry is designated as an outlier, and including means for
writing the clustering features for the outlier to the ancillary

30. The system of claim 29 further including means for
determining after data points available from the data source
have been received and added to the clustering feature tree,
when the threshold increases due to a new data point being

ss read after an outlier is written to the ancillary memory, if the
outlier entry may be absorbed into the new clustering feature
tree using the new threshold, absorbing the outlier into the
clustering feature tree.

31. The system of claim 29 wherein the ancillary memory
60 has a limited capacity, and including means for determining

if the capacity of the ancillary memory is filled before all
data available from the data source have been received and
for then examining the outliers in the ancillary memory to
determine if any of them can be absorbed into the leaves in

65 the current tree as a result of increases in the threshold, and
if so, erasing such outliers from the ancillary memory and
absorbing each such outlier into the closest leaf entry by

s

i o

is

20

4s

SO memory and removing it from the main memory.

5,832,182
33 34

adding its clustering feature to the clustering feature of that 34. The system of claim 27 wherein the selected threshold
leaf entry and storing the result in the main memory. is a threshold value for a diameter of a cluster, and wherein

32. The system of claim 29 wherein the ancillary memory in the step of testing the new data point a new diameter of
is a magnetic disk memory. the leaf cluster is determined with the new data point

33. The system of claim 27 wherein the selected threshold s included in the cluster and the resulting new diameter
is a threshold value for a radius of a cluster, and wherein in compared to the threshold value. the means for testing the new data point, a new radius of the
leaf cluster is determined with the new data point included
in the cluster and the resulting new radius is compared to the
threshold value. * * * * *

