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C571 ABSTRACT 

A method of motion control for robotics and other automati- 
cally Controlled machinery using a neural network controller 
with real-time environmental feedback. The method is illus- 
trated with a two-finger robotic hand having proximity 
sensors and force sensors that provide environmental feed- 
back signals. The neural network controller is taught to 
control the robotic hand through training sets using back- 
propagation methods. The training sets are created by 
recording the control signals and the feedback signal as the 
robotic hand or a simulation of the robotic hand is moved 
through a representative grasping motion. The data recorded 
is divided into discrete increments of time and the feedback 
data is shifted out of phase with the control signal data so 
that the feedback signal data lag one h e  increment behind 
the control signal data. The modified data is presented to the 
neural network controller as a training set. The time lag 
introduced into the data allows the neural network controller 
to account for the temporal component of the robotic 
motion. Thus trained, the neural network controlled robotic 
hand is able to grasp a wide variety of different objects by 
generalizing from the training sets. 

17 Claims, 7 Drawing Sheets 
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METHOD FOR NEURAL NETWORK 
CONTROL OF MOTION USING REAL-TIME 

ENVIRONMENTAL FEEDBACK 

RELATIONSHIP TO OTHER APPLICATIONS 

This patent application is a continuation-in-part of patent 
application, Ser. No. 071955,107 filed Oct. 1, 1992 now 

by reference in its entirety. 

ing the expected conditions or by reprogramming the robot 
to recognize and react to the new situation. This inability of 
robots and automatic controllers to react to unforeseen 
circumstances or changes in  their environments has been 

5 one of the impediments to applying robots to many of the 
possible industrial and medical applications where they 
could be of benefit. 

th is  limitation of current robotics and artificial intelligence 
10 systems. Neural networks are a type of data processing 

Government Rights system whose architecture is inspired by the structure of the 
neural systems of living beings. Unlike the serial connec- 

This invention is related to invention disclosures made by tions of the digital used fa AI system, neural 
the inventor at NASA-Lyndon B. Johnson Space Center, 
Houston, Tex. The United States government may have 15 assigned to ea& of the interconnedons. Their architecture 
certain rights to use this invention. allows neural networks to actually learn and to generalize 

from their knowledge. Therefore. neural networb are taught 
or trained rather than programmed. Some neural networks FIELD OF THE INVENTION 

This invention relates to a method for neural network are Wen Capable Of independent of aUtOllOmOUs le&g, Or 
control of robotic motion. More particularly, it relates to a learning bY trial and enor. 
method for controlling the grasping function of a robotic The ability of neural networks to learn and to generalize 
hand from their knowledge makes them highly useful as robotic 

controllers. A neural net controlled robot can be taught by 
BACKGROUND OF THE INVENTION taking it through a series of training sets, which present data 

controlled macMnery are 25 typical of what the robot wiu see in operation. From these 
playing an increasingly m t  role in our i n d u q ,  our training sets, the robot can “generalize” to react properly to 
economy and our society. Robots can be used to replace new situations encountered in actual operation, even if they 
human labor in do not exactly match the training sets from which they were 
be used to perform b k s  requiring e x e m  precision, speed taught some m d  networks can be “self organizing”, that 
or strength which is beyond human capabilities. Another 3o is., they learn firom these new situations and add it to the data 
beneficial use of robots is forpesforming tasks which are too learned firom their training sets by adjusting the weights 
hngmus for humans or for -,.ting in extreme or hostile assigned to the interconnections between their processing 
envko-as that to human life. ~~b that elements or “neurodes.” Two types of neural networks 
fall into this category indude such things as atsavehicdar 35 capable of self organizing are back-propagation networks 
space activities, warhead disarmament and disposal, and resonance networks* 
manipulation of radioactive wastes, and data g&&g While reference will be made to specific types of neural 
within active volcano craters. networks in the following description, it is not the intention 

Other beneficial applications for robotics technology Of this to b c h  the Or architecture Of 
include applications as robotic-mneolled prosthe 4o neWd networks, but to advance the appliCatiOn Of neural 
ses for replacing the functions of amputated or nofinc- network technology to robotics and aUtOrnatiC control tech- 
tional - a % ro~tic<ontro~ed d o s e s  that a d  as an nology. It should also be understood by the reader that the 
“exoskeleton” for controWg the movements of limbs that types of neural networks referred to are given by 
have been paralyzed or atrophied, Such robotic prostheses way Of Of neural networks mY 

grasping and manipulation of objects and other essential infomtion about the theory and design of neural networks, 
tasks. other medical wlication include robotic sur@cal the reader’s attention is directed to the following references: 
instruments for performing ~crosurgery or retrieving 1) Apprentices of Wonder, Inside the Neural Network Revo- 
intraluminal thrombus or emboli in blood vessels. lution by William E Allman, Bantam Books 1989 

Charles Buffer. The h4lT Press 1990 ics and automatic control is artificial intelligence. Artificial 
Intelligence technology, or AI for short, refers to the use of David E. Rumelhart and the PDP Research Group, The digital computers to mimic the cognitive and symbolic ski l ls 
of humans. When the principles of artificial intelligent are MIT Press lgg7 
applied to robots or automated machinery their usefihess is 55 Wume 1 ~ o u n d a t h s  
increased to an even greater degree. AI allows robots or Volume 2 Psychological and Biological Models 
automatic machines to be programmed to perform complex Discussion of the Prior Art 
tasks, to react to external inputs and even to per€orm Certain attempts have been made to apply neural net- 
rudimentary decision making. AI, however, has its limita- works technology to robotic ambulation and other types of 
tions. Even AI controlled robots are s t i l l  unable to react to 60 robotic motion. Two such examples are: 
new changes in their environment that do not match with U.S. Pat. No. 5,133.482, granted to Lynne, for a Neural 
their preprogrammed operating parameters. Even if they Network Model for Reaching a Goal State describes a 
have been programmed to recognize and react to hundreds modification to a back-propagation neural network used for 
or even thousands of Merent situations, they cannot gen- controlling robot ambulation. Lynne modifies the back- 
eralize fromtheirprogrammedknowledge toreact to unfore- 65 propagation network by adding to it a “satisfaction index” 
seen circumstances. These unforeseen situations usually which “rewards” the robot propationally to how well it has 
require human intervention to correct the problem by restor- optimized its path to the goal state. This encourages the 

abandoned, the specification of is hereby incorporated Neural network COIltrOkrS Offer One possible SOlUtiOIl t0 

are highly interconned with 

Robots and other 

that are dull and repetitive or they 

be a 

and that other 
and d o s e s  a n  used to assist the in &dation, 45 AS0 be Used with the disclosed Control mehod. For detailed 

AtWhnology that has developed hand-in-handwith robot- 2, Nmally Intelligent by and 

3, parallel Distributed Processing by .lames L* 
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robot to experimentally optimize its path until a sdEcient 
satisfaction level has been reached One of the stated advan- 
tages of this method is that it avoids the robot from being, 
trapped in any “local minima” that would discourage it from 
further optimizing its path. 
U.S. Pat. No. 5,124,918, granted to Beer et al., for a 

Neural-Based Autonomous Robotic System describes the 
use of a neural network combined with a p a c e m  ciraIit 
for ControJJing the ambulation of a multi-legged autonomous 
robot. The system also includes tactile feedback sensors that 
allow it to model the stimulus-and-response behavior of a 
living being. 

T a d e  and position feedback have also been used with 
non-neural network robotic systems. Exaroples of these are: 
US. Pat. No. 4,730,861, granted to Spencer, for a Finger 

Gripper with State Indicator describes a robotic gripper that 
uses a Hall-effect position sensor for indicating the closure 
state of the gripper. 
US. Pat. No. 4,766,322, granted to Hashimoto, for a 

Robot Hand Including Optical Approach Sensing Apparatus 
descriies a robotic gripper with seven optoelectrical prox- 
imity sensors to indicate the gripper’s position with respect 
to the object to be picked up. 

The inventor believes that these and all of the prior art 
robotic controllers could benefit from the application of the 
neural network robotic controller described herein. 

OBJE€TS AND ADVANTAGES 

One of the disadvantages of the prior art neural network 
robotic controllers is that the learning and adaptation process 
is done iteratively by trial and mor. While the ability to 
learn by trial and error is Certainy a step forward in 
autonomous robot operation. it is less useful in real life 
situations than one might think. For instance, if a robot is 
instructed to perform an unfamiliar task that must be done 
right away, there is no time for the multiple iterations 
necessary for the standard neural ne€work to adapt to the 
new situation. If the task is a dangerous one, then the 
“mors” inherent in the trial-and-error process might bring 
the learning process to an abrupt and untimely termination. 

It is therefore an objective of the present invention to 
provide a method for the neural networkrobotic control with 
real-time adaptive capabilities. It is also an objective of the 
invention to provide the controller with instantaneous envi- 
ronmental feedback that allows the controller to sense and 
react to novel or changing environmental conditions. It is 
also an objective to provide the neural network with the 
capability to learn from the adaptive process, adding the 
novel situation to its previous database of known situations. 
It is an objective to accomplish this sensing, adapitation and 
learning process in  real-time while successfully accomplish- 
ing a task without the need for repeated, unsuccessful 
iteration. 

It is a further objective of the invention to apply this 
neural network robotic control method to the real-time 
adaptive motion control of a robotic end effector, such as a 
robotic gripper. It is an objective to provide the network with 
instantaneous environmental feedback from position, force, 
proximity and tactile feedback sensors for sensing and 
adapting to novel or changing environmental conditions. 

It is a further objective of the invention to apply this 
neural network robotic control method to an anthropomor- 
phized robotic end effector usable as a prosthesis or orthosis 
for replacing or assisting the function of an amputated, 
paralyzed or atrophied limb. It is an objective to provide the 
network with means for control input from the user to 

4 
initiate. movement of the prosthesis or orthosis while the 
neural network controls the coordination and adaptation of 
the motion. 

It is also an object of the invention to provide a method 
5 of initially training the neural network robotic controller 

through simulation of training sets that emulate data typical 
of that which the robot will encounter in operation, thereby 
eliminating the need for initial trial-and-mor training by the 
operator of the robot or robotic prosthesis or orthosis. 

SUMMARY 
In the disclosed method, a robot or other automated 

machinay is provided with a neural network controller 
capable of processing Momlation and formulating a control 

15 response which governs the actions of the robot. The neural 
network receives input from environmental feedback sen- 
sors that indicate the state of the robot; this information is 
used in formulating the robot’s response to environmental 
factors. The neural network may also receive control input 

20 from an external source which governs its actions or initiates 
the performance of a task Preferably, a back-propagation 
neural network controller is used so that the input from the 
environmental sensors can be added to any data previously 
taught to the neural network, thereby increasing the net- 

25 work’s database of known conditions. The neural network is 
initially taught or trained by a series of training sets which 
represent data typical of what the robot will experience in 
actual option. The network can be trained by trial and 
error, or by physically moving the robot through the series 

30 of training sets, or the network can be taught by simulation 
using a computer or specially made “black boxes” to emu- 
late the robot and its environment. The training sets are 
learned by the neural network by adjusting the weighting 
functions on the interconnections between its processing 

35 elements or nernodes. Like in standard neural networks, the 
data from these training sets serves as a basis for the robot 
to operate and perform tasks within its environment. The 
data is also used as the basis for the robot to generalize from 
its knowledge when facing new situations that do not map 

40 exactly into the data from its training sets. Unlike standard 
neural networks, however, in the current invention the data 
derived from the training sets is not necessarily stored as a 
series of complete trajectories that the neural network con- 
troller must choose from or improvise from in a trial-and- 

45 error method. The daia, instead, is incrementalized into 
discrete time segments that represent “snapshots” of the 
robotic motion at different points in time. A mapping is 
formed between the robot’s operating parameters and the 
sensed environmental conditions at each discrete increment 

so of time. The set of incrementalized input data is then lagged 
one increment of time behind the incrementalized operating 
parameter data to form a new data mapping. The new 
mapping represents discrete point-to-point cause-and-effect 
mappings between the environmental input data and the 

55 robot’s operating parametws. This point-to-point data map 
ping is remembered by the neural network as different 
weightings on its neural interconnections and used to con- 
siruct complete trajedories that may be used by the robot in 
the performance of a task. 

Several important advantages accrue from th is  incremen- 
talization of the data and forming it into discrete point-t* 
point cause-and-effect mappings. First of all, the number of 
initial trajectories available to the controller is increased by 
the ability to combine the increments of motion learned from 

65 the training sets. Thus, complicated motions can be taught to 
the neural network with a reduced number of training sets 
because the network has a greater ability to generalize. 

10 

60 
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Second, the learning process for the controller can also take 
place in discrete time increments in a real-time adaptive 
fashion without intmption or undue time delay of the task 
at hand. This is in marked contrast to many of the @or art 
methods that, when they encounter an error in the trial-and- 
error method, must start over at the beginning of the task 
This distinction is very important in robots that are intended 
to operate in the real world, not mprely as curiosities or 
academic exercises limited to the AI laboratory. While 
small, adaptive midstream corrections may be tolerated and 
even beneficial in an unfamiliar task perfamed by a robot in 
an industrial or medical environment, stopping and starting 
over from the beginning of the task iteratively until the robot 
had adapted to the new task might be inviting disaster. The 
advantage of using a back-propagation or other self- 
organizing neural network for this control method is that the 
robot will learn from the corrective process just described 
and adapt itself to the new conditions, gaining a sort of 
coordination that can be used when the same or similar 
conditions are encountered again. 

One of the most impoaant advantages of the contro1 
method of the present invention is that the real-time adaptive 
response to environmental feedback allows the robot to 
adapt to changing environmental conditions. Prior art meth- 
ods such as the Neural Network Model for Reaching a Goal 
State described above can adapt to changes in environmental 
conditions by iteratively readapting themselves to the 
changed environment. They lack, however, any means to 
sense and adapt to changes in the environmental conditions 
as they happen. The present invention, on the other hand, 
allows the robot to instantaneously react to the changing 
environment detected by its environmental feedback sensors 
and adjust its trajestory in real time to accomplish its task 
without interruption. Likewise, this adaptability allows the 
robot to react to midstream changes in its goal state. The 
importance of this feature will become apparent from the 
examples described below. 

The present invention employs n d  networks to simu- 
late and provide real-time adaptable hand motion via a 
mapping between a robot and its environment. This is 
accomplished by dividing the experience of the robot into 
smal l  time increments. Each increment is compared to the 
increments the robot has previously encountered, for 
example, in training. Thus the new environment need not be 
i&ntid, or even similar, to a training environment, as long 
as ea& time increment is small  enough to encompass only 
known relationships. 

During ea& time increment, the sensors of the robot 
gather infonuation about the environment. This information 
is then incorporated into the robot’s action during the next 
time step. In ulis way. the action of the robot becomes better 
and better suited to the environment, even if the environment 
changes during the encounter. For example, if the task is to 
pick up an oddly shaped rock, the robot according to the 
present invention can accomplish the task even if the rock is 
rolling down a slope with a changing direction and velocity. 
A rigidly preprogrammed robot would continue on its origi- 
nal course, reaching for a rock that was no longer there. 

BRIEF DEScRIpIlON OF THE DRAWINGS 
FIG. 1 shows a prosthetic hand which uses the neural 

FIG. 2 shows a two-finger robotic hand used to model the 

FIG. 3 shows the twwfinger robotic hand grasping a 

network control method of the present invention. 

present invention grasping a round object. 

slightly irregular object. 

6 
FIG. 4 shows the two-finger robotic hand grasping a very 

irregular object. 
FIG. 5 shows a diagram of the neural network used to 

model the present invention. 
FIG. 6 shows a flow chart of the neural network control 

method of the present invention. 
FIG. 7 shows a flow chart of an alternate embodiment of 

the neural network control method of the present invention. 

INVENTION 
FIG. 1 shows a diagram of an anthropomrphic prosthetic 

hand 101) which uses the neural network control method of 
the present invention. The prosthetic hand 100 is made with 

Is environmental feedback sensors 102 on each finger joint 
104. The feedback sensors 102 include proximity sensors 
and force sensors. The prosthetic hand 100 is operated by 
drive motors 106 to create the grasping motion of the 
prosthesis. The drive motors 106 are controlled by an 
electronic neural network 108. The electronic neural net- 
work 108 receives control input. for instance, myoelectric 
control signals 110, from muscle groups in the user’s arm. 
The electronic neural network 108 also receives feedback 
signals from the s e n m  102 in the prosthesis indicating the 

25 grasping state of the hand 100. The neural network 108 uses 
a novel motion control method to achieve controlled grasp- 
ing motion of the prosthetic hand 100 using real-time 
environmental feedback 

This is just one example of the possible uses of the present 
invention. The neural network control method can be used 
for motion control in other types of prostheses. For example, 
it can be used for gait control in motorized prosthetic legs. 
The neural network control method can also be used to 

35 control robotic grippers or other robotic end effectors or for 
controlling other kinds of machine motion. 

A simplified model of a two-finger robotic hand 200 was 
used to demonstrate the neural network control method. 
FIG. 2 illustrates the robotic hand model 200 that was used 
in a simulation of the control method. The robotic hand 200 
has two fingers 202,204, with two rotating joints 210,212, 
214,216 in each finger. Each segment 1.2,3,4 of the fingers 
202, 204 in this model is equipped with feedback sensors, 
including four proximity sensors 206 and four force sensors 

45 208, for a total of thirty-two feedback sensors. Drive motors 
(not shown) control the angles 8, . . . CIS between the finger 
segments 1,2,3,4. Because of space limitations, the drive 
motors can be located external to the robotic hand 200 and 
connected to the joints with cables or other actuators. The 
neural network controller receives control input from the 
user and combines these with feedback signals from the 
sensors to derive appropriate control signals which are sent 
to the drive motors. 

A computer simulation of the robotic hand was used to 
55 demonstrate the neural network control method. The robotic 

hand was simulated using TOPAS, Three Dimensional 
Object Processing and Animation Software from M&T 
Graphics Software Labs. A FOKJXAN propam based on 
the back-propagation neural network algorithm from Paral- 

60 lel Distributed Processing by James L. Maelland, David 
E. Rumelhart, running on a VAX 8650 computer system was 
used to simulate the neural network controller. In a physical 
embodiment of the invention, the neural network controller 
could be implemented in hardware, rather than as a software 

The n d  network which was used in the sohare  model 
is shown diagramatically in FIG. 5. It is a threelayer neural 

10 DETAILED DESCRTPTION OF THE 

3o 

65 model. 
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network with an input layer, a hidden layer and an output 
layer. The input layer was &lined as having 33 input nodes, 
one for each of the 32 feedback sensors, plus one input node 
whose output was always set at one to provide a learning 
bias. The hidden layer was given 9 hidden nodes. Each of the 
9 hidden nodes was interconnected with each of the 33 input 
nodes. Only the connections between the input layer and one 
of the hidden nodes has been shown for clarity. The output 
layer was given 4 output nodes, one for each of the drive 
motors. Each of the output nodes was interconnected with 
each of the hidden nodes. Once again, only the connections 
between the output layer and four of the hidden nodes has 
been shown for the sake of clarity. The initial conditions of 
the neural net were established by randomly assigning a 
connection strength with values between 0 and 1 to each of 
the interconnections in the neural net. The neural network 
was then taught to control the robotic hand to grasp a variety 
of objects through the control method of the present inven- 
tion which is described below. 

The neural network is used to map a relationship between 
the input parameters, representing both the distance of an 
object firom the potential contact points on the hand, as 
measured by the proximity sensors, and farce of the hand on 
the object, as measured by the force sensors, to a set of 
control commands, representing what the next appjxiate 
movement of joint angle, A@,, on each finger should be. 
Each mapping represents an interval in time, At. The sequen- 
tial combination of each integral time step animates the hand 
to provide the resultant motion. 

Referring again to FIG. 2, the angles el . . .e, are joint 
angles of each finger segment 1, 2, 3, 4. The distances d,, 
. . . dw indicate the orthogonal proximity of each finger 
segment from the object 300 at a specjfic point in time. The 
distances a12 . . . a, (see FIG. 4) provide an indication of 
moment about the object’s centroid 

In the most general sense, the relationship to be mapped 
out can be symbolically described by: 

A9*AdIz.. . d,,, uI2 . . . a,, ek.), 

prior to contact. Once contact is made, forces, f,, . . . fU, can 
be included in this List of parameters for the final stage of 
motion until an appropiate grasp stopping point is signaled 

Learning is accomplished in the following fashion. In 
neural network terminology, for a given network 
configuration, teaching the network to worm a desired 
task requires training. The neural network is trained by 
presenting it with training sets. These training sets can be 
created in a n e  of ways. The actual robotic hand can be 
moved manually through a gripping motion by applying 
outside force or by manually controlling the drive motors 
and recording the sensor feedback (d,, . . . dU, f12 . . . fU) 
and the joint angles (e, . . . e$ throughout the trajectory. 
Alternatively, one might use a tool, such as a prehensor 
instrumented to provide proximity, force feedback and posi- 
tion sensing, to trace the motion of the fingers and quantify 
the relationship between the hand and the object. Using the 
paehensor or another master, an object could be grasped 
using the fmgn movements. or motion, desired and this data 
would be recorded. Another approach to creating training 
sets is through simulation, either bough animation of the 
training sets, as in th is  example, or by hooking a “black box” 
or other simulator to the neural network to simulate the 
motion of the robotic hand in the training sets. 

The data that is collected is then divided into time 
increments, At, or snapshots of motion. Next, force and 

proximity data ai each time increment are shifted out of 
phase to lag one step in time behind joint position (or 
angular movement data). Data at each time interval, At, 
constitutes a specific pattm. The resultant set of input 

5 (proximity and force in this case) and output (prediction of 
next angle of movement) patterns over all the time 
increments, At, constitutes a training set. This process can be 
designed to include other objects in the training set. Using 
this training set, the netwark is then taught to map this cause 
and effect relationship between force and proximity feed- ’* back and the next desired change in joint angle for each 
fmger. Hence, an anixnatable sequence is created and motion 
is learned. 

This method is in marked contrast to the prior art methods 
which use static patterns as training sets for neural networks 
to perform such task as optical character recognition where 
there is no temporal component of the data represented. 
These prior art methods do not generalize well to control 
situations which require the controller to account for motion 
or other time-related phenomena. The time lag introduced 

U] into the training sets in the present invention allows the 
neural network controller to create a cause-and-effect map- 
ping that accounts for time-related phenomena such as 
machine motion. 

Using this method, the robotic hand model of mG. 2 was 
25 used to create training sets of grasping sequences using a 

round object 300. The animated robotic hand 200 was 
manually taken through the grasping sequence from a start- 
ing position of approximately 45’ as shown and the data 
were recorded. The grasping mation was divided into mul- 

30 tiple increments of time, At. ’Ihe sensor feedback data (dI2 
. . . dcI, f,, . . . fcI) wne shifted out of phase to lag one step 
in time behind joint position data (e, . . . e,) by one time 
increment, At. This new data set was presented to the neural 
network program as a series of training sets. Each time a 

35 training set was presented to the neural network, the pro- 
gram reset the weights of the interconnections between each 
of the nodes using the back-propagation algorithm Training 
sets were presented to the neural network until the output of 
the network converged to an acceptable error level. 

To test the learning of the neural network, the robotic hand 
200 was then presented with a slightly irregular object 400, 
as shown in PIG. 3. Based on the sensor feedback data (d,, 
. . . dCQr fi2. . . the neural network predicted the next 
increment of joint angular position (A0, . . . A0.J1 needed to 

45 close the robotic hand on the slightly iuegular object 400. 
The two fingers of the robotic hand 202,244 were moved 
according to the predicted amounts. (In a physical 
embodune * nt, this would be accomplished by sending appro- 
priate control signals to the drive motors to effect the 

50 inamentat movement.) Then the new position of the iin- 
gers relative 2Q2,204 to the object 400 (d,, . . . d.,.,, f,, . . 
. f.,.,)*, were used by the neural network to predict the next 
incremental movement (A9, . . . A0J2 needed This process 
was repeated iteratively until the hand closed around the 

55 object 400. This showed that the neural network was able to 
generalize from the training set based on a round object to 
the test set which had a slightly irregular object. Other 
examples were tested using highly irregular objects 500, 
such as the one illustrated in FIG. 4 and, once again, the 

60 neural network was able to generalize to the more complex 
test situation based on a very simple learning set. The 
original learning sets can be augmented by using the data 
from the test situations as additional training sets. Thus, the 
neural net would add these training sets to its collection of 

This simulation shows how. using the method of the 
present invention, the neural network controller is capable of 

40 

65 “learned” situations. 
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learning to control robotic motion and able to generalize relationship learned from the training set or sets. This is 
from what it has learned in the training sets. Classic artificial generally sufficient when the training sets fairly represent 
intelligence methods are not capable of this self learning the situations that the robotic end effector or other process 
process. Also, prior art neural network controllers are not will encounter in operation and where the operating condi- 
capable of predictively controlling motion or other time 5 tions are reasonably predictable. For applications where the 
related processes because their learning is based on static robotic end effector or other process will encounter diverse 
input data. or changing operating conditions, the initial training can be 

A flow chart is presented in FIG. 6 to help in understand- supplemented by allowing the neural network controller to 
ing the neural network control method of the present inven- continue to learn from some or all of the situations encoun- 
tion. In Step a) of the method the neural network controller io tered during actual operation. If this is desired Step b) can 
is trained off-line. The training Step a) involves the follow- be followed by a supplemental training step c) which 
ing substeps: Step i) simulating a timevarying process, such includes the following substeps: Step k) recording the input 
as the gripping motion of the robotic hand described in variable as a function of time and recording the output 
relation to FIGS. 2,3 and 4 above, and recording an input variable as a function of time during the actual o p t i o n  of 
variable as a function of t h e  and recording an output 15 the time-varying process to create a supplemental data set, 
variable as a function of time to meate a data set that which includes both supplemental input variable data and 
includes both input variable data and output variable data as supplemental output variable data as a function of time. Step 
a function of time. This step can be peaformed in a number kk) mating a supplemental training set from the supple 
of ways: by manually moving the robotic end &&or mental data set by dividing the supplemental data set into 
through the movement, by using open loop control to move 20 increments of time and shifting the supplemental output 
the robotic end effector, by a black box simulation or by variable data out of phase with the supplemental input 
simulating the movement with a computer programmed to variable data so that the Supplemental output variable data 
produce the necessary control and feedback dam. Step ii) lag at least one t h e  increment behind the supplemental 
transfmnhg the data set to create a training set by dividing input variable data. Step kkk) modifying the correlating 
the data set into increments of time and shifting the output 25 relationship by presenting the supplemental training set to 
Viable data out of phase with the input variable data so that the neural nehkrork controller so that the neural network 
the output variable data lag at least one time increment controller learns a modified correlating relationship between 
behind the input variable data This transformation step the output variable and the input variable based on the 
introduces the necessary time component into the training supplemental training combined with the training set. In this 
set. Step iii) presenting the training set to said neural 30 way the neural networkcontroller can continue to generalize 
network controller so that the neural network controller from the supplemental training set combined with the initial 
learns a correlating relationship between the output variable h h h g  set SO that the controller will learn to react to new 
and the input variable based on the training set. This step can operating conditions or new situations encountered during 
be done by back-propagation learning methods or other operation that were not represented in the original training 
neural network learning methods. Now the neural network 35 set. 
has been trained for the process control function which This same technique desmied herein can be used to 
occurs in Step b). The control Step b) involves the following observe, learn and control any nonrandom process in space 
substeps: Step j) receiving the output variable from the or time. The neural network is used, almost as a retrovirus 
time-varying process as a feedback signal in the neural in biology, to learn and reproduce or control a system’s 
network controller. Stepjj) creating a control signal based on 40 innate intelligence. The intelligence that is captured by the 
the feedback signal in accordance with the correlating neural network might be captured from a human operation, 
relationship learned by the neural network controller from a computer simulation, a biological system or from classical 
the training set. Step jjj) receiving the control signal from the controller technology. FIG. 7 shows the step by step method 
neural network controller as the input variable of the time- for tapping a dynamic system’s knowledge then converting 
varying process. Because the neural network controlla is 45 this knowledge into an intelligent, predictive artificial neural 
able to generalize from the training set data, it is able to network (or controller), either of a hardware or software 
control the robotic end effector in situations that may Wer  type. 
somewhat from the training set presented They key to capturing a system’s mate knowledge is to 

Although the preferred method of the invention is to use identity and choose variables within a given system’s envi- 
the trained neural network controller in closed-loop feed- 50 ronment that change in time and that uniquely describe the 
back control, as described above, the method can also be process to an observer. Time, itself, may be one variable 
used for open-loop control. In  th is  case, the neural network used. The ability of the neural network to generalize will be 
can be trained as above, substituting the output variable or a function of the range of “solutions” presented to it during 
the feedback signal with a time indication variable. The training. Accvrate generalization requires a convergent sys- 
robot trajectory or the process is run against time and the 55 tem and its accuracy is enhanced by choosing training sets 
input variable and the time indication variable are recorded at sufficient intervals and at solution points that represent the 
as a function of time to create a data set with the time 
indication variable substituted for the output variable. The 
transformation step and the learning step are then pufomed 
as desuibed above. After the neural network training is 
complete, the process control step is performed using the 
time indication variable as the only feedback signal. 
Essentially, this creates an open-loop controller with a neural 
network that has been trained in a way that accounts for the 
time variable in a time-varying process. 

From th is  point forward. the neural network controller can 
perform the control function purely from the correlating 

outermost bounds of future conditions the neud network 
will encounter during its use. 
Three examples of this technique, following the outline of 

60 FIG. 7, are given. The first involves selective neural network 
replacement of microprocessor control, the second involves 
control of a fixed trajectory and the third involves intelligent 
control of medical therapies. 
Microprocessor Control: 

65 For this example, one or more neural network might be 
made available within the framework of a personal 
computer for running a repetitive, yet time intensive 
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computational program. The user would use a neural 
network to store a representation of the intelligence the 
computer uses to perform the computations required by 
the program of interest. Once trained, the network 
could be called upon to perform the same computations 
that the program does, but at much greater speed. 

To train the network, the user would run the given 
program many times, each time using a different data set 
representative of the range of future data sets the program 
might expect to perform computations on. With a broad 
enough range of inputs presented by the user, the neural 
network could be taught to learn the binary representation of 
the program input data and the program output data, the 
latter extraded at the end of the program run. 

Using the guidelines of PIG. 7, the first step is to define 
the boundaries of the observer, the system and the black box 
that will be replaced with a neural network controller. In all 
cases, the observet can be thought of as the equivalent of a 
data sheet that records events occurring in the system during 
real-he. The observer has its own, running clock In this 
example, the observer is an electronic or sohare  device 
that records the contents of the input and output of the CPU 
data regism (binary numbers) at the start of the program 
and at a time, Dr, later when the contents include the 
resultant program output. In this m e ,  the temporal event 
only represents one step in time. Time 1 corresponds to the 
time that input data is in a given 8 U  data register and time 
2 refers to a time, Dr, later after the program has completed 
its computations on that data set. In this case, one could 
observe the input and output contents of the CPU data 
registezs at the start and end of a parti& program run. m e  
black box to be replaced by the neural network controller is 
the CPU. The observer might be a software or hardware 
storage device within the computer. The boundaries of the 
system include the personal computer and uscd less the 
digital input and output data registers of the Bu and the 
training data storage device of the observer. Within this 
system, the black box that wiu be replaced by a neural 
network is the CPU itself. Analog to digital converters and 
all other translation devices within the computer will sti l l  be 
used. 
An additional run of the program, using a Merent set of 

input values, would be like collecting data on a new trajec- 
tory in the motion control example described herein. Each 
program run would be used to generate a new trajning set for 
the neural network. Each training set would consist of the 
binary input dam in the CPU data register at time 1 and the 
binary output data in the CPU data register at a time, Dt, later 
at the end of the programran. With enough training sets, and 
with input data carefidly chosen to fully describe the 
process, the netwark can be taught to perform the compu- 
tations that were originally performed, line-by-line, by the 
progr- and the computer's BU. Once trained, the neural 
network could be presented new input data (the analogous 
''real-time environmental feedback"), the CPU controller 
could be bypassed, and the neural network would output the 
binary resultant of the computations of this particular, leaned 
program This binary output would feed into the c o n ~ ~ u m  
intact translation and D/A convater devices of the Original 
pathway. Several modules could be set aside for off-loading 
several different program to enhance the computer's overall 
&ciency. 

One might draw the analogy that this example is similar 
to using a neural network to interpolate a solution from a 
predetermined matrix of solutions. Although a look-up table 
can be used to perform this same task, such a search and 
retrieve process followed by a software interpolation routine 
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is believed to be more computation and time intensive. 
Additionally, interpolation inherently assumes that the sys- 
tem represented is linear. Therefore, it is expected that 
non-linear systems will require a more extensive look-up 
table, inaeasing the starage space required and the search 
process performed during an inteaplating routine. 
Control of a Fixed Trajectory: 

FTG. 7 shows a multi-segmented arm with end-effector 
that might be used to perfarm a repetitive, industrial process. 
In this case, the arm might be used to pick up a fixed size of 
an object at a particular location during a manufacturing or 
assembly process. Real-time feedback of variables in space 
may not be needed, and one might only desire the ability to 
rapidly teach an arm to perform a new process or task. In this 
example, time, itself, is chosen as one environmental vari- 
able that is observed to change and provides the only 
"real-time" environmental feedback The additional vari- 
ables that are observed to change are rotational angles at 
each arm joint. The arm could be guided through a desired 
trajectory (manually, via simulation, via other control 
systems) and the time and joint angles could be recorded 
throughout the process. The training set would consist of the 
time, shifted one step back in time, mapped to the joint 
angles. Only one trig set would be used and w d d  be 
specific to the trajectory desired. No generalization would be 
used or required If alternate trajectories are desired, an 
additional neural network would be trained specifically for 
that trajectory and would be called upon by a higher level of 
control. 
Intelligent Control of Medical Therapies: 

In this example, one might use a neural network to leam 
the innate intelligence of a biological system. The neural 
network could then control the d c a l  thetapy applied to 
the malfunctioning portion of the biological system to 
ensure a synergistic relationship with the therapy and the 
remaining intact, functioning biological system. 
Fa: example, a neural network might be used to control a 

kidney dialysis machine. A set of variables that uniquely 
describe a functioning kidney might consist of temporal 
measurements of both urine and blood output and chemistry 
that are representative descriptors of the dynamic function of 
a kidney. Measurements, at time t, can be mapped to 
clearance and filtration rates measured at time, t+D, to 
predict the needed clearance and filtration rates at the next 
step in time. Once a carefully &osen cross-section of 
training sets are aeated, the neural network could learn to 
predict the desired Clearance and filtration rates to obtain a 
biologically desirable Urine and blood make-up. Hence, the 
neural network could be used to control a dialysis machine 
to obtain the desired clearance and filtration rates given a 
''real-time" feedback of urine and blood make-up. 

In another example, a neural network might be used to 
control the administration rate of drugs where the level 
requires careful control and where the need of the drag may 
vary with activity, diurnal cycles, etc. One example could be 
the use of a neural network to control the rate of insulin 
release to an individual with diabetes. One might assume 
that the individual's own hormonal and nervous control 
systems are intact and the deficiency only lies in the ability 
to manufacture insulin in response to blood sugar levels. 
One might obtain a cross-section of data from a random 
population of healthy individual without diabetes that would 
include measurements of time, blood sugar, insulin levels 
and any other variables that atTed insulin requirements of 
the body. The neural network could then be trained, using 
this data, to predict the insulin levels desired in the blood for 
a given blood sugar, time of day, or any other perthent 
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variables previously determined. The neural network could 
then be sued to predict and control insulin release levels 
given a measurement of these same variables, real-time. 
Such a controller might be integrated with a timerelease 
insulin delivery device. Neural networks can be used in the 
administration of medical therapies in situations where the 
need of the body change as a function of changing condi- 
tions in its internal and/or external environment and where 
careful control of the delivery of the therapy, above and 
beyond a set dosage at a set time, is needed and beneficial. 
Additionally, the use of the neural network to learn the 
biological system such that it can predict the body’s needs, 
before-hand, can help avoid potential instabilities in the 
body’s pharmaceuticals such as anticoagulants, wherein it 
may be difficult to stabilize the blood consistency over time 
and wherein significant deviations can lead to life- 
threatening complications. 

In all of the examples given above, the technique of 
teaching a neural network another system’s intelligence, 
whether it be the intelligence of a biological system, a 
computer. a robot, etc., the ability to control processes and 
generalize and accurately predict next actions is directly 
linked to the careful choice of variables to map and the 
cross-section of training sets used. Firstly, knowledge of 
what determines how a system will behave and what mea- 
surements can be made to represent the system is necessary. 
A complete understanding of how a system behaves, is 
needed only to the extent of identifying the appropriate 
descriptors. Mathematical techniques such as linear regres- 
sion analysis of a l l  possible cause-and-effect variables to 
identity key descriptors for mapping may aid th is  process. 
Once these key descriptors are defined, the technique of 
nondimensional analysis might be applied to further “digesf‘ 
these variables into less, yet more meaningful data with 
which to most efficiently train the neural network 

The above examples are given far explanation purposes 
only. Of course this same methodology can be expanded to 
include Merent or additional input parameters or features 
and functions thereof, modified to include other neural 
network methods besides back-propagation (to enhance gen- 
eralization from the learning sets to more complex objects), 
adapted to use different neural network architectures, 
enhanced to include higher level control for object typing, 
etc. while remaining within the envelope of the inventor’s 
disclosure intentions. Furthanore, the method of training 
(whether via a master or a simulation and whether via a 
binary or scalar encoding) is not limited to that described 
within. Also, the number of sensors and type to accomplish 
the same objective of this disclosure are limited only to the 
user’s imagination. For example, traditional proximity sen- 
sors might be replaced with fiber optics, or some other mode 
or method of proximity sensing may be employed. Of 
course, networks CM be added to map the relationship 
between angular position desired for each joint and the 
subsequent motor commands to achieve them. 

I claim: 
1. A method for neural network control of a time-varying 

process, said the-varying process having an input variable 
capable of affecting an operating state of said time-varying 
process and an output variable indicative of said opaating 
state of said timevarying process, said method comprising 
the steps of: 

a) training a neural network controller by the steps of: 
i) simulating said time-varying process and recording 

said input variable as a function of time and record- 
ing said output variable as a function of time to 
create a data set, said data set including input vari- 
able data and output variable data as a function of 
time; 
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ii) creating a training set from said data set by dividing 

said data set into increments of time and shifting the 
output variable data out of phase with the input 
variable data so that the output variable data lag at 
least one time increment behind the input variable 
data; and 

iii) presenting said training set to said neural network 
controller so that said neural network controller 
learns a correlating relationship between said output 
variable and said input variable based on said train- 
ing set; 

b) subsequently controlling said time-varying process by 
the steps of: 
j) receiving said output variable from said time-varying 

process as a feedback signal in said neural network 
controller; 

jj) creating a control signal based on said feedback 
signal in accordance with said correlating relation- 
ship learned by said neural network controller from 
said training set; and 

j j )  receiving said control signal from said neural net- 
work controller as the input variable of said time- 
varying process. 

2. The method of claim 1 further comprising the steps of: 
k) recording the input variable as a function of t h e  and 

recording the output variable as a function of time 
during the operation of said timevarying process to 
create a Supplemental data set, said supplemental data 
set including supplemental input variable data and 
supplemental output variable data as a function of time; 

kk) creating a supplemental training set from said supple 
mental data set by dividing said supplemental data set 
into increments of time and shifting the supplemental 
output variable data out of phase with the supplemental 
input variable data so that the supplemental output 
variable data lag at least one time increment behind the 
supplemental input variable data; and 

kkk) modifying said correlating relationship by present- 
ing said supplemental training set to said neural net- 
work controller so that said neural network controller 
learns a modified correlating relationship between said 
output variable and said input variable based on said 
supplemental training set combined with said training 
set. 

3. The method of claim 1, wherein: 
step i) comprises simulating a time-varying process rep- 

resenting an operation of a machine, said input variable 
being capable of affecting an operating state of said 
machine, said output variable being indicative of said 
operating state of said machine, and recording said 
input variable as a function of time and recording said 
outpat variable as a function of time to create a data set, 
said data set including input variable data and output 
variable data as a function of time; 

step j) comprises receiving said output variable from said 
machine as a feedback signal in said neural network 
controller; and 

step jjj) comprises receiving said control signal from said 
neural network controller as the input variable of said 
machine. 

4. The method of claim 1, wherein: 
step i) comprises simulating a time-varying process rep- 

resenting a movement of a machine, said input variable 
being capable of affecting a position of said machine, 
said output variable being indicative of said position of 
said machine, and recording said input variable as a 
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function of time and recording said output variable as 
a function of time to create a data set, said data set 
including input variable data and output variable data 
as a function of time; 

step j) comprises receiving said output variable from said 5 
machine as a feedback signal in said neural network 
controller; and 

neural network controller as the input variable of said 
machine. 10 controller; and 5. The method of claim 4 wherein step i) comprises 

controlling said machine through said movement and 
recording said input variable as a function of time and 
recording said output variable as a function of time through- 15 
out said movement to create a data set. 
6. The method of claim 1 wherein step i) includcs the 

substep of simulating said time-varying process by operating 
a simulation means to produce simulated input variable data 
as a function of time to be recorded as said input variable 
data as a function of time and to produce simulated output 20 
variable data as a function of time to be recorded as said 
output variable data as a function of time. 
. 7. A method for neural network control of a the-varying 
process, said time-varying process having an input variable 
capable of affecting an 
process and an output variable indicative of said operating 
state of said time-varying process, said method comprising 
the steps of: 

a) training a neural network controller by the steps of 

being capable of affecting an Operating state of said 
machine, said output variable being indicative of said 
operating state of said machine, and recarding said 
input variable as a function of time and recording said 
output variable as a function of time to create a data set, 
said data set including input variable data and output 
variable data as a function of time; 

machine as a feedback signal in said neural network 
Step jjj) Comprises EC%iVhg Said Control Si@ from Said step j) receiving said from said 

said movement of said =he by -u&y Step jjj) COmPriSeS receiving Said COOtrOl S @ l d  from Said 
neural network controller as the input variable of said 
machine. 

10. The method of claim 7,  wherein: 
step i) comprises simulating a time-varying process rep- 

resenting a movement of a machine, said input variable 
being capable of affecting a position of said machine, 
said output variable being indicative of said position of 
said machine, and recording said input variable as a 
function of time and recording said output variable as 
a function of time to create a data set, said data set 
including input variable data and output variable data 
as a function of time; 

step j) compises receiving said output variable from said 
machine as a feedback signal in said neural network 
controller; and 

step jjj) comprises receiving said control signal from said 
neural network controlla as the input variable of said 

i) simulating said time-varying process and recording 30 machine. 
said input variable as a function of time and record- 11. The method of claim 10 wherein step i) comprises 
ing said output variable as a function of time to simulating said movement of said machine by manually 
create a data set, said data set including input vari- controlling said machine through said movement and 
able data and output variable data as a function of recording said hput variable as a function of time and 
time; 35 recording said output variable as a fundion of time through- 

ii) creating a training set fiom said data set by dividing out said movement to mate a data set. 
said data set into increments of time and shifting the 12. The method of claim 7 wherein step i) includes the 
output variable data out of phase with the input substep of simulating said time-varying process by operating 
variable data so that the output variable data lag at a simulation means to produce simulated input variable data 
least one time increment behind the input variable 40 as a function of t h e  to be recorded as said input variable 
data; and data as a function of time and to produce simulated output 

iii) presenting said training set to an input layer of said variable data as a function of time to be recorded as said 
neural network controller so that a hidden layer of output variable data as a function of time. 
said neural network controlla learns a correlating 13. A method f a  neural network motion control of a 
relationship between said output variable and said 45 robotic end effector, said robotic end effector having an input 
input variable based on said training set within; variable capable of affecting a position of said robotic end 

b) subsequently conirolling said timevarying process by effector and an output variable indicative of an Operating 
the steps of: state of said robotic end effector, said method comprising the 
j) receiving said output variable from said time-varying steps of: 

a) training a neural network controller by the steps of 

state of said be-vog 25 

process as a feedback signal in said input layer of M 
said neural network controller; 

jj) creating a control signal based on said feedback 
signal in accordance with said correlating relation- 
ship learned by said hidden laya of said neural 
network controller from said training set; and 

said neural network controller as the input variable 
Of Said time-vwing process. 

8. The method of claim 7 wherein step iii) further includes 
the substep of assigning a value to each of a pluraIity of 60 
connections between said input layer and said hidden layer, 
and assigning a value to each of a plurality of connections 
between said hid&n layer and said output layer through 
back-propagation methods based upon said training set 

i) simulating a movement of said robotic end effector 
and recording said input variable as a function of 
time and recording said output variable as a function 
of time to create a data set, said data set including 
input variable data and output variable data as a 
function of time; 

ii) creating a training set fiom said data set by dividing 
said data set into increments of time and shifting the 
output variable data out of phase with the input 
variable data so that the output variable data lag at 
least one time increment behind the input variable 
data; and 

iii) presenting said training set to said neural network 
controller so that said neural network controller 
learns a correlating relationship between said output 
variable and said input variable based on said train- 
ing set; 

55 
jjj) receiving said control signal from an output layer of 

9. The method of claim 7, whaein: 
step i) comprises simulating a time-varying process r e p  

65 

resenting an operation of a machine, said input variable 
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b) subsequently controlling the motion of said robotic end 
effector by the steps of 
j) receiving said output variable from said robotic end 

effector as a feedback signal in said neural network 
controller; 5 

jj) creating a control signal based on said feedback 
signal in accordance with said correlating relation- 
ship learned by said neural network controller from 
said training set; and 

jjj) receiving said control signal h m  said neural net- io 
work controller as the input variable of said robotic 
end effector. 

14. The method of claim 13 wherein step i) comprises 
simulating said movement of said robotic end effector by 
manually controlling said robotic end effector through said 15 
movement and recording said input variable as a function of 
time and recording said output variable as a function of time 
throughout said movement to create a data set. 
IS. The method of claim 13 wherein step i) includes the 

substep of simulating said movement of said robotic end 20 
effector by operating a simulation means to produce simu- 
lated input variable data as a function of time to be recor&d 
as said input variable data as a function of time and to 
produce simulated output variable data as a function of time 
to be recorded as said output variable data as a function of 25 
time. 

16. Amethod for neural network control of a time-varying 
process, said time-varying process having an input variable 
capable of aEecting an operating state of said time-varying 
process and a time indication variable, said method com- 30 
prising the steps of: 

a) training a neural network controller by the steps of 
i) simulating said time-varying process and recording 

said input variable as a function of time and record- 
ing said time indication variable as a function of time 

18 
to create a data set, said data set including input 
variable data and time indication variable data as a 
function of time; 

ii) creating a training set from said data set by dividing 
said data set into increments of time and shifting the 
time indication variable data out of phase with the 
input variable data so that the time indication vari- 
able data lag at least one time increment behind the 
input variable data; and 

iii) presenting said training set to said neural network 
controller so that said neural network controller 
learns a correlating relationship between said time 
indication variable and said input variable based on 
said training set; 

b) subsequently controlling said time-varying process by 
the steps of: 
j)  receiving said time indication variable from said 

timevarying process as a feedback signal in said 
neural network controller; 

ji) creating a control signal based on said feedback 
signal in accordance with said correlating relation- 
ship learned by said neural network controller from 
said training set; and 

jjj) receiving said control signal from said neural net- 
work controller as the input variable of said time- 
varying process. 

17. The method of claim 15, wherein: 
step i) comprises simulating a time-varying process rep- 

resenting a trajectory of a machine with said operating 
state representing a position of said machine; and 

step b) comprises controlling the trajectory of said 
machine in accordance with said correlating relation- 
ship learned by said neural network controlla. 

* * * * *  


