A system and method for analyzing a medical image to determine whether an abnormality is present, for example, in digital mammograms, includes the application of a wavelet expansion to a raw image to obtain subspace images of varying resolution. At least one subspace image is selected that has a resolution commensurate with a desired predetermined detection resolution range. A functional form of a probability distribution function is determined for each selected subspace image, and an optimal statistical normal image region test is determined for each selected subspace image. A threshold level for the probability distribution function is established from the optimal statistical normal image region test for each selected subspace image. A region size comprising at least one sector is defined, and an output image is created that includes a combination of all regions for each selected subspace image. Each region has a first value when the region intensity level is above the threshold and a second value when the region intensity level is below the threshold. This permits the localization of a potential abnormality within the image.
OTHER PUBLICATIONS

“Segmentation of microcalcifications in mammograms” By Dengler et al., IEEE transactions on medical imaging, vol. 12, No. 4, Dec. 1993.*

“Tree-structured nonlinear filters in digital mammography” By Qian et al., IEEE transactions on medical imaging, vol. 13, No. 1, Mar. 1994.*

* cited by examiner
Wavelet Decomposition

Summary Statistic Evaluation

Detection
Use d3 Image

Detection
Use d4 Image

Combine Detection Results

Simple Output

Binary Mask Output

Mask times Desired Output

Clinical Analysis

Further Machine Processing
FIG. 10.

[Diagram showing relative frequency distribution for pixel values with different values of N (N=1, N=2, N=3, N=4).]
FIG. 13d.

FIG. 13e.

FIG. 13f.
FIG. 14.
FIG. 15.
MULTIRESOLUTION STATISTICAL DETECTION

Original Image → Wavelet Analysis

Suspicious Regions ← Statistical Modeling

The global model is used to make local comparisons. If a region deviates significantly from normal it is flagged.

The global normal tissue model at one of two possible resolutions.

FIG. 22.
1. Field of the Invention

The present invention relates to systems and methods for analyzing medical images, and, more particularly, to systems and methods for analyzing digital mammograms.

2. Description of Related Art

Many computer-aided diagnosis (CAD) schemes have been devised for mammographic image analysis [1-27]. A general overview of digital radiography has been given by Doi et al. [1]. Many of these methods are based on multiresolution techniques.

Work related to the use of various multiresolution methods for investigating mammograms includes Refs. 3, 11, 12, 19, 23, and 26. Dengler et al. [11] use a difference of two Gaussians for the detection filter, and the final detection is based on a global threshold. Valatx et al. [12] generate a smooth approximation of the image with a β-spline expansion and apply a mixed distribution based local thresholding technique to both the raw and approximated image; the output image is formed by subtracting the two thresholded images. A calcification segmentation method is developed by Qian et al. [3] using two-channel and multichannel wavelet transforms [19], based on subband selection and a reshaping (thresholding) technique for feature detection [24]. Strickland and Hann [23] apply the wavelet transform at full resolution (no downsampling) and detect independently in two sets (HH and Ll+HL) of three full resolution subband images. The detection results are combined, further processed, and the inverse wavelet transform is implemented. De Vore et al. [26] implement the standard wavelet transform, select the important subbands, and invert the transform after wavelet coefficient suppression. The resulting image is empirically thresholded in order to remove the remaining background information.

Various statistical approaches have been used to study mammograms [12-14, 18,21,23,27]. Wavelet domain coefficient probability modeling has also been utilized in other areas of research: selecting optimized coding methods [28, 29], Gauss-Markov field representation [30-32], and texture identification [32].

It is known that film grain noise in mammograms is signal dependent [33, 34]. Typically, the accepted noise field for radiographs results from three independent components: (1) spatial fluctuations in the number of x-ray quanta absorbed in the screen; (2) spatial fluctuations in the screen absorption associated with random structural inhomogeneities in the phosphor coating; and (3) spatial fluctuations in film sensitivity due to the silver halide random distribution per unit area in the emulsion [35]. Many CAD methods have found it essential to carefully treat the image noise with a preprocessing step [3, 15, 22, 27, 36].

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a system and method for identifying normal and abnormal tissue in medical images such as mammograms.
with the normal image region test that has some pdf. From this pdf a threshold level is established for the probability distribution function from the optimal statistical normal image region test for each selected subspace image. Preferably this step is accomplished with the use of a “test statistic” which will be described in the following.

Finally, an output image is created, such as in electronic and/or visualizable form. A region is defined as comprising at least one sector, typically a plurality of sectors, against which the threshold level is compared. The output image has a first value (e.g., “1”) for each region when the region intensity level is above the threshold and a second value (e.g., “0”) when the region intensity level is below the threshold. This image then permits the localization of a potential abnormality within the image.

Preferably, this method is taken a step further, although this is not intended as a limitation. The further step comprises determining for the presence of a plurality of above-threshold regions within a predetermined larger area. Such a plurality of above-threshold regions can be indicative of a likelihood of abnormality.

There are two distinctions between the present invention and previously reported statistical approaches, including the noise processing approach. First, the statistical analysis is applied to independent subspace images. The accepted noise components and the signal are lumped together; the aggregate is considered as a random field. Second, the focus is on the identification of statistical properties of normal tissue at multiple resolutions. This provides the most abundant signal in the image, since in some medical images, such as mammograms, most of the image information, even when abnormalities are present, is associated with disease-free tissue. Regions that contain statistical aberrations that deviate from the normal model are considered as abnormal regions. This yields a multiresolution model that allows for features of interest, in the case of mammograms, calcifications, to be considered as outliers or perturbations to the global statistic of the applicable subspace image(s). This is an image domain approach that illustrates the power of taking a different view of the same information. An alternate method is to work entirely in the wavelet domain.

The features that characterize the invention, both as to organization and method of operation, together with further objects and advantages thereof, will be better understood from the following description used in conjunction with the accompanying drawing. It is to be expressly understood that the drawing is for the purpose of illustration and description and is not intended as a definition of the limits of the invention. These and other objects attained, and advantages offered, by the present invention will become more fully apparent as the description that now follows is read in conjunction with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a raw image, size 1024x2048, with 35-μm digital resolution, rescaled for viewing. The ROI containing a benign calcification is outlined.

FIG. 2a The 256–256 ROI at fill resolution, magnified for viewing, and FIG. 2d the raw image histogram. This histogram is from the fill resolution 2048x2048 raw image.

FIG. 2b is the low-resolution f, ROI and FIG. 2e the associated histogram. Comparison of these two histograms reveals that the irregular multimodal structure is contained in the background, and not much discernible information is present in this image.

FIG. 2c The total image resulting from adding the five subspace images, d,–d,. Most of the image detail structure is contained here.

FIGS. 3a–c include the fine to coarse detail representations, d,–d,. The empirical histograms; of FIGS. 3f–j (solid lines) are to be compared with the estimated pdfs (diamonds). Note that the histograms represent the absolute value image distribution. Points have been skipped in the theoretical plots to avoid overlap and confusion.

FIG. 3d–e are the fine to coarse detail representation. d, and d,. The empirical histograms are to be compared with the estimated pdfs (diamoneds). Note that the histograms represent the absolute value image distribution. Points have been skipped in the theoretical plots to avoid overlap and confusion. The benign calcification, noticeable in the d, subimage, may be considered as an outlier to the normal tissue model at this resolution.

FIGS. 4a and 4b are the summary statistics for the d, and the d, subspace images, respectively. These cases are a fair representation of the theoretical and empirical agreement for all images studied.

FIG. 5 is the detection flow chart for mammography.

FIG. 6 is the raw image 2048x2048 pixels scaled by a factor of 2/5 for viewing purposes. The arrow points to the region containing the biopsy-proven cluster.

FIG. 7 is the total combined detection mask projected into the sum of the first five detail images.

FIG. 8 is the d, detected image, binary output.

FIG. 9 is the d, detected image, binary output.

FIG. 10 shows a family of probability functions for N=1–4. Note that the curves spread out and become more bell shaped for larger N.

FIG. 11 is an example of a case where N=1 for the first three detail images, top to bottom, respectively. The data represent about 5x10^6 pixels, where the empirical histograms (solid) are to be compared with the theoretical estimate (dashed). The absolute value data are displayed.

FIG. 12 is an example of a case where N=2 for the first three detail images, top to bottom, respectively. The data represent about 5x10^6 pixels, where the empirical histograms (solid) are to be compared with the theoretical estimate (dashed). The absolute value data are displayed.

FIG. 13 is an example of a case where N=3 for the first three detail images, top to bottom, respectively. The data represent about 5x10^6 pixels, where the empirical histograms (solid) are to be compared with the theoretical estimate (dashed). The absolute value data are displayed.

FIG. 14 is a generic test statistic curve indicating an arbitrary threshold. If moved to the right, the first type of error is reduced, and if moved to the left, the second error is reduced at the expense of the first.

FIG. 15 illustrates generic test output for an image having no calcifications, where the squares enclose suspicious areas. This is an example of moving the threshold too far to the left.

FIG. 16 illustrates detection output image with no calcifications present, where the squares enclose suspicious areas. This is an example of moving the threshold to the right. Note that a relatively small amount of areas are returned.

FIG. 17 shows a breast region excised from the off-image noise field. This makes comparisons between the multiresolution properties of the breast field with the off-breast noise field. The detection method enables the breast region to be labeled; the white line marks the separation. The image has been overcontoured to illustrate the concept.

FIG. 18 is a large image section, with the arrow indicating a malignant calcification cluster and associated histogram, upper right.
Fig. 19 is the associated d₁ image and histogram (solid) and theoretical estimate (dashed), upper left. The absolute value data are used to create the histogram. Note the regularity of the histograms.

Fig. 20 is the associated d₂ image and histogram (solid) and theoretical estimate (dashed), upper left. The absolute value data are used to create the histogram.

Fig. 21a is the d₃ and Fig. 21b d₄ test statistic curves: theoretical (dots) and empirical (solid). For this case a functional form was assumed.

Fig. 22 shows the detection flow for one stage.

Fig. 23 shows the detection output resulting from projecting the binary mask into the sum of the first five detail images. This image is ready for further processing if desired.

DetaiLed Description of the Preferred Embodiments

A description of the preferred embodiments of the present invention will now be presented with reference to Figs. 1–23.

I. Image Information

The images under investigation are film mammograms, in this particular embodiment digitized at 35-μm-per-pixel resolution with 12-b precision, using a DuPont NDT Scan II Film Digitizer, although this is not intended as a limitation. The use of large image sections avoids having the background signal influence the model; this is preferable for reliable statistical analysis. The term “image” refers to these large sections. Any section is approximately the largest rectangle with power-of-two dimensions that can be inscribed within the breast boundary. These are manually excised in a particular embodiment. The larger images correspond roughly to sections 7x7 cm, and the smaller images correspond to 7x3.5 cm. Whole mammograms have also been tested.

In an alternate embodiment (see Fig. 17), the tissue region can be electronically excised by assuming that two noise fields are present in the image: the tissue field that contains all the signal information within the tissue region and the off-tissue noise that consists of two (horizontal, vertical, and diagonal components) of a particular image resolution to be combined and observed simultaneously.

The choice to work with high-resolution and high-dynamic-range images is prudent for two main reasons: (1) 35-μm digital resolution closely matches the Nyquist sampling rate for the file used, and (2) a higher bit rate image more closely resembles the intensity distribution of the analog image. (If we err in the needed bit rate, it is better to err on the side of too much rather than too little.)

A database utilized in the present investigation contains over 100 mammograms with combinations of normals (no pathologies) and abnormals (images with biopsy-proven calcification clusters), all with varying parenchymal densities, as described by Kallergi et al. [37]. Images from this database were used by Zheng et al. [29] at lower resolution (images reduced to 105-μm resolution) for calcification detection. We selected 28 at random and 2 specifically. The 2 images not selected at random were deliberately picked because they contain very subtle clusters, and it is important to evaluate the detection performance with limiting cases. Of the 30 images studied, 17 are clinically abnormal and 13 are pathology free. This means that 2 of 17 (~12%) of the abnormal images in this study are difficult detection cases; this is well above the anticipated number of such cases likely to arise from a large database.

II. Wavelet Expansion and Primary Statistic

A. Multiresolution Expansion

The multiresolution approach allows for the image expansion to take the form of a sum of independent subspace images given by the identity [38]

\[f = f_0 + f_1 + \ldots + f_j + \ldots + f_N \]

where [39, ch. 5] the f₁ image is the next coarser representation of f₀ and f₂ is the next coarser representation of f₁. Specifically, f₁ is a half resolution (lower half of the original frequency spectrum) version of f₀, and f₂ is a fourth-resolution (lower fourth of the original frequency spectrum) version of f₁. The image that contains the difference in “information” between the successive images f₀ and f₁ is designated by d₁ = f₀ − f₁. This pattern is continued to yield

\[f = f_0 + d_1 + d_2 + \ldots + d_j + \ldots + d_N \]

The interpretation of this expression in terms of images is that the [fine detail—coarse detail] of the image is contained in terms [dₙ, → dₙ₊₁] and f₁ is a smoothed (blurred) version of f₀. The important observation is that orthogonality of the subspaces ensures independence of the various images in the decomposition. This type of expansion and the relative frequency spectrum for each image are discussed by Daubechies [39, p. 332]. Each dᵢ image results from three independent components or subband images in the wavelet domain related to features oriented in the horizontal, vertical, and diagonal directions [39, pp. 313–320].

The image domain approach allows for the three directional subband components of a particular image resolution to be combined and observed simultaneously.

The forward wavelet transform is performed with a separable kernel two-dimensional pyramid downsampling scheme. Each dᵢ image is constructed from inverting the three appropriate subband wavelet domain images (horizontal, vertical, and diagonal components) of a particular decomposition level j, with upsampling [39]. The forward and reverse transforms are executed with circular (periodic) boundaries. This wavelet decomposition and reconstruction method ensures that the dᵢ images are linearly independent (lack redundancies) and ensures the image identity sum (2) be exact. The resulting dᵢ image contains a limited bandpass (rectangular) section of the original frequency spectrum. For this analysis we use a symmlet wavelet with 12 coefficients. This wavelet is nearly symmetric and is chosen because it roughly resembles the intensity profile of calcifications. This is supported by empirical observations and is only a general approximation. This does not imply that the symmlet functions are truly matched filters for every calcification profile, but merely indicates that this basis is probably a better choice than the Haar, D₄, or other similar basis.

For illustration purposes, we consider an image expansion with j = 5. Fig. 1 presents a scaled version of a 1024x2048 section of a mammogram with an arbitrary 256x256 region of interest (ROI) outlined. This region will be used for demonstration purposes, but the numerical analysis is performed on the entire full section image. Figs. 2 and 3 contain the raw ROI, the low-resolution l₁ component, the sum of the five detail images, and the fine to coarse detail
information. Important observations stem from this decomposition include: (1) Image f_5 is a very blurred version of the changes (such as longitudinal studies in lung imaging for between images of the same scene acquired at different times in that the subband images (in the wavelet domain) are incorporated herein by reference. It was assumed tacitly implies that the d_5 image has a symmetric pdf, and that must be determined, but is of little importance for practical purposes (see FIG. 10 for examples of $N=1$–4). The above equation results from application of an inverse Fourier transform of the function

$$p(x) = \frac{k^{2N}}{2^{2N-1}} \sum_{n=0}^{N-1} 2N \cdot k \cdot \sum_{l=1}^{2l-1} x^l \cdot \left(\frac{k}{2l} \right)^N$$

where x represents pixel values, and k is a scaling parameter that must be determined, but is of little importance for practical purposes (see FIG. 10 for examples of $N=1$–4). The above equation results from application of an inverse Fourier transform of the function

$$p(x) = \frac{k^{2N}}{2^{2N-1}} \sum_{n=0}^{N-1} 2N \cdot k \cdot \sum_{l=1}^{2l-1} x^l \cdot \left(\frac{k}{2l} \right)^N$$

In an initial mammography study [47], the disclosure of which is incorporated herein by reference) it was assumed that $N=1$. However, subsequent studies [48] indicate that this work was a special case of a more general formalism. The framework for this generalized expression is also an extension of prior theoretical work [49]. The statistical analysis can be considered as the study of incremental change.

The parameter N can be found by using the data from the expansion images by forming the empirical histograms. These data (empirical histogram) can be input into standard regression analysis that will find the best estimate of N in relation to it. [Regression analysis will find the best N that minimizes the error between the actual histogram curve and the theoretical estimate given in Eq. (3).] An observation stemming from previous investigations indicates that $N=1$ most often, preceded by $N=2$, and then by $N=3$. Images and probability functions for $N=1$–3 are provided in FIGS. 11–13, respectively. This inference is qualified by noting that it is based on the analysis of a limited data set.

The statistical test in the most general case may change with N (but not necessarily). This implies that the likelihood function (see [48] for this development) must be generated on a per-image basis. One way to do this is to calculate the test for the anticipated range of N (perhaps $N=1$–5) and catalog the test procedure. Once N is determined, the test is known. The test used is based on the Neyman-Pearson lemma and is based on forming the ratio of two likelihood functions. That is, it is a test designed to disprove a null hypothesis that results in making a calculation (test statistic) in a small region of interest in the image.

2. Extensions to Other Images

The wavelet expansion images of complicated, predominantly low-frequency, fields such as mammograms, chest radiographs, or natural scenes represent small changes as the image is blurred in a coarser version of itself (see Eqs. 1 and 2 in [47]). This statistical analysis can be considered a study of incremental change. It would seem plausible that a similar analysis would translate to the study of the difference between images of the same scene acquired at different times (termed a difference image) for locating other than random changes (such as longitudinal studies in lung imaging for detecting nodules, in mammography for detecting tumors and architectural distortions, or manmade changes in natural scenes). This observation follows directly from Eq. (3) [47]. It would also seem plausible to relax the restriction on N in Eq. (3) and let it take on any positive value resulting in the most general probability model.

The wavelet transform and subimage selection are similar in some respects to other supplementary methods [3], [19], [23], [26] in that the subband images (in the wavelet domain) are
selected a priori. For example, the transformation application is not like [23], but the selection is similar. Our method is based on using two independent images after wavelet inversion rather than combining the d_0 and d_4 components.

By considering the size of the image compared to the number of pixels contained in a cluster, it follows that the cluster has a minimal effect on the global statistic. (There are roughly 5×10^5 pixels in the image and about 2000 pixels for an average calcification cluster.) Therefore, the primary statistic can be considered as the model for normal tissue. This statistic is useful for developing robust statistical tests.

D. Generalized Method for Determining the Operating Parameters

As stated above, determining the functional form of the probability function for each expansion image determines the normal image region test and results in the test statistic, another probability curve that must be estimated. The test statistic is a calculation that is made in small image regions (for example, 8x8 or 16x16 pixels) across the applicable expansion images. In order to determine the detection threshold the test statistic distribution must be sampled in each expansion image. This implies making the calculation in various image regions (establishing a sample grid) and estimating the distribution.

This test statistic distribution can be estimated in two ways: (1) assume a parametric form as in Section V, or (2) assume a nonparametric form and use a kernel density estimation approach [50]. The second method is more powerful if the data are not exact or if they differ from the assumed parametric function in the first case. The major point here is to estimate the normal tissue behavior of the test statistic; the technique used to estimate this distribution must "wash out" the presence of the calcifications in the curve (if present in the particular case). Both techniques will work; if appropriate, the former is more powerful if the data agree with the functional form, and the latter always will perform providing the bandwidth parameter in the kernel is agreed with the functional form and estimation approach [50].

After estimating the test statistic curve, the operating thresholds must be determined. This is accomplished by making an initial guess and running an experiment on ground-truth data. These are data that are understood. The images are known either to be truly normal or to be abnormal, and if pathologies exist, the locations are known. This training data set must represent a fair cross section of images from the imaging environment in which the detection method will eventually operate. The detection algorithm is implemented, and the results are counted.

In detection problems of this kind there are two opposing errors: (1) Assume the area is abnormal when it is normal; or (2) assume the area is normal when it is not. The connection between the threshold and these error rates is easily assessed from the generic test statistic curve (FIG. 14). This curve is an approximation of the normal test statistic behavior. In theory there is an additional curve that describes the abnormal behavior; we do not know this curve, but hypothetically it will overlap the test statistic curve in the right tail section, where more overlap implies more confusion in the decision process (in effect this procedure is assessing this unknown curve). The effect of moving the threshold can be observed in the sample detection output (FIGS. 15 and 16). As the threshold is moved to the left, more regions will be declared as abnormal that are really normal (this is a direction where the hypothetical curve of the abnormal tissue is dying out; FIG. 15). As the threshold is moved to the right, all areas that are normal will be declared normal, and the infringement on the hypothetical curve will result in declaring abnormal image regions as normal (FIG. 16). This approach allows the calculation of the first error; the portion of the area under the test statistic curve from the threshold to infinity (to the right) results in the fractional error of declaring an image area abnormal when it is normal.

In order to find the optimal tradeoff between the two errors, the experiment is preferably run many times, and the detection results are counted. Plotting the results will indicate the best operating parameters. There are two ways that this can be accomplished: (1) vary the two thresholds (one for each expansion image) in unison; or (2) vary the thresholds independently. In addition, if the tests are different for different N, further subclassification may be necessary, where all like N are segregated into one class, and thresholds adjusted by the value of N independently (this is the most general case).

Thus the method and system of the present invention accomplish the following:

- The technique uses a multiresolution analysis that allows that patient to become its own reference for normality for a given digital system and imaging protocol, permitting great generality.
- The multiresolution expansion supports the parametric analysis, which would otherwise not be possible.
- The actual image data dictate the test, as opposed to forcing a test on the problem.
- Reasonable estimates of the error rate can be made.
- An assessment can be made in advance of the possibility of declaring an image region normal when it is abnormal.
- The approach comprises a statistical analysis of incremental change, which is a vital component of the analysis.
- The analysis of incremental change should translate into the serial analysis of difference images (the difference between the same scene acquired at different times), with applications in longitudinal (time series) mammography, chest radiography, magnetic resonance, and general natural scene analysis.

E. Background Analysis

Traditionally, the background has been loosely defined as the information that is responsible for the irregular contrast qualities and variegated appearance of the image. It has been recognized that the background information presents a problem for detection techniques [12]; in particular, dense tissue (which appears bright) is a major factor in making certain mammograms harder for both machine and radiologists to interpret [43], [44]. When the low-frequency constituent is separated (this comes from discarding the f_1 constituent; see FIG. 2b), the dense and fatty areas (fatty regions appear as dark areas in the raw image) appear with equal contrast; this is illustrated in FIG. 2e. A conclusion may be that the radiologist should be given the option to view the entire image in conjunction with any combination of detail images with or without the background subimage included. In essence, this method for removing the background is a linear technique that restores contrast to the entire image.

Although our studies on modeling the low-frequency f_1 and f_2 distributions have not yet yielded any firm analytical conclusions, some qualitative observations can be made as to general trends associated with many images. The irregular structure of the raw image pdf appears multimodal, as shown in FIG. 2a. Note that the irregular structure of the raw image distribution is also present in the low-frequency image pdf and can be observed by comparing FIGS. 2a and 2b. A
in Table 2 are expected due to the integer rounding; the distribution images are saved as short integers.

An error of the first kind or FP rate can be estimated from this pdf prior to detection processing. Again, it is assumed that the calcified regions have a minimal effect on this distribution and can be considered as outliers located in the far right tail region. The FP rate (the fractional number of false calcifications per image) can be obtained by

\[P_F = \int_{-\infty}^{\infty} f_{(\hat{\gamma})}(x, a, b, d) \, dx \]

where \(\tau \) denotes the threshold. This equation deserves special consideration. The test criterion given by \(<x,y> \) is obtained as follows: (1) select \(\tau \), (2) pick a value for \(\hat{\gamma} \), and (3) solve this equation for \(\tau \). The total expected number of FPs in the entire \(d_j \) image can be approximated by

\[FP(\text{total}) - P_F \times \text{(number of pixels in reduced image)} \]

It should be emphasized that this is an estimation that may be obtained as an average after processing many images. The intriguing aspect is that the FP rate \(P_F \) can be set prior to detection. However, this does not completely specify the error prediction, since no preprocessing estimation can be made concerning the error of the second kind or FN rate. The FN rate follows from the calcification distribution, which is unknown.

VI. Localized Normal Tissue Recognition

The detection technique is implemented by shifting an 8x8- or 16x16-pixel search window though the \(d_i \) and \(d_j \) images, respectively. A detection flow diagram that illustrates the various stages of processing is given in FIG. 5. The intent is to match the search window size to the average spatial extent of the calcifications that may exist in each subimage. When the spatial extent of the wavelet function and calcifications are similar, the response (in the \(d_j \) image) is maximized and the area is flagged as suspicious.

For early cancer detection calcifications with spatial extent less than \(0.5 \) mm are most important for clinical diagnosis. This corresponds to calcifications ranging roughly from 16 pixels to three or four pixels in diameter (\(\pm 0.1 \) mm) and the search window is matched to this scale. We assume that calcifications smaller than this are not discernible. The window is shifted with a 50% overlap in both spatial dimensions during the search; this is to reduce the risk of missing a feature (calcification). When a region is assumed normal (accept the null hypothesis), it is set to zero. If the null hypothesis is rejected (accepted as suspicious), the region is left intact. This is how potentially small calcified regions are detected by default. Following the independent detection, the images are combined and the total detected image results as the output. In effect, the dual output combination can be viewed as a mask. From this mask, any \(d_j \) image combination or even the raw image can be regarded as the output image. This can be accomplished by making the total output image into a binary image (ones or zeros) and simply multiplying by the desired type of output. This is important if further processing is desired because the calcified regions can be returned with full resolution and detail. For demonstration purposes, we choose an image with a wide variety of aberrations illustrated in FIG. 6. The arrow indicates a biopsy-proven calcification cluster. The detection output is from the sum of the first five \(d_j \) images. These results are illustrated in FIG. 7.

The detection scheme takes into account that calcifications have a spatial extent or connectivity quality; a calcification appears as a clump of large pixel values and normal regions have a diffuse distribution of pixel values. The regions considered are matched to spatial scale by adjusting the search window size accordingly. The window size and shift increment are a compromise. If the window is greater than half the size of the feature and the shift greater than half the window size there is a possibility that the feature will be missed. Assume that the smallest object to be detected has a spatial extent \(M \), a \(2M \times 2M \) window must be used and shifted with an increment of \(M \) to ensure that the object will not be missed. The window is most sensitive when the feature fills it entirely, which is not generally expected here.

An alternative method would be to scan the image with the limiting window size and single pixel increments, but this may add many FPs to the outcome.

Although not apparent, there is redundancy built into this detection scheme. This can be assessed by looking at the \(d_j \) and \(d_i \) detected images prior to recombination, see (FIGS. 8 and 9). There are flagged regions in the \(d_j \) image that are not flagged in the \(d_i \) image and vice versa. This indicates that the wavelet response to the feature was stronger in the respective image. However, in some regions the test is triggered in both images at roughly the same spatial location. This indicates that the wavelet function response is similar to both images (relative to the background and window size). Thus some calcified regions have the possibility of being detected in both images, which represents a redundancy.

This can be viewed as a safety measure.

The focus of this detection scheme is very localized. However, a possible sign of early cancer is the presence of a microcalcification cluster, and this is of more clinical concern than isolated events. A single cluster is defined roughly as 3-5 microcalcifications assembled within a square centimeter. This definition implies that one or two calcifications within a square cm are not clinically important. In order to reach the goal of recognizing images that are normal from the clinical point of view clearly requires another stage of processing.

The additional stage of processing is needed to eliminate FP normal diffuse regions on the order of a square cm. The FP normal diffuse region may result from isolated events within a square cm proximity: two PF calcifications (flagged regions that are normal) and one true calcification (a correctly flagged region); vice versa; or three FP regions.

VII. Experiment, Analysis, and Evaluation

In this section the experimental implementation of the ideas expressed in Sections II.D and V are shown. In addition, the error rates are demonstrated to be assessable in advance by knowledge of the test statistic.

A. Experiment

The localized normal region detection must be conducted such that the FN and FP rates are optimized. These rates are in opposition in that decreasing one causes an increase in the other. In terms of the threshold, if \(\tau \) is set low enough the FN rate can be reduced to zero, but then the FP rate is high. So the problem is to adjust the threshold. We want the threshold as high as possible while keeping the FN rate essentially zero. This optimum value can be found by probing the detection operating characteristics. We do this by processing the images 5 times, each time with a slightly higher threshold, or equivalently, a lower value for \(P_F \).

B. Analysis Method

The evaluation of the local area detection method for each of the trials was performed by a resident radiologist using...
three figures of merit. [First, for clarification, a true positive (TP) with respect to an isolated calcification is defined as: a calcified region, benign or malignant, that has not been set to zero. The TP cluster follows from this definition also.] The figures of merit are: (1) the isolated FP calcifications per image; (2) the number of TP clusters; and (3) the number of FN clusters. The cluster analysis is based on the biopsy verified ground truth files, and the results are presented as averages. There are many methods used for counting clusters; consequently, the technique used here requires a brief explanation.

Following from the definition of a cluster (as defined previously), if three events are located (this includes FPs or TPs) within a square cm, the region is classified as a cluster. The figures of merit are: (1) the isolated FP calcifications per image; (2) the number of TP clusters; and (3) the number of FN clusters. The cluster analysis is based on the biopsy verified ground truth files, and the results are presented as averages. There are many methods used for counting clusters; consequently, the technique used here requires a brief explanation.

C. Tabulated Results

The five sets of detection results are shown in Table 3. Each trial corresponds to a different threshold \(\tau \) or \(P_\tau \). The thresholds corresponding to the five trials are arranged so that \(\tau_1 < \tau_2 < \ldots < \tau_5 \), and the corresponding values of \(P_\tau \times 10^4 \) are in the last column. The goal is to identify the \(\tau \) where the experimental value of the sensitivity begins to drop below 100%. In this table, the following definitions are used:

- Specificity = \(\frac{\text{Number of normals correctly classified}}{\text{Total number of normals}} \)
- Sensitivity = \(\frac{\text{Number of clusters found}}{\text{Total number of abnormals}} \)

In going from trial 1 to trial 2, there is no measurable change in the evaluation. This means \(\tau \) was not changed enough. The parameters associated with trial 3 are the best, since it is sometimes possible to keep the sensitivity at 100%, and still identify 46% of the normals.

An estimate for the theoretical maximum number of isolated (individual) calcifications per image can be found by the formula

\[
\text{Max} = 2 \times P_\tau \times 18 \times 256 \times 256 = 12 \times 256 \times 128
\]

and the minimum is given by: \(\text{Min} = \text{Max}/2 \). This formula comes from considering that there are two reduced images for each raw image and there are two possible sizes of reduced images (256x256) or (256x128). There are 18 large images and 12 small images. The Max is two times the Min because both \(d_1 \) and \(d_4 \) can contribute to detection, and it is possible to have no overlapping error in each image. These results are summarized in Table 4.

Table 3: Evaluation of Each of Five Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Specificity (%)</th>
<th>Sensitivity (%)</th>
<th>FP clusters/image</th>
<th>(P_\tau \times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1)</td>
<td>15</td>
<td>100</td>
<td>1.20</td>
<td>6.00</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>15</td>
<td>100</td>
<td>1.36</td>
<td>3.00</td>
</tr>
<tr>
<td>(\tau_3)</td>
<td>46</td>
<td>100</td>
<td>0.93</td>
<td>2.50</td>
</tr>
<tr>
<td>(\tau_4)</td>
<td>46</td>
<td>94</td>
<td>0.67</td>
<td>1.00</td>
</tr>
<tr>
<td>(\tau_5)</td>
<td>92</td>
<td>89</td>
<td>0.13</td>
<td>0.05</td>
</tr>
</tbody>
</table>

D. Observations

The specificity rates (Table 3) are very encouraging, since a feasible operating \(P_\tau \) can be found. In this case, it is trial 3 and only one very subtle detection case is missed in trial 4. This indicates we can hope to operate at 100% sensitivity while identifying 46% of the normal images. The theoretical isolated FP rates (Table 4) are in general agreement with the counted data. As the FP rate is reduced the agreement diverges somewhat because the integral required to find the FP rate is only an approximation. The final detection results are good order-of-magnitude estimates. These evaluation results indicate that the detection method behaves as predicted, and gives credence to the statistical modeling. If the model was merely a crude approximation, it is quite likely the detection results would not be in such close agreement. These detection results can be used to make inferences concerning processing full size images. For the isolated and cluster FP rate the conversion is

\[
\text{New rate} = \frac{\text{Old rate} \times \text{Full image breast area}}{\text{Cut image area}}
\]

Normally a comparison of detection results obtained by different techniques is useful. However, this is not appropriate here for three reasons: (1) Using large image sections without artifacts is equivalent to processing ideal images. (2) The detection process was evaluated on a limited database consisting of 30 images. Excluding one or two images from the study may result in significant changes in detection results. (3) Very little other work has been done at 35-um resolution, and no work with common criteria that would allow a meaningful comparison.

Table 4: Theoretical Limits for Each Trial

<table>
<thead>
<tr>
<th>Trial</th>
<th>Max</th>
<th>Min</th>
<th>Actual Counts</th>
<th>(P_\tau \times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1)</td>
<td>63.92</td>
<td>31.46</td>
<td>44</td>
<td>6.00</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>31.46</td>
<td>15.73</td>
<td>18</td>
<td>3.00</td>
</tr>
<tr>
<td>(\tau_3)</td>
<td>26.20</td>
<td>13.10</td>
<td>13</td>
<td>2.50</td>
</tr>
<tr>
<td>(\tau_4)</td>
<td>10.48</td>
<td>5.24</td>
<td>13</td>
<td>1.00</td>
</tr>
<tr>
<td>(\tau_5)</td>
<td>0.52</td>
<td>0.26</td>
<td>3</td>
<td>0.05</td>
</tr>
</tbody>
</table>

VIII. An Example Sequence of Steps for Application to an Image

The following exemplary method can be repeated a plurality of times to find operating parameters using data that have known ground-truth information obtained from using the appropriate protocol.

1. Locate the tissue region to be studied (e.g., a breast region) and eliminate the off-tissue region noise field and anomalous regions.
2. Apply a wavelet expansion and separate at least one important component expansion image (for the example of breast microcalcifications, two expansion images subimages are separated out).
3. Determine the functional probability form for each expansion image.
4. Using maximum likelihood arguments, determine the optimal statistical normal image region test for each expansion image.
5. Apply the test to a training data set using an initial estimate for the thresholds, where in the most general terms, the operating threshold is different in each expansion image.
The detection technique presented here is dictated by the data and follows from the Neyman-Pearson lemma. If the pdf model is a reasonable approximation, this is the most powerful test for finding regions that deviate significantly from normal regions, that is, regions that may contain calcifications or other artifacts of similar scale. In this sense, the test is optimal. In essence, the technique merges two powerful analysis techniques: classical signal detection theory and multiresolution decomposition.

In general, it is illustrated herein that mammograms are not as irregular as commonly believed. The evidence clearly indicates that these mammograms share common statistical qualities. In the vast majority of images studied, a primary and summary statistics appear to be dependable estimators for the detection scheme.

This method of differentiating normal regions from potentially abnormal regions containing calcifications should be considered as the initial stage of processing. It is important that this separation technique be optimal; if it fails, any ensuing processing will naturally fail. As illustrated by the detection analysis, in order to identify a significant fraction of the normal images while maintaining a low FN rate (essentially zero), the isolated FP error needs to be reduced. One way to address this error is with two additional stages of processing: (a1) examine each small suspicious region in more detail for further discrimination, and (a2) consider regions on the order of a square centimeter and eliminate the entire region if the total suspicious area within the region does not meet the cluster criterion of three classifications within a square centimeter. In order to overcome intrinsic FP error (see the summary statistic), the decision criteria for the first additional stage should not be strongly dependent on the previous decision mechanism. The detection mask approach renders itself to further analysis of type (a1), because more information can be included in the suspicious regions by projecting the mask into a more resolved image, as illustrated in FIG. 7. The second additional stage, (a2), can be implemented by a simple counting procedure. These additional stages are being developed.

The detection process was illustrated with the symmlet basis. Other wavelet bases can be used for comparison purposes to optimize the choice of bases. Thresholds can be set the same and the experiment repeated. The 30 images are a fair representation of a clinical mammography database. Thus using the present invention, one can quantify the “best basis” for usage in mammography.

The evaluation results provide a strong impetus for further pursuit and analysis of the multiresolution statistical technique. An automated method should be developed to segregate the isolated calcifications that do not belong to a cluster.

It may be appreciated by one skilled in the art that additional embodiments may be contemplated, including in the analysis of other types of medical (and other) images.

In the foregoing description, certain terms have been used for brevity, clarity, and understanding, but no unnecessary limitations are to be implied therefrom beyond the requirements of the prior art, because such words are used for description purposes herein and are intended to be broadly construed. Moreover, the embodiments of the apparatus illustrated and described herein are by way of example, and the scope of the invention is not limited to the exact details of construction.

Having now described the invention, the construction, the operation and use of preferred embodiment thereof, and the advantageous new and useful results obtained thereby, the new and useful constructions, and reasonable mechanical equivalents thereof obvious to those skilled in the art, are set forth in the appended claims.

REFERENCES

A method for analyzing a medical image to determine whether the image is classifiable as normal, the method comprising the steps of:

1. Applying a wavelet expansion to a digital representation of a raw image, the raw image comprising an array of sectors, each sector having an intensity level, to obtain a plurality of expansion images of varying resolution; selecting at least one expansion image having a resolution commensurate with a desired predetermined detection resolution range;

2. Dividing each expansion image into a plurality of regions, each region comprising at least one sector; and creating an output image comprising a combination of all sectors, each sector having an intensity level, to obtain a plurality of expansion images, each expansion image having a resolution commensurate with a desired predetermined detection resolution range;

3. Establishing the threshold level for the probability distribution function for each selected expansion image;

4. Determining an optimal statistical normal image region test for each selected expansion image, and wherein the output image creating step comprises assuming a nonparametric form of a test statistic distribution and using a kernel density estimation method.

5. Applying a maximum likelihood technique to determine a set of operating parameters for each selected expansion image;

6. Establishing step comprises forming a search window having a first value when the region intensity level is above a predetermined threshold level and a second value when the region intensity level is below the threshold level, for localizing a potential abnormality within the image;

7. Wherein the expansion image selecting step comprises empirically selecting two adjacent expansion images, each expansion image having a resolution one-half that of the first image, when the region intensity level is above a predetermined threshold level and a second value when the region intensity level is below the threshold level, for localizing a potential abnormality within the image;

8. Wherein the expansion image selecting step comprises selecting a plurality of expansion images, each expansion image having a resolution commensurate with a desired predetermined detection resolution range; and wherein the raw image comprises an array of sectors, each sector having an intensity level, to obtain a plurality of expansion images of varying resolution; selecting at least one expansion image having a resolution commensurate with a desired predetermined detection resolution range;

9. Wherein the wavelet-expansion application step comprises performing a separable kernel two-dimensional pyramid downsampling/upsampling scheme;

10. Wherein the raw image comprises a film image, and further comprising the step, prior to the wavelet-expansion application step, of digitizing the film image;

11. Wherein the expansion image selecting step comprises empirically selecting a number of expansion images commensurate with an initial raw image resolution.

12. Wherein the expansion image selecting step comprises selecting a plurality of expansion images, each expansion image having a resolution commensurate with a size range of an abnormality desired to be detected.

13. Wherein the medical image comprises a digitized mammogram, and wherein the tissue boundary defining step comprises excising a breast boundary on the digitized mammogram.

14. Wherein the medical image comprises a digitized mammogram, and wherein the tissue boundary defining step comprises excising a breast boundary on the digitized mammogram.

15. Wherein the method recited in claim 1 further comprising the step of defining a tissue boundary for analysis.
The method recited in claim 16, wherein the breast boundary excising step comprises the steps of:
defining an off-tissue region comprising a generally random noise field and a plurality of anomalous regions;
defining a tissue region comprising signal information;
separating out the random noise field;
determining a remaining contiguous region containing information; and
setting the image region outside the remaining contiguous region to zero.

The method recited in claim 1, further comprising the steps of:
defining a cluster area having a size greater than a size of the region;
setting a number of regions within each cluster area in the image having the first value to a first variable;
comparing the first variable with a predetermined second variable;
if the first variable is greater than or equal to the second variable, flagging the cluster area as potentially suspicious for the presence of an abnormality; and
if the first variable is less than the second variable, classifying the cluster area to be normal.

An apparatus for analyzing a medical image to determine whether an abnormality is present comprising:
means for applying a wavelet expansion to a digital representation of a raw image, the raw image comprising an array of sectors, each sector having an intensity level, to obtain a plurality of expansion images of varying resolution;
means for selecting at least one expansion image having a resolution commensurate with a desired predetermined detection resolution range;
means for creating an output image comprising a combination of all regions for each selected expansion image, each region having a first value when the region intensity level is below a predetermined threshold level and a second value when the region intensity level is above the threshold level, for localizing a potential abnormality within the image.

The method recited in claim 19, wherein the medical image comprises a digitized mammogram, and the expansion image selecting step comprises selecting two adjacent expansion images having resolution less than 0.5 mm.

The apparatus recited in claim 21, further comprising:
means for applying a wavelet expansion to a digital representation of a raw control image, the raw control image comprising an array of sectors, each sector having an intensity level, to obtain a plurality of expansion images of varying resolution;
means for selecting at least one expansion image having a resolution commensurate with a desired predetermined detection resolution range;
means for determining a functional form of a probability distribution function for each selected expansion image;
means for determining an optimal statistical normal image region test for each selected expansion image; and
means for establishing the threshold level for the probability distribution function from the optimal statistical normal image region test for each selected expansion image.

The apparatus recited in claim 21, wherein the raw image comprises a film image, and further comprising:
means for digitizing the raw image.

The apparatus recited in claim 21, wherein the wavelet expansion applying means comprises software means.

The apparatus recited in claim 21, wherein the output image creating means comprises software means residing within a processor and a screen in electronic communication with the processor for visualizing the output image.