A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino-silicate.
FIG. 1

Graph showing the mass change (mg/cm²) vs. the number of cycles for different materials.

- SiC
- ns-CAS-96 cycles
- ns-CAS-250 cycles
FIG. 2
SUMMARY OF THE INVENTION

The present invention relates to an article comprising a silicon containing substrate and a barrier layer which functions as a protective environmental/thermal barrier coating and, more particularly, a barrier layer which inhibits the formation of gaseous species of Si, particularly Si(OH)$_x$, when the article is exposed to a high temperature, aqueous (water and/or steam) environment.

Ceramic materials containing silicon and metal alloys containing silicon have been proposed for structures used in high temperature applications as, for example, gas turbine engines, heat exchangers, internal combustion engines, and the like. A particular useful application for these materials is for use in gas turbine engines which operate at high temperatures in aqueous environments. It has been found that these silicon containing substrates can recede and lose mass as a result of a formation volatile Si species, particularly Si(OH)$_x$ and SiO when exposed to high temperature, aqueous environments. For example, silicon carbide when exposed to a lean fuel environment of approximately 1 ATM pressure of water vapor at 1200° C. will exhibit weight loss and recession at a rate of approximately 6 mils per 1000 hrs. It is believed that the process involves oxidation of the silicon carbide to form silica on the surface of the silicon carbide followed by reaction of the silica with steam to form volatile species of silicon such as Si(OH)$_x$. Naturally it would be highly desirable to provide a external barrier coating for silicon containing substrates which would inhibit the formation of volatile silicon species, Si(OH)$_x$ and SiO, and thereby reduce recession and mass loss.

Accordingly, it is the principle object of the present invention to provide an article comprising a silicon containing substrate with a barrier layer which inhibits the formation of gaseous species of Si, particularly Si(OH)$_x$, when the article is exposed to a high temperature, aqueous environment.

A second objective of this invention is to provide an article comprising a substrate with a barrier layer providing thermal protection, such layer closely matching the thermal expansion of the substrate.

It is a further object of the present invention to provide a method for producing an article as aforesaid.

DETAILED DESCRIPTION

The present invention relates to an article comprising a silicon substrate and a barrier layer, wherein the barrier layer inhibits the formation of gaseous species of silicon when the article is exposed to a high temperature, aqueous environment. The invention also relates to a method for producing the aforesaid article. In addition, it should be appreciated that while the barrier is particularly directed to an environmental barrier layer, the barrier layer also functions as a thermal barrier layer and thus the present invention broadly encompasses the use of environmental/thermal barrier layers on silicon containing substrates and on substrates having comparable thermal expansion coefficients.

According to the present invention, the silicon containing substrate may be a silicon ceramic substrate or a silicon containing metal alloy. In a preferred embodiment, the silicon containing substrate is a silicon containing ceramic material as, for example, silicon carbide, silicon nitride, silicon carbon nitride, silicon oxynitride, and silicon aluminum oxynitride. In accordance with a particular embodiment of the present invention, the silicon containing ceramic substrate comprises a silicon containing matrix with reinforcing materials such as fibers, particles and the like and, more particularly, a silicon based matrix which is fiber-reinforced. Particularly suitable ceramic substrates are a silicon carbide coated silicon carbide fiber-reinforced silicon carbide particle and silicon matrix, a carbon fiber-reinforced silicon carbide matrix and a silicon carbide fiber-reinforced silicon nitride matrix. Particularly useful silicon-metal alloys for use as substrates for the article of the present invention include molybdenum-silicon alloys, niobium-silicon alloys and iron-silicon alloys.

Barrier layers particularly useful in the article of the present invention include alkaline earth metal aluminosilicates. In accordance with a preferred embodiment, calcium aluminosilicates are preferred. In a particular embodiment,
the barrier layer comprises greater than about 20% by weight CaO, greater than about 38% by weight Al₂O₃ and greater than about 30% by weight SiO₂. A particularly suitable barrier layer for use on silicon containing ceramic compositions in the article of the present invention comprises about 24% by weight CaO, about 40% by weight Al₂O₃, and about 36% by weight SiO₂. Non-stoichiometric calcium aluminoisilicate is preferred.

It is an important feature of the present invention to maintain compatibility between the coefficient of thermal expansion of the silicon containing substrate and the barrier layer. In accordance with the present invention it has been found that the coefficient of thermal expansion of the barrier layer should be within ±0.5 ppm per degrees centigrade, preferably ±0.5 ppm per degrees centigrade, of the coefficient of thermal expansion of the silicon containing substrate. When using a silicon containing ceramic substrate such as a silicon carbide or a silicon nitride matrix with or without reinforcing fibers as described above in combination with the preferred calcium aluminoisilicate barrier layer of the present invention, the desired thermal compatibility with respect to expansion coefficient between the silicon containing substrate and the barrier layer should be ±2.00 ppm per degrees centigrade.

The barrier layer should be present in the article at a thickness of greater than or equal to about 0.5 mils (0.0005 inch), preferably between about 3 to about 30 mils and ideally between about 3 to about 5 mils. The barrier layer may be applied to the silicon containing substrate by any suitable manner known in the art, however, it is preferable that the barrier layer be applied by thermal spraying as will be described hereinafter.

In a further embodiment of the article of the present invention, an intermediate layer can be provided between the silicon containing substrate and the barrier layer. The intermediate layer serves to provide enhanced adhesion between the barrier layer and the substrate and/or to prevent reactions between the barrier layer and the substrate. The intermediate layer consists of, for example, SiO₂, mullite, mullite-barium strontium aluminoisilicate, mullite-yttrium silicate, mullite-calcium aluminoisilicate, and silicon metal. Mullite has been found to be a particularly useful intermediate layer; however, mullite by itself tends to be cracked as the result of thermal spraying fabrication processing. Accordingly, it is preferred that the barrier layer comprises mullite-barium strontium aluminoisilicate, mullite-yttrium silicate, or mullite-calcium aluminoisilicate in an amount of between about 40 to 80 wt. % mullite and between about 20 to 60 wt. % barium strontium aluminoisilicate or yttrium silicate or calcium aluminoisilicate. The thickness of the intermediate layer is typically less than or equal to 0.005 inches, preferably disposed in any manner known in the prior art, however, preferably by thermal spraying as described hereinafter.

In addition to the intermediate layer, a bond layer may be provided between the silicon containing substrate and the intermediate layer. A suitable bond layer includes silicon metal in a thickness of 3 to 6 mils. Alternatively, the silicon based substrate may be pre-oxidized to provide a SiO₂ bond layer prior to application of the intermediate layer.

The method of the present invention comprises providing a silicon containing substrate and applying a barrier layer wherein the barrier layer inhibits the formation of gaseous species of silicon when the article is exposed to a high temperature, aqueous environment. In accordance with the present invention it is preferred that the barrier layer be applied by thermal spraying. It has been found that the barrier layer should be thermal sprayed at a temperature of about 870°C to 1200°C in order to help equilibrate as-sprayed, sput quenched, microstructure and to provide a means to manage stresses which control delamination.

The silicon containing substrate should be cleaned prior to application of the barrier layer to remove substrate fabrication contamination. It is preferred that the silicon based substrate be subjected to a grit blasting step prior to application of the barrier layer. The grit blasting step must be carried out carefully in order to avoid damage to the surface of the silicon-containing substrate such as silicon carbide fiber reinforced composite. It has been found that the particles used for the grit blasting should be hard enough to remove the undesired contamination but not as hard as the substrate material to prevent erosive removal of the substrate. Further, the particles must be small to prevent impact damage to the substrate. When processing an article comprising a silicon carbide ceramic substrate, it has been found that the grit blasting should be carried out with Al₂O₃ particles, preferably of a particle size of ≤30 microns and, preferably, at a velocity of about 150 to 200 m/sec. In addition to the foregoing, it may be particularly useful to prooxidize the silicon based substrate prior to application of the intermediate and/or barrier layer in order to improve adhesion. It has been found that bond layers of between 100 nanometers to 2000 nanometers are preferred. SiO₂ bond layers of the desired thickness can be achieved by prooxidizing the silicon-carbide substrate at a temperature of between 800°C to 1200°C for about 15 minutes to 100 hours.

The silicon bond layer may be applied directly to the grit blasted surface by thermal spraying at approximately 870°C to a thickness of 3 to 6 mils. Intermediate layers may be applied between the substrate and/or bond layer and the barrier layer or between the bond layer and barrier layer by thermal spraying in the same manner described above with respect to the barrier layer. As noted above, the preferred intermediate layers include mullite, mullite-barium strontium aluminoisilicate, mullite-yttrium silicate, and mullite-calcium aluminoisilicate.

After application of the desired layers to the silicon-based substrate material, the article is subjected to a heat treatment step to provide stress relief to the thermal sprayed structure, and to promote bonding between the sprayed powder particles and between the layers and the substrate. Broadly, the heat treatment step requires a controlled heating of the article over time in a manner which allows for crystallization of the calcium aluminoisilicate without swelling and/or formation of pores by the barrier layer. Preferably, the article is heated from room temperature to a temperature of about 1275°C to about 1300°C at a rate of about 5°C/minute to about 10°C/minute and held at intermediate temperatures wherein the total treatment time is greater than or equal to 68 hours. Specifically, for a barrier layer which comprises non-stoichiometric calcium aluminoisilicate, the following heat treatment has been found to be particularly useful for obtaining a non-swelled, substantially porous free barrier layer.

a) room temperature to 700°C @ 10°C/minute, hold 4 hrs.
b) 700°C to 800°C @ 10°C/minute, hold 8 hrs.
c) 800°C to 900°C @ 10°C/minute, hold 16 hrs.
d) 900°C to 1000°C @ 10°C/minute, hold 16 hrs.
e) 1000°C to 1100°C @ 10°C/minute, hold 8 hrs.
Hot pressed bulk coupons of non-stoichiometric calcium aluminosilicate (ns-CAS) of composition 24% CaO, 40% Al₂O₃ and 36% SiO₂ by weight were fabricated via hot pressing in Argon at 1400°C for 2 hours and then submitted for high steam thermal cycle testing at 1200°C for up to 250 thermal cycles in comparison to silicon carbide. The results show that the silicon carbide loses up to 8 mg/cm² weight during the testing while the ns-CAS does not. See FIG. 1.

EXAMPLE 1

FIG. 2 is a cross section of a 4 mil thick ns-CAS coating on 4 mils of mullite on SiC composite. The ns-CAS and mullite were thermal sprayed onto the silicon carbide composite using the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasma torch</td>
<td>Metco 3M</td>
</tr>
<tr>
<td>nozzle</td>
<td>GH</td>
</tr>
<tr>
<td>anode</td>
<td>std.</td>
</tr>
<tr>
<td>powder port</td>
<td>metco #2</td>
</tr>
<tr>
<td>primary gas</td>
<td>Ar @ 80 Metco gage</td>
</tr>
<tr>
<td>secondary gas</td>
<td>H₂ @ Metco gage</td>
</tr>
<tr>
<td>substrate temp.</td>
<td>850 °C</td>
</tr>
<tr>
<td>carrier gas</td>
<td>Ar @ 77 Metco gage</td>
</tr>
<tr>
<td>powder feed</td>
<td>15 to 25 gpm</td>
</tr>
<tr>
<td>intermed.</td>
<td>surface</td>
</tr>
<tr>
<td>power 30 kw</td>
<td>25 kw</td>
</tr>
<tr>
<td>stand-off 2.5-3”</td>
<td>5”</td>
</tr>
</tbody>
</table>

Prior to coating the substrate was cleaned by grit blasting with 27 micron alumina particles at an impact velocity of 150 to 200 mps. The ns-CAS powder was obtained from Specialty Glass as a free flowing -200+400 mesh powder. The mullite was Cerac Mullite (Aluminum Oxide—Silicon Oxide), -150, +325 mesh, Cerac # A-1226. As can be seen from FIG. 2, the invention results in an excellent barrier layer structure.

This invention may be embodied in other forms or carried out in other ways without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered as in all respects illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes which come within the meaning and range of equivalence are intended to be embraced therein.

What is claimed is:

1. A method for preparing an article comprising the steps of:
   providing a substrate comprising silicon; and
   applying a calcium containing gaseous species of Si formation inhibiting barrier layer to the substrate wherein the barrier layer inhibits the formation of gaseous species of Si when the article is exposed to a high temperature, aqueous environment.

2. A method according to claim 1 wherein the coefficient of thermal expansion of the barrier layer is within ±3.0 ppm/°C the coefficient of thermal expansion of the substrate.

3. A method according to claim 1 wherein the coefficient of thermal expansion of the barrier layer is within ±0.5 ppm/°C the coefficient of thermal expansion of the substrate.

4. A method according to claim 1 further including the step of grit blasting the substrate prior to applying the barrier layer.

5. A method according to claim 4 including grit blast with alumina particles having a particle size of ≤30 microns.

6. A method according to claim 5 including grit blasting at a velocity of between about 150/m/sec to 200/m/sec.

7. A method according to claim 1 including applying the barrier layer by thermal spraying.

8. A method according to claim 1 including the step of preoxidizing the substrate to form a layer of SiO₂ prior to applying the barrier layer.

9. A method according to claim 8 wherein the preoxidizing comprises heating the substrate at a temperature of between about 800°C to 2000°C for about 15 minutes to 100 hours.

10. A method according to claim 1 including the step of, after applying the barrier layer, heat treating the article.

11. A method according to claim 1 including thermal spraying at a temperature of between about 800°C to 1200°C.

12. A method according to claim 1 wherein the coefficient of thermal expansion of the barrier layer is within ±3.0 ppm/°C the coefficient of thermal expansion of the substrate.

13. A method according to claim 1 wherein the coefficient of thermal expansion of the barrier layer is within ±0.5 ppm/°C the coefficient of thermal expansion of the substrate.

14. A method according to claim 1 wherein the barrier layer comprises greater than about 20% by weight CaO, greater than about 38% by weight Al₂O₃ and greater than about 30% by weight SiO₂.

15. A method according to claim 1 wherein the barrier layer comprises about 24% by weight CaO, about 40% by weight Al₂O₃ and about 36% by weight SiO₂.

16. A method according to claim 1 wherein the barrier layer is non-stoichiometric calcium aluminosilicate.

17. A method according to claim 14 including heating the article form room temperature to a temperature which allows for crystallization of the calcium aluminosilicate without swelling and/or the formation of pores by the barrier layer.

18. A method according to claim 17 including heating the article form room temperature to a temperature of about 1275°C to about 1300°C over a time period of at least 68 hours.

19. A method according to claim 18 wherein the article is heated in a stepwise manner at a heating rate of between about 50°C/min to about 3°C/min and held at least one intermediate temperature.

20. A method according to claim 19 wherein said article is heat treated as follows:
   a) room temperature to 700°C @ 10°C/min, hold 4 hrs.;
   b) 700°C to 800°C @ 10°C/min, hold 8 hrs.;
   c) 800°C to 900°C @ 10°C/min, hold 16 hrs.;
   d) 900°C to 1000°C @ 10°C/min, hold 16 hrs.;
   e) 1000°C to 1100°C @ 10°C/min, hold 8 hrs.;
   f) 1100°C to 1200°C @ 10°C/min, hold 8 hrs.;
   g) 1200°C to 1225°C @ 5°C/min, hold 2 hrs.;
   h) 1225°C to 1250°C @ 5°C/min, hold 2 hrs.;
   i) 1250°C to 1275°C @ 5°C/min, hold 2 hrs.; and
   j) 1275°C to 3000°C @ 5°C/min, hold 2 hrs.; and
   k) furnace cool to room temperature.
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,284,325 B1
DATED : September 4, 2001
INVENTOR(S) : Harry Edwin Eaton, Jr. et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page,
Item [54], Title, after “ALUMINOSILICATE” and before the “/” insert -- ENVIRONMENTAL --.

Column 1,
Line 40, after “Si (OH) _x” delete the “,”.
Line 63, after “Si (OH) _x” delete the “,”.

Column 6,
Line 18, correct “2000°C” to -- 1200°C --.
Line 20, correct “11” to read -- 1 --.
Line 22, correct “1” to read -- 7 --.
Line 64, correct “3000°C” to read -- 1300°C --.

Signed and Sealed this
Twenty-sixth Day of November, 2002

Attest:

JAMES E. ROGAN
Attesting Officer

Attesting Officer
Director of the United States Patent and Trademark Office