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(57) ABSTRACT 

Method and system for analyzing aircraft data, including 
multiple selected flight parameters for a selected phase of a 
selected flight, and for determining when the selected phase 
of the selected flight is atypical, when compared with 
corresponding data for the same phase for other similar 
flights. A flight signature is computed using continuous- 
valued and discrete-valued flight parameters for the selected 
flight parameters and is optionally compared with a statis- 
tical distribution of other observed flight signatures, yielding 
atypicality scores for the same phase for other similar flights. 
A cluster analysis is optionally applied to the flight signa- 
tures to define an optimal collection of clusters. A level of 
atypicality for a selected flight is estimated, based upon an 
index associated with the cluster analysis. 

17 Claims, 6 Drawing Sheets 
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STEP 1 
Receive FP sequences for selected flight (4); 

remove unacceptable FP values. 

For each continuous-valued parameter, determine 
polynomial coefficients Po, P, I P2 and error coefficient 
e for a polynomial approximation p (t;app) Po (no) + 
pl (no) (t-tq,,,) + P2(nO) (t-tnnd2+ e (no) for an FP for 
one or more overlapping time intervals (ha tnO+,,,-, ) 

for each of K continuous-valued FPs ; form respective 
vectorsy =A, B, C and 12 from the coefficients {Po 

@(e (nOy)jn0; compute a first order statistic ml(vJ, a 
second order statistic m2(v), a minimum value min(vJ 
and a maximum value max &), for each of the vectors 

- 1 - I  A B - C, andQ form M I  x 1 vector E_1 from these entries, 
optionally including a beginning value begin(vJ andlor 

an ending value endw. 
$. 

For each discrete-valued parameter, numbered k2 = 
1, . . . , K2 (K2 L 1) and each of the time intervals, form 
an L(k2) x L(k2) matrix of transition values between 

the discrete values; divide the original diagonal entries 
by the sum of the original diagonal entries to form a 

modified L(k2) x L(k2) matrix; form an L(k2)* x 1 vector 
from entries in the modified L(k2) x L(k2) matrix, form an 

L x 1 vector from the entries in the L(k2)2 x 1 vectors 
(k2 = 1 I ..., K2), where L is the sum of the numbers L(k2)2. 

~(nOo)j,o, {F; (nO)}nol {Pz(nO))noand {d (no) = (N-31-1 

/STEP 2 

/STEP 3 

1 STEP 4 
Form M x 1 vector 5. from entries of vectors EJ and 

E2; - where M M I  + L. 

~ 

Compute M x M matrix F = COVE) 



us. 

Calculate atypicality score A, 
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/STEP 8 

~ 

l , - S T E P  6 Provide a set of eigenvaluesh= X I  ,l,2,...,XM for eigenvalue 
equation Fv(h) =hv(Q, with hl >X2 > ... >XM > 0; provide a 

selected subset (hj} of M' of these eigenvalues. 
JI 

I 

Provide initial collection of K clusters for the 
I atypicality scores, A, 

/STEP 7 Provide transformed matrix G = DM F, where DM 
is a selected data matrix 

I 

Apply a selected cluster analysis to the atypicality 
scores, assign each flight to one of the clusters, 

and compute a cluster centroid value 
7 

Compare atypicality score, A,, with a reference 
histogram of corresponding atypicality scores for a 
reference collection of similar flights with the same 

phase (ph) and provide estimate of probability 
associated with the computed atypicality score, 

c 
Provide a p-value corresponding to the computed 
atypicality score(s) for one or more selected flights 
(9) with the same phase (ph), as determined by A, 

and by a first order statistic 

L A, (optional) 

/STEP 9 

[STEP 10 

STEP 11 r 
/STEP 12 
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Iterate on cluster membership to determine a substantially 
optimum cluster collection that provides an extremum 

value (maximum or minimum) for a selected metric value 

1 
Compute a cluster membership score (CMS) for each 
cluster, equal to a monotonic function of a ratio of the 

number of atypicality scores associated with each 
cluster, divided by the total number of atypicality 

scores in all the clusters 
7 

Compute global atypicality score (GAS) as a linear 
combination of a selected monotonic function Fn 
applied to the p-value and Fn applied to the CMS 

[STEP 13 

[STEP 14 

/STEP 15 
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IDENTIFICATION OF ATYPICAL FLIGHT 
PATTERNS 

ORIGIN OF THE INVENTION 

The invention described herein was made by employees 
of the United States Government and its contractors under 
Contract No. NAS2-99091 and may be manufactured and 
used by or for the Government for governmental purposes 
without the payment of any royalties thereon or therefor. 

TECHNICAL FIELD 

This invention relates to digital flight data processing that 
have been recorded on aircraft during flight operations. 

BACKGROUND OF THE INVENTION 

On a typical day, as many as 25,000 aircraft flights occur 
within the United States, and several times that number 
occur throughout the world. Most of these flights are safe. A 
few might exhibit safety issues. Many aircraft are equipped 
with instrumentation that collects from a few dozen param- 
eters to a few thousand parameters every second for the full 
duration of the flight. These types of data have long been 
used for crash investigations but can also be used for routine 
monitoring of flight operations. The subject invention relates 
to the latter activity. This provides an opportunity to analyze 
this data to identify portions of flights that exhibit safety 
issues. Aviation experts review these flights and recommend 
appropriate actions as a result. 

Flight data, recorded during aircraft flight, consist of a 
series of parameter values. Each parameter describes a 
particular aspect of flight. Some parameters relate to con- 
tinuous data such as altitude and airspeed. Other parameters 
assume a relatively small number of discrete values (e.g., 
two or three), such as thrust reverser position or flight 
guidance or autopilot command mode. Parameter measure- 
ments are usually made once per second although they may 
be recorded more or less frequently. Hundreds or even 
thousands of parameters may be collected for each second of 
an entire flight. These data are recorded for thousands of 
flights. The resulting data for an even modest size set of 
flights are voluminous. 

Conventional methods of finding anomalous flights in 
bodies of digital flight data require users to pre-define the 
operational patterns that constitute unwanted performances. 
This can be a hit-or-miss process, requiring the experience 
and knowledge of experts in aviation operations, and it only 
identifies occurrences that specifically match the pre-defined 
condition. A conventional flight data analysis tool will find 
the patterns it is told to look for in flight data, but the tool 
is blind to newly emergent patterns for which the tool has 
not been programmed to look. The invention overcomes this 
deficiency because it does not require any pre-specification 
of what to look for in bodies of flight data. 

Naturally most flights are typical and exhibit no safety 
issues. Avery few flights stand out as atypical based values 
displayed by the data. These flights may be atypical due to 
one flight parameter being very unusual or multiple param- 
eters being moderately unusual. It turns out that these 
unusual flights often exhibit safety issues and thus are of 
interest to identify and refer to aviation safety experts for 
review. Additionally, these atypical flights might display 
safety issues in a manner never envisioned by safety experts; 
hence impossible to find using pre-defined exceedences as 
done by the current state of the practice. 

2 
What is needed is an approach that allows identification of 

the most important flight parameters, capture and character- 
ization of the dynamic values of these important parameters, 
and application of a consistent analysis to identify aircraft 

s flights which exhibit atypical characteristics. This could 
mean that one or more of these parameters exhibits atypical 
values with respect to a collection of a set of flights that 
collectively define “typical”. This could also mean that 
individual parameters were marginally atypical, but collec- 

i o  tively atypical. The analysis must be extendable to a larger 
or smaller number of “important” parameters and should not 
depend upon choice of a fixed number of such parameters. 
The analysis allows the identification of atypical flights 
without limiting the nature of the atypicalities to envision- 

In summary, the current state of the art is to monitored 
flight data for specified exceedences (excessive speed, 
g-forces, and other easily definable characteristics that differ 
from standard operating procedures). This invention goes 

20 beyond that by detecting unusual events, statistical patterns, 
and trends without requiring the pre-definition of what to 
look for and without limiting the investigation to a small 
number of parameters. It does this by applying multivariate 
statistical/mathematical methods. 

is able or pre-defined conditions. 

2s 
SUMMARY OF THE INVENTION 

These needs are met by the invention, which provides an 
approach: (1) to provide a set of time varying flight param- 

30 eters that are “relevant;” (2) to transform this set of flight 
parameters into a minimal orthogonal set of transformed 
flight parameters; (3) to analyze values of each of these 
transformed flight parameters within a time interval associ- 
ated with the flight phase; (4) to apply these analyses to the 

35 data for each aircraft flight; and (5) to identify flights in 
which the multivariate nature of these transformed flight 
parameters is atypical, according to a consistently applied 
procedure. 

Digital flight data are passed through a series of process- 
40 ing steps to convert the massive quantities of raw data, 

collected during routine flight operations, into useful infor- 
mation such as that described above. The raw data are 
progressively reduced using both deterministic and statisti- 
cal methods. In the final stages of processing, statistical 

45 methods are used to identify flights to be reviewed by 
aviation experts, who infer key safety and operational infor- 
mation about the flights described in the data. These flight 
data processing methods are imbedded in software. 

The analysis begins with a selected subset of relevant 
so flight parameters, each of which is believed to potentially 

characterize the nature of a selected aircraft’s flight (q), for 
a selected phase (ph) of the flight (e.g., pre-takeoff taxi, 
pre-takeoff position, takeoff, low altitude ascent, high alti- 
tude ascent, cruise, high altitude descent, low altitude 

ss descent, runway approach, touchdown and post-touchdown 
taxi.). Application of this criterion often reduces the number 
of flight parameters from a few thousand to a number as low 
as about 100, or lower if desired, referred to herein as 
underlying flight parameters (“FPs”). The data value for 

60 each record and for each FP is inspected to determine if the 
data are reasonable and should be used to characterize the 
nature of the aircraft’s flight or if it is “bad” data that has 
been corrupted. If the data value is deemed “bad” then it is 
removed from the analysis process for those records that it 

The (remaining) sequence of received FP values is ana- 
lyzed separately for parameters that are interval ratio con- 

6s is deemed bad. 
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tinuous numbers and for parameters that are ordinal or the computed first difference lies outside this range, at least 
categorical parameters, sometimes referred to as discrete one of the values, u,-~, and un, is removed from the received 
value parameters. A continuous value parameter value is sequence. 
approximated in each of a sequence of overlapping time For continuous value parameters, each such parameter is 
intervals as a polynomial (e.g., quadratic or cubic), plus an s analyzed by applying a time-based function Over each of a 
error term. Each of the sequence of approximation coeffi- sequence of Partly overlapping time inkrvals (t,o, t,o+~-i) 
cients for the sequence of time intervals is characterized by Of constant length (N to 
a first order statistic, a second order statistic, a minimum 
value and a maximum value, and, optionally, by at least one 
of a beginning value and an ending value for the sequence, 10 coefficient. For 

for each such time and for each FP, a 
t, Plus an error 

the polynomia1 may be a quadratic 
polynomia1 approximation in a time 

sum, such as The discrete value parameters are analyzed and character- 
ized in terms of proportion of time at each discrete value and 
number of transitions between discrete values. The continu- 

combined as an Mxl vector E for each flight. The set of IS 

matrix F is computed. 
An eigenvalue equation, F.V(h)=hV(h), is solved. The 

data matrix formed by combining the Mxl vectors E for the 

matrix G. The set of all eigenvalues can be, and preferably 
will be, replaced by a reduced set of eigenvalues having the 

p ( ~ O l l ~ ; a ~ ~ ~ ~ p o  

(~o)+Pl(no).(t-~no)2 

+e(nO) 

ous value and discrete value characterization parameters are 

flights is combined to form a matrix for which a covariance (1‘4) 

N+&l (1B) 
set of flights is transformed by a data matrix to form a new 20 d(n0) = ( N  - 3)-’ e(n)2, 

n=nO 

largest values. 
Acluster analysis is performed on the new matrix G, with 

each flight being assigned to one of the clusters. The 
Mahalanobis distance for the flight with respect to the mean 
of all the flights (based on the G matrix) forms an estimate 
of the atypicality score for each flight, q, in each phase, ph. 
This atypicality score for flight q and phase ph is combined 
with the proportion of flights in the cluster flight qlphase ph 
was associated to calculate a new atypicality value, referred 
to as a Global Atypicality Score (GAS). 

The Global Atypicality Scores for all the flights are 
ranked in decreasing order. The flights in the top portion 
(typically 5%) are labeled “atypical” (“Level 2” and “Level 
3”) and the most atypical of these flights are identified as 
“Level 3”. These flights are brought to the user’s attention in 
a list. The user can select any of these flights and drill down 
to get additional information about the flight, including 
comparison of its parameter values to the values of other 
flights. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a histogram of a representative group of flights, 
illustrating the appearance of two statistical outliers for 
fictitious flights. 

FIG. 2 illustrates a dendogram display of hierarchical 
clustering. 

FIG. 3 is a flow chart of a procedure for practicing an 
embodiment of the invention. 

FIG. 4 is a schematic view of a system for practicing the 
invention. 

2s 

30 

3s 

40 

4s 

so 

5s 

including an error coefficient e(n0) that (i) is minimized for 
each time interval, t,, S t S t,o+N-l, by appropriate choice of 
the coefficients po, p1 and P, and (ii) reflects how closely the 
actual FP data are approximated by the corresponding time 
dependent polynomial for the corresponding time interval. 

For the sequence of time intervals in the selected phase for 
the selected FP, each of the sequence of coefficients 

ered as a vector v of entries, is characterized by character- 
ization parameters, which include a first order statistic ml(v) 
(e.g., weighted mean, weighted median, mode), by a second 
order statistic m2(v) (e.g., standard deviation), by a mini- 
mum value min(v), by a maximum value max(v), and 
optionally by a beginning value begin(v) andlor by an 
ending value end(v) for that coefficient sequence. The col- 
lection of these characterization parameters is formatted and 
stored as an M x l  vector E l ,  representing the collection of 
time intervals for that phase (ph) for that flight parameter for 
that flight (9). 

Each ordinal or categorical parameter (sometimes 
referred to as a discrete-valued parameter), numbered 
k2=1, . . . , K2 and having L(k2) discrete states, is analyzed 
by forming a square transition matrix, with each row and 
each column representing each of the possible states or 
values of the parameter(s). Each data point from the full 
flight phase is processed by counting the number of transi- 
tions Ni,i+l from a state Si on record i to an immediately 
subsequent state Si+l on record i+l,  including the number of 
transitions of a state to itself. Each diagonal entry in this 
transition matrix is divided by the sum of the original 
diagonal values, to convert the matrix to an L(k2)’xl vector 
E,, where L(k2) is the number of distinct values for this 
parameter, k2. The set of vectors E2, for all the discrete 
parameters of the phase for this flight are concatenated into 
a vector E2, that is Lxl ,  where L is the sum of L(k2)’ over 

CPo(no>),o, CPl(no>),o~ Cp,(nO)),o and Cd(nO)),o, consid- 

DESCRIPTION OF BEST MODES OF THE 
INVENTION 

all k2=1, . . . , K2. 
A sequence of values for each of a selected set of P The discrete parameter vector(s) for each phase and for 

relevant flight parameters FP is received, and unacceptable 6o the phase ph islare combined with the M,xl vector E l  for 
values are removed according to one or more of the follow- continuous value parameters to form an M x l  row vector E 
ing: (1) each value u, of a sequence is compared with a range (M=Ml+L) that includes the contributions of continuous 
of acceptable values, U l S u S U 2 ,  and if the parameter value and discrete value parameters. The E vectors from each of 
u, lies outside this range, this value is removed from the the Q flights in the set selected to be studied are combined 
received sequence; and (2) a first difference of two consecu- 65 to form a matrix, denoted as DM. Optionally, vectors E for 
tive values, u,-~, and u,, is compared with a range of adjacent phases can be combined to perform a multiple 
acceptable first differences, AIUl Su,-u,-l SA1U2, and if phase analysis, if desired. 
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An MxM covariance matrix 

F=cov(E) 

is formed, which is symmetric 
and an eigenvalue equation 

FV(h)=hV(h) 

(2) 

and non-negative definite, 

(3) 

is solved to determine a sequence of M=M,+L eigenvalues 
hi with h,2h,2hM20. The eigenvalue equation (3) can be 
solved in a straightforward manner, or a singular value 
decomposition (SVD) approach can be used, as described by 
Kennedy and Gentle in Statistical Computing, Marcel Dek- 
ker, Inc., 1980 pp 278-286, or in any other suitable numeri- 
cal analysis treatment. (The method used is equivalent to 
what is known as principle component analysis.) One works 
with a selected subset {Ati} of these eigenvalues, which may 
be a proper subset of M’ eigenvalues (M’SM), where 

(4) 

and f is a selected fraction satisfying OefSl  for example, 
f=0.8 or 0.9. 

A transformed matrix 

G=DMF (5) 

is then computed. Preferably, the matrix G is normalized by 
subtraction of a first order statistic of each column and by 
division of the difference by a second order statistic asso- 
ciated with that column. 

An atypicality score, also referred to as a Mahalanobis 
distance, 

is computed for each flight (q) and each phase (ph). 
The atypicality scores for the selected set of flights can be 

compared using a histogram of reference atypicality scores 
for a collection of reference flights. An atypical flight will 
often appear as a statistical outlier, as illustrated in FIG. 1 for 
two fictitious flights “2064” and “1743”. This one dimen- 
sional approach has the advantage of simplicity of interpre- 
tation. 

A p-value, corresponding to an atypicality score A,, the 
selected flight q and the selected phase ph, is defined using 
the Wishart probability density distribution as defined in 
Anderson, A n  Introduction to Multivariate Statistical Analy- 
sis, 2”d Edition, John Wiley & Sons, 1984, pg 244-255. 

p(q;ph)=(Fl.FZ)/(F3.F4FS) (7‘4) 

where 

6 
r(x) is an incomplete gamma function. 

A cluster analysis is applied to a collection of observed 
values G (from Eq. (5)) for the same phase and for the full 
set of selected flight(s). A preferred cluster analysis is 
K-means analysis, as set forth in any of a number of statistics 
and data mining books, including Kennedy, Lee, Roy, Reed 
and Lippman, Solving Data Mining Problems Through Pat- 
tern Recognition, Prentice Hall PTR, 1995-1997, page 
l e 5 0  through 10-53. The clustering is performed for each 
phase (or aggregated group of phases) separately. 

The initialization step requires selection of the number K 
of clusters, and the setting of the initial seed values. There 
are a number of ways to set these seeds; including using (i) 

15 a random selection of K flight vectors U from the full set of 
flight vectors, (ii) a random selection of dimension values 
for each of the K flight vectors, (iii) setting the seeds to be 
all zeros in all dimension but one and that value is a 
maximum or minimum of that value among all flight vec- 

2o tors. There are many other ways as well. The first method is 
a preferred method. These seeds take the role as the initial 
values of the cluster centers or centroids. 

The next step requires that the distance from each cluster 
centroid to each flight vector is calculated. A flight vector is 

25 associated with the cluster that has the minimum flight 
vector-to-center distance. There are numerous methods to 
calculate distance, including Euclidian distance, Manhattan 
distance and cosine methods. A preferred method is the 
Euclidean distance. 

After associating every flight vector U with a cluster, the 
centroid for each cluster k is calculated as the mean or first 
order statistic in each dimension of the flight vectors that are 
associated with cluster k. 

These last two steps are repeated until the number of flight 
35 vectors changing cluster membership is below some thresh- 

old or an upper limit of number of iterations is reached. 
A second preferred cluster analysis method is hierarchical 

clustering, which works with partitions of the collection of 
observations that are built up (agglomerations) or that are 

40 divided more finely (divisions) at each stage. Hierarchical 
methods are discussed by B. S. Everitt, ibid, pp. 55-89. 
Other cluster analysis can also be performed using any of the 
approaches set forth in B. S. Everitt, pp 37-140. 

Hierarchical clustering initially assigns each flight, 
45 q=l ,  . . . , Q, to its own cluster, c=l ,  . . . C. Then the 

“distance” between all possible flight vectors pairs is cal- 
culated using the G matrix and identify the two flight vectors 
with the minimum distance. There are numerous methods to 
calculate distance, including Euclidian distance, Manhattan 

50 distance and cosine methods. A preferred method is the 
Euclidean distance. These flight vectors are associated with 
a cluster. The cluster’s centroid is calculated based on all its 
members, denoted by cc, 1, . . . , CC. 

After the first cluster is formed, calculate the distance 
5s between all possible pairs from Q-1 objects (Q-2 flight 

vectors and 1 cluster), find the pair with the minimum 
distance and assign them to a cluster. This may be a pair of 
flight vectors or a flight vector with a cluster (and if there are 
multiple clusters, as there inevitably will be, it could be two 

60 clusters jointed to form one larger cluster). Continue this 
process of calculating distances, finding the minimum dis- 
tance and assigning flights or clusters to form bigger clusters 
until all have been aggregated to one global cluster. 

FIG. 2 illustrates this process graphically in a dendogram. 
65 The user has the option of how many clusters to use. One 

could choose any number from 2, (Q-1). One could cut 
the dendogram horizontally to form K clusters or at different 

10 

3o 
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levels for different clusters. The options commonly used are: An L x l  vector E2 is formed from the entries of the modified 
(1) to specify the number of clusters and cut horizontally, (2) L(k2)xL(k2) matrices, where L is the sum of the squares 
to look for long vertical branches in the dendogram and cut L(k2)'. 
horizontally at that level, (For FIG. 2 this would result in 10 In step 4, an Mxl  vector E, including the entries of the 
clusters.), and (3) to calculate a index of cluster homoge- s vectors E l  and E2, is formed, where M=Ml+L. In step 5, an 
neity as a function of the sum of the squares of within-cluster MxM covariance matrix F=cov(E) is computed. 
distances and between-cluster distances. Apreferred method In step 6, eigenvalues h for an eigenvalue equation, 
is the first. References to these and other acceptable tech- F.V(h)=hV(h), are obtained, where h l 2 h 2 2  . . . 2 h M 2 0 ,  
niques can be found in Webb, Andrew. Statistical Pattern and a selected subset of these eigenvalues, 
Recognition. Oxford University Press Inc. New York. 1999. i o  h'l  2 h ' 2 2  
pages 308-310. or G. W. Milligan and M. C. Cooper. An In step 7, a transformed matrix G=DM.F is provided, 
examination of procedures for determining the number of where DM is a selected data matrix. 
clusters in a data set. Psychometrika, 50(2): 159-179, 1985. In step 8, an atypicality score, Aq is calculated based on 

Acluster membership score CMS(q;ph), equal to a mono- the M' variables for the selected set of flights and the 
tonic function of a ratio, the number of observations in that 1s selected phase (ph), as set forth in Eq. (6). 
cluster, divided by the total number of observations In step 9 (optional), the computed atypicality score, A,, 
(OeCMSel), is then computed for the selected flight (9) and for the selected flight is compared with a reference histo- 
the selected phase (ph). A larger value of CMS corresponds gram of corresponding atypicality scores for a reference 
to a less atypical set of observed values for the selected flight collection of similar flights with the same phase (ph), and an 
(q) and the selected phase (ph), and inversely. 20 estimate is provided of a probability associated with the 

A Global Atypicality Score GAS for a selected flight (9) computed atypicality score relative to the reference collec- 
and selected phase (ph) is then defined as tion. Step 9 is a simplified alternative to cluster analysis, 

which is covered in steps 1&15. 
GAS(q;ph)=-10g,(p(q;p;ph)l-log,(CMS(q;ph)l, In step 10, a p-value corresponding to the computed 

is a selected real number greater than 1, According zs atypicality score is provided for the selected flight and/or for 

determined by A,. 
In step 11, an initial collection of MI-dimensional clusters 

is provided for the atypicality scores, A,. 
In step 12, a selected cluster analysis, such as K-means 

analysis or hierarchical analysis, is performed for the cluster 
collection provided. Each atypicality score is assigned to 
one of the clusters, and a selected cluster metric value or 

GAS(q;ph)=wl .Fn(p(q;ph)} index is computed. 
In step 13, membership in the clusters is iterated upon to 

+(l-w).Fn(CMS(q;ph)}, (9) determine a substantially optimum cluster collection that 
provides an extremum value (minimum or maximum) for 

where w is a number lying in the range 0 5 ~ 5 1 .  the selected cluster metric value or index. 
FIG. 3 is a flow chart of a procedure for practicing the In step 14, a cluster membership Score (CMS) is corn- 

invention. In step 1, one Or more sequences of flight Param- 40 puted for each cluster, equal to a monotonic function of a 
e t a  (Fp) values are received for a selected Phase (Ph) for a ratio, the number of observations (atypicality scores) asso- 
selected flight (q), for each of a sequence of overlapping ciated with each cluster, divided by the total number of 
time intervals, and unacceptable parameter values are iden- observations in all the clusters, 
tified and removed from one or more sequences. In step 15, a global atypicality score GAS is computed as 

In step 2, applicable to a parameter with continuous 4s a-a linear combination of a selected monotonic function Fn 
values, polynomial coefficients po(nO), p,(nO) and p,(nO) applied to the p-value and the selected function Fn applied 
and an error coefficient e(n0) are determined for a polyno- to the CMS, for the selected flight(s) and the selected phase 
mial approximation p(t;app)-p,(nO)+p,(nO)(t-t,)+p,(nO) (ph). 
(t-t,)'+e(nO), where the coefficients po, p1 and P, are chosen FIG. 4 is a schematic view of a computer system 30 for 
to minimize the magnitude of e. The collections of coeffi- 50 practicing the invention. The sampled values (continuous 
cients CPo(nO>),o, CPl(no>),o, Cp,(nO)),o and (d(nO)= and/or discrete) are received at an input terminal of an 
(N-3)-1Ze(nO)2), are treated as entries for the respective acceptance module 31 that performs step 1 (FIG. 3) and 
vectors v=A, B, C and D, for the selected flight (9) and the determines which sampled values are acceptable. The 
selected phase (ph). A first order statistic ml(v), a second acceptable values are presented to a matrix analysis module 
order statistic m2(v), a minimum value min(v) and a maxi- ss 32, which (i) distinguishes between continuous and discrete 
mum value max(v), and optionally at least one of a begin- parameter values and (ii) performs the polynomial approxi- 
ning value begin($ and an ending value end(v), are com- mation analysis and statistical analysis and (iii) forms the 
puted for each of the vectors v=A, B, c and D. An MIX1 vectors E l ,  E2 and E, as in steps 2, 3 and 4. The vector E 
vector E l  is formed, including the entries of the vectors A, is received at a covariance calculation module 33, which 
B, C and D. 60 generates and issues the matrix F=cov(E), as in step 5. The 

In step 3, for each of the overlapping time intervals, an matrix F is received by an eigenvalue analyzer 34, which 
L(k2)xL(k2) matrix is formed whose entries are the number solves the eigenvalue equation, F.V(h)=hV(h) and stores the 
of transitions from one of L(k2) discrete values to another of eigenvalues h=hl ,  . . . , AM, as in step 6. Optionally, the 
these discrete values of an FP; each of the original diagonal eigenvalue analyzer 34 identifies a selected subset of M' 
values of the L(k2)xL(k2) matrix is divided by the sum of 65 eigenvalues. A transformed matrix G=DM.F is formed in a 
the original diagonal values so that the sum of the diagonal matrix transformation module 35, as in step 7, where DM is 
entries of this modified L(k2)xL(k2) matrix has the value 1. a matrix of selected FP values. The eigenvalues h'i and the 

h 'M'20, is provided, where M'2M. 

where 

increases with decreasing p-values and with decreasing 
CMS values. Aprobability value Pr can be assigned to each 
GAS value that decreases with an increase in the GAS value. 
The logarithm functions in Eq. (8) can be replaced by 
another function Fn that is monotonic in the argument, such 
as 

to the definition in Eq, (8), a Global Atypicality Score GAS One Or more flights with the Same phase (ph), as 

30 

3s 
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entries of the transformed matrix G are received by an 
atypicality calculator 36, which calculates an atypicality 
score or flight signature, as in step 8. The atypicality score 
is optionally analyzed by a histogram comparator module 
37, as in step 9. 

A collection of one or more atypicality scores is received 
by a p-value module 38, which calculates a p-value for the 
collection, as in step 10 (FIG. 3). A cluster analysis module 
39 receives the G matrix and determines an optimal assign- 
ment of each flight vector to one of K clusters. A cluster i o  
membership score (CMS) is computed by a CMS module 
40, as in step 14. A GAS module 41 receives the P-value 
score(s) and the CMS score(s) and computes a global 
atypicality score (GAS), as in step 15. 

(ph) may be compared with a spectrum of GAS values for 
a collection of reference flights for the same phase(s) to 
estimate a probability associated with the GAS for the 
selected flight. A GAS value for a selected flight may, for 

flights, in the next 4 percent of all flights, in the next 16 
percent of all flights, or in the more typical remaining 80 
percent of all flights. 

assigned to a given cluster, SFC. The GAS value for that zs an atypicality 
selected flight will decrease as the CMS for the cluster SFC 
increases, and inversely. An increased CMS value for the 
SFC corresponds to enlargement of the SFC. The logarithm 

(vi) computing a covariance matrix F=cov(E); 
(vii) computing eigenvalues, h=hl ,  h2, . . . , AM, for an 

equation F.V(h)= hV(h), where h l 2 h 2 2  . . . 2hM; 
and 

(viii) computing a transformed matrix G=DM.F, where 
DM is a selected data matrix. 

2. The method of claim 1, further comprising: 
providing at least one sub-sequence of at least one of said 

values m(t,;klq), and computing a selected linear com- 
bination of one or of said values m(t,;klq) in the 
sub-sequence; 

comparing the computed linear combination of said val- 
ues with a reference range of values for the computed 
linear combination; and 

does not lie within the reference range, interpreting this 
condition as indicating that at least one of said param- 
eter values in the sub-sequence is unacceptable. 

5 

AGAS value for a selected flight (4 and selected 15 when the computed linear combination of said values 

3, The method of claim 2, further comprising: 
be placed in the most percent Of 2o when said computed linear of said values lies 

within said reference range, interpreting this condition 
as indicating that said values in said sub-sequence are 
acceptable. 

Assume that the flight atypicality "Ore is 4, The method of claim 1,  further comprising computing 
A,, defined as 

M' 
function -log,(x) manifests increased sensitivity to change A ,  = ( 1 / ( M ' - 3 ) ) z  (Gw)*/h;, 
of the argument x as x approaches 0. 30 ,=I 

What is claimed is: 
1. A method for analyzing aircraft flight data, the method 

(i) receiving flight data for measurements of each of P 
selected parameters {m(t;k;q)} (k=l,  . . . , P) at each of 35 {hl ,  
N selected times (t=t,) (n=nO, . . . , nO+N-1; N22)  for 
one or more selected flights (q) of one or more aircraft; 

(ii) for each continuous-valued parameter p(t;kl) of each 
flight, numbered k l = l ,  , , , , K1 (K120), and for a 
selected sequence of the times t=t, (n=no, n0+1, . . . , 40 6. The method of claim 4, further comprising: 
n=nO+N-1, providing a polynomial approximation p(t; when said atypicality score A, is greater than a selected 
k l ;  app)= a (t,,;kl)+b (t,,;k1)~(t-t,,)+c(t~,;k1).(t-t~,) percentage, PCT, of all atypicality scores in said his- 
'+e(t,,;kl), where e(t,,;kl) is an error term, whose sum togram, interpreting this condition as indicating that a 
of the squares d(t,,;kl)=(N-3)-l*Ze(t,;kl)', is mini- selected phase (ph) for said selected flight is atypical, 
mized by the choice of the terms a(t,,;kl), b (t,,;kl) 45 as compared to a percentage of said reference atypi- 
and c(t,,;kl); cality scores, where PCT is a selected number at least 

(iii) forming vectors A={a(t,,;kl)},,, B={b(t,,;kl)},,, equal to 80 percent. 
C={c(t,,;kl>},,, and D={d(t,,;kl)},,, forming an 7. The method of claim 6, further comprising choosing 
M l x l  vector E l  including a first order statistic ml(v), said selected percentage PCT from a group of percentages 
a second order statistic m2(v), a minimum value min(v) SO consisting of 80 percent, 90 percent, 95 percent and 99 
and a maximum value max(v) for each of the vectors percent. 
v=A, v=B, v=C and v=D; 8. The method of claim 6, further comprising selecting 

(iv) for each discrete-valued parameter, numbered said phase of said selected flight from among the phases 
k2=1 . . . , K2 (K220) and having L(k2) discrete pre-takeoff taxi, pre-takeoff position, takeoff, low altitude 
values, and for the selected sequence of times, forming 55 ascent, high altitude ascent, cruise, high altitude descent, 
an L(k2)xL(k2) matrix whose entries are the number of low altitude descent, runway approach, touchdown and 
transitions between any two of the L(k2) discrete post-touchdown taxi. 
values of this parameter, dividing each of the original 9. The method of claim 4, further comprising computing 
diagonal entries by a sum of the original diagonal a p-value associated with said atypicality score A,, defined 
entries of the L(k2)xL(k2) matrix to form a modified 60 as 
L(k2)xL(k2) matrix, and forming an L x l  vector E2 of 
entries from the modified L(k2)xL(k2) matrices, where 

(v) forming an M x l  data vector E with entries including 
ml(v), m2(v), min(v) and max(v) for each of the 65 
vectors v=A, v=B, v=C and v=D, and including the 

comprising: where G, is an entry in said matrix G and 
{h' l ,  h2, . . . , h'M'} is a selected subset of said eigenvalues 

5 .  The method of claim 4, further comprising comparing 
said computed atYPicalitY Score A, with a histogram of 
reference atYPicalitY Scores for said selected Phase for a 
collection of at least one reference flight. 

. . . 3 h'M'}, with M ' s M .  

p(4;ph)=Fl.FZ/(F3.F4.FS), 

~ 1 = h  l(R-M-1) L is the sum of the values L(k2)'; 

~ z = ~ ~ ( - ( 1 / z ) t ~ ~ ~ ~ ( ~ ~ 1 ~ , ) )  

entries of the modified L x l  vector, where M=Ml+L; F~=z-MR *nM(M-1)/4 
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F4=lZ11'ZR that a maximum allowed number of iterations, or (ii) 
the number of flights that change cluster membership 
between iterations is below a selected threshold; and 

(7) for each modified cluster, providing said cluster mem- 
bership score CMS(q;ph). 

13. The method of claim 10, further comprising: 
comparing said computed GAS for said computed atypi- 

cality score A, with GAS scores for at least first, second 
and third atypicality scores A,; and 

estimating a level of atypicality for the first computed 
atypicality, based upon number of GAS that are less 
than the first computed GAS and number of GAS that 
are greater than the first computed GAS. 

FS=rIMIM,=,r{ (l/Z)(R+l-i)}, 

where r(x) is an incomplete gamma function. 
10. The method of claim 9, further comprising: 
assigning each of a group of observation vectors U, whose 

entries are drawn from entries of said transformed 
matrix G, to one of two or more clusters, using a 
selected cluster analysis procedure; 

for each modified cluster, providing a cluster membership 10 

Score CMS(q;Ph) that is a strictly monotonic function 
of the number of observation vectors U in the cluster 
divided by the total number of observation vectors in 
all clusters; and 

computing a global atypicality score, GAS, defined as 
GAS(q;ph)=w*Fn{p(q;ph)}+(l-w)*Fn{ CMS(q;ph)}, 

15 
14. The method of claim 10, further comprising: 
when said computed GAS for said computed atypicality 

score A, lies in a selected atypicality range, interpreting 
this condition as indicating that said flight parameter 
values for at least one phase ph for said flight number 
q are atypical. 

where Fn is a selected monotonic function and w is 
a selected weight lying between 0 and 1. 

11. The method of claim 10, further comprising selecting 
said monotonic function Fn to be Fn{s}=-log,{s}, where z 20 
is a selected number greater than 1. 

12. The method of claim 10, wherein said selected cluster 
analysis procedure comprises: 

(1) providing an initial set of at least two clusters 
(2) providing a cluster centroid for each cluster; 
(3) assigning each of said group of observation vectors U, 

whose entries are drawn from entries of said trans- 

from the centroid to said vector among 
all centroids; 

(4) computing a modified centroid for each cluster from 
said vectors U assigned to the cluster; 

(5) assigning each of said vectors u to a modified cluster 
associated with the modified centroid for which the 
distance from the modified centroid to said vector u is 35 

a minimum among the distance for all modified cen- 
troids; 

(6) repeating steps 3, 4 and 5 until at least one of two 

15. The method of claim 10, further comprising: 
when said computed GAS for said computed atypicality 

score A, does not lie in a selected atypicality range, 
interpreting this condition as indicating that at least one 
of said flight parameter values for at least one phase ph 
for said flight number q is not atypical. 

25 

formed matrix G, to the for which a distance 16, The method of claim 10, wherein said selected cluster 
is a analysis procedure comprises a hierarchical cluster analysis 

procedure. 30 

17. The method of claim 1, further comprising: 
including in said vector E l  at least one of  (i) a sequence 

of beginning values, denoted begin(v), for each of said 
vectors v=A, v=B, v=C and v=D, and (ii) a sequence of 
ending values, denoted end(v), for each of said vectors 
v= A, v=B, v=C and v=D. 

conditions is met: (i) the number of iterations is greater * * * * *  


