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Distributed resource discovery is an essential step for infor- 
mation retrieval and/or providing information services. This 
step is usually used for determining the location of an 
information or data repository which has relevant informa- 
tion. The most fundamental challenge is the usual lack of 
semantic interoperability of the requested resource. In accor- 
dance with the invention, a method is disclosed where 
distributed repositories achieve semantic interoperability 
through the exchange of examples and, optionally, classifi- 
ers. The outcome of the inventive method can be used to 
determine whether common labels are referring to the same 
semantic meaning. 
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METHODS AND APPARATUS FOR 
DISTRIBUTED RESOURCE DISCOVERY 

USING EXAMPLES 

This invention was made with Government support under 
contract no. NCC5-305 awarded by NASA. The U.S. Gov- 
ernment has certain rights to this invention as provided for 
by the terms of the contract. 

FIELD OF THE INVENTION 

The present invention relates generally to distributed 
database systems and, more particularly, to discovering 
resources in a heterogeneous environment of distributed 
information repositories. 

BACKGROUND OF THE INVENTION 

Interoperability between database systems, and other 
forms of information repositories, is becoming an increas- 
ingly important area of development. The goal is to allow a 
single query to access distributed, often heterogeneous data 
sources and search engines. An example is web meta-search 
engines (such as meta-seek) that can access a variety of 
search engines (such as altavista or lycos), and return a 
single set of integrated results. Another example is directo- 
ries for earth-science data, such as the Global Change 
Master Directory, which allows access to a variety of science 
data distributed at various sites through a single query 
interface. 

Resource discovery is a term that is used to describe the 
process of determining the nature of entities that are con- 
tained within an information repository. When queries are 
being processed by multiple, heterogeneous repositories, an 
important step of the process is determining what informa- 
tion is available from each repository. For example, a query 
that seeks to find areas of deforestation in the Amazon basin 
between 1995 and the present would need to determine 
whether a given repository contains appropriate data which 
might include (in increasing order of specificity): determin- 
ing if the repository is oriented towards earth sciences; if it 
contains deforestation information; if the information covers 
the Amazon basin; if the requested dates are available. 

Search interoperability is generally implemented in one of 
two ways. The first is to define a common set of terms 
(ontology), and require that repositories that are to interop- 
erate all employ the common ontology. This is feasible in 
well-established domains such as medicine or particle phys- 
ics. The other possibility is to build translators to create 
mappings between a local set of terms within a repository, 
and a common set of terms used in formulating queries. This 
allows for local “dialects,” as long as the underlying seman- 
tic entities in the repository correspond to those expressed in 
the query. 

A much harder resource discovery problem, and one that 
has not been adequately addressed to date, is how to 
determine whether the entities in a repository have the same 
semantics as those being requested by a query. The entities 
in the repository may have different labels than those used 
in the query or they may have the same labels, but not the 
same meaning. For example, a query with the term “decidu- 
ous forest” may be adequately addressed by a repository that 
has entities labeled “hardwood,” yet it may be quite difficult 
to determine this correspondence. On the other hand, two 
different repositories may have the term “temperature,” but 
one may be daily maximum temperature, the other may be 
hourly mean temperature, and thus not correspond. It is 

2 
important to be able to determine whether entities with 
different or identical labels actually refer to the same under- 
lying semantic concept. 

The present invention addresses a particular class of such 
problems-where the entities in the query and the entities in 
the repository are both defined in terms of a set of classes 
produced by supervised classifiers. In many application 
areas, application data is categorized using classifiers. 
Examples of categorization include: assigning labels of 
“fraudulent” and “non-fraudulent” to medical claims 
records, determining land cover categories such as “forest” 
or “water” for each region in a satellite image, or assigning 
a category to a news item for access by a web search engine. 

15 As can be seen in the last example, the categorization need 
not be a simple “flat” scheme-it may be hierarchical, or 
even overlapping. 

Classifiers are automated procedures that take input data, 
and produce the appropriate categorization for each item. 

2o Medical records may be input to a classifier which will 
output the appropriate designation of “fraudulent” or “non- 
fraudulent” based on the values of individual fields in the 
record. Similarly, the spectral reflectance values of each 
individual pixel in a satellite image may be used by a land 
cover classifier to determine the most likely class for that 
pixel. The frequency and arrangement of words in a news 
item may be input to a news article classifier, which will 
produce a single category label, or a set of appropriate 

Classifiers may be broadly divided into two main types: 
unsupervised or supervised. Unsupervised classifiers assign 
the input data to categories or classes using techniques such 
as clustering; the result is an arbitrary label (e.g., a cluster 

35 number) assigned to each category. In other words, the label 
assigned by an unsupervised classifier does not contain 
semantic information. Examples of unsupervised classifiers 
(as described, for example, in C. H. Chen et al., “Finding 
Groups in Data,” World Scientific, New York, 1993) include 

40 the modified Lloyd algorithm (as described, for example, in 
Y. Linde et al., “An Algorithm for Vector Quantizer Design,” 
IEEE Trans. Communications, 28(1), pp. 84-95, January 
1980), the tree-structured vector quantizers (as described, 

45 for example, in K. Rose et al., “Entropy-Constrained Tree- 
Structured Vector Quantizer Design,” IEEE Trans. Image 
Processing, 5(2):393-398, February 1996), and k-means (as 
described, for example, in C. Chinrungrueng et al., “Optimal 
Adaptive K-means Algorithm with Dynamic Adjustment of 

50 Learning Rate,” IEEE Transactions on Neural Networks, 
6(1), pp. 157-169, January 1995). Supervised classifiers, on 
the other hand, use a set of examples, known as training sets 
that are considered typical of each class, and use these 
examples to “train” the algorithm that does the categoriza- 

ss tion. Different training sets produce different categoriza- 
tions. A supervised classifier then should be considered to 
comprise a classification algorithm and a training set. Types 
of supervised classifier algorithms include the Bayes Clas- 
sifier, the Perceptron, the k-nearest-neighbor, linear dis- 

60 criminant functions (all described, for example, in R. 0. 
Duda et al., “Pattern Classification and Scene Analysis,” 
John Wiley & Sons, 1973), CART (as described, for 
example, in L. Breiman et al., “Classification and Regres- 
sion Trees,” Wadsworth & BrooksiCole, 1984) and Neural 

65 networks (as described, for example, in P. K. Simpson, 
“Artificial Neural Systems, Foundations, Paradigms, Appli- 
cations and Implementations,” Pergamon Press, 1990). 

25 

3o labels. 
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SUMMARY OF THE INVENTION 

The present invention is directed to evaluation of seman- 
tic similarity between entities stored in an information 
repository and those being requested by a query, where 
entities are defined in terms of sets of class labels produced 
by supervised classifiers. Specifically, the present invention 
provides methods and apparatus for performing such evalu- 
ation employing a cross-classification methodology. 

It is assumed that a query contains a set of definitions of 
classes to be searched. Each such definition comprises a set 
of training data (examples) and a classifier. Similarly, it is 
assumed that the repository contains a trained classifier, with 
training data and associated labels available. 

In an illustrative aspect of the invention, a method of 
evaluating semantic similarity between entities stored in a 
repository and entities being requested in a query comprises 
determining similarity between each class defined in the 
query and each class defined in the repository. The question 
to be answered is: how well does class A from the query 
correspond to class X in the repository? This is accom- 
plished by providing the training set from the query as input 
to the trained repository classifier, and providing the training 
set from the repository as input to the trained query classi- 
fier. The two sets of output labels, with associated scores, are 
input to a module (such as, for example, a fuzzy logic 
inference engine) which reconciles the two sets, and outputs 
a ranking score for each query classirepository class com- 
bination. The symmetric classification operations are 
referred to herein as cross-classification. 

These and other objects, features and advantages of the 
present invention will become apparent from the following 
detailed description of illustrative embodiments thereof, 
which is to be read in connection with the accompanying 
drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a graphical illustration of the distributed 
resource discovery scenario; 

FIG. 2 is a graphical illustration of the centralized 
resource discovery scenario; 

FIG. 3 shows an example of IC defect description through 
the use of examples; 

FIG. 4 illustrates a scenario in which the description of IC 
defects is sent to multiple manufacturing groups in order to 
retrieve other similar defects; 

FIG. 5 shows a scenario in which a query is submitted to 
multiple catalogs; 

FIG. 6 shows a scenario in which a personal profile is 
described through examples and is used for subscribing 
multiple news services; 

FIG. 7 shows a scenario related to how semantic matching 
through examples according to the invention can be used in 
conjunction with structure matching; 

FIG. 8 shows a classification of examples and labels using 
a classifier trained by a separate training set with separate 
examples and labels; 

FIG. 9 shows an instance of the process described in FIG. 
8; 

FIG. 10 shows an overall process of mapping the labels of 
query examples to the labels of repository examples accord- 
ing to an embodiment of the present invention; 

FIG. 11 shows an example of the establishment of map- 
ping rules according to an embodiment of the present 
invention; 
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FIG. 12 shows basic building blocks of a resource dis- 

covery process according to an embodiment of the present 
invention; 

FIG. 13 shows a general scenario according to an embodi- 
ment of the present invention in which there are a total of X 
classes (or labels) in either the query or the repository, and 
each of which may have multiple examples; 

FIG. 14 shows the relationship between the class defini- 
tions and the classifier from the query and the repository 
according to an embodiment of the present invention; 

FIG. 15 shows an example mapping from the query labels 
to repository labels according to an embodiment of the 
present invention; 

FIG. 16 shows an example of the cross-classification 
output of the label mapping according to an embodiment of 
the present invention; 

FIG. 17 shows an example of the data flow of the mapping 
of labels through cross-classification according to an 
embodiment of the present invention; 

FIG. 18 shows an exemplary flowchart of a cross-classi- 
fication process according to an embodiment of the present 
invention; 

FIG. 19 shows an exemplary flowchart of a process for 
generating association rules according to an embodiment of 
the present invention; 

FIG. 20 shows an example of association rule generation 
and pruning according to an embodiment of the present 
invention; and 

FIG. 21 is a block diagram illustrating a generalized 
hardware architecture of a computer system suitable for 
implementing semantic similarity evaluation using cross- 
classification according to the present invention. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

The present invention will be explained below in the 
context of some illustrative resource discovery applications. 
However, it is to be understood that the present invention is 
not limited to any particular resource discovery applications. 
Rather, the invention is more generally applicable to any 
resource discovery application in which it is desirable to 
provide an evaluation of how well a particular class from a 
query corresponds to a particular class in a search repository. 
It is also to be appreciated the terms “class,” “label,” and 
“examples,” as used herein according to the invention, are 
defined as follows: (i) each “class” is a semantically distin- 
guishable group of features; (ii) a “label” is the denotation 
for this group; and (iii) “examples” are taken from the 
members of the group. Also, the term “distributed,” as used 
herein according to the invention, refers to the fact that there 
are multiple information repositories involved in the 
resource discovery operation which may likely be on more 
than one computer system but which may, nonetheless, 
reside on a single computer. 

Referring now to FIG. 1, a distributed resource discovery 
scenario is illustrated. As shown, a user 110 requests one or 
more resources, e.g., web pages, images, documents, etc., 
through a network 103. It is to be appreciated that the 
network may be the Internet, an Intranet, and/or some other 
suitable network. The type of network is not critical to the 
invention. Usually, the resources are requested in two stages. 
In the first stage, the available retrieval engines are located 
from a retrieval engine (RE) directory 101 coupled to the 
network. From this directory, the locations of the retrieval 
engines 102-1 through 102-n, coupled to the network, are 
located. This stage is the RE discovery (retrieval engine 
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discovery) process 104. In the second stage, once the 
retrieval engines are located, the data query is sent to those 
retrieval engines which may have the resources. The 
retrieved results are then sent back to the user. This stage is 
the data retrieval process 105. 

A slightly different scenario is illustrated in FIG. 2, in 
which a centralized retrieval manager 204, coupled to the 
network 208 (similar to network 103), is acting on behalf of 
the user 207 to request the resource for a data or service 
query 205. 

Consequently, the user 207 first makes the data retrieval 
request 203 of the resource to the retrieval manager 204. The 
retrieval manager either has the locations of all the retrieval 
engines locally, or coordinates with one or more of the 
retrieval engine directories 201, coupled to the network, to 
inquire about all the retrieval engines 202-1, 202-2 . . . , 
coupled to the network. The retrieval engine discovery 
process 206 is much more simplified than the distributed 
discovery process of FIG. 1 due to the centralized retrieval 
manager. 

Referring now to FIG. 3, an example of an integrated 
circuit (IC) defect description, depicted therein, shows why 
resource discovery is usually difficult if the vocabulary, 
terminology, or labels are not unified and standardized. A 
single wafermap is shown in FIG. 3 in the box labeled (a). 
There is a region 301 which has 226 defects due to scratches 
that happened during mechanical handling. One of the 
defects, shown as a blownup image in 302, was detected 
with optical in-line tools. Other sources of defects are shown 
in FIG. 3 in the box labeled (b). In particular, the square 
region 303 shows 617 defects due to chemical vapor depo- 
sition (CVD) contamination. Unfortunately for resource 
discovery applications, these defects can be referred to by 
different manufactures using completely or slightly different 
terminology. 

FIG. 4 illustrates such a scenario in which a query, which 
describes the semantics of IC defects 401, is sent to multiple 
repositories 402 and 403. Each of the repositories may have 
a number of descriptions of the defects, e.g., 406-1 through 
406-11 stored in the repository 402, and 406-A through 
406-M stored in the repository 403. The objective is to 
identify those repositories which store similar defect 
descriptions, and retrieve those defect results 404 and 405. 
As is evident from FIGS. 3 and 4, because each repository 
may include different semantic descriptions of the IC defect 
type, optimum resource discovery in response to a query is 
difficult to achieve. 

FIG. 5 illustrates an e-commerce scenario in which the 
person who is interested in browsing the catalog provides a 
semantic description 501 of what heishe is interested in. This 
description will be used to search multiple catalogs (reposi- 
tories) to locate the desirable items (scored and ranked 
repository description set) 504 through a semantic descrip- 
tion matching procedure 503 which attempts to match 
semantic descriptions 502 from the catalogs with the query 
semantic description 501. Some existing websites, such as 
PriceScan (www.pricescan.com), Pricewatch (www.price- 
watch.com), Killerapp (www.killerapp.com), and BidFinder 
(www.bidfinder.com) offer multiple catalog searches based 
on text strings. However, an exact match of text (such as a 
description “IBM Thinkpad 600”) is required in order to 
locate the desirable item. 

FIG. 6 illustrates a personalization scenario in which a 
person wishes to subscribe to a number of news services. In 
general, a desirable scenario would be for a personal profile 
description 601 to be provided to multiple news service 
agencies so that a customization (matching) procedure 603 

6 
of the news services can be automatically accomplished 
using news service semantic descriptions 602. The customi- 
zation procedure generates personalized news services 604 
for the user. However, each of the news services may have 

5 different ontology (or categorization) of their available news 
items. Consequently, it is not possible to perform such 
automatic customization in accordance with existing 
resource discovery methods. 

Note that it is possible to construct a high-level semantic 
lo description from a low-level semantic description using 

spatial, temporal and boolean operators, as shown in FIG. 7. 
For example, strata 703 usually consists of multiple layers of 
rocks, with one rock 705 sitting on top of another rock 706. 
The spatial relationship 704 between these rocks is thus 
considered to be: “on top of.” Each basic rock type (such as 
shale, sandstone, or siltstone) needs to be described. Con- 
sequently, in accordance with the invention, a method for 
automatic discovery of label association (to be described 
below) can be used to define the basic rock type. Additional 

2o structural description of a high level construct can then 
utilize these basic building blocks in conjunction with 
spatial operators. 

In accordance with the invention, a methodology is pro- 
vided which describes these “elementary” or “basic” seman- 
tic entities through a set of examples. In FIG. 7, examples 
(images) of rocks 708 and 709 have been used to define a 
specific rock. However, the set of examples alone may not 
always be adequate. A classifier 707, which gives a label 

3o assignment to the set of the examples, is usually required in 
order to allow unambiguous generalization from the set of 
examples and (possibly) counter-examples. Thus, resource 
discovery may include a structure matching operation 701 
and one or more example matching operations. As shown in 

35 FIG. 7, example matching operations 702 and 710 may be 
associated with the respective rock types 705 and 706. These 
operations, and how they interrelate will be explained in 
detail below. Thus, FIG. 7 illustrates how the invention can 
be used in a bigger resource discovery problem where a 

4o semantic “concept” needs to be decomposed into smaller 
and/or finer grain concepts before examples and classifiers 
can be exchanged in a meaningful way. Consequently, the 
resource discovery process may involve both correspon- 
denceiequivalence matching of low-level concepts (such as 

45 shale and sandstone) and structural matching of high-level 
concepts (shale on top of sandstone). 

Referring now to FIG. 8, an exemplary operation associ- 
ated with one or more classifiers is depicted. As shown, a 
classifier 802 is trained by a set of training data 801. The 

so training set may contain sets of examples and their corre- 
sponding labels. After the training period has been com- 
pleted, the classifier is then used on the input example set 
804 and generates an output label and score set for each 
individual input example. 

A specific example of the operation depicted in FIG. 8 is 
shown in FIG. 9. In this case, the classifier 914 is trained 
based on the training set comprising examples 901 (wheat) 
and 902 (rye). Thus, the vocabulary of the training set is 
wheat and rye. When the classifier operates on the input 

60 data, e.g., examples 911 (oats), 912 (winter wheat) and 913 
(rye hybrid), each of the input data examples is then 
assigned a label from the vocabulary defined by the training 
set, resulting in such results as: (1) oatsjnothing (e.g., 
result associated with input example 911, as none of the 

65 labels has more than 1% confidence); (2) winter 
wheatjwheat with 90% confidence and rye with 5% con- 
fidence (e.g., result associated with input example 912); and 

25 . 

ss 
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(3) rye hybridjwheat with 20% confidence and rye with and the entity definitions residing in a repository. The 
85% confidence (e.g., result associated with input example examples for each class definition within the query (1401) 
913). are presented as input to the trained classifier for the 

It is to be noted that the above process may not be sure of repository (1404). This produces a set of output labels with 
the association between two labels. That is, it can only be s an optional set of scores (1406), representing the set of 
deduced that rye hybrid can be derived from wheat, but not labels that the repository classifier assigns to each query 
the other way around. Consequently, the present invention example. Similarly, the examples for each class definition 
provides a cross-classification operation, as will be with the repository (1403) are presented as input to the 
explained in detail below, to establish the association trained classifier for the query (1402). The result is a set of 
between vocabularies. i o  labels (possibly with associated scores) (1405) representing 

Referring now to FIG. 10, a cross-classification process 
according to the invention is shown. In the process, reposi- 
tory examples 1001 are used as a training set for a repository 
classifier 1003, while query examples 1002 are used for 
training a query classifier 1006. The query examples 1002 
then serve as the input data for the repository classifier 1003, 
while the repository examples 1001 serve as the input data 
for the query classifier 1006. The outputs of the classifiers 
1003 and 1006 are then provided to an inference engine 
1004, to be described below, which generates association 
rules. 

An example of a cross-classification process is shown in 
FIG. 11. As shown, the labels are divided into query side and 
repository side. The query side vocabulary comprises three 
labels: label 1 (1101) has two examples; label 2 (1102) has 
two examples; and label 3 (1103) also has two examples. 
The repository side comprises five labels (1104-1108), each 
of which has two examples. By applying the query classifier 
on the repository examples, and the repository classifier on 
the auerv examales. a linkage is established between the 

the set of labels that the query classifier assigns to each 
repository example. 

Each of these two processes, i.e., providing the training 
data from one set of entities to the classifier of the other, is 

is referred to as cross-classification. Cross-classification is 
performed in both directions in order to adequately deter- 
mine whether the set of labels in the query definitions 
correspond to those in the repository definitions. To see why 
this is so, consider simply cross-classifying the query 

20 example sets using the repository classifier. This produces a 
measure of how well each repository class corresponds to a 
given query class, but produces no measure of specificity for 
that correspondence. For example, suppose that a set of 
query examples are provided for the rock type “shale.” Also, 

zs suppose that one of the classes produced by the trained 
repository classifier is “rock.” The “shale” examples, when 
provided as input to the repository classifier, will all be 
assigned output label “rock” with a high degree of confi- 
dence. “Rock” is not a good match for “shale,” however, 

30 since “rock” can also match “sandstone.” “limestone.” etc. 
1 ,  I ,  v 

query examples and the repository labels, as well as the If we are evaluating different repositories for how well they 
repository examples and the query labels. For example, both capture the type of entity we are searching for, we want to 
of the repository examples under label A are classified into assign a much higher score to an entity that really is shale, 
label 1 using the query classifier. In contrast, the query than to the entity “rock.” Thus, simply using the query-to- 
examales under label 1 are classified into label A and B. 3s reaositorv cross-classification is inadeauate. The wav to 
respectively, while the examples of label B are classified into 
other labels in the query vocabulary. Consequently, from 
such novel association, it can be deduced (block 1109) that 
label 1 from the query vocabulary closely matches label A 
from the repository vocabulary (with a high confidence or 
probability level). Similar deductions may also be made 
with respect to other labels as shown in blocks 1110 and 
1111. 

FIG. 12 illustrates an exemplary structure of a query 
designed for use with a methodology of the invention. The 

include a measure of specificity in the scoring procedure is 
to determine how well the repository class corresponds to 
the query class; in other words, to do a cross-classification 
using the repository examples, and the trained query clas- 

40 sifier. In the sample problem, the examples for “rock” are 
likely to contain examples of “sandstone,” “limestone,” etc., 
in addition to “shale.” When these examples are provided as 
input to the query classifier, the output label “shale” will 
have a fairly low value. By combining the high score for 

4s query “shale”+repository “rock” with the low score for 
query has three main components: (1) the query itself (an 
example is shown in block 1201) comprises the set of labels 
that are to be retrieved (along with any constraints, or other 
query parameters), e.g., “forest,” and “water;” (2) the train- 
ing set (an example is shown in block 1202) comprises a set SO 

repository “rock” query “shale,” we can obtain an interme- 
diate score, which is what we want. Note that the symbol 
“+” is ’ used here to represent cross-classification; it can also 
be read as “implies.” 

FIG. 15 provides an example of one of these cross- 
of labeled examples, e.g., “forest” example set and “water” 
example set; and (3) a classifier (an example is shown in 
block 1203) used to assign the labels in the training set to 
input examples, e.g., neural network classifier. 

Referring now to FIG. 13, an exemplary structure is 
shown of a training set for a query or a repository in 
accordance with the invention. Class definitions are shown 
in blocks 1301, 1302 and 1303. Each class represents a 
single semantic type, such as “forest,” or “water.” Within 
each class definition is a series of examples considered 
typical of that class, represented by blocks 1311 and 1312. 

classification steps. For this example, we will assume that 
the input data is from the query examples, and the trained 
classifier is from the repository. The same description 
applies for the reverse case, where the input data is from the 

ss repository examples, and the trained classifier is from the 
query. The three blocks on the left hand side of FIG. 15, i.e., 
1501,1502, and 1503, represent the query examples. In this 
case, we have shown three examples, two of them examples 
that the query labels as “forest” (1501, 1502), and one that 

60 is labeled “water” (1503). These examples are all provided 
as input to the repository classifier 1521. For each example, 

Examples may be sample images, samples news articles, 
sets of sample parameter values from a dataset, etc. The 
class definition also contains a text label 1313, used to 
identify the class. 

FIG. 14 illustrates a first step in determining the degree of 
correspondence between a set of requested query entities, 

the classifier produces a set of repository labels, i.e., 1511, 
1512, 1513, with an associated score or confidence level. 
Note that the scenario illustrated in FIG. 15 is an exemplary 

65 case. Some simpler classifiers may produce only a single 
label with no associated score. Also note that in this 
example, the scores for each example are summed to one. 
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FIG. 16 shows the output records assembled from the 
example in FIG. 15. The left hand side of FIG. 16 (denoted 
as (A)) shows the set of output records from labeling the 
query examples using the repository classifier. The right 
hand side of FIG. 16 (denoted as (B)) shows the correspond- 
ing set of output records from labeling the repository 
examples using the query classifier. In this case, the reposi- 
tory has two examples for “woods” (1604, 1605), one 
example for “field” (1606), and one example for “lake” 
(1607). These examples are then classified using the clas- 
sifier provided by the query. The output labels correspond to 
the interpretations of these examples using the vocabulary 
from the query. As a result, the first example (1604) has a 
0.97 score for forest, and a 0.03 score for water. The second 
example (1605) has a 0.89 score for forest, and a 0.11 score 
for water. This process is repeated for examples 3 and 4 as 
well. The query has two examples of forests (1601,1602), 
and one example of water (1603). Note that all pairwise 
combinations of query and repository labels are represented 
at least once in each of the two cross-classification direc- 
tions. 

FIG. 17 illustrates the data flow of a cross-classification 
methodology for creating a final result set, in accordance 
with an embodiment of the invention. As shown, block 1701 
contains the set of examples for query classes, which are 
provided as input to the repository classifier 1702 to produce 
a set of records 1703 which contains assigned repository 
labels to each query example. Block 1711 is the set of 
examples for repository classes, which are provided as input 
to the query classifier 1722 to produce a set of records 1723 
which contains the assigned query labels to each repository 
example. Both sets of input labels and output labels can be 
thought of as a set of implications; in other words, another 
way to read “input label A produces output label B” is “A 
implies B.” The module 1731 is preferably a software 
module which combines the results from the two cross- 
classification steps. This combination module may, for 
example, be a fuzzy logic inference engine or any other 
suitable algorithm that can combine sets of implications (in 
both directions, e.g., A implies B, and B implies A) with 
associated scores, to produce a single set of unique output 
labels with associated scores for each input label (block 
1741). 

FIG. 18 is a flow diagram of a method of generating 
association rules between the query labels and the repository 
labels, in accordance with an embodiment of the invention. 
As shown, the method comprises four steps: 
1. Send examples, labels, and classifiers from a client to the 

repository (step 1801). 
2. The repository uses the received classifier to classify the 

examples stored at the repository and generate matrix 1 
(step 1802). 

3. The repository also uses its own classifier to classify the 
examples received from the client and generate matrix 2 
(step 1803). 

4. Cross match labels and generate label association rules 
(step 1804). Note that steps 1802 and 1803 in FIG. 18 are 
interchangeable. An example of matrix 1 and 2 are shown 
in FIG. 20. Also note that the confidence of cell (i, J) of 
the matrix (which corresponds to the confidence of clas- 
sifying label ‘i’ to label ‘J’) is the sum of the confidence 
of classifying the examples of label ‘i’ to label ‘J’. 
FIG. 19 shows the flowchart of a method for generating 

label association rules, in accordance with an embodiment 
of the invention. This method corresponds to step 1804 in 
FIG. 18. The method, as shown in FIG. 19, comprises: 

10 
1. Generate rules (and confidence of the rules) to associate 

labels from repository to labels from query using matrix 
1 (step 1901). 

2. Generate rules (and confidence of the rules) to associate 
labels from query to labels from repository using matrix 
2 (step 1902). 

3. Compute association confidence by using the following 
formulation: 

s 

Confidence(i, J)=Confidence(i-J)*Confidence (J-i) 
1 u  

where the label ‘i’ is from the one vocabulary, while the label 
J is from the other vocabulary. 

4. Prune (e.g., remove) those association rules which are 
below a threshold. 
FIG. 20 shows an example of matrix 1 and 2 as described 

above, as well as the example for computing the final 
association rules. Matrix 1 is computed from classifying 
repository examples using the classifier sent from the query/ 
client. Matrix 2 is computed from classifying query 

2o examples (sent from the client) using the classifier from the 
repository. Based on the confidence, only the association 
between label tuple (1,A) and (3,B) are generated. 

By applying the inventive methodologies described 
herein on the IC defect scenario described in FIG. 4, we 

25 assume that a set of labeled examples is supplied with a 
query, in an attempt to obtain similar defects from a reposi- 
tory on a different manufacturing line, which contains his- 
torical data about defects and identified causes. The reposi- 
tory would also contain samples of each defect class, but 

30 might label defects differently from the query. If classifiers 
have been trained to produce the defect labels from the 
examples, the cross-classification methodology of the inven- 
tion can be used to determine which of the repository defect 
classes best correspond to each query class. 

The present invention also solves the problem described 
in the news service personalization scenario (shown in FIG. 
6). An on-line news clipping service might provide articles 
that best match a subscriber’s interests. Rather than simply 
specifying a set of keywords for search, a more effective 

40 strategy may be for the query to contain information about 
articles that the user previously found of interest, under the 
assumption that these will do a good job of capturing the 
user’s future interests. If the user has placed the articles into 
folders, or otherwise identified a category for each article, 

45 these can be used as class labels for the cross-classification 
methodology of the invention. We assume here that the 
repository will have its own classification scheme (such as 
that employed by yahoo, for example), and an automated 
classifier. The cross-classifier of the invention can be used to 

50 determine which of the repository categories best match the 
user categories, using the example set from the user, and the 
repository training set. 

Note that in this example, the query need not supply a 
separate classifier. The set of examples and labels supplied 

5s with the query can be used to train a copy of the repository’s 
classifier, which then becomes the “query classifier” in the 
process as described. Also note that the user need not 
explicitly label hisher categories; all that is required is that 
examples be provided in different groups. Automatically 

may then be assigned, rather than labels semantically mean- 
ingful to human beings, and the cross-classification meth- 
odology of the invention applied. 

It should be evident from the descriptions of the invention 
65 provided herein that the classifier used for the query and for 

the repository need not come from those respective sources. 
The classifiers can both come from the query, from the 

‘ > ’  

35 

60 generated group labels (e.g., labels “aa,” “ab,” “ac,” . . . )  
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repository, or from a different source altogether. The two 
classifiers can be the same module, or different modules. All 
that is required for the methodology of the invention to be 
applied is the presence of a labeled (explicitly or anony- 
mously) set of training data for both the query and the 
repository. 

Also note, that the term “query” in the descriptions of the 
invention provided herein need not be supplied from a client 
or user. A query can be formulated from one repository that 
seeks to determine corresponding categories in another 
repository. Thus, this is a general-purpose methodology for 
unifying the contents of heterogeneous, distributed informa- 
tion archives. 

An advantage of the cross-classification methodology of 
the invention is that the search engine need not search the 
entire repository for matches to the query. It is sufficient to 
translate a set of examples for the query and repository 
categories, and use this information to determine the “best” 
repository categories. This methodology also allows a query 
engine to access multiple information repositories, and 
determine which of the repositories has the “best” informa- 
tion for fulfilling that query. By comparing category scores 
from multiple sources, we can always combine disparate 
information, and determine the best choice. 

Referring now to FIG. 21, a block diagram is shown 
illustrating a generalized hardware architecture of a com- 
puter system suitable for implementing all or at least a 
portion of a resource discovery methodology according to 
the invention as described in detail herein. For example, this 
generalized hardware architecture may be implemented by a 
client computer system of a user providing a query to be 
searched, and/or a computer system(s) on which a repository 
and/or retrieval engine resides, and/or any other computer 
system(s) associated with performing resource discovery 
operations described herein. Such computer systems may be 
coupled via a suitable network (e.g., Internet, Intranet, etc.). 
Thus, such a computer system may be used to implement 
one or more of the various functional componentsirnodules 
of a resource discovery methodology including cross-clas- 
sification as depicted in the figures and explained in detail 
herein. Of course, depending on the search environment 
within which the invention is employed, it is to be under- 
stood that the individual functional components of the 
semantic similarity evaluation methodology of the invention 
may be implemented on one such computer system, or on 
more than one separate such computer system. 

By way of example only, a client computer system may 
provide to a repository computer system, a query including: 
(1) the query itself comprising the set of labels that are to be 
retrieved (along with any constraints, or other query param- 
eters) in the requested search; (2) the training set comprising 
a set of labeled examples; and (3) a classifier used to assign 
the labels in the training set to input examples. At the 
repository computer system, which has a trained classifier 
and a training set, the received query classifier may be 
trained with the received query training set. Of course, the 
query classifier may be trained with the query training set at 
the client computer system or elsewhere prior to being 
received by the repository. Further, as mentioned above, the 
classifier may be the same classifier associated with the 
repository and therefore need not be part of the query. Then, 
as explained in detail above, cross-classification between the 
query labels and the repository labels is performed using the 
trained classifiers resulting in a set of label association rules 
that identify the optimum repository categories for fulfilling 
the requested search. If more than one repository is 
involved, the process may identify the optimum repository 

12 
for fulfilling the requested search. The search is then fulfilled 
and results are provided back to the client computer system. 

In any case, as shown in FIG. 21, the computer system 
may be implemented in accordance with a processor 2100, 

s a memory 2110 and I/O devices 2120. It is to be appreciated 
that the term “processor” as used herein is intended to 
include any processing device, such as, for example, one that 
includes a CPU (central processing unit) and/or other pro- 
cessing circuitry. The term “memory” as used herein is 

i o  intended to include memory associated with a processor or 
CPU, such as, for example, RAM, ROM, a fixed memory 
device (e.g., hard drive), a removable memory device (e.g., 
diskette), flash memory, etc. In addition, the term “input/ 
output devices” or “I/O devices” as used herein is intended 

is to include, for example, one or more input devices, e.g., 
keyboard, for entering data to the processing unit, and/or one 
or more output devices, e.g., CRT display and/or printer, for 
presenting results associated with the processing unit. It is 
also to be understood that the term “processor” may refer to 

20 more than one processing device and that various elements 
associated with a processing device may be shared by other 
processing devices. Accordingly, software components 
including instructions or code for performing the method- 
ologies of the invention, as described herein, may be stored 

zs in one or more of the associated memory devices (e.g., 
ROM, fixed or removable memory) and, when ready to be 
utilized, loaded in part or in whole (e.g., into RAM) and 
executed by a CPU. 

Although illustrative embodiments of the present inven- 
30 tion have been described herein with reference to the accom- 

panying drawings, it is to be understood that the invention 
is not limited to those precise embodiments, and that various 
other changes and modifications may be made by one skilled 
in the art without departing from the scope or spirit of the 

35 invention. 

What is claimed is: 
1. A method for use in resource discovery of establishing 

a semantic correspondence between a first set of labels and 
4o a second set of labels, the method comprising the steps of  

obtaining one or more examples and a classifier for the 
first set of labels, and one or more examples and a 
classifier for the second set of labels; 

using the classifier associated with the first set, trained on 
examples from the first set, to classify the second set 
thereby generating classification results for the second 
set of labels, and using the classifier associated with the 
second set, trained on examples from the second set, to 
classify the first set thereby generating classification 
results for the first set of labels; and 

generating label association rules based on the classifica- 
tion results for the first set of labels and the classifica- 
tion results for the second set of labels, a label asso- 
ciation rule having a semantic correspondence measure 

2. The method of claim 1, further comprising the step of 
identifying one or more label association rules, from the 
label association generated rules, which have a measure of 
confidence not below a given threshold value. 

3. The method of claim 2, wherein the one or more 
identified label association rules are used in a resource 
discovery operation associated with a requested search. 

4. The method of claim 3, wherein the resource discovery 
operation is distributed. 

5 .  The method of claim 1, wherein the semantic corre- 
spondence measure of confidence for a label from the first 
set with respect to a label of the second set is a sum of 

45 

55 of confidence associated therewith. 

60 

65 
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respective confidence measures associated with classifica- second set; (ii) generating rules associating labels of the 
tion of the one or more examples associated with the sets of second set to labels of the first set; and (iii) computing the 
labels. semantic correspondence measure of confidence for a label 

6. The method of claim 1, wherein the label association i from one of the sets and a label J from the other of the sets 
rules generation step further comprises the steps of  s as the product of a semantic correspondence confidence 

generating rules associating labels of the first set to labels measure associated with the label i implying the label J and 
of the second set; a semantic correspondence confidence measure associated 

generating rules associating labels of the second set to with the label J implying the label i. 
labels of the first set; and 15. The apparatus of claim 9, wherein classification of 

computing the semantic correspondence measure of con- i o  labels is supervised. 
fidence for a label i from one of the sets and a label J 16. The apparatus of claim 15, wherein supervised clas- 
from the other of the sets as the product of a semantic sification is performed in accordance with one of a Bayes 
correspondence confidence measure associated with classification algorithm, a Perceptron classification algo- 
the label i implying the label J and a semantic corre- rithm, a k-nearest-neighbor classification algorithm, a linear 
spondence confidence measure associated with the is discriminant function classification algorithm, and a neural 
label J implying the label i. networks classification algorithm. 

7. The method of claim 1, wherein classification of labels 17. An article of manufacture for use in resource discov- 
is supervised. ery of establishing a semantic correspondence between a 

8. The method of claim 7, wherein supervised classifica- first set of labels and a second set of labels, comprising a 
tion is performed in accordance with one of a Bayes clas- 20 machine readable medium containing one or more programs 
sification algorithm, a Perceptron classification algorithm, a which when executed implement the steps of  
k-nearest-neighbor classification algorithm, a linear dis- 
criminant function classification algorithm, and a neural 
networks classification algorithm. 

a semantic correspondence between a first set of labels and 
a second set of labels, the apparatus comprising: 

at least one processor operative to: (i) obtain one or more 
examples and a classifier for the first set of labels, and 
one or more examples and a classifier for the second set 30 
of labels; (ii) use the classifier associated with the first 
set, trained on examples from the first set, to classify 
the second set thereby generating classification results 
for the second set of labels, and use the classifier 
associated with the second set, trained on examples 3s 
from the second set, to classify the first set thereby 
generating classification results for the first set of 

9. Apparatus for use in resource discovery of establishing zs 

obtaining one or more-examples and a classifier for the 
first set of labels, and one or more examples and a 
classifier for the second set of labels; 

using the classifier associated with the first set, trained on 
examples from the first set, to classify the second set 
thereby generating classification results for the second 
set of labels, and using the classifier associated with the 
second set, trained on examples from the second set, to 
classify the first set thereby generating classification 
results for the first set of labels; and 

generating label association rules based on the classifica- 
tion results for the first set of labels and the classifica- 
tion results for the second set of labels, a label asso- 
ciation rule having a semantic correspondence measure 
of confidence associated therewith. 

18. In a client-server arrangement, a method for use in 
labels; and (iii) generate label association rules based resource discovery of establishing a semantic correspon- 
on the classification results for the first set of labels and dence between a first set of labels associated with a query 
the classification results for the second set of labels, a 40 provided at a client device and at least a second set of labels 
label association rule having a semantic correspon- associated with at least one information repository associ- 
dence measure of confidence associated therewith. ated with at least one server, the method comprising, at one 

10. The apparatus of claim 9, wherein the at least one of the client device and the server, the steps of  _ _  
processor is further operative to identify one or more label 
association rules, from the label association generated rules, 4s 
which have a measure of confidence not below a given 
threshold value. 

11. The apparatus of claim 10, wherein the one or more 
identified label association rules are used in a resource 
discovery operation associated with a requested search. 

12. The apparatus of claim 11, wherein the resource 
discovery operation is distributed. 

13. The apparatus of claim 9, wherein the semantic 
correspondence measure of confidence for a label from the 
first set with respect to a label of the second set is a sum of ss 
respective confidence measures associated with classifica- 
tion of the one or more examples associated with the sets of 
labels. 

14. The apparatus of claim 9, wherein the label associa- 
tion rules generation operation further comprises: (i) gener- 60 
ating rules associating labels of the first set to labels of the 

SO 

obtaining one or more examples and a classifier for the 
first set of labels associated with the client query, and 
one or more examples and a classifier for the second set 
of labels associated with the information repository; 

using the classifier associated with the first set, trained on 
examples from the first set, to classify the second set 
thereby generating classification results for the second 
set of labels, and using the classifier associated with the 
second set, trained on examples from the second set, to 
classify the first set thereby generating classification 
results for the first set of labels; and 

generating label association rules based on the classifica- 
tion results for the first set of labels and the classifica- 
tion results for the second set of labels, a label asso- 
ciation rule having a semantic correspondence measure 
of confidence associated therewith. 

* * * * *  


