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(57) ABSTRACT 

This invention presents Normalized Amplitude Hilbert 
Transform (NAHT) and Normalized Hilbert Transform 
(NHT), both of which are new methods for computing 
Instantaneous Frequency. This method is designed specifi- 
cally to circumvent the limitation set by the Bedorsian and 
Nuttal Theorems, and to provide a sharp local measure of 
error when the quadrature and the Hilbert Transform do not 
agree. Motivation for this method is that straightforward 
application of the Hilbert Transform followed by taking the 
derivative of the phase-angle as the Instantaneous Frequency 
(IF) leads to a common mistake made up to this date. In 
order to make the Hilbert Transform method work, the data 
has to obey certain restrictions. 
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COMPUTING INSTANTANEOUS 
FREQUENCY BY NORMALIZING HILBERT 

TRANSFORM 

ORIGIN OF INVENTION 

Huang, et al. 1998: The empirical mode decomposition and 
the Hilbert spectrum for nonlinear and non-stationary 
time series analysis. Proc. Roy. SOC. Lond., 454,903-993. 

Huang, N. E., Z. Shen, R. S. Long, 1999: A New View of 
Nonlinear Water Waves-The Hilbert Spectrum, Ann. 
Rev. Fluid Mech. 31, 417-457. 

Kaiser, J. F., 1990: On Teager’s energy algorithm and its 
generalization to continuous signals. Proc. 4th IEEE Sig- 
nal Processing Workshop, Mohonk, N.Y. 

i o  Landau, L. D. and E. M. Lifshitz, 1976: Mechanics, 3rd Ed. 
Pergamon, Oxford. 

Maragos, P., J. F. Kaiser, and T. F. Quatieri, 1993a: On 
The term ‘Instantaneous Frequency (IF)’ has elicited amplitude and frequency demodulation using energy 

strong opinions amongst the data analysis community. The operators, IEEE Trans. Signal Processing, 41,1532-1550, 
range covers from ‘banishing it forever from the dictionary M ~ ~ ~ ~ ~ ~ ,  P,, J, F, ~ ~ i ~ ~ ~ ,  and T, F, ~ ~ ~ ~ i ~ ~ i ,  1993b: E~~~~~ 
of the communication engineer (Shekel, 1953)’ to being a separation in signal modulation with application to speech 
‘conceptual innovation’ in assigning physical significance to analysis, IEEE T ~ ~ ~ ~ ,  signal processing, 41, 3024-3051, 
the nonlinearly distorted waveforms (Huang et a1 1998)’. In  ill^, W, K,, 1983: wave modulation and breakdown, J, 

between these extremes, there are plenty of more moderate Fluid Mech., 128, 489-506. 

definition. In general, most of the investigators accept the Hilbert Transform of modulated signals, proceedings of 
definition of classical wave theory, the derivative of the ZEEE, 54, 1458-1459, 
Phase (see, for example, Cohen, 1995). But questions of its Rice, S. O., 1944a: Mathematical analysis of random noise, 
validity persist. Bell Sys. Tech. Jl., 23, 282-310. 

Yet the need for instantaneous frequency is a real one for 2s Rice, S. O., 1944b: Mathematical analysis of random noise, 
data from nonstationary and nonlinear processes. Certainly, 111. Power spectrum and correlation functions, Bell Sys. 
the non-stationarity is a key feature here, but IF is even more Tech. Jl., 23, 310-332. 
important for nonlinear Processes. If the Process is Don- Rice, S. O., 1945a: Mathematical analysis of random noise, 
stationary, the frequency should be ever changing, albeit at 111. Statistical properties of random noise currents, Bell 
a slow rate. Then, there is a need for frequency value as a 30 sys, Tech, JI,, 24, 46-108, 

out. For the nonlinear cases, the oscillation can be viewed as IV, ~~i~~ through nonlinear devices, ~ ~ 1 1  sys, Tech, JI,, 

Therefore, it is compelling to clarify the concept of, to settle Infeld, E. and G. Rowland, 1990: Nonlinear waves, solutons 
these arguments on, and to Provide a workable method for 35 and chaos, Cambridge University Press, Cambridge. 
implementing the IF. Shekel, J., 1953: Instantaneous Frequency. Proc. I.R.E. 41, 

To date the most popular and direct method to define 548. 
Instantaneous Frequency is through the Hilbert Transform Van der Pol, B., 1946: The fundamental principles of fre- 
(HT). Yet practical difficulties of implementation make it not quency modulation, Proc. IEE, 93, 153-158. 
only useless, but also controversial. Straightforward appli- 40 Whitham, G. B., 1975: Linear and Nonlinear Waves, New 
cation of HT and then taking the derivative of the phase- York, Wiley. 
angle as the instantaneous frequency is the common mistake The following U.S. Patents are incorporated by reference: 
made up to this date (Hahn, 1995). In order to make the HT U.S. Pat. No. 5,983,162 “Computer Implemented Empirical 
method work, the data has to obey certain restrictions. Mode Decomposition Method, Apparatus and Article of 

Manufacture” 
are listed below: U.S. Pat. No. 6,381,559 “Empirical Mode Decomposition 
Bedrosian, E., 1963: On the quadrature approximation to the Apparatus, Method and Article of Manufacture for Ana- 

Hilbert Transform of modulated signals. Proc. IEEE, 51, lyzing Biological Signals and Performing Curve Fitting” 
868469.  U.S. Pat. No. 6,311,130 “Computer Implemented Empirical 

Boashash, B., 1992a: Estimating and interpreting the instan- SO Mode Decomposition Method, Apparatus and Article of 
taneous frequency of a signal. Part I: Fundamentals, Proc. Manufacture for Two-Dimensional Signals” 

s 
The inventor of the invention described herein is an 

employee of the United States Government. Therefore, the 
invention may be manufactured and used by or for the 
Government for governmental purposes without the pay- 
ment of any royalties thereon or therefor. 

BACKGROUND OF THE INVENTION 

Opinions stressing the frustration Of finding an 20 Nuttall, A. H., 1966: On the quadrature approximation to the 

function of time, for the value will not be constant through- Rice, s, o,, 1944a: Mathematical analysis of random noise, 

intra-wave frequency modulation (Huang et al, 1998, 1999). 24, 109-156. 

Some publications relating to Instantaneous Frequency 45 

SUMMARY OF THE INVENTION IEEE, 80, 520-538. ~ 

Boashash, B., 1992a: Estimating and interpreting the instan- 
taneous frequency of a signal. Part I: Algorithms and The present invention is an improvement over the Hilbert 
Applications, Proc. IEEE, 80, 540-568. 5s Transform. Specifically, this invention introduces an 

&hen, L., 1995: Eme-fvequency Analysis, Prentice Hall, improved Hilbert Transform application, the Normalized 
Englewood Cliffs, N.J. Amplitude Hilbert Transform (NAHT) and the Normalized 

Daubechies, I., 1992: Ten Lectures on Wavelets, Philadel- Hilbert Transform (NHT). This new application circumvents 
phia SIAM. most of the difficulties of the straightforward Hilbert Trans- 

Flandrin, p., 1999: Time-FrequencyiEme-Scale Analysis, 60 form such as the limitation described in the Bedrosian 
Academic Press, San Diego, Calif. (Bedrosian, 1963) and the Nuttal Theorems. 

Gabor, D., 1946: Theory of communication, J. IEE, 93, The invention is directed to a method of computing 
426457. Instantaneous Frequency (IF) of a signal. The method com- 

Goldstein, H., 1980: ClassicalMechanics, 2”d Ed., Addison- prises: inputting the signal, extracting a collection of Intrin- 
Wesley, Reading, Mass. 65 sic Mode Functions from the signal via Empirical Mode 

Hahn, S., 1995: Hilbert Transforms in Signal Processing, Decomposition, normalizing the Intrinsic Mode Functions, 
Artech House, Boston, Mass. and transforming the normalized Intrinsic Mode Functions 
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with a Hilbert Transform. The resulting Hilbert Transform 
can be analyzed to compute Instantaneous Frequency. The 
step of normalizing the Intrinsic Mode Function includes: 
identifying local maximum values in one of the Intrinsic 
Mode Functions, constructing an envelope signal from the 
identified local maximum values, dividing the Intrinsic 
Mode Function by the envelope signal, and repeating the 
above steps for all of the Intrinsic Mode Functions. 

In another embodiment of the present invention, the 
Intrinsic Mode Functions can be normalized by dividing the 
Functions by their Hilbert Transforms. 

From the Normalized Hilbert Transform, this invention 
teaches how to calculate an error index according to the 
following equation: 

E(t)=[abs(Hilbert Transform(y(t))) l]’, 

wherein y(t) is the Intrinsic Mode Function. This error, 
which is a function of time, gives a local measure of the error 
incurred during the process of Normalized Hilbert Trans- 
form. In other words, if the quadrature and the Hilbert 
Transform are identical, the error should be zero. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a flowchart of the method for computing 
Instantaneous Frequency according to this present invention. 

FIG. 2 is a graph of data of an exponentially decaying 
chirp signal. 

FIG. 3 is a graph of envelopes for the data shown in FIG. 
2. 

FIG. 4 is a graph of normalized signals for the data shown 
in FIG. 2. 

FIG. 5 is a graph of Instantaneous Frequency obtained 
using different techniques for the data shown in FIG. 2. 

FIG. 6 is a graph of Error Index for the data shown in FIG. 
2. 

FIG. 7 is a graph of data model Duffing Equation. 
FIG. 8 is a graph of Instantaneous Frequency for the data 

FIG. 9 is a graph of an acoustical signal data recorded 

FIG. 10 is a graph of the intrinsic Mode Function (IMF) 

FIG. 11 is a graph of envelopes for the data shown in FIG. 

FIG. 12 is a graph of a short section of FIG. 11. 
FIG. 13 is a graph of the Instantaneous Frequency plotted 

FIG. 14 is a graph of a short section of FIG. 13. 
FIG. 15 is a graph of Error Index for the data shown in 

shown in FIG. 7. 

from a speaker saying ‘Hello.’ 

component 8 of the data shown in FIG. 9. 

9. 

for the data shown in FIG. 9. 

FIG. 9. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENT OF THE INVENTION 

Before describing the Normalized Amplitude Hilbert 
Transform (NAHT) and the Normalized Hilbert Transform 
(NHT) in detail, the definition and physical meaning of the 
Instantaneous Frequency (IF) in general and a related theo- 
rem will be discussed. 
Definitions of Frequency 

Frequency is an essential quantity in the study of any 
oscillatory motion. Based on elementary physics, the defi- 
nition of frequency, o, is simply the inverse of period, T; that 
is 

4 

I (1) w =  -. 
T 

5 Therefore, the most direct way of determining the fre- 
quency should be the measure of the time intervals between 
consecutive zero-crossings. This is very clear for a simple 
sinusoidal wave train, where the period is well defined. For 
real data, the period is no longer easily measured, for there 
might be multi-extrema between two consecutive zero- 
crossings. As a result, the zero-crossing method has never 
found any practical use. We will propose a generalization for 
it in this application in later sections. 

In the dynamic system of a periodic motion, the frequency 
again becomes an important measure. An elegant method to 
determine the frequency is through the variation of the 
Hamiltonian, H(q, 

p), where q is the generalized coordinate, and p is the 
generalized momentum. Then the frequency is given by 

10 

1s 

2o 

2s in which A is the action variable defined as 

A=cJpd% (3) 

where the integration is over a complete period of rotation. 
3o The frequency so defined is varying with time, but the 

resolution is no finer than the averaging over one period, for 
the action variable is an integrated quantity. Thus, the 
frequency defined by Equation (3) is equivalent to the 
inverse of the period, the classical definition of frequency. 

The most commonly accepted definition of frequency is in 
classical wave studies. Starting with the assumption that the 
wave surface is represented by a ‘slowly’ varying function, 
we can propose that there exists an amplitude function a(x, 
t), and a phase function e(x, t), such that the wave profile is 

3s 

4o the real part of the complex valued function, 

&, t)=R(a(x, t)el9(x,*3. (4) 

The frequency and the wave number are defined as 

4s 
w 

as  as  
a x  _ -  = at  a n d k = -  

Cross differentiating the frequency, o, and wave number, 
k, one immediately obtains the wave conservation equation, so 

a k  a w  - + - = o ,  
at a x  

ss which is one of the fundamental laws governing the wave 
motion. As we can see here, it all started from the ‘slowly’ 
varying assumption, which enables us to write the complex 
representation given in Equation (4). We shall revisit this 
assumption and the consequences later. 

All of the above definitions of frequency can only be 
meaningful for extremely narrow band signals. (or, the 
mono-component functions, in which the numbers of zero- 
crossings and the extrema shall equal). In practical data 
analysis, the data is a real variable, which may have multi- 

65 extrema between consecutive zero-crossings. Then, there 
will not be a frequency value at any given time. Rather, we 
should look for the frequency content in a data set, which is 

60 
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defined through Fourier Transform traditionally. Thus, for a 
time series, x(t), we have 

J = I  

where 

a, = ~ T x ( r ) e " " J 1 d r .  (8) 

with R indicating the real part of the quantity. Here, the 
frequency, oj, is a constant throughout the time span, T, of 
the data. Therefore, with this definition, a data shall have 
many frequency values at any given time, but those fre- 
quency values are constant over the whole time span cov- 
ered by the integration. From the Fourier definition of 
frequency, we can see that the frequency content would be 
physically meaningful only if the data is stationary and the 
process, linear over the integrating span. 

Aslight generalization of the Classic Fourier Transform is 
to break the data into limited spans. Thus the frequency 
value can still vary, but is assumed to be constant, or at a 
slow rate, consummate with the integral span. This integrat- 
ing operation leads to the fundamental limitation on the 
Fourier frequency by the uncertainty principle, which states 
that the product of the frequency resolution, Am, and the 
time span over which the frequency value is defined, T, shall 
not be less than %. As Fourier Transform theory is estab- 
lished over infinite time span, then theory dictates that this 
time interval cannot be too short related to the period of the 
oscillation. At any rate, it is impossible to resolve frequency 
variation within one period. This seemingly weak restriction 
has in fact limited the Fourier spectral analysis to linear and 
stationary processes only. 

In the real world and in theoretical studies, the conditions 
of ever changing frequency are common, if not prevailing. 
A chirp signal is one class of the signals used by bats as well 
as in radar. The frequency content in speech, though not 
exactly a chirp, is ever changing too. Furthermore, for any 
nonlinear system, the frequency is definitely modulating not 
only among different oscillations, but also within one period 
as discussed by Huang et a1 (1998). Let us take the typical 
nonlinear Duffing equation as an example, 

d2 X (9) cdrr + x + EX3 = ycoswr, 

in which E is a parameter, and the right hand term is the 
forcing function of magnitude y and frequency o. This cubic 
nonlinear equation can be re-written as 

d2 X (10) 
- + x ( l  + & X 2 )  = ycoswr, 
dr2 

where the term in the parenthesis can be regarded as a single 
quantity representing the spring constant or the pendulum 
length of the nonlinear oscillator. As this quantity is a 
function of position, the frequency of this oscillator will be 
ever changing with the intra-wave modulations. The geo- 
metric consequence of this intra-wave frequency modulation 
is the waveform distortion; the basic cause is intra-wave 
frequency modulation. Such phenomena can certainly be 
better represented with a variable frequency, a frequency 
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6 
assuming different values at different time. This frequency is 
designated as the instantaneous frequency (IF). Now we 
have to face the difficulties of defining the instantaneous 
frequency. 
Instantaneous Frequency through Hilbert Transform 

A brief history of Instantaneous Frequency can be found 
in Boashash (1992 a and b). Here, we will only concentrate 
on certain important historical milestones that led to the 
method in its present state. The first important step is due to 
Van der Pol (1946), a pioneer in nonlinear differential 
equations, who first explored the idea of instantaneous 
frequency seriously. He proposed the correct expression of 
the phase-angle as an integral of the instantaneous fre- 
quency. The next important step was made by Gabor (1946), 
who introduced the Hilbert Transform to generate a unique 
complex signal from a real signal, thus removing the ambi- 
guity of the infinite many possible imaginary parts from one 
given real data. Here, for the variable x(t), its Hilbert 
Transform, y(t), is defined as 

with P indicating the Cauchy principal value of the complex 
integral, form a complex conjugate pair. Thus, we have 

z(t)=x(t)+iy(t)=u(t)e"('), (12) 

in which 

In this representation, the original data x(t) becomes 

x ( t ) = ~ = ( u ( t ) e ' " * ) } = u ( t ) ~ ~ ~  ~ ( t ) .  (14) 

For the analytic pair, the instantaneous frequency can be 
defined as the derivative of the phase function of the 
complex pair given by 

de(t)  1 (15) 
w(t)  = ~ dr = -(xy' a2 - yx'). 

In general, the phase function is a function of time; 
therefore, the frequency should also be a function of time. 
The value at any given time is the instantaneous frequency 
at that time. This definition of frequency bears striking 
similarity with that of the classical wave theory. As the 
Hilbert Transform exists for any function of L2 class, there 
is a misconception that one can put any function through this 
operation and obtain a physically meaningful instantaneous 
frequency as in Hahn (1995). 

Such an approach has created great confusion for the 
meaning of the instantaneous frequency in general, and 
tarnished the Hilbert Transform in particular. One of the 
most common misconceptions of Hilbert Transform is to 
apply it to functions consisting of two or more individual 
simple wave components. Although recent investigators 
have realized that for the Hilbert Transform to give mean- 
ingful answers, the data have to be mono-component, no 
rigorous definitions of the mono-component function is 
given. Most users simply resort to band pass filtering to 
generate the signal for their applications (Meville, 1983). As 
the filters are Fourier based, the filtering process inevitably 
distorts the waveform of the fundamentals, and makes the 
filtered results artificially smooth and linear. 
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The next important step in application of the Hilbert 
Transform was due to Bedrosian (1963), who gave the 
necessary conditions for obtaining a meaningful HT result of 
the product of functions. This enables us to write the Hilbert 
Transform of the envelope and carrier as 

H{a(i)cos O(t)}=u(t) H{cos e@)}, (1 6) 

provided that the Fourier spectra of the envelope and the 
carrier are non-overlapping. Even with this important result, 
there is a persistent difficulty for writing 

H{cos e(t)}=sin e@), (17) 

for arbitrary function of e(t). This difficulty has been ignored 
by most investigators including Boashash (1992a). It is true 
that for simple functions of e(t), the Hilbert Transform is the 
exact quadrature, but this is not true for arbitrary functions 
of e(t), as pointed by Nuttall (1966) and Huang et a1 (1998). 
The determination of the difference between the Hilbert 
Transform and the quadrature is the next important step in 
the HT development; it was due to Nuttall (1966), who 
stated that for any given function 

x(t)=a(t)cos e@), (18) 

for arbitrary a(t) and e(t) not necessarily narrow band 
functions, and if the Hilbert Transform of x(t) is given by 
xh(t), and the quadrature of x(t) is xq(t), then 

where 

in which F(o) is the spectrum of the signal, and F,(o) is the 
spectrum of the quadrature of the signal. Therefore, the 
necessary and sufficient conditions for the Hilbert Transform 
and quadrature to be identical is that E=O. That is the 
spectrum of the modulation signal has to be one-sided. 
Unfortunately, there are two deficiencies in this important 
result: The first one is that the result is expressed in terms of 
the quadrature spectrum, which is an unknown quantity. The 
second is that the result is given as an overall integral, which 
provides a global measure of the agreement. Cohen (1995) 
has sharpened the result, but only succeeded in given an 
upper bound on the error at any given time. 

As we can see, all these important steps were ready by the 
late sixties, yet the applications of the Hilbert Transform 
have still attracted incessant criticisms. Most of the criti- 
cisms are the results of ignoring the restrictions listed in the 
above. If one adheres to the restrictions, one would find that 
the data has to be so narrow banded. As most of data are not 
narrow banded; therefore, most investigators found the HT 
method has no practical use. The most critical difficulty is 
that, there is no effective way to decompose any given data 
into mono-component functions. This last restriction effec- 
tively blocked the wide acceptance of HT as a useful method 
in data analysis. 

It is clear that for any data, complicated data especially, 
that they consist of numerous superimposing modes. 
Therefore, to define only one instantaneous frequency value 
for any given time is not meaningful. Because of the 
existence of simultaneous multi-components, and because 
the instantaneous frequency is needed only when the process 
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8 
is nonstationary, even the averaged value as in the Wigner- 
Ville distribution (see, for example, Flandrin, 1999) is not 
meaningful, for the difficulties involved in the averaging 
procedure for nonstationary processes. We will return to this 
point later when we discuss the Wigner-Ville distribution. 

To fully consider the effects of multi-components, we 
really need a decomposition method to separate the compo- 
nents completely and orthogonally. In case of nonlinear data, 
the orthogonality condition needs to be relaxed as discussed 
by Huang, et a1 (1998). Only recently, did Huang et a1 (1998) 
proposed the Empirical Mode Decomposition (EMD) (step 
12), which produces Intrinsic Mode Functions that are both 
mono-component and symmetric. This is a critical step 
toward making HT practical. Referring to FIG. 1, a signal is 
introduced (step 10) and EMD prepares the data into the 
IMF (step 12), which satisfies the necessary condition for 
not having negative frequency from HT. With the EMD, we 
finally remove an important practical blockage, and make 
Hilbert Transform a truly practical method in determining 
the Instantaneous Frequency, but difficulties still exist. 
Normalized Amplitude Hilbert Transform (NAHT) and 
Error Index 

Even with the EMD, we still can run in the difficulties as 
stated by Bedrosian and Nuttall Theorems. Both of these 
limitations have firm theoretical foundations. One aspect of 
this invention presents a method, the Normalized Amplitude 
Hilbert Transform (NAHT), designed specifically to circum- 
vent the limitation set by the Bedorsian Theorem, and to 
provide a sharp local measure of error when the quadrature 
and the Hilbert Transform do not agree. Before describing 
the method, we have to stress that the data has to be IMF 
functions through the EMD method. The NAHT method 
involves the following steps: 

First, referring to step 14 in FIG. 1, identify all the local 
maxima in the EMD decomposed data. Then connect all the 
maxima with a cubic spline curve, which should give the 
local amplitude of the data, A(t). Then, we can use this 
amplitude to normalize the data by 

As A(t) is the spline of all the maxima, a(t)/A(t) should 
normalize y(t) with maxima all at unity. Thus, we effectively 
separate the amplitude from the carrier oscillation. Then, we 
will compute the instantaneous frequency from this normal- 
ized IMF, y(t). Ideally, without the limitation of Bedrosian 
Theorem, the Hilbert Transform of y(t) (step 16) should be 
the quadrature of the function, but the limitation of Nuttall 
Theorem is still there. To establish an error bound, we argue 
the following way: 

If the Hilbert Transform is indeed the quadrature, then the 
absolute value of it should be one. In other words, if the 
quadrature and the Hilbert Transform are identical, the error 
should be zero. Any deviation is an indication of differences 
between the quadrature and Hilbert Transform. Therefore, 
an error index can be define and computed (step 18) as 

E(t)=[abs(Hilbert Transform(y(t)))-11. (22) 

Unlike the Error bound established by the Nuttal 
Theorem, this error index is a function of time, giving a local 
measure of the error incurred in this process of Normalized 
Amplitude Hilbert Transform. An acceptable error index can 
be predetermined for the process. Thus, while analyzing the 
Transform to compute Instantaneous Frequency (step 20), 
any Instantaneous Frequency with an error index below the 
predetermined value can be ignored. 
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Based on our experience, the major source of the error 

comes from two sources: The first source is due to drastic 
change of amplitude, then the spline fitting will not be able 
to turn sharp enough. The second source is due to the 
nonlinear nature of the phase function e(t). As discussed in 
Huang et a1 (1998), when the phase function is not an 
elementary function, the differentiation of the Hilbert Trans- 
form determined phase will not be identical to that from the 
quadrature phase. Unfortunately, there is no more detailed 
measure of the error than what is given in Equation (22). We 
have to use other means to separate the source of the error 
in the specific individual case considered. 
Normalized Hilbert Transform (NHT) 

Having given the NAHT method, we can also present a 
variation of it by using the envelope determined through 
Hilbert Transform as the base for normalization. We desig- 
nate this variation as Normalized Hilbert Transform (NHT). 
In most cases this approach works just as well. But consid- 
ering that the difficulties actually arise from the difficulty in 
Hilbert Transform, we have to be very careful in using the 
Hilbert Transform (step 16) from the data in any operation. 
We will discuss this in the examples later. 
Additional Methods for Determining Instantaneous Fre- 
quency 

Other than the Hilbert Transform, there are other methods 
for determining the IF, each based on different assumptions, 
and each gives slightly different values for IF from the same 
data. Before starting, we have to emphasize that for the 
instantaneous Frequency to be physically meaningful, the 
data used in two of the following methods will have to be 
‘mono-components’. In fact in most of the definitions, the 
requirement is even more stringent: the data have to be 
Intrinsic Mode Functions as defined by Huang et a1 (1998), 
where the condition has been justified for the Hilbert Trans- 
form. In this section we shall discuss the different 
approaches, and compare the results from them. 

1. Teager Energy Operator 
The second definition of instantaneous frequency is by the 

Teager Energy Operator (TEO, see, for example, Kaiser, 
1990). The idea is based on a signal of the form 

x(t)=u sin wt, (23) 

then, an energy operator can be defined as 

Y(x)=iZ-Xi. (24) 

For this simple oscillator, we have 

w(x)=uZwZ; and Y(i)=azwz. (25) 

By manipulating the two terms in Equation (25), we have 

Thus one can obtain both the amplitude and frequency with 
the energy operator. Kaiser (1990) and Maragos et a1 (1993 
a, b) have extended the energy operator approach to the 
continuous functions of AM-FM signals, where both the 
amplitude and the frequency are functions of time. In those 
cases, the energy operator will offer an approximation, 
which could give accurate values, provided the amplitude 
and frequency are slowly varying. As this method is based 
on a linear model, the energy operator approach will also 
break down whenever the wave profiles have any harmonic 
distortions. A very strong point of the energy operator is its 

super localization property, a property un-surpassed by any 
other approaches. This localization property is because the 
method is based on differentiation; therefore, it involves at 
most five neighboring data points to evaluate the frequency 

5 at the central point. No integral transform is needed as in 
Fourier or Hilbert Transforms. 

2. Wavelet Analysis 
Wavelet is a very popular data analysis method (see, for 

example, Daubechies, 1992); unfortunately, it has been 
misused by many. True, wavelet offers time-frequency 
analysis with uniform scale (or frequency) resolution, but it 
is not designed for time-frequency analysis. The most seri- 
ous weakness of wavelet analysis is the limitation of the 
uncertainty principle: To be local, a base wavelet cannot 
contain too many waves; to have fine frequency resolution, 
a base wavelet will have to contain many waves. As the 
numerous examples offered by Huang et a1 (1998 and 1999) 
have shown, the uniformly poor frequency resolution ren- 
ders wavelet only as a qualitative tool for time-frequency 
analysis. It is, however, very useful for data compression, 

20 image outline findings, for example. As our emphasis is on 
Instantaneous Frequency evaluation, we will not discuss this 
method in further comparisons. 

10 

3. Wigner-Ville Distribution 3 
Wigner-Ville distribution (see, for example, Cohen, 1995) 

25 is defined as 

30 
By definition, the marginal distribution, by integrating the 

time axis out, is identical to the Fourier Power density 
spectrum. Even though the full distribution does offer some 
time-frequency properties, it inherits all the shortcomings of 

35 Fourier analysis. The additional time variable offers a center 
of gravity type of weighted mean frequency as 

Here we have a single value as a mean for all the different 
components. For lack of details, we will not conduct further 
comparisons of other results with the Wigner-Ville distribu- 
tion. 

Having presented all these methods, we will present some 
inter-comparisons of the results in the next sections. 
Inter-comparisons of results from different methods and 
Discussions 

It should be point out that, other than the wavelet and 
Wigner-Ville distribution, the signals, in all other instanta- 
neous frequency approaches, have to be ‘mono-component’, 
or Intrinsic Mode Functions (IMF) as defined by Huang et 
a1 (1998). 

Let us apply these three methods to some examples. The 
first example is the exponentially decayed sine wave given 

4s . 

55 

by 

60 x(r) = exp(-&)sin(?lc(i) r 3  1; r = 0:1024. (29) 

FIG. 2 gives the data. Here we have a drastically decaying 
cubic chirp signal, in which both the amplitude and fre- 

65 quency are ever changing with large gradients of change. 
FIG. 3 gives the envelopes determined from NHT and 
NAHT methods. One can immediately see that the drastic 
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change of amplitude in the data has rendered the amplitude 
from NHT grossly inaccurate. This will lead to poor nor- 
malization as shown in FIG. 4. The consequence is that the 
Instantaneous Frequency determined from NHT is a slight 
improvement over HT, but its values are very different from 
all the other methods as shown in FIG. 5. Here we can see 
that the Teager Energy Operator (TEO) offers very stable 
results. 

Next, we will examine the error incurred in the methods 
with the results plotted in FIG. 6. Obviously, the error is 
much bigger in the NHT than NAHT. Because of this 
incomplete correction of NHT for this case, we do not 
recommend using it for general cases. 

The second example is a modeled Duffing type wave 
given by 

x ( t )  = cos(, ilt + 0.3sin( %)); ilt with t = 0 : 1024. (30) 

Assuming the sampling rate to be 1 Hz again, the signal 
is given in FIG. 7. As the amplitude is already normalized, 
we can proceed without normalization in NAHT. But, we 
still need to normalize it in the NHT. The Instantaneous 
frequency is given in FIG. 8. Here we can see clearly that the 
nonlinear characteristics caused great difficulties in TEO, 
which gives totally erroneous frequency due to the harmonic 
distortion of the waveform. In this case the HT and NAHT 
actually give the same Instantaneous Frequency values, 
because the amplitude is normalized already. The NHT gives 
a slightly worse Instantaneous Frequency due to the nor- 
malization with the Hilbert Transform. The error indices are 
small in both NHT and NAHT. The main lesson here is that 
the TEO is for linear signals, but not the intra-wave fre- 
quency modulation, which is a sure sign of signal from 
nonlinear processes. 

The final example is an IMF extracted from the voice 
record of ‘Hello.’The original signal is given in FIG. 9, with 
the IMF component 8, the most energetic one, given in FIG. 
10. First, we will present the envelopes obtained from both 
the spline and Hilbert Transform fittings as in FIG. 11. A 
short section is amplified in FIG. 12 to show the fitting in 
details. The spline fitting works well. 

Now, we plot the Instantaneous Frequency in FIG. 13. 
One can immediately see the numerous instances when the 
TEO value drops to the zero level, an indication of nonlinear 
processes. One can also see the large fluctuations of the HT 
and NHT determined Instantaneous Frequency. These Val- 
ues all happen, as expected, at the locations when the signal 
has large amplitude fluctuations. The values obtained from 
the NAHT have certainly corrected these anomalies from the 
Hilbert Transform. In fact, the results from the NAHT have 
never dipped to zero or negative level as in the HT or NHT 
cases. The error indices of the NHT and NAHT are given in 
FIG. 15. 

From this example, we can see that all the methods 
presented here perform acceptably. TEO is very local, for it 
is totally based on differentiation operations. But it is also 
derived from a linear assumption; therefore, when there is 
pronounced waveform distortion, the TEO result shows zero 
frequency even after the five-point-medium-filtering. The 
strength and weakness of each are summarized as follows: 

The Hilbert Transform (HT) is mathematically most 
elegant, and intuitively pleasing. Yet in detailed 
examination, we find that the HT has certain limitations. 
Mathematically, the only signal that will give acceptable 
transforms has to obey the Bedrosian theorem (1963). When 
the data violate the conditions given in the Bedrosian 
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theorem, HT will give erroneous results. Fortunately, this 
only occurs when the amplitude varies greatly, and the 
problem invariably occurs at regions where local amplitude 
values are minimum. This makes the HT not perfectly local. 
A windowed approach, of using limited data piecewise by 
limiting the amplitude variation within the window to a 
certain pre-assigned value, will improve the answer. Another 
limitation on the HT is that not all Hilbert Transforms and 
the functions form the analytic pairs. The consequence is 
that the frequency will, sometimes, be only an approxima- 
tion. Even with these limitations, our experience indicates 
that the results provided by the HT are consistently better 
than most of the other methods. 

If we use the improved HT in the form of NHT or NAHT, 
the results are drastically improved. As NHT still suffers the 
consequence of Bedrosian Theorem, it should be used with 
its limitations in mind. NAHT overcomes the limitation set 
by Bedrosian Theorem, and offers a local measure of error 
better than the Nuttall Theorem. 

TEO is much more local than the HT. Unfortunately, TEO 
is based on a linear oscillator; therefore, whenever the signal 
comes from, nonlinear processes and shows harmonic dis- 
tortions the TEO breaks down. The best way to use the TEO 
is to band pass the signal. But band passing is based on the 
linear Fourier analysis, which will destroy the nonlinear 
characteristics of the signal. 

Depending on applications and data characteristics, and 
data analysis goals, one or the other of these methods can 
provide quite satisfactory answers. NAHT is the best overall 
method for determining the Instantaneous Frequency for 
nonlinear and nonstationary data. 

It is to be understood that the above-described arrange- 
ments are only illustrative of the application of the principles 
of the present invention. Numerous modifications and alter- 
native arrangements may be devised by those skilled in the 
art without departing from the spirit and scope of the present 
invention and the appended claims are intended to cover 
such modifications and arrangements. 

What is claimed is: 
1. A computer implemented method of analyzing a signal 

inputting the signal; 
extracting a collection of Intrinsic Mode Functions from 

normalizing the Intrinsic Mode Functions; and 
transforming the normalized Intrinsic Mode Functions 

2. The computer implemented method as in claim 1, 

analyzing the normalized Hilbert Transform to determine 

3. The computer Implemented method as in claim 1, said 
step of normalizing the Intrinsic Mode Function including: 

identifying local maximum values in one of the Intrinsic 

constructing an envelope signal from the identified local 

dividing the intrinsic Mode Function by the envelope 

repeating the above steps for all of the intrinsic Mode 

4. The computer method as in claim 3, wherein construct- 

connecting all the local maximum values with a cubic 

comprising: 

the signal via Empirical Mode Decomposition; 

with a Hilbert Transform. 

further comprising: 

Instantaneous Frequency. 

Mode Functions; 

maximum values; 

signal; and 

Functions. 

ing the envelop of the signal includes: 

spline curve. 
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5. The computer method as in claim 1, further comprising: 
calculating an error index according to the following 

8. The computer implemented method as in claim 7, 

analyzing the normalized Hilbert Transform to determine 
further ComPrising: 

equation: 

E(t)=[abs(Hilbert Transforrn(V(t)))-l]’, 
Instantaneous Frequency. ’ 9. The computer implemented method as in claim 7, said 

wherein y(t) is the normalized Intrinsic Mode Function, 
6, The computer implemented method as in claim 1, said 

step of normalizing the Intrinsic Mode Function including: 
transforming one of the Intrinsic Mode Functions with a 

dividing the Intrinsic Mode Function by the Hilbert 

repeating the above steps for all the Intrinsic Mode 

7. A computer implemented method of analyzing a signal 

inputting the signal; 
extracting a collection of Intrinsic Mode Functions from 2o 

normalizing the Intrinsic Mode Functions; and 
transforming the normalized Intrinsic Mode Functions 

calculating an error index according to the following ” 

step of normalizing the Intrinsic Mode Function including: 
identifying local maximum values in one of the Intrinsic 

constructing an envelope signal from the identified local 

dividing the Intrinsic Mode Function by the envelope 

repeating the above steps for all of the Intrinsic Mode 

10. The computer method as in claim 9, wherein con- 

connecting all the local maximum values with a cubic 

11. The computer implemented method as in claim 7, said 
step of normalizing the Intrinsic Mode Function including: 

transforming one of the Intrinsic Mode Functions with a 

dividing the Intrinsic Mode Function by the Hilbert 

repeating the above steps for all the Intrinsic Mode 

Mode Functions; 

Hilbert Transform; maximum values; 

Transform; and signal; and 

Functions. 1s Functions. 

comprising: structing the envelop of the signal includes: 

spline curve. 

the signal via Empirical Mode Decomposition; 

Hilbert Transform; 

Transform; and 

with a Hilbert Transform; 

equation: 

E(t)=[abs(Hilbert Transforrn(V(t)))-l]’, Functions. 

wherein y(t) is the normalized Intrinsic Mode Function. * * * * *  


