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~ ~~~ 
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SURVEILLANCE SYSTEM AND METHOD 
HAVING PARAMETER ESTIMATION AND 

OPERATING MODE PARTITIONING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation patent application of 
U.S. application Ser. No. 09/591,140, filed Jun. 9,2000, now 
U.S. Pat. No. 6,609,036. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

The invention described herein was made in the perfor- 
mance of work under NASA Small Business Innovation 
Research (SBIR) Contract NAS4-99012, and is subject to 
the provisions of Public Law 96-517 (35 USC 202) and the 
Code of Federal Regulations 48 CFR 52.227-11 as modified 
by 48 CFR 1852.227-11, in which the contractor has elected 
to retain title. 

FIELD OF THE INVENTION 

The instant invention relates generally to a system and 
method for process parameter estimation using operating 
mode partitioning and, in particular, to a system and method 
for performing high sensitivity surveillance of an asset such 
as a process and/or apparatus preferably having at least two 
distinct modes of operation wherein surveillance is per- 
formed using an operating mode partitioned parameter esti- 
mation model of the asset. 

BACKGROUND OF THE INVENTION 

Conventional process surveillance schemes are sensitive 
only to gross changes in the mean value of a process signal 
or to large steps or spikes that exceed some threshold limit 
value. These conventional methods suffer from either a large 
number of false alarms (if thresholds are set too close to 
normal operating levels) or from a large number of missed 
(or delayed) alarms (if the thresholds are set too 
expansively). Moreover, most conventional methods cannot 
perceive the onset of a process disturbance or sensor signal 
error that gives rise to a signal below the threshold level or 
an alarm condition. Most conventional methods also do not 
account for the relationship between a measurement by one 
sensor relative to another sensor. 

Recently, improved methods for process surveillance 
have developed from the application of certain aspects of 
artificial intelligence technology. Specifically, parameter 
estimation methods have been developed using either 
statistical, mathematical or neural network techniques to 
learn a model of the normal patterns present in a system of 
process signals. After learning these patterns, the learned 
model is used as a parameter estimator to create one or more 
virtual signals given a new observation of the actual process 
signals. Further, high sensitivity surveillance methods have 
been developed for detecting process and signal faults by 
analysis of a mathematical comparison between the actual 
process signal and its virtual signal counterpart. 

Parameter estimation based surveillance schemes have 
been shown to provide improved surveillance relative to 
conventional schemes for a wide variety of assets including 
industrial, utility, business, medical, transportation, 
financial, and biological systems. However, parameter esti- 
mation based surveillance schemes have in general shown 
limited success when applied to complex processes. Appli- 
cant recognizes and believes that this is because the param- 
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eter estimation model for a complex process must charac- 
terize the entire operating state space of the process to 
provide effective surveillance. Moreover, a review of the 
known prior-art discloses that virtually all such systems 
developed to date utilize a single model of the process to 
span the entire set of possible operating modes. Hence, a 
significant shortcoming of the known prior-art is that, inter 
alia, statistically derived models become extremely large 
and neural network models become difficult or impractical 
to train when the process operating state space is complex. 
The implication for statistically derived models is that the 
parameter estimation method and system becomes compu- 
tationally expensive to operate thereby limiting the utility of 
the method for on-line or real-time surveillance. An alter- 
native for statistically derived models is to constrain the size 
of the model; however this constraint limits the accuracy of 
the parameter estimation method and thereby limits the 
sensitivity of the surveillance method. The implication for 
mathematical and neural network models is simply that the 
parameter estimation method and system becomes less accu- 
rate thereby degrading the sensitivity of the surveillance 
method. 

Many attempts to apply multivariate state estimation 
techniques, mathematical modeling techniques and neural 
network techniques to assets such as industrial, utility, 
business, medical, transportation, financial, and biological 
processes have met with poor results in part because the 
parameter estimation models used were expected to charac- 
terize the entire operating state space of the process. In one 
example, a multivariate state estimation technique (MSET) 
based surveillance system for the Space Shuttle Main 
Engine’s telemetry data was found to produce numerous 
false alarms when the learned MSET parameter estimation 
model was constrained to a size suitable for on-line, real- 
time surveillance. In this case, the surveillance system false 
alarm rate could be reduced by desensitizing the surveillance 
threshold parameters; however, the missed alarm rates then 
became too high for practical use in the telemetry data 
monitoring application. 

Moreover, current multivariate state estimation 
techniques, mathematical modeling techniques and neural 
network techniques for surveillance of assets such as 
industrial, utility, business, medical, transportation, 
financial, and biological processes fail to recognize the 
surveillance performance limitations that occur when it 
becomes necessary to trade-off decision processing speed 
against decision accuracy. This may be attributed, in part, to 
the relative immaturity of the field of artificial intelligence 
and computer-assisted surveillance with regard to real-world 
process control applications. Additionally, a general failure 
to recognize the specific limitations of trading off decision 
processing speed against decision accuracy for computer- 
assisted surveillance is punctuated by an apparent lack of 
known prior art teachings that address potential methods to 
overcome this limitation. In general, the known prior-art 
teaches computer-assisted surveillance solutions that are 
either applied globally to all operating modes of an asset or 
applied only to a single predominant operating mode, for 
example, applied only to steady state operations while 
neglecting all transient operating states of the asset. 

For the foregoing reasons, there is a need for a surveil- 
lance system and method that overcomes the significant 
shortcoming of the known prior-art as delineated herein- 
above. 

BRIEF SUMMARY OF THE INVENTION 
The instant invention is distinguished over the known 

prior art in a multiplicity of ways. For one thing, one 
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embodiment of the invention provides a surveillance system 
and method that partitions parameter estimation models of 
an asset for overcoming a performance limiting trade-off 
between decision processing speed and decision accuracy 
that has been generally unrecognized by the known prior-art. 
Additionally, one embodiment of the invention can employ 
any one of a plurality of parameter estimation methods and 
the process models used therewith for improving surveil- 
lance performance. Furthermore, one embodiment of the 
invention provides a surveillance system and method that 
provides an operating mode partitioned parameter estima- 
tion model that can be accomplished by observation and 
analysis of a time sequence of process signal data and by a 
combination of a plurality of techniques. 

Moreover, one embodiment of the invention provides a 
surveillance system and method that provides an operating 
mode partitioning of the parameter estimation model which 
enables different parameter estimation methods, thresholds 
and decision logic to be used for surveillance within each 
individual operating mode of an asset. This ability enables 
surveillance to be performed by the instant invention with 
lower false alarm rates and lower missed alarm rates than 
can be achieved by the known prior-art methods. 

Hence, one embodiment of the invention provides a 
surveillance system and method that performs its intended 
function much more effectively by enabling higher decision 
processing speed without a concomitant reduction in deci- 
sion accuracy. Conversely, one embodiment of the invention 
alternately enables improved decision accuracy without a 
concomitant reduction in decision processing speed. 
Additionally, these competing criteria may be traded-off to 
achieve the optimal performance solution for a specific 
surveillance application. 

Furthermore, and in contrast to the known prior art, and 
in one embodiment of the invention, parameter estimation 
methods, thresholds and decision logic may be individually 
tailored for each operating mode of the asset thereby pro- 
viding additional capability to reduce decision error rates for 
the surveillance system. 

In one embodiment of the invention, the instant invention 
provides a surveillance system and method that creates and 
uses, for the purpose of process surveillance, a coordinated 
array of process parameter estimation submodels wherein 
each process submodel in the coordinated array is optimized 
for a single process operating mode or subset of operating 
modes of an asset. 

In another embodiment of the invention, a method for 
determining asset status includes the steps of creating a 
process model comprised of a plurality of process submod- 
els each correlative to at least one training data subset 
partitioned from an unpartitioned training data set and each 
having an operating mode associated thereto; acquiring a set 
of observed signal data values from an asset; determining an 
operating mode of the asset for the set of observed signal 
data values; selecting a process submodel from the process 
model as a function of the determined operating mode of the 
asset; calculating a set of estimated signal data values from 
the selected process submodel for the determined operating 
mode, and determining asset status as a function of the 
calculated set of estimated signal data values. 

In another embodiment of the invention, a system for 
determining asset status is comprised of a training data set 
partitionable into a plurality of training data subsets having 
a plurality of predefined operating modes associated there- 
with such that each partitioned training data subset includes 
at least one of said predefined operating modes associated 
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thereto; means for acquiring a set of observed signal data 
values from an asset; means for determining an operating 
mode of the asset for the set of observed signal data values; 
means for selecting a process submodel from a process 
model as a function of said determined operating mode of 
the asset; means for calculating a set of estimated signal data 
values from said selected process submodel for said deter- 
mined operating mode for performing asset surveillance, 
and means for determining asset status as a function of the 
calculated set of estimated signal data values. 

In another embodiment of the invention, an asset surveil- 
lance system is comprised of a data acquisition means for 
acquiring a set of signals from an asset correlative to asset 
status; a digitizing means for digitizing said set of signals for 
defining a set of digitized signals; a process model com- 
prised of a plurality of process submodels each correlative to 
at least one training data subset partitioned from an unpar- 
titioned training data set and wherein each of said parti- 
tioned training data subsets and each of said plurality of 
process submodels has at least one defined operating mode 
associated therewith; an operating mode determination 
means for determining an operating mode of said asset; a 
process model selection means for selecting at least one of 
said process submodels as a function of said determined 
operating mode; a parameter estimation means for produc- 
ing a set of estimated signal values from said selected 
process submodel; a fault detection means for detecting the 
presence of a fault as a function of said set of estimated 
signal values from said selected process submodel for pro- 
viding asset surveillance. 

In another embodiment of the invention, a method for 
performing surveillance of an asset includes the steps of 
creating a process model comprised of a plurality of process 
submodels each correlative to at least one training data 
subset partitioned from an unpartitioned training data set and 
each having an operating mode associated thereto; acquiring 
a set of observed signal data values from the asset; deter- 
mining an operating mode of the asset for the set of observed 
signal data values; selecting a process submodel from the 
process model as a function of the determined operating 
mode of the asset; calculating a set of estimated signal data 
values from the selected process submodel for the deter- 
mined operating mode, and determining asset status by 
performing the step of comparing the set of observed signal 
data values to the calculated set of estimated signal data 
values for performing asset surveillance. 

Moreover, having thus summarized the invention, it 
should be apparent that numerous modifications and adap- 
tations may be resorted to without departing from the scope 
and fair meaning of the present invention as set forth 
hereinbelow by the claims 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a schematic functional flow diagram of an 

embodiment of the invention. 
FIG. 2 is a schematic functional flow diagram of a method 

and system for training an operating mode partitioned array 
of parameter estimation models using recorded observations 
of the actual process signals in an embodiment of the 
invention. 

FIG. 3 is a schematic functional flow diagram of a method 
and system for performing surveillance of an asset using an 
operating mode partitioned array of parameter estimation 
models in an embodiment of the invention. 

FIG. 4 is a schematic functional flow diagram of a 
surveillance procedure using an operating mode partitioned 
parameter estimation model in an embodiment of the inven- 
tion. 
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FIG. 5 is a schematic functional flow diagram of a method 
and system for the MSET training procedure in an embodi- 
ment of the invention. 

FIG. 6 is a schematic functional flow diagram of a method 
and system for the MSET surveillance procedure in an 
embodiment of the invention. 

FIG. 7 illustrates the relationship between the overall 
MSET parameter estimation error and the number of obser- 
vation vectors used in the process memory matrix when 
unpartitioned process modeling methods are used for MSET 
training and surveillance; 

FIG. 8 illustrates the relationship between the data pro- 
cessing time required for producing an MSET parameter 
estimate and the number of observation vectors used in the 
process memory matrix when unpartitioned process model- 
ing methods are used for MSET training and surveillance. 

FIG. 9 is a schematic functional flow diagram of the 
training procedure for an embodiment using an operating 
mode partitioned array of MSET parameter estimation mod- 
els in an embodiment of the invention. 

FIG. 10 is a schematic functional flow diagram of the 
surveillance procedure for an embodiment using an operat- 
ing mode partitioned array of MSET parameter estimation 
models in an embodiment of the invention. 

FIG. 11 is a schematic architecture diagram of a learning 
vector quantization neural network useful for classifying the 
operating mode of an asset in an embodiment of the inven- 
tion. 

FIG. 12 lists the learning vector quantization neural 
network operating mode classifier design characteristics 
used for feasibility testing of an embodiment of the inven- 
tion. 

FIG. 13 lists the Space Shuttle Main Engine parameters 
used for feasibility testing in an embodiment of the inven- 
tion. 

FIG. 14 lists the Space Shuttle Main Engine flight telem- 
etry data sets used for feasibility testing of an embodiment 
of the invention. 

FIG. 15 lists the parameter estimation model and model 
array configurations used for feasibility testing of an 
embodiment of the invention. 

FIG. 16 lists the Space Shuttle Main Engine operating 
mode partitioning rules used for feasibility testing of an 
embodiment of the invention. 

FIG. 17 lists the feasibility test results for nominal flight 
data using an embodiment of an operating mode partitioned 
MSET process model array for the Space Shuttle Main 
Engine in an embodiment of the invention. 

FIG. 18 lists the feasibility test results for signal drift 
failure detection simulations using an embodiment of an 
operating mode partitioned MSET process model array for 
the Space Shuttle Main Engine in an embodiment of the 
invention. 

FIG. 19 lists the comparative test results for nominal flight 
data using an unpartitioned MSET model for the Space 
Shuttle Main Engine containing one hundred fifty observa- 
tion vectors. 

FIG. 20 lists the comparative test results for signal drift 
failure detection using a unpartitioned MSET model for the 
Space Shuttle Main Engine containing one hundred fifty 
observation vectors. 

FIG. 21 lists the comparative test results for nominal flight 
data using a unpartitioned MSET model for the Space 
Shuttle Main Engine containing three hundred observation 
vectors. 
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FIG. 22 lists the comparative test results for signal drift 

failure detection using a unpartitioned MSET model for the 
Space Shuttle Main Engine containing three hundred obser- 
vation vectors. 

FIG. 23 illustrates a mathematical process model relation 
of a type used for Space Shuttle Main Engine telemetry data 
surveillance in an another embodiment. 

DETAILED DESCRIPTION OF THE 
INVENTION 

Considering the drawings, wherein like reference numer- 
als denote like parts throughout the various drawing figures, 
reference numeral 10 is directed to the system according to 
the instant invention. 

In its essence, and referring to FIG. 1, the system 10 is 
generally comprised of a method and apparatus for perform- 
ing high sensitivity surveillance of a wide variety of assets 
including industr ia l ,  uti l i ty,  business ,  medical ,  
transportation, financial, and biological processes and appa- 
ratuses wherein such process and/or apparatus asset prefer- 
ably has at least two distinct modes or domains of operation 
(e.g., transient and steady state modes or domains). The 
system includes a training procedure 20 wherein a parameter 
estimation process model array 50 of an asset 12 (e.g., a 
process and/or apparatus) is learned from historical operat- 
ing data using at least one of a plurality of computer-assisted 
techniques. Historical operating data includes a set of obser- 
vations from normal operation of the asset 12 that is 
acquired and digitized by a data acquisition means 40 using 
any combination of electronic data acquisition hardware and 
signal processing software known to those having ordinary 
skill in the art, and informed by the present disclosure. 
Additionally, and as delineated infra, one hallmark of the 
instant invention is an operating mode partitioning method 
of a parameter estimation process model array 50 for the 
asset 12 which is performed during the training procedure 
20. 

The system 10 further includes a surveillance procedure 
60 wherein the operating mode partitioned parameter esti- 
mation process model array 50 is used for high sensitivity 
computer-assisted surveillance of the asset 12 for the pur- 
pose of determining whether a process fault or failure 
necessitates an alarm or control action. Another hallmark of 
the instant invention, as delineated hereinbelow, is the use of 
the operating mode partitioned parameter estimation process 
model array 50 as an element of the surveillance procedure 
60. The system 10 described herein is useful for ultra- 
sensitive detection of the onset of sensor or data signal 
degradation, component performance degradation, and pro- 
cess operating anomalies. 

Description of the Training Procedure: 
More specifically, and referring to FIG. 2, the training 

procedure 20 of the system 10 includes a method and 
apparatus for training or preparing the process model array 
50 using historical operating data from the asset 12 that has 
been acquired by the data acquisition means 40 using any 
combination of conventional electronic data acquisition 
hardware and signal processing software as is well known in 
the art. The historical operating data is acquired in digital 
format and stored using a data storage procedure 22 to create 
a training data set 24. The training data set 24 includes at 
least N discrete observations of the asset 12 wherein each 
single observation, herein denoted Xobs, is comprised of a 
vector of data values for each signal parameter to be 
included in the process model array 50. For the purposes of 
the training procedure 20, the number of observations, N, 
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acquired is at least great enough to adequately bound the creation procedure 30 include, but are not limited to, a 
operating state space of the asset 12. Thus, the training data plurality of multivariate state estimation techniques, a plu- 
set 24 provides a representative sample of the signals rality of neural network techniques, a plurality of math- 
produced by the asset 12 during all normal modes of ematical model techniques, a plurality of autoregressive 
operation. 5 moving average techniques, and a plurality of Kalman filter 

Again referring to FIG. 2, upon acquiring the training data techniques. Each process submodel contained in the process 
set 24 the designer proceeds to implement the unique model array 50 may be created to implement any one of a 
method for the training procedure 20 in accordance with plurality of parameter estimation techniques. Further, the 
instant invention. The unique method for the training pro- parameter estimation technique implemented for an indi- 
cedure 20 is comprised of partitioning the training data set vidual submodel is not constrained to be the same as the 
24 into subsets wherein a training data subset 28 is repre- parameter estimation technique implemented for any other 
sentative of a single operating mode or subset of operating Sdxmdel contained in the Process model array 50. 
modes of the asset 12. Further, the unique method for the The training procedure 20 is completed at training com- 
training procedure 20 also includes a process submodel plete point 37 when all possible operating modes of the 
creation procedure 30 for creating at least one process 15 system 10 have been assessed. At this point, the process 
submodel for inclusion in the process model array 50 using model array 50 includes parameter estimation models for 
at least one training data subset 28. In practice, the designer each operating mode enabled by the designer. The Process 
first selects the operating modes that will be included in the model array 50 is thereafter useful for performing surveil- 
process model array 50 by means of an operating mode lance of the asset 12. 
enable procedure 32. The method thereafter is comprised of 2o Description of the Surveillance Procedure: 
a training loop wherein each possible operating mode of the More specifically, and referring to FIG. 3, the surveillance 
asset 12 is assessed for inclusion in the process model array procedure 60 is comprised of acquiring successive vectors of 
50. current operating data and determining for each such obser- 

The training loop is in general controlled by two decision vation vector whether the current operating data is indicative 
procedures. The mode enabled decision procedure 34 deter- 25 of a fault or failure of the asset 12. The surveillance 
mines whether the designer intends a specific operating procedure 60 further includes implementing an alarm or 
mode to be included in the process model array 50. If the control action for the purpose of notifying an operator or 
operating mode is not to be included, no further processing taking a corrective action in response to a detected fault or 
is required and the training loop proceeds to the next failure of the asset 12. The surveillance procedure 60 is in 
possible operating mode as controlled by the more modes 30 general an open-ended data acquisition and analysis loop 
decision procedure 36. If the operating mode is to be that continues until such time as the operator chooses to 
included, all observations included in the training data set 24 terminate the surveillance. 
are assessed using the operating mode determination proce- Again referring to FIG. 3, the surveillance procedure 
dure 26 in order to extract the training data subset 28 specific begins with an observation acquisition procedure 62 for 
to the currently selected operating mode. Depending on the 35 acquiring a current vector of observed signal data values, 
preference of the designer implementing the training loop, herein denoted Xobs. Signal data values are acquired by the 
the operating mode determination and training data subset data acquisition means 40 using any combination of con- 
extraction procedures may be, in general, performed as ventional electronic data acquisition hardware and signal 
needed or in advance of the training loop. The training loop processing software as noted supra. Next the operating mode 
shown in FIG. 2 illustrates operating mode determination 40 determination procedure 26 is used to determine the oper- 
and extraction on an as needed basis but is not intended to ating mode for the current vector of observed signal data 
constrain the method to preclude determination and extrac- values, Xobs. It is essential only that the operating mode 
tion in advance of implementing the training loop. The final determination procedure 26 used during the surveillance 
step in the training loop is a process submodel creation procedure 60 is the same operating mode determination 
procedure 30. The process submodel creation procedure 30 45 procedure 26 used during the training procedure 20. Upon 
creates the parameter estimation submodel for the currently determination of the current operating mode for the current 
selected operating mode and trains the submodel using the observed signal data, the process submodel for the current 
training data subset 28 specific to the currently selected operating mode is selected from the array of submodels 
operating mode. The process submodel creation procedure contained in the process model array 50 using a process 
30 further stores this submodel as a new element in the 50 submodel selection procedure 64. The selected process 
process model array 50. submodel for the current operating mode is then used with 

Still referring to FIG. 2, the operating mode determination a parameter estimation procedure 66 to produce a current 
procedure 26 used to classify each observation included in vector of estimated signal data values, herein denoted Xest. 
the training data set 24 may be, in general, performed using It is essential only that the parameter estimation procedure 
any method suitable for determining the operating mode of 55 66 used during the surveillance procedure 60 is the same 
the asset 12 given an observation or series of observations parameter estimation procedure 66 for which the process 
therefrom. Methods suitable for the operating mode deter- submodel was trained using the process submodel creation 
mination procedure 26 include, but are not limited to, a procedure 30 during the training procedure 20. The current 
plurality of mathematical or logic sequence techniques, a vector of estimated signal data values, Xest, in general 
plurality of expert system techniques, a plurality of fuzzy 60 includes at least one estimated signal data value correspond- 
logic techniques, and a plurality of neural network tech- ing to at least one actual signal data value included in the 
niques. current vector of observed signal data values, Xobs. A series 

Continuing to refer to FIG. 2, the process submodel of estimated signal data values produced by successive 
creation procedure 30 may be, in general, performed using observation and parameter estimation cycles is termed 
any method suitable for defining a parameter estimation 65 herein a “virtual signal’’ for the signal Parameter. 
model useful for estimating the values of one or more Still referring to FIG. 3, the current vector of estimated 
process signals. Methods suitable for the process submodel signal data values, Xest, may be in general compared to the 
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current vector of observed signal data values, Xobs, using a modules implementing the operating mode determination 
fault detection procedure 68. The fault detection procedure procedure 26, the parameter estimation procedure 66, and 
68 serves the useful purpose of determining whether the the fault detection procedure 68. The operating mode deter- 
current vector of observed signal data values indicates a mination procedure 26 is used to determine the current 
fault or failure of a component of the asset 12. The fault 5 operating mode of the asset 12 given the acquired process 
detection procedure 68 may be performed using any one of signal data. The parameter estimation procedure 66 is used 
a plurality of comparative techniques including, but not to produce an estimated signal value for at least one process 
limited to, evaluation of the current comparison result signal 42 emanating from the asset 12. The parameter 
against numerical limit values, evaluation of the current estimator procedure 66 in general makes use of the process 
comparison result using any one of a plurality of statistical model array 50 stored in a memory means 48 associated with 
hypothesis test techniques, evaluation of the current com- the computer 44 to produce the estimated signal values. The 
parison result using any one of a plurality of expert system specific process submodel selected from the process model 
techniques, and evaluation of the current comparison result array 50 and used by the parameter estimation procedure 66 
using any one of a plurality of neural network techniques. is dependent on the operating mode determined by the 
FIG. 3 illustrates the use of a mathematical difference 15 operating mode determination procedure 26. The estimated 
(Xobs-Xest) to calculate the residual error between the signal values are then generally evaluated using the fault 
observed and estimated signals but is not intended to pre- detection procedure 68 to identify faults or operating anoma- 
clude any other form of comparison whatsoever. lies in the asset 12. The results of the fault detection 

of the fault detection procedure 68 provide evaluation are thereafter communicated by a conventional 
fault detection for the current vector of observed signal data 2o COmmunications link 80 (as is known to those having 
values. In many cases, fault detection decision quality is ordinary Skill in the art, and informed by the Present 
improved by using a fault decision procedure 70 that incor- disclosure) to an Operator Console 82 or automated process 
porates logic for considering a series of observations in control system 84 for possible alarm and/or control action. 
making the fault detection decision. The fault decision The computer 44 along with the associated memory 
procedure 70 may be in general performed using any method 25 means 48 can also be employed to perform the training and 
suitable for ascertaining a fault of the asset 12 given a fault surveillance procedures 20, 60 as delineated supra and to 
detection result or series of fault detection results therefrom. store all the data associated with these procedures, for 
Methods suitable for the fault decision procedure 70 include, example, the historical operating data, the training data and 
but are not limited to, single observation techniques (e.g., process model array. 
alarm on every detected fault), multi-observation voting 30 MSET Procedure: 

ne 

techniques (e.g., alarm when X out of Y observations 
contain a fault indication), and conditional probability tech- 
niques (e.g., compute the fault probability given a series of 
fault detection results). Upon completing the fault decision 
procedure 70, the surveillance procedure then repeats for as 
long as a more data decision procedure 72 determines that 
additional surveillance data are available or terminates at 
surveillance complete step 75 when no more surveillance 
data are available. 

Continuing to refer to FIG. 3, the usefulness of the instant 
invention is, inter alia, the improvement achieved in the 
accuracy of the fault detection decision made by the fault 
decision procedure 70. Improving the accuracy of the fault 

In an embodiment of the invention, the method used for 
parameter estimation is a multivariate state estimation tech- 
nique (MSET) procedure. The US Department of Energy’s 
Argonne National Laboratory originally developed the 

35 implementation of MSET described herein for surveillance 
of sensors and components in nuclear power plant applica- 
tions. However, other implementations of a multivariate 
state estimation technique are possible and useful in con- 
junction with the instant invention. MSET is in general a 

40 statistically derived parameter estimation algorithm that 
uses advanced pattern recognition techniques to measure the 
similarity or overlap between signals within a defined opera- 
tional domain (set of process operating states). MSET 

decision procedure 70 accomplishes a reduction in the “learns” patterns among the signals by numerical analysis of 
number of false alarms sent to a process operator or control 45 historical process operating data. These learned patterns or 
system that can in turn result in an erroneous alarm or relationships among the signals are then used to identify the 
control action by the alarm or control action procedure 74. learned state that most closely corresponds with a new signal 
Further, improving the accuracy of the fault decision pro- data observation. By quantifying the relationship between 
cedure 70 accomplishes a reduction in the number of missed 
alarms thereby accomplishing more timely alarm or control 
action by the alarm or control action procedure 74. The 
instant invention thereby enables improved operating safety, 
improved efficiency and performance, and reduced mainte- 
nance costs for a wide variety of industrial, utility, business, 
medical, transportation, financial, and biological processes 
and apparatuses wherein such process and/or apparatus asset 
12 preferably has at least two distinct modes or domains of 
oaeration. 

the current and learned states, MSET estimates the current 
50 expected response of the process signals. MSET then uses a 

form of statistical hypothesis testing, such as the sequential 
probability ratio test (SPRT) or similar probability ratio test 
algorithm (as shown in U.S. Pat. No. 5,459,675 and which 
is hereby incorporated by reference in its entirety) to com- 

5s pare the current estimated value of a signal with its observed 
value. The statistical hypothesis comparison test provides a 
sensitive and widely applicable method to detect a fault or 
failure in an asset. However. other imalementations of the 

FIG. 4 outlines a general surveillance procedure of the comparison test are possible and useful in conjunction with 
system 10 when employing the operating mode partitioned 60 the instant invention. 
parameter estimation process model array 50. In a typical An MSET model is created for the asset 12 using the 
surveillance procedure, the asset 12 is the source of at least MSET training algorithms to learn the inherent data rela- 
one process signal 42 that is acquired and digitized using tionships within a set of historical process operating data. 
conventional data acquisition means 40 for providing the The trained MSET model is then used with the MSET 
data acquisition procedure for the purpose of computer- 65 parameter estimation and fault detection algorithms to per- 
assisted surveillance. The digitized signal data is generally form the process surveillance function when presented with 
evaluated using a computer 44 having computer software a new observation of signal data values. The following 
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sections will first provide a mathematical overview of the Once the process memory matrix has been constructed, 
MSET algorithms and procedures useful for training a MSET is used to model the dynamic behavior of the system. 
parameter estimation model and for using this trained model For each current observation of the system (Xobs), MSET 
for process surveillance. The description is followed by a compares the observation vector to the stored operating 
detailed description of an embodiment of the invention using s states to calculate an estimate of the process parameter 
a novel operating mode partitioned MSET process model values. The parameter estimate of the current process state 
array for parameter estimation and process surveillance. (Xest) is an n-element vector that is given by the product of 

Description of the MSET Training and Surveillance Pro- the Process memory matrix and a weight vector, w 
X,,,=D.W (3) 

cedures: 
The MSET methods are generally described in the fol- lo 

lowing two US Government documents produced and main- 

Laboratory, hgonne,  111,, disclosure of which is incorpo- 
rated in its entirety herein by reference. 

J. P. Herzog, S. W. Wegerich, R. M. Singer, and K. C. 

- +.- 

tained by the US Department of Energy’s Argonne National The weight vector represents a Of 

between the estimate of the current state and the process 
memory matrix. To obtain the weight vector, we minimize 
the error R 2  where: 

Gross, “Theoretical Basis of the Multivariate State - -  - 
Estimation Technique (MSET),” Argonne National R =  obs- est (4) 

Laboratory, ANL-NT-49, December 1997. The error is minimized for a given state when: 
J. P. Herzog, S. W. Wegerich, K. C. Gross, and R. M. 2o 

Singer, “MSET Code Structure and Interface Devel- ??=(E T @ E ) - l ( E  T@ z”bs) (5) 

This equation represents a “least squares” minimization 
is the matrix dot 

from a process Over 25 product, Several advanced pattern recognition operators 

opment Guide,” ANL-NT-48, August 1997. 
The MSET algorithm uses pattern recognition with his- 

Operating data from an asset to generate a parameter when the pattern recognition operator @ 
estimation If data are 
a range Of Operating states, these data can be arranged in 
matrix form, where each Of m> in the 

have been defined that provide excellent parameter estima- 
tion performance, Pattern recognition operators used by vector (a 

matrix represents the measurements made at a particular MSET include, but are not limited to, the System State 
state. Thus, this matrix will have the number of columns Analyzer (ssA) method (see also u,s, Pat, No, 4,937,763 
equal to the number of states at which observations were 3o and which is hereby incorporated by reference in its 
made and the number Of rows to the number Of entirety), the Bounded Angle Ratio Test (BART) method 
measurements (a Of data that were (see also U,S, Pat, No, 5,987,399 and which is hereby 

at each observation. we begin by defining the set incorporated by reference in its entirety), the Vector Pattern 
Of measurements taken at a given time t, as an Observation Recognizer (VPR) method, the Vector Similarity Evaluation 

35 Technique (VSET) method, and the Probabilistic State Esti- 

Once the weight vector is found, the resulting current state 
estimate of the system (i.e., the parameter estimate vector) 
is given by: 

vector X(t,), - mation Method (PSEM). 
+WJ=[xl(t,)+w,(t,)> ’ ’ ’ > Xn(5)lT (1) 

where xL(t,) is the measurement from signal i at time t,. We 
then define the data collection matrix as the process 40 - 
memory matrix D: X,,,=E .(E T@ E ) y ( E  T@ ZObJ (6) 

- 
D = 

~ di,i 4 2  ... di,m (2)  The first application of the pattern recognition operator in 
equation (6) (DT@D) involves a comparison between the 

45 row vectors in the DT matrix and each of the column 
vectors in the D matrix. If we define G=DT@D, then G, the 

d2,i 4 2  . . . d2,m 

dn,i dn,2 ... dn,, ~ 

. . . . = [?(r i ) ,  ? (r2) ,  ... , ?(rm)]  . . . .  . . . .  
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three steps in the procedure for training an MSET model herein are embodied in one instance within the ANL soft- 
based on historical operating data. ware modules known as sys_mod.c and fault-detect.c. 

The third and final step in the MSET training procedure Prior to performing surveillance for new operating data 
includes analyzing the historical training data using equation observations, a MSET fault detector initialization procedure 
(6) to characterize the expected statistical mean and variance s 106 is performed. The MSET fault detector initialization 
of the residual error vector, R, for each signal parameter in procedure 106 takes the variance (V) vector 100 and several 
the observation vector. The resulting mean vector, M, is later other constants as its arguments. The initialization procedure 
used in the surveillance procedure to normalize the residual makes use of one of a plurality of fault detection methods 
error for each observation evaluated using the statistical embodied in one instance within the ANL fault-detect.c 
hypothesis test. The resulting variance vector, V, is later used i o  software module, including but not limited to the SPRT 
at the beginning of the surveillance procedure to initialize method, and the BSP method. The MSET surveillance 
the fault detection threshold values used in the statistical procedure then proceeds by sequentially acquiring and 
hypothesis test. evaluating each new data observation until such time as 

FIG. 5 illustrates the procedure for training an MSET surveillance is completed. Data observations are acquired 
parameter estimation model. The procedure is used to pro- is using the observation acquisition procedure 62. For each 
duce an unpartitioned MSET model 102 that is not parti- new observation vector, Xobs, a parameter estimate vector, 
tioned by operating mode. The MSET training procedure Xest, is produced by the parameter estimation procedure 66 
developed by Argonne National Laboratory (ANL) as using the unpartitioned MSET model 102 with the same 
described herein is embodied in one instance within the ANL pattern recognition operator that was used in the MSET 
software modules known as train.c and sys_mod.c. As 20 training procedure. The residual error vector, R, is computed 
described herein above, the MSET training procedure begins and is then normalized using a residual value normalization 
with a MSET model extraction procedure 90 used to popu- procedure 108 that includes subtracting the mean (M) vector 
late a process memory matrix 92 (D) from the training data 100 from the value of the residual error. The normalized 
set 24 (historical process operating data). The MSET model residual vector is then evaluated using the same fault detec- 
extraction procedure 90 makes use of at least one of a zs tion procedure 68 that was initialized at the start of the 
plurality of observation vector extraction methods embodied MSET surveillance procedure. If the fault detection proce- 
in one instance within the ANL train.c software module, dure 68 results in a fault determination by the fault decision 
including but not limited to the MinMax method, and the procedure 70, the alarm or control action procedure 74 
Vector Ordering method. A MSET model initiation proce- communicates the fault information by the conventional 
dure 94 is the second step of the method and is used to 30 communications link 80 (not shown) to the operator console 
initialize the MSET process model by the computation of a 82 (not shown) and/or automated process control system 84 
inverse similarity matrix 96 (Ginv). The MSET model (not shown) for corrective action. In the fault decision 
initiation procedure 94 makes use of at least one of a procedure 70, a Bayesian conditional probability test is in 
plurality of pattern recognition operator methods embodied general used to reach a fault decision based on a series of 
in one instance within the ANL sys_mod.c software 3s fault detection results from the fault detection procedure 68. 
module, including but not limited to the SSA method, the The surveillance procedure then repeats for as long as the 
BART method, the VPR method, the VSET method, and the more data decision procedure 72 determines that additional 
PSEM method. The third step of the MSET training proce- surveillance data is available. 
dure uses the process memory matrix 92 and the inverse Limitations of the MSET Training and Surveillance 
similarity matrix 96 to perform a MSET training data 40 Method and System: 
analysis procedure 98 using the training data set 24. The In the method and system described above, MSET is 
MSET training data analysis procedure 98 computes the trained by the construction of a process memory matrix, D, 
residual error mean and variance vectors 100 (M and V, based on historical operating data from all normal operating 
respectively) over the training data. The MSET training states of the process. MSET creates the process memory 
procedure is in general performed once for the training data 4s matrix by selecting representative process data observations 
set 24 thus preparing an unpartitioned MSET model 102 for (herein termed observation vectors) that characterize the 
use in the MSET surveillance procedure. dynamic patterns inherent across all operating states of the 

In the MSET surveillance procedure, new operating data process. However, if the process can operate in two or more 
observations are evaluated sequentially using the unparti- distinct modes of operation, then the totality of operating 
tioned MSET model 102 for the purposes of validating the SO states for all possible operating modes must be represented 
data or discerning an anomalous (not normal) process oper- in the process memory matrix to produce an effective MSET 
ating condition. For each new observation vector, Xobs, model. As the number of distinct operating modes of process 
presented to the MSET parameter estimation method, the operation represented in the training data increases, one of 
memorized state having the greatest similarity to the current two limitations occur: 
observed state is returned as a parameter estimate vector, ss Limitation 1. If the total number of observation vectors in 
Xest. Diagnostic decisions are then made on the basis of the the process memory matrix is fixed, then the number of data 
difference (residual error) between the observed and esti- patterns used to represent any single operating mode of a 
mated values for at least one process signal parameter process decreases. This directly reduces the accuracy of 
contained in the estimate vector. MSET uses at least one of MSET’s parameter estimates, which may result in false 
a plurality of statistical hypothesis test algorithms including, 60 alarms or reduce the ability of the fault detection procedure 
but not limited to, a Sequential Probability Ratio Test to reliably detect subtle sensor failures or other process 
(SPRT) algorithm, and a Bayesian Sequential Probability anomalies. 
(BSP) test algorithm to produce a fault indication based on The parameter estimation accuracy of the MSET algo- 
the value of the residual error for at least one process rithm is in general an inverse power law function of the 
parameter. 65 number of vectors in the process memory matrix. Limitation 

FIG. 6 illustrates the method and system for MSET-based 1 is evident in the example of FIG. 7 that illustrates the 
surveillance. The MSET surveillance methods as described overall parameter estimation error versus the number of 
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vectors in the process memory matrix for an unpartitioned while having a processing speed comparable to the 100 
MSET model of six Space Shuttle Main Engine sensors. vector model. This implementation requires only the addi- 

Limitation 2. Allowing the number of observation vectors tion of an operating mode determination procedure that 
in the process memory matrix to increase ameliorates Limi- selects the appropriate submodel for each new observation 
tation 1 above, but incurs a computational performance cost. s Presented to the MSET system. 
The number of computer operations required for MSET to 
produce a parameter estimate scales with the square of the 
number of observation vectors stored in the process memory 
matrix, This is because the MSET parameter estimation 
algorithm must perform pattern matching between the cur- IO instances Of the Process 
rent operating data vector and each element of the process 
memory matrix. Pattern matching uses the Ginv matrix, the 
size of which increases as the square of the number of 
observation vectors, processing tirne for MSET parameter 
estimation has been empirically shown to follow a square 
law equation of the form: 

Improved MSET Training Procedure: 
An Of MSETProcess submodels is termed an MSET 

process array 
is one of a plurality of possible implementation specific 

array herein. An MSET process 

50. 
FIG. 9 illustrates the training Procedure 20 useful for 

Producing Process model array 50 or specificah' a MSET 
process model array 50 in accordance with the instant 
invention. The training procedure includes and modifies the 
MSET training methods described in FIG. 5 and illustrated 
in FIG. 9 as MSET training procedure 118. With the instant 
invention, the MSET model designer may now individually 
specify those operating modes for which MSET training and 
surveillance is enabled. The training procedure loops 

Limitation 2 is evident in the example of FIG. 8 that 20 through each defined Operating mode with the loop con- 
illustrates the overall MSET parameter estimation process- trolled by the mode enabled decision Procedure 34 and the 
ing time on a 3 0 0 4 4 ~ ~  Pentiurn 11 desktop computer more modes decision procedure 36. If the operating mode is 
the number of vectors in the D matrix for an unpartitioned enabled, a MSET process submodel 114 is created (this is a 
MSET model of six space Shuttle ~~i~ ~~~i~~ sensors, specific example of process submodel creation procedure 30 

MSET) for the Operating mode. In Order to 
lance Procedures: create the MSET process submodel 114, the operating mode 

~~~i~~ described the MSET training and surveillance specific training data subset 28 is first extracted from the 
methods herein above, this section describes the novel training data set 24 using the operating mode determination 

MSET training and surveillance, said improvements being 3o subset 28 is then used to create the MSET process submodel 
applicable to any asset preferably having at least two distinct in the MSET training 
modes of operation. It is explained herein above that it is Procedure 118 to create an UnPartitioned MSET model. 
beneficial to minimize the number of vectors in the process Specifically, the MSET Procedures used in sequence are the 
memory matrix in order to optimize the processing speed of MSETmodel extraction Procedure 90 to Produce the Process 
the MSET algorithm, It is further explained herein above 35 memory matrix 92, the MSET model initialization proce- 
that the MSET dure 94 to produce the inverse similarity matrix 96, and the 
between processing time and parameter estimation accuracy. MSET training data analysis Procedure 98 to Produce the 

residual mean and variance vectors 100. Note that this series 
performance for a process surveillance application. The Of procedures is grouped in the general as the process 
novel solution to this problem made by the instant invention 40 submodel creation Procedure 30. The Process is repeated 
is to use multiple coordinated MSET process submodels, with each loop a MSET process submodel storage 
with each submodel trained over a limited operating mode Procedure 116 to add the MSETProcess submodel 114 to the 
state space. With the instant invention, each submodel may Process model array 50 for each enabled operating mode. At 
be defined to contain only the minimum number of obser- the conclusion of the training procedure 20, the operating 
vation vectors required to adequately characterize a single 45 mode Partitioned Process model array 50 includes an array 
specific operating mode or related subset of modes. Since of individual MSET process submodels 114, one for each 
only one submodel must be evaluated for each data obser- 
vation presented to MSET during the surveillance The process model array 50 is a linear combination of the 
procedure, both parameter estimation accuracy and process- Operating mode MSET Process submodels. The 
ing speed are greatly improved. process model array 50 includes the following at a mini- 

The following example illustrates an unobvious benefit of mum: 
the instant invention. Consider a process that requires An array of Process memory matrices 92 (D), one for each 
on-line surveillance across multiple modes of operation. 
Further consider that the safety or other critical nature of An array of inverse similarity matrices 96 (Ginv), one for 
said surveillance requires fault decision performance within 5s 
a time interval that allows for on-line MSET processing with An array of residual mean and variance vectors 100 (M 
a process memory matrix containing at most 100 vectors. 
However, further suppose that the desired fault detection Working together these process submodels provide 
accuracy requires on-line MSET parameter estimation with parameter estimation over the entire operating mode state 
a process memory matrix containing 300 vectors to 60 space that the designer has selected for surveillance. An 
adequately characterize the operating mode state space. In additional novel feature of the instant invention is that each 
the prior art, both criteria could not be simultaneously of the process submodels in the process model array 50 may 
satisfied. The instant invention solves this problem for many be of unique dimensions, that is each submodel may contain 
types of processes and apparatuses by enabling the MSET unique numbers of modeled signal parameters and process 
model designer to partition the operating mode state space 65 memory matrix vectors. A process submodel's dimensions 
and thus produce three 100 vector submodels providing the may be different than the dimensions selected for any other 
desired level of fault detection sensitivity (300 vectors) operating mode thereby permitting the unobvious benefit of 

Observation processing time (msec)=A+B*[Number of observation 
(7) vectors in D]' 

Novel Improvements to the MSET Training and Surveil- 25 when 

improvements made by the instant invention when used for Procedure 26. This operating mode specific training data 

the Same Procedures 

require a trade-off to be made 

in unacceptable the worst case, this trade-off 

Operating mode. 

enabled operating mode; 

each enabled operating mode; and 

and V), one for each enabled operating mode. 
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further optimizing the MSET method and system for the 
surveillance requirements of each individual operating mode 
of the asset. This is important because certain modes of 
process operation are often more performance or safety 
critical than others. 

An additional novel feature of the instant invention is that 
each of the process submodels in the process model array 50 
may also be specified with unique parameter estimation and 
fault detector settings for each operating mode. This pro- 
vides the unobvious benefit of optimizing MSET surveil- 
lance sensitivity and performance by operating mode. 
Examples of optimization by operating mode include, but 
are not limited to, the following: 

Selection of the parameter estimation and training algo- 
rithm (e.g., the SSA, BART, VPR, VSET, PSEM, or 
other pattern recognition operator) by operating mode; 

Selection of the SPRT, BSP or other fault detection 
algorithm by operating mode; 

Selection of the fault detection procedure false alarm 
probability, missed alarm probability, system distur- 
bance magnitude values, or other threshold constants 
by operating mode; 

Selection of the fault decision procedure algorithm and 
associated thresholds and constants by operating mode. 

Improved MSET Surveillance Procedure: 
FIG. 10 illustrates a novel method and system for the 

surveillance procedure 60 using the MSET process model 
array 50 as delineated hereinabove. The surveillance proce- 
dure 60 includes and modifies the MSET surveillance meth- 
ods described in FIG. 6 and illustrated in FIG. 10 as MSET 
surveillance procedure 122,126. With the instant invention, 
the MSET model designer may now individually specify 
those operating modes for which MSET surveillance is 
enabled. 

At the beginning of the surveillance procedure, the fault 
detection procedures are initialized for each enabled process 
submodel. Initialization of each MSET process submodel 
114 uses the same MSET fault detector initialization proce- 
dure 106 used for initialization of the unpartitioned MSET 
model 102. The surveillance procedure thereafter includes 
an open-ended loop for data acquisition and surveillance 
processing that is terminated by the more data decision 
procedure 72. 

During surveillance, each new vector of observed signal 
data values, Xobs, is acquired using the data acquisition 
procedure 40 and the observation acquisition procedure 62. 
Next, the operating mode determination procedure 26 is 
used to determine the operating mode for each new data 
observation, Xobs, acquired from the asset 12. If the new 
data observation is determined by the mode enabled decision 
procedure 34 to represent an operating mode that is not 
enabled for MSET surveillance, no further processing is 
required until the next data observation is acquired from the 
asset 12. Conversely, if the new data observation is deter- 
mined to represent an enabled operating mode, the correct 
MSET process submodel 114 is selected from the MSET 
process model array 50 using the process submodel selection 
procedure 64 and all required process submodel data is 
loaded into the computer memory. From this point, MSET 
surveillance processing occurs using the same procedures 
previously described for the MSET method. Once surveil- 
lance processing is completed, the procedure returns to 
acquire a new data observation from the asset 12. 

An unobvious benefit of only performing MSET process- 
ing for selected operating modes is that the MSET process 
model array 50 does not need to provide parameter estima- 
tion capabilities for those operating modes that do not 
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require on-line surveillance. For example, it may be desir- 
able to exclude certain modes of operation (or non- 
operation) from the MSET process model array 50 even 
though such modes are included within the training data set 
24. The ability to explicitly exclude operating modes that do 
not require surveillance simplifies the training data acquisi- 
tion procedures and minimizes the on-line processing time 
required for a parameter estimation based surveillance 
method. 

Neural Network Method and System for Determining 
Operating Mode of Asset: 

Amethod to determine the operating mode of the asset 12 
is required for both the training procedure 20 and the 
surveillance procedure 60 using an operating mode parti- 
tioned process model array 50. For each new data 
observation, the operating mode determination procedure 26 
must classify the observation as belonging to exactly one of 
a plurality of defined operating modes thereby allowing the 
required process submodel to be selected for training or 
surveillance. The operating mode determination procedure 
26 may use any form of algorithm that can determine the 
current operating mode of the asset 12 based on one or more 
data observations from the asset. The specific implementa- 
tion or type of the operating mode determination procedure 
26 does not affect or modify the operation of the instant 
invention. 

In an embodiment of the invention, a Learning Vector 
Quantization (LVQ) neural network is used for the operating 
mode determination procedure 26. The LVQ neural network 
procedure is generally applicable to a wide range of assets. 
An LVQ neural network model is created for a specific asset 
using conventional neural network training algorithms to 
learn the inherent operating mode relationships within a set 
of historical process operating data. The trained LVQ model 
is then used to perform the operating mode determination 
procedure when presented with each new data observation. 
Because the LVQ neural network is trained by pattern 
matching a vector of observations from historical data, this 
type of neural network will always determine the most 
similar operating mode when presented with a new data 
observation. 

An LVQ neural network is a two-layer, pattern classifi- 
cation neural network in which each output node represents 
a particular class or category. 

FIG. 11 illustrates the architecture of an LVQ neural 
network. An LVQ network is one of a group of related 
pattern classification neural network models that can be used 
to cluster a set of s-element input vectors {X}={x,, . . . , 
xi, . . . , xs} into t clusters. The input nodes of the neural 
network draw data either directly from sensor signals or 
from the output of a mathematical function applied to one or 
more sensor signals. An input vector is defined as the set of 
data values, one value for each input node that is derived 
from the sensor signals at a given moment in time. The 
output nodes of the network correspond to one of the classes 
(herein, the operating modes) recognized by the neural 
network. During operation of the neural network, an input 
vector is presented to the network, passes through the 
network, and activates one of the t output nodes (y,, . . . , yj, 
. . . , yJ. Each of the output nodes corresponds to one of the 
classes recognized by the neural network. The LVQ neural 
network returns the class corresponding to the activated 
output node, thereby determining the current operating 
mode of the asset. 

The input nodes are connected to the output nodes by a set 
of connection weights. The subset of connection weights 
that connect all of the input nodes to one of the output nodes 
is called a weight vector. For example, output node yj is 
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connected to the input nodes by weight vector 
{W,}={W,,~, . . . , wij, . . . , wsj}. An LVQ neural network 
that contains s input nodes and t output nodes would contain 
a total o f t  weight vectors, with each weight vector contain- 
ing s connection weights. 

An LVQ neural network is designed to recognize a 
predefined set of classes. Each one of the classes corre- 
sponds to a distinct operating mode of the asset under 
surveillance. During training of an LVQ neural network, the 
designer decides how many output nodes will be used to 
model each of the operating modes classified by the net- 
work. More than one output node can be used to represent 
a class (operating mode) recognized by the neural network. 
By using more than one node to represent a class, the 
number of neural network connection weights dedicated to 
that class is increased. This improves the ability of the neural 
network to recognize an operating mode of the asset. For 
each of the r classes, the designer specifies the number of 
output nodes that will model that class. 

A supervised training scheme is used for training an LVQ 
neural network. In this scheme, training is accomplished by 
presenting a sequence of matched pairs of input vectors and 
target vectors to the neural network, causing some of the 
network’s connection weights to be adjusted with each 
presentation of a training pair. The target vector 
{T}={t,, . . . , ti, . . . , t,} is a set of binary values, one value 
for each output node in the network. An element of a target 
vector has a value of one if the corresponding output node 
represents the correct class for the input vector. Conversely, 
an element of a target vector has a value of zero if the 
corresponding output node represents an incorrect class for 
the input vector. 

For each training pair presented to the LVQ network, the 
Euclidean distance between the input vector and each of the 
weight vectors is calculated. The Euclidean distances are 
then ordered, from smallest to largest. Only the weight 
vectors that produce the smallest two distances in the 
ordered sequence are allowed to learn. This form of learning 
is called competition, because only those weight vectors that 
produce the best scores (i.e., producing the minimum 
Euclidean distances) are modified during an iteration of the 
training algorithm. Three commonly used learning methods 
for training an LVQ neural network are herein designated 
LVQ1, LVQ2.1, and LVQ3. 

In the first learning method (LVQl), only the weight 
vector that is closest to the current input vector (i.e., the 
weight vector that produces the minimum Euclidean 
distance) is allowed to learn. For each matched pair of input 
and training vectors presented to an LVQ network during 
training, the Euclidean distance between the input vector 
and each of the weight vectors is calculated and the output 
node connected to the weight vector that produces the 
minimum Euclidean distance is identified. If the output node 
that produces the minimum Euclidean distance corresponds 
to the correct operating mode, the connection weights for the 
output vector are positively reinforced as follows. Let the 
subscript j represent the output node whose weight vector 
produces the minimum Euclidean distance. If the target 
value for that output node is 1 (i.e., tj=l), then the weight 
vector for the output node (Wj) is updated by - -  - -  

W,=W,+h( x - W,) 

where X is the current input vector and h is a scalar 
parameter called the learning rate that varies from 0 to 1. If 
the output node whose weight vector produces the minimum 
Euclidean distance corresponds to the incorrect operating 

mode (i.e., tj=O), the connection weights for the output 
vector are negatively reinforced by 

(9) 
5 

In the second (LVQ2.1) and third (LVQ3) learning 
methods, the two weight vectors that are closest to the 
current input vector are identified. These two weight vectors 
may be positively or negatively reinforced depending upon 
a number of conditions. The most important of these con- 
ditions is that the two weight vectors are modified only if 
they are roughly equidistant from the input vector. A user- 
defined control parameter (E), called the window size, is 
used to determine whether or not the two weight vectors are 

15 of comparable distances from the input vector. The window 
condition test that must be satisfied by the two closest weight 
vectors is that the ratio of distance between the closest 
weight vector and the input vector (del) to the distance 
between the second closest weight vector and the input 

2o vector (dc2) must fall within the window. Namely, 

25 The window size is a small user-defined constant with 
typical values in the range 0.1c~c0.5.  

In the LVQ2.1 algorithm, a second condition that must be 
met is that one of the two closest weight vectors connects to 
an output node of the same class as the input vector. While 

30 at the same time, the other weight vector must connect to an 
output node of a class that differs from the class of the input 
vector. If both the window and class conditions are met, then 
the weight vector whose output node belongs to the same 
class as the input vector is positively reinforced according to 

35 equation (8).  Also, the weight vector whose output node 
belongs to a class that differs from that of the input vector 
is negatively reinforced according to equation (9). 

In the LVQ3 algorithm, the two weight vectors that are 
closest to the input vector are allowed to learn as long as the 

40 same window and class conditions as in the LVQ2.1 algo- 
rithm are met. The LVQ3 algorithm contains an additional 
learning mode. If the two weight vectors that are closest to 
the input vector meet the window condition (i.e., the con- 
ditions in equation (10) are met), and if both weight vectors 

45 connect to output nodes that are of the same class as the 
input vector, then both weight vectors are positively rein- 
forced. Both weight vectors are updated by 

so 
where 6 is a user-defined parameter, called the LVQ3 
multiplier, that reduces the learning rate. The LVQ3 multi- 
plier is a small constant with typical values in the range 
0 . 1 ~ 6 ~ 0 . 5 .  

55 The concept behind the LVQ2.1 and LVQ3 learning 
methods is that as the input vectors used for training are 
presented to the neural network, learning occurs only when 
an input vector is close to two of the weight vectors. In this 
case, the input vector is near the boundary between two 

60 weight vectors. Learning occurs in the LVQ2.1 algorithm 
only if one of the weight vectors belongs to the same output 
class as the input vector and the other weight vector belongs 
to a different class. The weight vector belonging to the 
correct class is positively reinforced and the other vector is 

65 negatively reinforced. The LVQ3 algorithm contains the 
same conditions as the LVQ2.1 algorithm. But an additional 
condition in the LVQ3 algorithm allows the network to 
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learn, at a slower rate, if both weight vectors belong to the cluster the input vectors that belong to the class into a 
same class as the input vector. Over the course of the number of clusters that equals the number of output nodes 
iterative training procedure, this technique works to sharply that belong to the class. For instance for class j, the K-means 
define the boundaries between the vector spaces recognized clustering algorithm is used to divide the input vectors into 
by each weight vector. 5 nout, clusters and to evaluate the centers of the clusters. The 

Aset of input vectors and corresponding target vectors are cluster centers for class j are used to initialize the weight 
used to train the LVQ neural network. The set of input and vectors whose Output nodes to the The 

weights are adjusted depending upon the learning algorithm the class by minimizing the Euclidean distances between 
selected. Then, the learning rate parameter (A) is decreased i o  each Of the center 
by a small amount and the set of input and target vectors is nearest to each. Thus, each cluster center is the mean value 
passed through the network again. The cycle is repeated Of the group of hut vectors in a cluster domain. The 
until the learning rate decreases to zero or until the error rate K-means was found to the 
for the neural network converges. Each training cycle of data recall capabilities of the neural network over the random 
presentation and learning rate reduction is called an epoch, initialization scheme, at a minimal increase in the compu- 
The maximum number of epochs (n,J to be performed by tational cost Of the training 
the training algorithm is a user-defined control parameter. network Operates as follOws. At a 
The learning rate decreases linearly with epoch number, point in time, a current data observation is acquired from the 
with the learning rate decreasing to when the maximum asset 12 and an input vector is constructed. The Euclidean 
number of epochs is reached, The initial value of the 2o distance between the input vector and each of the weight 
learning rate (A,) is a user-defined control parameter that, vectors is calculated. The weight vector Producing the 
along with the maximum the number of epochs, determines minimum Euclidean distance is found and its corresponding 
the rate at which the learning rate is decreased. Specifically, output node is activated. The neural network declares the 
the learning rate is decreased by a factor of n,,/A, at the end Operating mode corresponding to the activated output node 
of each epoch. 25 to be the current operating mode of the asset 12 under 

During each training epoch, the error rate for the neural 
network is calculated. The error rate is defined to be the In Use and Operation: Determining Asset Operating 
fraction of input vectors that are incorrectly classified by the Mode Using Partitioned 
neural network. An input vector is correctly classified if the Operating mode partitioned MSET Processing was first 
weight vector that is closest to it connects to an output node 30 reduced to Practice by in the Performance Of 

of the same class as the input vector. As each input vector in NASA Contract NAs4-99012 cited hereinabove. Testing 
the training set is passed through the LVQ neural network performed under this contract conclusively demonstrated the 
during a training epoch, the program notes if the input vector reduction to Practice for and unobvious benefits of the 
was correctly or incorrectly classified. The error rate is then instant invention. The contract final report and new tech- 
given by the ratio of the number of incorrectly classified 35 nology disclosure documents by applicant, delivered to the 
input vectors to the total number of input vectors in the United States Government under this contract and listed 
training set. By keeping track of the error rate, the training herein below, further describe one embodiment and its 
algorithm can be halted as as the neural network stops reduction to practice, the disclosure of which is incorporated 
learning. in its entirety herein by reference. 

NASA SBIR Phase I Final Report, ‘‘System State Deter- 
are fine-tuning procedures. Only slight modifications are mination for Real-Time Sensor Validation,” NASA 
made to the network weight vectors during any training Contract NAS4-99012, Jun. 12, 1999. Publication or 
epoch. Therefore to minimize the number of epochs needed disclosure restricted to US Government personnel for 
to train the neural network, the initial values of the weight four years pursuant to Code of Federal Regulations 48 
vectors must be chosen wisely. The simplest method of 45 CFR 52.227-20. 
initializing the weight vectors is to randomly select t vectors New Technology Report for NASA Contract NAS4- 
from the set of input vectors used to train the neural network 99012, “Phase Partitioning the Multivariate State Esti- 
and use them as initial values for the weight vectors, where mation Technique (MSET) Process for Improved 
t is the number of output nodes in the network. Although this Parameter Estimation Performance and Processing 
initialization method works, a better method, which in so Speed,” Expert Microsystems, Inc. Document Control 
general reduces the number of epochs needed to adequately Number 2000-4446, Jan. 24, 2000. Publication or dis- 
train the network is to use the K-means clustering algorithm closure restricted to US Government personnel for four 
to set the initial values of the weight vectors. The K-means years pursuant to Code of Federal Regulations 48 CFR 
clustering algorithm is a method that will divide a vector 52.227-20. 
space into K clusters and identify the centers of each cluster. ss New Technology Report for NASA Contract NAS4- 
The K-means clustering algorithm can be used to divide the 99012, “System State Classification Using A Learning 
input vectors used to train the LVQ network into t clusters Vector Quantization (LVQ) Neural Network,” Expert 
and use the centers of the clusters as the initial values for the Microsystems, Inc. Document Control Number 2000- 
weight vectors. 4447, Jan. 24,2000. Publication or disclosure restricted 

The K-mean clustering algorithm is used to initialize the 60 to US Government personnel for four years pursuant to 
weight vectors as follows. For each of the r classes recog- Code of Federal Regulations 48 CFR 52.227-20. 
nized by the network, the input vectors that belong to each In the performance of NASA Contract NAS4-99012, a 
class are identified and collected into r arrays. Next the sensor validation software module was designed to validate 
output nodes that belong to each class are identified. By seventeen (17) mission critical telemetry signals for the 
definition, the number of output nodes that belong to each 65 Space Shuttle Main Engine (SSME), as listed in FIG. 13. 
class is given by the nodes-per-class vector (N,,,,,). Then for These signals were selected based on their importance for 
each class, the K-means clustering algorithm is used to real-time telemetry monitoring of the three Space Shuttle 

target vectors is presented to the network and the connection K-means cluster centers for 

vectors in the and the 

A trained LVQ 

The learning methods devised for the LVQ neural network 40 
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Main Engines during vehicle ascent to orbit. The names process model array for real-time sensor signal validation. 
listed in FIG. 13 use standard SSME nomenclature. Data Metrics used to evaluate the test results included the fol- 
from ten nominal Space Shuttle flights, with flights and lowing: 
engine positions as listed in FIG. 14, were selected as the Total One Cycle Alarm Count-This is a measure of the 
training data for the MSET submodels and LVQ neural s total number of SPRT fault detector generated alarms for a 
network used in the performance of this work. single simulation run. For nominal cases, this is expected to 

A series of parametric studies were performed to deter- be a near zero number. For failure simulation cases, the 
mine the LVQ neural network configuration and training number will be non-zero. This metric provides a measure of 
constants that provide the best performance for SSME the overall performance of the fault detection procedure. 
operating mode determination. The neural network configu- i o  Average Parameter Estimation Error Percentage-This is 
ration and training constants selected for applicant’s reduc- a measure of the globally averaged parameter estimation 
tion to practice are defined in FIG. 12. Ten SSME flight data error. The global averaged error is the sum of the single 
sets, defined in FIG. 14, were used to train the neural cycle error for all sensors and data observations divided by 
network. The operating mode determination capability of the total number of sensors and data observations. This 
the LVQ neural network was shown to be excellent with is metric provides a measure of the overall performance of the 
operating mode classification error rates of less than 2% parameter estimation procedure. 
observed in testing with additional SSME flight data sets Average One Cycle Processing Time-This is a measure 
that were not used for training the neural network. of the globally averaged single cycle validation processing 
Specifically, FIG. 15 illustrates three versions of the sensor time. The one cycle processing time is the sum of the 
validation software module. The first sensor validation soft- 20 processing time for all validated data observations divided 
ware module, herein denoted the PD module, was created by by the total number of validated data observations. The 
the methods of the instant invention with a process memory processing time is calculated as the elapsed time between the 
matrix (D) size of 150 vectors for each operating mode time of the test driver’s call to the sensor validation mod- 
partitioned MSET process submodel in the process model ule’s surveillance procedure and the time that the surveil- 
array. The PD module’s MSET process submodels were zs lance procedure returns its results to the test driver. 
created using an LVQ neural network for the operating mode Time to Failure Detection (Failure Simulations Only)- 
determination procedure. The second sensor validation soft- This is a measure of the elapsed time between the first 
ware module, herein denoted the A150 module, was created observation containing sensor failure data and the observa- 
by the unpartitioned MSET model creation procedure with tion for which the sensor validation module declares the 
a process memory matrix (D) size of 150 vectors used in the 30 sensor failed. Time to fault detection depends on the diag- 
unpartitioned MSET model. This enabled a direct compari- nostic capability of the sensor validation module, the time of 
son of surveillance performance between the operating failure occurrence and the nature and magnitude of the 
mode partitioned (instant invention) and unpartitioned mod- sensor failure. The data herein report the elapsed mission 
els given a constant processing time. The third sensor time between the initiation of a slow drift in the signal and 
validation software module, herein denoted the A300 3s the time that the drift failure was detected. For consistency, 
module, was created by the unpartitioned MSET model all test cases herein used a drift magnitude of 0.2% of the 
creation procedure with a process memory matrix (D) size of nominal, full power level value of the sensor signal applied 
300 vectors used in the unpartitioned MSET model. The per second of engine operating time. 
A300 module enabled improved surveillance performance Signal Error at Failure Detection (Failure Simulations 
for the unpartitioned MSET model case, albeit at the cost of 40 Only)-This is a measure of the total accumulated drift error 
greater processing time. in a sensor signal at the time of failure detection. The data 

FIG. 15 further lists the parameter estimation model and reported herein normalize the error at the time of detection 
fault detector configurations used for feasibility testing. in terms of a percentage of the nominal, full power level 

The operating mode partitioned sensor validation module value of the sensor signal. 
(denoted PD) incorporated an MSET process model array 4s The results tabulated in FIGS. 17 through 22 demonstrate 
partitioned into seven (7) modes representative of the pri- the very significant improvement in sensor validation per- 
mary operating modes of the SSME. The rules used for formance achieved using the operating mode partitioned 
partitioning the training data for the SSME operating modes MSET process model array in accordance with the instant 
are provided in FIG. 16. The two unpartitioned sensor invention. The operating mode partitioned MSET process 
validation modules (denoted A150 and A300) were prepared SO model array provided better fault detection sensitivity, lower 
using exactly the same training data without the benefit of parameter estimation error, and much faster processing time 
operating mode partitioning. in comparison to the unpartitioned MSET models. The 

The System State Analyzer (SSA) type pattern recogni- operating mode partitioned MSET process model array 
tion operator was used in all of the MSET models. The fault exhibited zero (0) false alarms and zero (0) missed alarms 
detection models were all based on the SPRT mean positive ss during all testing performed. The results tabulated in FIGS. 
and mean negative test methods. SPRT is a statistically 17 and 18 were generated using an LVQ neural network for 
derived test statistic with an explicit, non-zero false alarm 
probability. For this reason, SPRT fault detectors are gen- 
erally used in combination with a multi-cycle fault decision 
algorithm to filter out the possible one-cycle SPRT alarms. 60 
The fault decision procedure was configured using a four (4) 
out of seven (7) multi-cycle decision algorithm. This fault 
decision procedure will declare a sensor failure whenever 
any 4 of the last 7 observation cycles produce any type of 

Performance testing clearly demonstrated the feasibility 
and benefits of using the operating mode partitioned MSET 

one-cycle SPRT fault detection alarm. 65 

the operating mode determination procedure. 
Two test series were performed for comparison of the 

operating mode partitioned sensor validation module to the 
unpartitioned modules. In the first series, an unpartitioned 
model with a process memory matrix of 300 vectors was 
constructed (denotedA300). The operating mode partitioned 
model (denoted PD) used a process memory matrix of 150 
vectors for each individual operating mode. When compared 
to the 300 vector unpartitioned model, the operating mode 
partitioned process model array in accordance with the 
instant invention demonstrated: 
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34% reduction in parameter estimation error; 
73% reduction in per cycle processing time; 
73% reduction in time to detect a sensor signal drift; 
73% reduction in the total signal error at drift failure 

In addition, the 300 vector unpartitioned model missed 
two subtle noise failures that were properly detected by the 
operating mode partitioned process model array in accor- 
dance with the instant invention. 

In the second series, the operating mode partitioned 
process model array was compared to an unpartitioned 
model of equivalent run-time speed. To accomplish this, an 
unpartitioned model with a process memory matrix of 150 
vectors was constructed (denoted A150). When compared to 
the 150 vector unpartitioned model, the operating mode 
partitioned process model array in accordance with the 
instant invention demonstrated: 

detection. 

42% reduction in parameter estimation error; 
Equivalent per cycle processing time; 
77% reduction in time to detect a sensor signal drift; 
76% reduction in the total signal error at drift failure 

In addition, the 150 vector unpartitioned model produced 
two sensor failure false alarms and missed one noise failure 
in cases that were properly detected by the operating mode 
partitioned process model array in accordance with the 
instant invention. 

The operating mode partitioned process model array 
provides better fault detection sensitivity because the oper- 
ating mode specific MSET process submodels are better able 
to estimate the current value of each observed parameter. 
This capability of the operating mode partitioned process 
model array is demonstrated by the reduction achieved in the 
parameter estimation error. Reduced parameter estimation 
error allows the SPRT thresholds for fault detection to be set 
to lower values thereby making the sensor validation model 
more sensitive to the early indications of sensor failure 
(fewer missed alarms). This phenomenon proportionally 
reduces the time to drift failure detection as illustrated by 
comparison of the results reported in FIG. 18 to the results 
reported in FIG. 20 and FIG. 22. 

Parameter estimation error may be traded off against 
processing time by increasing the number of vectors in the 
process memory matrix. As is evident by comparison of 
FIG. 19 and FIG. 21, doubling the process memory matrix 
size increased the single cycle processing time by a factor of 
four (2’). Operating mode partitioning provides an effec- 
tively larger process memory matrix without the concomi- 
tant penalty in processing time. For example, the operating 
mode partitioned SSME sensor validation module (PD) 
includes seven active operating modes with process memory 
matrices sized at 150 vectors per mode. This provides an 
effective process memory matrix size of 1050 vectors with 
processing speed equivalent to a process memory matrix 
containing 150 vectors. A single unpartitioned model of 
equivalent accuracy would be 49 (7’) times slower than the 
operating mode partitioned process model array. 

Processing speed results demonstrated the real-time 
monitoring capability of the operating mode partitioned 
process model array. Single observation processing times of 
5-msec (200 samplesisecond) were demonstrated with the 
seventeen (17) sensor SSME sensor validation module run- 
ning on a 300-MHz Pentium I1 processor. It is reasonable to 
allocate between 2 and 50-msec per data cycle for sensor 
validation processing in SSME real-time control applica- 
tions. The results of this testing show these goals are only 

detection. 

26 
attainable with operating mode partitioning of the MSET 
model in accordance with the instant invention. The unob- 
vious benefits of the instant invention are therefore demon- 
strated by this reduction to practice. 

Alternate Embodiment and in Use and Operation Using a 
MSET Process Model Array for Parameter Estimation and a 
Rule-Based Logic Sequence for Determining the Operating 
Mode of the Asset: 

In another embodiment, the same MSET process model 
i o  array methods and procedures described hereinabove were 

used with a rule-based logic sequence for the operating 
mode determination procedure 26. A rule-based classifier is 
generally specific to a single type of asset and may be 
implemented in a plurality of forms. A rule-based classifier 

IS may use expert system or procedural logic depending on the 
nature and complexity of the operating modes of the asset. 
In one embodiment herein, procedural logic representing the 
rules specified in FIG. 16 for determining the operating 
mode of the SSME was reduced to practice using C language 

s 

20 procedural software as follows. 

. .. . .. . .. . . Begin Source Code Listing ----------- 
I* SSME operating mode determiner function 

25 I* Copyright 1999 by Expert Microsystems, Inc. 
*I 
*I 

I* All Rights Reserved *I 
#define START-COMMAND 33024.0 
#define SHUTDOWN-COMMAND 35328.0 
#define COMMAND-ISSUED(COMVAL,DAlTJM) 
((DATUM > (COMVAL - 1.0)) 

enum SSMELmodes SSMELmode-determiner 
(double *data, enum Boolean initialize) 

30 && (DATUM < (COMVAL + 1.0))) 

float pc; 
float vehcom; 

static float last-PL=O.O; 
static int cycles-in-start=O 
static float last-compc=O.O; 
static enum SSMELmodes lastLstate=PREFIRE; 
if(initia1ize) { 

I* Combustion chamber pressure *I 
{ 

I* Vehicle command code *I 
35 float compc; I* Commanded chamber pressure *I 

last-PL = 0.0; 
cycles-in-start = 0; 
last-compc = 0.0; 
last-state = PREFIRE; 
return PREFIRE; 

40 

I; 
pc = data[PID63]; 

45 vehcom = data[PID280]; I* Vehicle command is PID280 *I 
compc data[PID287]; I* Commanded chamber pressure is PID287 *I 
I* Take care of special cases first . . . *I 
if (last-state == PREFIRE) { 

I* Chamber pressure is PID63 *I 

if (COMMAND-ISSUED (START-COMMAND, vehcom)) { 
I* If we’re waiting for START and receive START, 
then we’re in TRANSIENT *I 
last-state = STARTO1; 
return STARTO1; 
} else { 
I* Keep waiting. *I 
last-state = PREFIRE; 

so 

55 return PREFIRE; 
I 

} else if (last-state == SHUTDOWN 1 1  COMMAND-ISSUED 
(SHUTDOWN-COMMAND, vehcom)) { 

I* Once SHUTDOWN is detected, stay in SHUTDOWN 
until re-initialized. *I 

return SHUTDOWN, 
6o last-state = SHUTDOWN, 

I 
if(lastLstate==STARTOl) { 

if(++cyclespin-start<25) { I* 0 to 1.0 sec *I 
last-compc = compc; 
last-state = STARTO1; 

65 return STARTO1; 
} else { 
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employ any one of a plurality of operating mode determi- 
nation procedures 12 to achieve the benefits described 
herein. 

-continued 

last-state = START12; 
return START12; 

I 
I; 
if(lastLstate==STARTlZ) { 

if(++cycles-in-start<SO) { I* 1.0 to 2.0 sec *I 
last-compc = compc; 
last-state = START12; 
return START12; 

last-state = START24; 
return START24; 

} else { 

I 
1; 
if(1astLstate ==START24) { 

if(++cycles-in-start<25*4) { 1*2.0 to 4.00 sec minimum *I 
last-compc = compc; 
last-state = START24; 
return START24; 

I; 
I; 
I* ELSE . . . mainstage operation. *I 
if((lastLstate==STEADY-LOW 1 1  lastLstate==STEADY-FULL) 
&& fabs(compc-last~compc)<3.35) { 

last-PL = pc; 
last-compc = compc; 
if (compc < 2500.0) { 

last-state = STEADY-LOW, 
return STEADY-LOW, 

last-state = STEADY-FULL; 
return STEADY-FULL 

} else { 

I 
} else { I* In transient *I 

if(fabs (compc - pc) <= (5 * 3.35)) { 
I* Transition to steady-state. *I 
last-PL = pc; 
last-compc = compc; 
if(compc < 2500.0) { 

last-state = STEADY-LOW, 
return STEADY LOW. - 

} else { 
last-state = STEADY-FULL; 
return STEADY-FULL, 

1 
} else if(lastLstate==START24) { 

last-PL = pc; 
last-compc = compc; 
return last-state; 

last-PL = pc; 
last-compc = compc; 
last-state = UPTHRUST; 
return UPTHRUST, 

last-PL = pc; 
last-compc = compc; 
last-state = DOWNTHRUST; 
return DOWNTHRUST, 

} else if(compo1ast-compc 1 1  pc<compc) { 

} else { 

I; 
I; 

I; 
. .. . . .. . .. . . End Source Code Listing ------------ 

Alternate Embodiment and in Use and Operation Using a 
5 Mathematical Process Model Array for Parameter Estima- 

tion and a Rule-Based Logic Sequence for Determining the 
Operating Mode of the Asset: 

In yet another embodiment, an array of mathematical 
models of the asset is used with the same rule-based logic 

10 sequence for operating mode determination described herein 
above. The mathematical type of process model array 50 is 
generally specific to a single type of asset and may be 
implemented in a plurality of forms. In the reduction to 
practice described herein, the mathematical process model 

1s array 50 was prepared for the operating modes of the SSME, 
as defined in FIG. 16. This embodiment was first reduced to 
practice in the performance of NASA Contract NAS3- 
97130. The contract final report, delivered to the United 
States Government and listed hereinbelow, further describes 

20 one embodiment and its reduction to practice, the disclosure 
of which is incorporated in its entirety herein by reference. 

NASA Contract Final Report, “Sensor Validation Tools 
and SSME Network,” NASA Contract NAS3-97130, 
December 1999. Unrestricted distribution. 

The mathematical process modeling approach taken in 
this work was to empirically derive a plurality of math- 
ematical redundancy relations between related groups of 
SSME signals. For example, FIG. 23 illustrates a math- 
ematical redundancy relation among three related signals 

30 using a standard formula for fluid flow line resistance. 
Additionally, mathematical limit relations were defined in 
the form of threshold comparison checks for the signal 
values. Engine system design relationships and sensor 
redundancies were used to select the mathematical relations 

35 used in the mathematical process submodels. A network of 
these mathematical relations was then assembled to create a 
separate mathematical process submodel for each SSME 
operating mode. These operating mode specific mathemati- 
cal process submodels were then assembled into a process 

40 model array 50 comprised of one mathematical process 
submodel for each operating mode of the SSME. 

Reduction to practice and performance testing was 
accomplished using the mathematical process model array 
50 and the rule-based operating mode determination proce- 

45 dure 26 described hereinabove. Substantially similar test 
results were achieved using the mathematical process model 
array 50 and the MSET process model array 50 for param- 
eter estimation. 

Accordingly, in one aspect the present invention provides 
SO the surveillance system and method having process param- 

eter estimation and operating mode partitioning. 
In another aspect the present invention provides the 

system and method as characterized above for performing 

2s 

- 
high sensitivity surveillance of a wide variety of assets 

ss including industr ia l ,  uti l i ty,  business ,  medical ,  
Reduction to practice and performance testing was transportation, financial, and biological processes and appa- 

ratuses wherein such process and/or apparatus asset prefer- 
ably has at least two distinct modes of operation. 

accomplished using the MSET parameter estimation tech- 
niques and rule-based operating mode determination proce- 

results were achieved using the rule-based method and the 60 system and method as characterized above which partitions 
a parameter estimation model for a process surveillance LVQ neural network method for the operating mode deter- scheme into two or more coordinated submodels each pro- 

methods implemented the Same operating mode determina- mode or related subset of operating modes of the process. 
tion criteria, as defined in FIG. 16, albeit using very different 65 another aspect the present invention provides the 
means. Reduction to practice using both neural network and system and method as characterized above which creates an 

&re described hereinabove, Substantially identical test In another aspect the present invention provides the 

procedure 12. This was expected because both viding improved parameter estimation for a single operating 

rule-based methods illustrates that the instant invention may improved parameter estimation model for a process surveil- 
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lance scheme using recorded operating data for an asset to 
train a parameter estimation model. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for surveillance of signal 
sources and detecting a fault or error state of the signal 
sources enabling responsive action thereto. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for surveillance of on-line, 
real-time signals, or off-line accumulated signal data. 

In another aspect the present invention provides the 
system and method as characterized above for generating an 
improved virtual signal estimate for at least one process 
parameter given an observation of at least one actual signal 
from the asset. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for ultra-sensitive analysis 
and modification of asset processes and apparatuses using at 
least one parameter estimation technique for the generation 
of at least one virtual signal parameter. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for ultra-sensitive analysis 
and modification of asset processes and apparatuses wherein 
the parameter estimation technique used for the generation 
of at least one virtual signal parameter is a multivariate state 
estimation technique (MSET) having any one of a plurality 
of pattern recognition matrix operators, training procedures, 
and operating procedures. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for ultra-sensitive analysis 
and modification of asset processes and apparatuses wherein 
the parameter estimation technique used for the generation 
of at least one virtual signal parameter is a neural network 
having any one of a plurality of structures, training 
procedures, and operating procedures. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for ultra-sensitive analysis 
and modification of asset processes and apparatuses wherein 
the parameter estimation technique used for the generation 
of at least one virtual signal parameter is a mathematical 
process model having any one of a plurality of structures, 
training procedures, and operating procedures. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for ultra-sensitive analysis 
and modification of asset processes and apparatuses wherein 
the parameter estimation technique used for the generation 
of at least one virtual signal parameter is an autoregressive 
moving average (ARMA) model having any one of a 
plurality of structures, training procedures, and operating 
procedures. 

In another aspect the present invention provides the 
system and method as characterized above which provides 
an improved system and method for ultra-sensitive analysis 
and modification of asset processes and apparatuses wherein 
the parameter estimation technique used for the generation 
of at least one virtual signal parameter is a Kalman filter 
model having any one of a plurality of structures, training 
procedures, and operating procedures. 

In another aspect the present invention provides the 
system and method as characterized above which provides a 
novel system and method for using at least one of a plurality 

30 
of methods to classify the operating mode of an asset for 
performing high sensitivity surveillance. 

In another aspect the present invention provides the 
system and method as characterized above which provides a 

5 novel system and method to classify the operating mode of 
an asset wherein said classification is performed using a 
mathematical or logic sequence having any one of a plurality 
of structures, training procedures, and operating procedures. 

In another aspect the present invention provides the 
system and method as characterized above which provides a 
novel system and method to classify the operating mode of 
an asset wherein said classification is performed using an 
expert system having any one of a plurality of structures, 
training procedures, and operating procedures. 

In another aspect the present invention provides the 
system and method as characterized above which provides a 
novel system and method to classify the operating mode of 
an asset wherein said classification is performed using a 
neural network having any one of a plurality of structures, 
training procedures, and operating procedures. 

Moreover, having thus described the invention, it should 
be apparent that numerous structural modifications and 
adaptations may be resorted to without departing from the 
scope and fair meaning of the instant invention as set forth 
hereinabove and as described hereinbelow by the claims. 

10 

2o 

25 I claim: 
1. Amethod for determining asset status, the steps includ- 

creating a process model comprised of a plurality of 
process submodels each correlative to at least one 
training data subset partitioned from an unpartitioned 
training data set and each having an operating mode 
associated thereto; 

acquiring a set of observed signal data values from an 

determining an operating mode of the asset for the set of 
observed signal data values; 

selecting a process submodel from the process model as 
a function of the determined operating mode of the 

calculating a set of estimated signal data values from the 
selected process submodel for the determined operating 
mode, and 

determining asset status as a function of the calculated set 
of estimated signal data values. 

2. The method of claim 1 wherein the step of creating the 
process model comprised of the plurality of process sub- 
models includes a step of associating at least one operating 
mode to each of the plurality of process submodels. 

3. The method of claim 2 wherein the selecting step 
includes a step of selecting the process submodel from the 
process model such that at least one operating mode asso- 
ciated with the selected process submodel substantially 
matches the determined operating mode. 

4. The method of claim 1 wherein the step of determining 
asset status includes the step of detecting the presence of a 
fault. 

5 .  The method of claim 4 wherein the detecting step 
includes a step of selecting a fault detection method as a 

60 function of the determined operating mode for use in detect- 
ing the presence of the fault. 

6. The method of claim 5 further including the step of 
making decisions on detected faults. 
7. The method of claim 6 wherein the step of making 

65 decisions on detected faults includes a step of selecting a 
fault decision method from a plurality of fault decision 
methods as a function of the determined operating mode. 

ing: 

30 

35 asset; 

40 asset; 

45 

SO 

ss 
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8. The method of claim 1 further including the step of 
performing asset control correlative to determined asset 
status. 

9. The method of claim 1 wherein the step of determining 
asset status includes the step of determining unacceptable 5 
asset status. 

10. The method of claim 9 further including the step of 
enabling responsive action to any determined unacceptable 
asset status. 

11. The method of claim 10 wherein the step of enabling 
responsive action includes the step of performing control to 
correct any determined unacceptable asset status. 

12. The method of claim 10 wherein the step of enabling 
responsive action includes the step of alarming off of any 
determined unacceptable asset status. 

13. The method of claim 9 wherein the step of determin- 
ing unacceptable asset status includes the step of determin- 
ing sensor signal degradation. 

14. The method of claim 9 wherein the step of determin- 
ing unacceptable asset status includes the step of determin- 

15. The method of claim 9 wherein the step of determin- 
ing unacceptable asset status includes the step of determin- 
ing component performance degradation. 

16. The method of claim 9 wherein the step of determin- 
ing unacceptable asset status includes the step of determin- 2s 
ing process operating anomalies. 

17. The method of claim 9 wherein the step of determin- 
ing unacceptable asset status includes determining at least 
one fault condition. 

18. The method of claim 17 further including the step of 3o 
ascertaining at least one fault of an asset given at least the 
one determined fault condition. 

19. The method of claim 18 further including the step of 
enabling responsive action to the asset having at least the 
one ascertained fault. 

responsive action includes the step of performing control to 
correct at least the one ascertained fault. 

21. The method of claim 19 wherein the step of enabling 
responsive action includes the step of alarming off of at least 
the one ascertained fault. 

22. A system for determining asset status, said system 
comprising in combination: 

a training data set partitionable into a plurality of training 
data subsets having a plurality of predefined operating 
modes associated therewith such that each partitioned 
training data subset includes at least one of said pre- 
defined operating modes associated thereto; 

means for acquiring a set of observed signal data values 
from an asset; 

means for determining an operating mode of the asset for 
the set of observed signal data values; 

means for selecting a process submodel from a process 
model as a function of said determined operating mode 

means for calculating a set of estimated signal data values 
from said selected process submodel for said deter- 
mined operating mode for performing asset 
surveillance, and 

means for determining asset status as a function of the 60 
calculated set of estimated signal data values. 

23. The system of claim 22 further including means for 
determining unacceptable asset status as a function of the 
calculated set of estimated signal data values. 

performing control to correct any determined unacceptable 
asset status. 

ing data degradation. 20 

20. The method of claim 19 wherein the step of enabling 3s 

40 

4s 

so 

of the asset; 5s 

24. The system of claim 23 further including means for 65 
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25. The system of claim 23 further including means for 

alarming off of any determined unacceptable asset status. 
26. An asset surveillance method, the steps including: 
acquiring a set of signals from an asset correlative to asset 

status; 
digitizing the set of signals for defining a set of digitized 

signals; 
creating a process model comprised of a plurality of 

process submodels each correlative to at least one 
training data subset partitioned from an unpartitioned 
training data set and each having an operating mode 
associated thereto; 

determining an operating mode of the asset; 
selecting at least one of the process submodels as a 

function of the determined operating mode; 
producing a set of estimated signal values from the 

selected process submodel; 
detecting a presence of a fault as a function of the set of 

estimated signal values from the selected process sub- 
model for providing asset surveillance. 

27. The method of claim 26 wherein the step of producing 
the set of estimated signal values from the selected process 
submodel includes the step of selecting a parameter estima- 
tion method as a function of the determined operating mode. 

28. The method of claim 27 wherein the step of selecting 
the parameter estimation method includes a step of selecting 
the parameter estimation method from a plurality of pattern 
recognition methods as a function of the determined oper- 
ating mode. 

29. The method of claim 27 wherein the step of selecting 
the parameter estimation method includes a step of selecting 
the parameter estimation method from a group of pattern 
recognition methods comprised of a System State Analyzer 
(SSA) method, a Bounded Angle Ratio Test (BART) 
method, a Vector Pattern Recognizer (VPR) method, a 
Vector Similarity Evaluation Technique (VSET) method, 
and a Probabilistic State Estimation Method (PSEM) and 
wherein each method is individually selected from the group 
of pattern methods as a function of the determined operating 
mode. 

30. The method of claim 26 wherein the fault detecting 
step includes a step of selecting a fault detection method as 
a function of the determined operating mode for detecting 
the presence of the fault. 

31. The method of claim 30 wherein the step of selecting 
the fault detection method includes a step of selecting the 
fault detection method from a plurality of pattern fault 
detection methods as a function of the determined operating 
mode. 

32. The method of claim 31 wherein the step of selecting 
the fault detection method from the plurality of fault detec- 
tion methods includes a step of selecting the fault detection 
method from a group of fault detection methods comprised 
of a Sequential Probability Ratio Test (SPRT) method and a 
Bayesian Sequential Probability (BSP) method and wherein 
each method is individually selected, as a function of the 
determined operating mode, from the group of fault detec- 
tion methods. 

33. The method of claim 26 further including a step of 
making decisions on detected faults. 

34. The method of claim 33 wherein the step of making 
decisions includes a step of selecting, as a function of the 
determined operating mode, a fault decision method from a 
plurality of fault decision methods. 

35. The method of claim 34 wherein the step of selecting, 
as a function of the determined operating mode, the fault 
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decision method from the plurality of fault decision methods 
includes a step of selecting, as a function of the determined 
operating mode, associated threshold constants for the plu- 
rality of fault decision methods. 

36. The method of claim 26 wherein the step of selecting 
at least one of the process submodels includes the step of 
individually selecting, as a function of the determined oper- 
ating mode, each of the process submodels from a plurality 
of models. 

37. The method of claim 36 wherein the step of individu- 
ally selecting each of the plurality of process submodels 
includes the step of individually selecting, as a function of 
the determined operating mode, each of the process sub- 
models from a group of models comprised of a multivariate 
state estimation technique model, a neural network model, a 
mathematical model, an autoregressive moving average 
model, and a Kalman filter model. 

38. The method of claim 26 wherein the step of deter- 
mining the operating mode of the asset includes a step of 
using at least one method from a group of methods com- 
prised of a logic sequence method, a mathematical model 
method, a neural network method, and an expert system 
method for determining the operating mode of the asset. 

39. An asset surveillance system, said system comprising 
in combination: 

a data acquisition means for acquiring a set of signals 
from an asset correlative to asset status; 

a digitizing means for digitizing said set of signals for 
defining a set of digitized signals; 

a process model comprised of a plurality of process 
submodels each correlative to at least one training data 
subset partitioned from an unpartitioned training data 
set and wherein each of said partitioned training data 
subsets and each of said plurality of process submodels 
has at least one defined operating mode associated 
therewith; 

an operating mode determination means for determining 
an operating mode of said asset; 

a process model selection means for selecting at least one 
of said process submodels as a function of said deter- 
mined operating mode; 

a parameter estimation means for producing a set of 
estimated signal values from said selected process 
submodel; 

a fault detection means for detecting the presence of a 
fault as a function of said set of estimated signal values 
from said selected process submodel for providing 
asset surveillance. 

40. The system of claim 39 wherein said parameter 
estimation means includes means for selecting a parameter 
estimation method as a function of said determined operat- 
ing mode for producing said set of estimated signal values 
from said selected process submodel. 

41. The system of claim 40 wherein said means for 
selecting the parameter estimation method includes means 
for selecting the parameter estimation method from a plu- 
rality of pattern recognition methods as a function of said 
determined operating mode for producing said set of esti- 
mated signal values from said selected process submodel. 

42. The system of claim 40 wherein said means for 
selecting the parameter estimation method includes means 
for selecting the parameter estimation method from a plu- 
rality of pattern recognitions methods comprised of any 
combination of methods from a group of pattern recognition 
methods comprised of a System State Analyzer (SSA) 
method, a Bounded Angle Ratio Test (BART) method, a 

34 
Vector Pattern Recognizer (VPR) method, a Vector Similar- 
ity Evaluation Technique (VSET) method, and a Probabi- 
listic State Estimation Method (PSEM) and wherein each 
method is individually selected from said group of pattern 

s methods as a function of said determined operating mode. 
43. The system of claim 39 wherein said fault detection 

means includes means for selecting a fault detection method 
as a function of said determined operating mode. 

44. The system of claim 43 wherein said means for 
i o  selecting the fault detection method includes means for 

selecting the fault detection method from a plurality of 
pattern fault detection methods. 

45. The system of claim 43 wherein said means for 
selecting the fault detection method includes means for 

is selecting the fault detection method from a group of fault 
detection methods comprised of a Sequential Probability 
Ratio Test (SPRT) method and a Bayesian Sequential Prob- 
ability (BSP) method and wherein each method is individu- 
ally selected from said group of fault detection methods as 

20 a function of said determined operating mode. 
46. The system of claim 39 wherein said fault detection 

means includes means for selecting threshold constants as a 
function of said determined operating mode. 

47. The system of claim 46 wherein said means for 
zs selecting threshold constants includes means for selecting a 

threshold constant from a group comprised of a fault detec- 
tion procedure false alarm probability, missed alarm 
probability, and system disturbance magnitude values. 

48. The system of claim 39 further including a fault 
30 decision means for making decisions on detected faults. 

49. The system of claim 48 wherein said fault decision 
means includes means for selecting a fault decision method 
from a plurality of fault decision methods as a function of 
said determined operating mode. 

50. The system of claim 49 wherein said fault decision 
means further includes means for selecting, as a function of 
said determined operating mode, associated threshold con- 
stants for said plurality of fault decision methods. 

51. The system of claim 39 wherein each of said plurality 
40 of process submodels are of a type individually selected, as 

a function of said determined operating mode, from a 
plurality of models. 

52. The system of claim 51 wherein each of said plurality 
of process submodels are of a type individually selected, as 

4s a function of said determined operating mode, from a 
plurality of models comprised of any combination of models 
from a group of models comprised of a multivariate state 
estimation technique model, a neural network model, a 
mathematical model, an autoregressive moving average 

SO model, and a Kalman filter model. 
53. The system of claim 39 wherein said operating mode 

determination means is selected from at least one group of 
methods comprised of a logic sequence method, a math- 
ematical model method, a neural network method, and a 

54. The system of claim 39 wherein at least one of said 
plurality of process submodels contains a different number 
of modeled signal parameters than another one of said 
plurality of process submodels. 

55. The system of claim 39 wherein at least one of said 
plurality of process submodels contains a different number 
of process memory matrix vectors than another one of said 
plurality of process submodels. 

56. The system of claim 39 wherein dimensions of at least 
65 one of said plurality of process submodels is different than 

dimensions of another one of said plurality of process 
submodels. 

3s 

ss expert system method. 

60 
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57. The system of claim 39 wherein at least one of said 
plurality of process submodels contains different parameter 
estimation settings than another one of said plurality of 
urocess submodels. the steps including: 

fault decision method from a plurality of fault decision 
methods as a function of the determined operating mode. 

68. A method for performing signal source surveillance, 

58. The system of claim 39 wherein at least one of said 5 
plurality of process submodels contains different fault detec- 
tor settings than another one of said plurality of process 
submodels. 

59. A method for performing surveillance of an asset, the 
steps including: 

creating a process model comprised of a plurality of 
process submodels each correlative to at least one 
training data subset partitioned from an unpartitioned 
training data set and each having an operating mode 
associated thereto; 

acquiring a set of observed signal data values from the 
asset; 

determining an operating mode of the asset for the set of 
observed signal data values; 

selecting a process submodel from the process model as 2o 
a function of the determined operating mode of the 
asset; 

calculating a set of estimated signal data values from the 

10 

13 

creating a process model comprised of a plurality of 
process submodels each correlative to at least one 
training data subset partitioned from an unpartitioned 
training data set and each having an operating mode 
associated thereto; 

acquiring a set of observed signal data values from at least 
one signal source; 

determining an operating mode of at least the one signal 
source for the set of observed signal data values; 

selecting a process submodel from the process model as 
a function of the determined operating mode of at least 
the one signal source; 

calculating a set of estimated signal data values from the 
selected process submodel for the determined operating 
mode, and 

determining status of at least the one signal source as a 
function of the calculated set of estimated signal data 
values for performing signal source surveillance. 

69. The method of claim 68 further including the step of - 
selected process submodel for the determined operating 
mode, and zs tive to determined status. 

determining asset status by performing the step of com- 
paring the set of observed signal data values to the 
calculated set of estimated signal data values for per- 
forming asset surveillance. 

performing control of at least the one signal source correla- 

70. The method of claim 68 wherein the step of deter- 
mining status includes the step of determining unacceptable 
status of at least the one signal source. 

71. The method of claim 70 further including the step of 
60. The method of claim 59 wherein the step of comparing 30 enabling responsive action to determined unacceptable sta- 

the set of observed signal data values to the calculated set of tus of at least the one signal source. 
estimated signal data values includes the step of comparing 72. The method of claim 71 wherein the step of enabling 
the set of observed signal data values to the calculated set of responsive action includes the step of performing control of 
estimated signal data values by using a mathematical func- at least the one signal source for which unacceptable status 
tion of at least one individual value of the set of observed 35 was determined. 
signal data values and at least one corresponding individual 73. The method of claim 71 wherein the step of enabling 
value of the calculated set of estimated signal data values for responsive action includes the step of alarming off of deter- 
performing asset surveillance. mined unacceptable status of at least the one signal source. 

61. The method of claim 59 wherein the step of deter- 74. The method of claim 71 wherein the step of deter- 
mining asset status further includes the step of using a fault 40 mining unacceptable status of at least the one signal source 
detection means of a type individually selected from the includes the step of determining at least one fault of at least 
group comprised of a threshold limit test, a statistical the one signal source. 
hypothesis test, a sequential probability ratio test, and a 75. The method of claim 74 further including the step of 
conditional probability test to evaluate the comparison determining status of at least one asset associated with at 
between at least one individual value of the set of observed 45 least the one signal source as a function of at least the one 
signal data values and at least one corresponding individual determined fault. 
value of the calculated set of estimated signal data values for 76. The method of claim 75 further including a step of 
performing asset surveillance. performing control of at least the one asset for at least the 

62. The method of claim 59 wherein the step of creating one determined fault. 
the process model comprised of the plurality of process SO 77. The method of claim 75 wherein the step of enabling 
submodels includes a step of associating at least one oper- responsive action includes the step of alarming off of at least 
ating mode to each of the plurality of process submodels. the one determined fault. 

63. The method of claim 62 wherein the selecting step 78. The method of claim 68 wherein the step of creating 
includes a step of selecting the process submodel from the the process model comprised of the plurality of process 
process model such that at least one operating mode asso- ss submodels includes a step of associating at least one oper- 
ciated with the selected process submodel substantially ating mode to each of the plurality of process submodels. 
matches the determined operating mode. 79. The method of claim 78 wherein the selecting step 

64. The method of claim 59 wherein the step of deter- includes a step of selecting the process submodel from the 
mining asset status includes the step of detecting the pres- process model such that at least one operating mode asso- 
ence of a fault. 60 ciated with the selected process submodel substantially 

65. The method of claim 64 wherein the detecting step matches the determined operating mode. 
includes a step of selecting a fault detection method as a 80. The method of claim 68 wherein the step of deter- 
function of the determined operating mode. mining asset status includes the step of detecting the pres- 

66. The method of claim 65 further including the step of ence of a fault. 
making decisions on detected faults. 81. The method of claim 80 wherein the detecting step 

67. The method of claim 66 wherein the step of making includes a step of selecting a fault detection method as a 
decisions on detected faults includes a step of selecting a function of the determined operating mode. 

65 



US 6,898,469 B2 
37 38 

82. The method of claim 80 further including the step of 
making decisions on detected faults. 

83. The method of claim 82 wherein the step of making 
decisions on detected faults includes a step of selecting a 
fault decision method from a plurality of fault decision 5 
methods as a function of the determined operating mode. 

84. A method for performing asset control, the steps 
including: 

creating a process model comprised of a plurality of 

calculating a set of estimated signal data values from the 
selected process submodel for the determined operating 
mode, and 

employing at least one of the calculated set of estimated 
signal data values as at least one virtual signal value for 
performing asset control. 

85. The method of claim 84 further including the step of 
using at least the one virtual signal value in place of at least 
one of the observed signal data values for determining asset 

process submodels each correlative to at least one 10 status. 

training data set and each having an operating mode 
associated thereto; 

asset; 
determining an operating mode of the asset for the set of 

observed signal data values; 
selecting a process submodel from the process model as 

a function of the determined operating mode of the 
asset; * * * * *  

training data subset partitioned from an unpartitioned 86. The method Of 85 further a step Of 

using at least the one virtual signal value in place of at least 
one of the observed signal data values for determining 
unacceptable asset status. 

performing control to correct any determined unacceptable 
asset status, 

88. The method of claim 86 further including a step of 
alarming off of any determined unacceptable asset status. 

acquiring a set Of Observed data from the 15 87, The method of claim 86 further including a step of 


