
I11111 ll111111111 Ill11 Ill11 US006895115B2 IIIII 11111 IIIII IIIII 11111 IIIII 11111111111111 Ill1
(12) United States Patent (io) Patent No.: US 6,895,115 B2

Tilton (45) Date of Patent: May 17,2005

METHOD FOR IMPLEMENTATION OF
RECURSIVE HIERARCHICAL
SEGMENTATION ON PARALLEL
COMPUTERS

Inventor:

Assignee:

Notice:

Appl. No

Filed:

James C. Tilton, Lanham, MD (US)

The United States of America as
represented by the United States
National Aeronautics and Space
Administration, Washington, DC (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 716 days.

09/839,147

Apr. 23,2001

Prior Publication Data

US 200310081833 A1 May 1, 2003

Int. C1.7 .. G06K 9/34
U.S. C1. ... 382/180
Field of Search 3821173, 180,

3821304, 302, 303

References Cited

U.S. PATENT DOCUMENTS

4,791,486 A * 1211988 Spriggs et al. 3751240.08
5,995,668 A *- 1111999 Corset et al. 3821233

OTHER PUBLICATIONS

Schachter et al, Some experiments in image segmentation by
clustering of local feature values, Pattern Recognition, 1979,
V O ~ . 11, NO. 1, pp. 19-28.*

Recursion
- Level

t i

1 Master Process:

Tilton et al, Segmentation of remotely sensed data using
parallel region growing, Proceedings of the Ninth Interna-
tional Symposium on Machine Processing of Remotely
Sensed Data, Jun. 1983, pp. 130-137.*
Beaulieu et al, Hierarchy in Picture Segmentation: A Step-
wise Optimization Approach, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Feb. 1989, vol. 11, No.

J.A. Hird, Multiresolution object detection and segmentation
using top-down algorithms, Third International Conference
on Image Processing and its Applications, Jul. 18-20,1989,
pp. 416-420.*
J.C. Tilton, A recursive PVM implementation of an image
segmentation algorithm with performance results comparing
the HIVE and the Cray T3E, The Seventh Symposium on the
Frontiers of Massively Parallel Computation, Feb. 21-25,

* cited by examiner
Primary Examinerahavesh M. Mehta
Assistant Exarniner-Christopher Sukhaphadhana
(74) Attorney, Agent, or Firm-Keith L. Dixon
(57) ABSTRACT

A method, computer readable storage, and apparatus for
implementing a recursive hierarchical segmentation algo-
rithm on a parallel computing platform. The method
includes setting a bottom level of recursion that defines
where a recursive division of an image into sections stops
dividing, and setting an intermediate level of recursion
where the recursive division changes from a parallel imple-
mentation into a serial implementation. The segmentation
algorithm is implemented according to the set levels. The
method can also include setting a convergence check level
of recursion with which the first level of recursion commu-
nicates with when performing a convergence check.

2, pp. 150-163.*

1999, pp. 146-153.*

24 Claims, 7 Drawing Sheets

- Size

512x512

256x256

128x128

64x64

32x32

12 1

U S . Patent May 17,2005 Sheet 1 of 7 US 6,895,115 B2

FIG. I

U S . Patent May 17,2005 Sheet 2 of 7 US 6,895,115 B2

FIG. 2

U S . Patent May 17,2005 Sheet 3 of 7 US 6,895,115 B2

FIG. 3

U S . Patent May 17,2005 Sheet 4 of 7 US 6,895,115 B2

fi
FIG. 4A

1

I

I
I
I
I 2

I
I

I
I
I
I

------------+--------

3 4

FIG. 4B

FIG. 4C FIG. 4D

U S . Patent May 17,2005 Sheet 5 of 7

1

2

US 6,895,115 B2

= rnb-levels

FIGm 5

U S . Patent May 17,2005 Sheet 6 of 7

Recursion
Level

1

(in b-levels) 2

3

(rnb-levels) 4

US 6,895,115 B2

FIG. 6

U S . Patent May 17,2005 Sheet 7 of 7

03
N
c

US 6,895,115 B2

d N
M x
N
M

3 a

US 6,895,115 B2
1

METHOD FOR IMPLEMENTATION OF
RECURSIVE HIERARCHICAL

SEGMENTATION ON PARALLEL
COMPUTERS

ORIGIN OF THE INVENTION

The invention described herein was made by an employee
of the United States Government, and may be manufactured
and used by or for the Government for governmental pur-
poses without the payment of any royalties thereon or
therefore.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method, apparatus, and
computer readable storage for implementing a recursive
hierarchical segmentation algorithm on parallel computers.
More particularly, the present invention enables a computer
system to utilize parallel processes to perform the hierar-
chical segmentation algorithm, therein decreasing computa-
tion time and enabling the creation of hierarchical segmen-
tations on large data sets that would be impracticable just
using serial processing.

2. Description of the Related Art

Image segmentation is a partitioning of an image into
sections or regions. These regions may be later associated
with ground cover type or land use, but the segmentation
process simply gives generic labels (i.e. region 1, region 2,
etc. . . .) to each region. The regions consist of groups of
multispectral or hyperspectral image pixels that have similar
data feature values. These data feature values may be the
multispectral or hyperspectral data values themselves and/or
they may be derivative features such as band ratios or
textural features.

FIG. 1 illustrates a satellite image of the Baltimore, Md.
region. FIG. 2 illustrates the image of FIG. 1 after under-
going segmentation into two region sets. As can be seen by
FIG. 2, like regions have been joined. The darker colored
region corresponds to bodies of water, while the lighter
colored region represents the land. FIG. 3 illustrates the
image of FIG. 1 after undergoing segmentation into three
region sets. As can be seen by FIG. 3, the image is colored
into three image sets, each image set containing a like
region. The dark colored region corresponds to land, the
medium colored region corresponds to water, and the light
colored regions correspond to the industrial or dense urban
regions.

As can be seen by the FIGS. 1-3, the hierarchical image
segmentations can be useful in a multitude of applications,
including earth science applications where delineation of the
spatial coverage of water or land is required. It can also be
used as substitute ground reference data for the validation of
the analysis of lower resolution global coverage remotely
sensed data.

There are numerous algorithms for achieving image
segmentation, including recursive algorithms. However,
most of these algorithms do not employ any form of opti-
mization in performing segmentations. The following is the
classic definition of image segmentation:

Let X be a two-dimensional array representing an image.
A segmentation of X can be defined as a partition of X
into disjoint subsets X,, X,, . . . , X,, such that

2

N

,=I
1) ux,=x

5
2) Xi, i= l , 2, . . . , N is connected.
3) P(Xi)=TRUE for i=l , 2, . . . , N and
4) P(X,UX,)=FALSE for i#j, where Xi and X, are adja-

cent.
P(Xi) is a logical predicate that assigns the value TRUE

or FALSE to Xi, depending on the image data values in
lo

Xi.
S. W. Zucker, “Region growing: childhood and
adolescence,” Computer Graphics and Image Processing,
Vol. 5, pp. 382-399, 1976, summarized the above definition
as follows: The first condition requires that every picture
element (pixel) must be in a region. The second condition
requires that each region must be connected, i.e. composed
of contiguous image pixels. The third condition determines

2o what kind of properties each region must satisfy, i.e. what
properties the image pixels must satisfy to be considered
similar enough to be in the same region. The fourth condi-
tion specifies that, in the final segmentation result, any
merging of any adjacent regions would violate the third

A problem with this classic definition of image segmen-
tation is that the segmentation so defined is not unique. The
number, N and shape of the partitions, Xi, X,, . . . , X,,
depend on the order in which the image pixels are processed.

30 In addition, there is no concept of optimality contained in
this definition of image segmentation. Under this classic
definition, all partitions that satisfy the conditions represent
equally good or valid segmentations of the image.

An ideal definition of image segmentation would be as

Let X be a two-dimensional array representing an image.
A segmentation of X into N regions can be defined as
a partition of X into disjoint subsets X,, X,, . . . , X,,
such that

25 condition.

35 follows:

40

N

,=I
1) U X1=X

45 2) Xi, i= l , 2, . . . , N is connected.

N

3) G(X,) =MINIMUM
,=I

so

over all partitions into N regions and

adjacent.

depending on the image data values in Xi.

4) G(XiUX,)>G(Xi)+G(X,) for i#j, where Xi and X, are

G(XJ is a function that assigns a cost to partition Xi,

These conditions can be summarized as follows: The first
condition requires that every picture element (pixel) must be
in one of N regions. The second condition requires that each

60 region must be connected, i.e. composed of contiguous
image pixels. The third condition states that the partition
must produce a minimum cost aggregated over all N regions.
The fourth condition specifies that, in the final segmentation
result, any merging of adjacent regions increases the mini-

65 mum cost obtained in the third condition.
As a result of these conditions, the order dependence

problem is eliminated because the global minimum solution

ss

US 6,895,115 B2
3

is found and this solution is the optimal solution. In practice,
this ideal image segmentation is difficult, if not impossible,

partitions consisting of N regions must be searched to find

1) U N X, = X and
to find. The third condition implies that all possible image ,=I

4

- -

2) Xi, i= l , 2, . . . , N is connected. the minimum cost. Further, the question of the proper value
for N is left undetermined. Let G(XJ be a function that assigns a cost to partition Xi,

depending on the image data values in Xi. Reorder the B. J. Schachter, L. S. Davis and A. Rosenfeld, “Some
experiments in image segmentation by clustering of local partition Xi, X,, . . . , XN-,, X, such that G(X,-,UX,)
feature vectors,” Pattern Recognition, VOl. 11, No. 1, PP. IO SG(XiUXj) for all i#j where X,-, and X, are adjacent
19-28, 1979, suggest that an iterative parallel region grow- and Xi and Xj, are adjacent. The segmentation of X into
ing process be used to eliminate the order dependence N-l regions is defined as the partition XI,, XI,. . . ,
problem. R. L. Kettig and D. A. Landgrebe, “Computer XI,-, where X’,=X, for i=l , 2, . . . , N-2 and XI,-,=

extraction and classification of homogeneous objects,” IS The initial partition may assign each image pixel to a
LARS Information Note 050975, Laboratory for Applica- separate region, in which case the initial value of N is the

number of pixels in the image (N) Any other initial
? : partition may be used, such as a partitioning of the image

Ind., 1975, suggest an alternative partitioning logic in which into nxn blocks, where n~<<Np, or any pre-segmentation
the most similar neighboring region is merged first, but 2o with another algorithm,
found this approach too difficult to implement in a sequential The region growing approach utilized by the hierarchical
manner with the computing resources they had at that time. image segmentation algorithm, HSEG, is the Same as that
J. C. Tilton and S. C. Cox, “Segmentation of remotely employed by Beaulieu and Goldberg’s HSWO algorithm
sensed data using parallel region growing,” Digest of the except that HSEG may optionally alternate spectral cluster-
1983 International ~~~~~i~~~~ and Remote sensing zs ing iterations with region growing iterations to merge non-
~ ~ ~ ~ ~ ~ i ~ ~ , sari ~ ~ ~ ~ ~ i ~ ~ ~ , calif , , pp, 9.1-9.6, adjacent regions. Such spectral clustering adds robustness to

overhead of separately accounting for essentially identical approach to region growing on parallel processors in order non-adjacent regions.
to overcome the computational demands of this approach. In 3o A problem with implementing segmentation algorithms

regions is (are) merged at each iteration. This approach processor intensive. A large high-resolution high-bit image
solved the order dependence problem (assuming a determin- can take a very long time to undergo segmentation using the
istic tie-breaking method is employed), but did not fully prior art HSWO region growing algorithms and related
address the optimal segmentation problem. Merging the 35 technology.
most similar pair(s) of spatially adjacent regions at each An additional Problem COmmOn to all recursive segmen-

classification of remotely sensed multispectral image data by x,-,ux,.

tions of Remote Sensing, Purdue University, West Lafayette,

31Sep. 2, 1983, propose implementing an iterative parallel the segmentation and the bookkeeping

their approach, the most pair(s) Of adjacent based on HSWO region growing is that these algorithms are

iteration does not guarantee that the segmentation result at a
particular iteration is the optimal partition of the image data

tation is the requirement Of large amounts Of

memory, making it likely that large images may require
more memory than available, preventing large images from for the number of partitions obtained at that iteration. J.-M.

Beaulieu and M. Goldberg, “Hierarchy in picture segmen-
tation: A stepwise optimization approach,” IEEE Trans. on SUMMARY OF THE INVENTION
Pattern Analysis and Machine Intelligence, Vol. 11, No. 2, Accordingly, it is an object of the present invention to
PP. 150-163, February 1989, Provide a theoretical basis for implement a recursive hierarchical segmentation algorithm
Tilton and Cox’s iterative parallel region growing approach 45 on a parallel-computing platform, decreasing computation
in their theoretical analysis of their similar Hierarchical time.
Stepwise Optimization algorithm (HSWO). They show that The foregoing object of the present invention is achieved
the HSWO algorithm produces the globally optimal seg- by a method of implementing a recursive hierarchical seg-
mentation result if each iteration is statistically independent. mentation algorithm on a parallel computing platform,
Even though each iteration will generally not be statistically SO including (a) setting a bottom level of recursion that defines
independent for natural images, the HSWO approach is where a recursive division of an image into sections stops
shown to still produce excellent results. Beaulieu and Gold- dividing; (b) setting an intermediate level of recursion where
berg also point out that the sequence of partitions generated the recursive division changes from a Parallel implements-
by this iterative approach reflect the hierarchical structure of tion into a serial implementation; and (.> implementing the
the imagery data: the partitions obtained in the early itera- 55 segmentation algorithm according to the set levels.
tions preserve the small details and objects in the image, BRIEF DESCRIPTIONS OF THE DRAWINGS
while the partitions obtained in the latter iterations preserve These and other advantages of the invention will become
Only the most important components Of the image. They apparent and more readily appreciated from the following
further note that these hierarchical partitions may carry 6o description of the preferred embodiments, taken in conjunc-
information that may help in identifying the objects in the tion with the accompanying drawings of which:
imagery data. FIG. 1 is an example of a satellite image before segmen-

The definition of image segmentation as followed by the tation;
HSWO algorithm is defined recursively as follows: FIG. 2 is an example of the satellite image in FIG. 1 after

Let X be a two-dimensional array representing an image 65 segmentation into two region sets;
FIG. 3 is an example of the satellite image in FIG. 1 after

40 being segmented.

and let Xi, X,, . . . , X,-,, xN be a partition of X into
N regions such that segmentation into three region sets;

US 6,895,115 B2
5

FIGS. 4A, 4B, 4C, and 4D are diagrams illustrating one
example of how an image can be divided into quarters and
sub-quarters recursively;

FIG. 5 is a diagram illustrating an example of serial
implementation;

FIG. 6 is a diagram illustrating in more detail the signifi-
cance of the inb leve ls parameter;

FIG. 7 is a diagram illustrating an example of processing
a 512 by 512 image with fnb_levels=2, inb_levels=3, and
rnb_levels=5.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made in detail to the present
preferred embodiments of the present invention, examples
of which are illustrated in the accompanying drawings,
wherein like reference numerals refer to like elements
throughout.

The Basic Hierarchical Segmentation (HSEG) algorithm
is as follows:
1. Give each image pixel a region label and set the global

criterion value, critval, equal to zero. If a pre-
segmentation is provided, label each image pixel accord-
ing to the pre-segmentation. Otherwise, label each image
pixel as a separate region.

2. Calculate the dissimilarity criterion value between each
spatially adjacent region.

3. Find the smallest dissimilarity criterion value, and merge
all pairs of spatially adjacent regions with this criterion
value.

4. Calculate the dissimilarity criterion value between all
pairs of non-spatially adjacent regions.

5. Merge all pairs of non-spatially adjacent regions with
dissimilarity criterion value less than or equal to the
criterion value found in operation 3.

6. If the number of regions remaining is less than the preset
value chkregions, go to operation 7. Otherwise, go to
operation 2.

7. Let prevcritval=critval. Calculate the current global cri-
terion value and set critval equal to this value. If
prevcritval=zero, go to operation 2. Otherwise calculate
cvratio=critval/prevcritval. If cvratio is greater than the
preset threshold convfact, save the region label map from
the previous iteration as a “raw” segmentation result.
Also, store the region number of pixels list, region mean
vector list and region criterion value list for this previous
iteration. (Note: The region criterion value is the portion
of the global criterion value contributed by the image
pixels covered by the region.) If the number of regions
remaining is two or less, save the region label map from
the current iteration as the coarsest instance of the final
hierarchical segmentation result, and stop. Otherwise, go
to operation 2.
Dissimilarity Criterion: The dissimilarity criterion can be

any measure of distance between two vectors. The widely
used vector norms, 1-norm, 2-norm and Infinity-norm (see
G. W. Stewart, Introduction to Matrix Computations, p. 164,
Academic Press: New York, N.Y., 1973), are implemented
as options.

Global Criterion: The global criterion is used to identify
significant changes in the segmentation results from one
iteration to the next. This criterion is same as the dissimi-
larity criterion, except that it compares the original image
data with the region mean image from the current segmen-
tation. The value of the global criterion is calculated by
computing the dissimilarity function at each image point

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

6
between the original image values and the region mean
image and averaging the result over the entire image.

The above algorithm can be implemented recursively
using the Recursive Hierarchical Segmentation Algorithm
(RHSEG) as follows:
1. Specify the number of levels of recursion required (r b _

levels), and pad the input image, if necessary, so that the
width and height of the image can be evenly divided by

. (A good value for rnb_levels results in an 2mb_le”els- 1

image section at level=rnblevels consisting of roughly
500 to 2000 pixels.) Set level=l.

2. Call recur_hseg(level,image).
Outline of recur_hseg(level,image):
A. If levelernb_levels, divide the image data into quarters

(in half in the width and height dimensions) and call
recur_hseg(level+l,image/4) for each image quarter
(represented as imagei4). Otherwise, go to operation C.

B. After all four calls to recur_hseg() from operation A
complete processing, reassemble the image segmentation
results.

C. Execute the HSEG algorithm as described in the HSEG
Basic Algorithm Description above (except that the reas-
sembled segmentation results are used as the pre-
segmentation when levelernb_levels), but with the fol-
lowing modification: If levebl , terminate the algorithm
when the number of regions reaches the preset value
minregions, and do not check for critval or output any
“raw” segmentation results.
FIGS. 4A, 4B, 4C and 4D illustrate one example of how

an image can be divided into quarters and sub-quarters
recursively. FIG. 4A illustrates a starting image. FIG. 4B
illustrates how an image is first divided into quarters labeled
1, 2, 3, and 4. FIG. 4C illustrates the subsequent level of
recursion, where quarter 1 of FIG. 4B is divided up into
sub-quarters labeled 5, 6, 7, and 8. FIG. 4D illustrates the
subsequent level of recursion, where sub-quarter 5 of FIG.
4C is further divided up into additional sub-quarters labeled
9, 10, 11, 12. Note that while we use quarters to divide the
image, the image could be divided using other shapes and
other dividing methods as well.

In order to implement the segmentation algorithm
recursively, the parameter rnb_levels should be specified,
which indicates the number of levels of recursion to be
processed. If rnb leve ls is set to equal 4, then the above
algorithm will divide the image as illustrated in FIG. 4A
(level l) , FIG. 4B (level 2), FIG. 4C (level 3) and FIG. 4D
(level 4). When the current level becomes 4, because 4 is not
e rnbleve ls (which is equal to 4), the recursive dividing
will stop and then the lower recursion levels will subse-
quently return values to the higher levels, or the recursion
will “come back up.”

The algorithms described above can be implemented
serially, using only one processor. FIG. 5 illustrates the serial
implementation of the above example. Referring now to
FIG. 5, item 1 represents the first level of recursion, which
then goes to item 2 which represents the second level of
recursion, which then goes to item 3 which represents the
third level of recursion, which then goes to item 4 which
represents the last level of recursion. The recursion “stops”
at item 4, because rnbleve ls is set to equal 4 in our
example.

As stated previously, the serial implementation of the
above algorithm requires a large amount of computing time
and resources. The implementation of the RHSEG algorithm
on a parallel-processing platform is superior to the serial
method with regard to computation time and computing
resources.

US 6,895,115 B2
7

In the implementation of the RHSEG algorithm on a
parallel computer, besides setting the above described rnb-
levels (recursion levels), two other levels are specified,
inb-levels (intermediate levels) and fnb-levels (final
levels). It is required that fnblevelse=inblevelse=rnb-
levels. Quarters and subsequent sub-quarters are initially
processed in parallel, but when the level of recursion reaches
inb leve ls the sub-quarters are then processed serially
instead of in parallel.

FIG. 6 illustrates in more detail the significance of the
inb leve ls parameter and the parallel processes. In FIG. 6,
recursion levels 1, 2, 3, 4 are illustrated. The inb leve ls
parameter is set to 2, and the rnbleve ls parameter is set to
4. As stated above, the rnb-levels parameter is where the
recursion stops dividing the image, and returns to the higher
levels using information calculated from the lower levels.

Recursion level 1 can be associated with FIG. 4A. Since
recursion level 1 is less than 2 (inblevels), the next level
of recursion is performed in parallel. Thus, at recursion level
2 (inb-levels), four new processes are spawned which are
performed in parallel. Recursion level 2 can be associated
with FIG. 4B. At recursion levels 3 and 4, since these are
higher than 2 (inb-levels), these levels of recursion are
performed serially. Thus, at these levels, no new parallel
processes are spawned. Instead, the previous process is used
sequentially. Recursion level 3 can be associated with FIG.
4C, and recursion level 4 can be associated with FIG. 4D.

Thus, as illustrated in FIG. 6, there are four processes
operating in parallel (five if you include the first process).
Thus, the quarters labeled 1, 2, 3, and 4 in FIG. 4B are all
initially processed in parallel. The sub-quarters labeled 5, 6,
7,s in FIG. 4C, and the sub-quarters labeled 9,10,11,12 in
FIG. 4D are all processed serially, using the process
spawned to process section 1 of FIG. 4B. Note of course
there are additional sub-quarters (and their processes),
which have not been labeled in FIG. 4C and FIG. 4D, for
simplicity.

As can be seen by FIG. 6, the parallel implementation of
the RHSEG algorithm can save time by first spawning
parallel processes until the inb-levels of recursion is
reached, and then using those parallel processes to process
the further levels of recursions serially until rnb-levels is
reached. The inb leve ls should be set after taking into
consideration how many processes the current computing
platform can simultaneously handle.

The third parameter to be specified in the parallel imple-
mentation of the RHSEG algorithm is fnb-levels. The
fnbleve ls parameter relates to the convergence checking
(item in in the above Basic Hierarchical Segmentation
(HSEG) algorithm). At the fnbleve ls of recursion the
passing of data to higher levels is different than before (more
on this in the example given below). In addition, when the
current level of recursion reaches the first level, the pro-
cesses at fnb-levels calculate and send their contribution to
the value of critval to level 1. The process running at level
1 computes the value of critval as the average dissimilarity
value over the entire image and calculates cvratio=critval/
prevcritval. If cvratio is greater than a preset threshold, then
the slave tasks running at fnb leve ls to send their region
label map data to the master program. More on the conver-
gence checking and fnb-levels will be presented later on.

FIG. 7 illustrates an example of processing a 512 by 512
image with fnb_levels=2, inb_levels=3, and rnb_levels=5.

As can be seen by FIG. 7, there are five (rnb-levels)
recursion levels, L1, L2, L3, L3, and L5. In this example
there are also 21 processes. Process 0 at recursion level L1
spawns processes 1,2,3, and 4 at recursion level L2. Process

8
1 spawns processes 5, 6, 7, and 8, while process 2 spawns
processes 9, 10, 11, and 12, while process 3 spawns pro-
cesses 13, 14, 15 and 16, while process 4 spawns processes
16,18,29 and 20. At L3 (inblevels), each spawned process

s proceeds to process the lower levels of recursion serially.
Therefore, when a new process is spawned to process
another divided section of the image, this can be considered
a parallel implementation. When a same process processes
another divided section of the image, this can be considered

Also illustrated in FIG. 7, the image size of recursion level
L1 is 512x512, while the image size of recursion level L2 is
256x256, while the image size of recursion level L3 is
128x128, while the image size of recursion level L4 is

IS 64x64, while the image size of recursion level L5 is 32x32.
Regarding convergence checking, since fnb-levels is

equal to two, processes 1,2 ,3 , and 4 will calculate the sum
of the dissimilarity criterion over each region contained in
the processing window, and send these values back to

20 process 0 operating at recursion level L1. Process 0 com-
putes critval as the average value of the values of dissimi-
larity function over the entire image from the dissimilarity
function values obtained from processes 1, 2, 3 and 4 and
calculates cvratio. If cvratio is greater than a preset

zs threshold, the region map from the previous iteration is
saved as a raw segmentation result.

The designation of fnblevelseinblevels reduces the
amount of interprocessor communications required for the
convergence criterion calculations. This is important for less

30 expensive parallel processing systems such as the Beowulf
systems constructed using relatively slow (but inexpensive)
Ethernet connections to network off-the-shelf PCs together.
In addition, the designation of fnb_levels>l reduces the
RAM requirements for the parallel processing system.

35 While the optimal setting for inb-levels varies depending
upon the computing platform being used, on a 201 processor
HIVE system (one master process plus 200 slave nodes), the
optimum value of inb-levels is 5.

We will now walk through an example of processing a
40 large Landsat Thematic Mapper (TM) data set to illustrate

how the system works. This TM data set has 7680 columns,
6912 rows and 6 spectral bands. Based on our prior expe-
rience with these parameters for the Hive Parallel System,
we preset the values for the three levels of recursion as

45 rnblevels=9, inblevels=5 and fnblevels=3. When the
master program on the parallel computing system calls the
first slave task (the OCA task), it sends to that task several task
specific parameters. Included among these parameters are:

i o a serial implementation.

so
first-sec
last-sec
calling_tid current task ID
level

mows

first data section to be processed by the slave task
last data section to be processed by the slave task

current level of recursion + 1

number of rows in current section of data
55 ncols number of columns in current section of data

The first data section processed, first-sec, is the OCA section.
The last data section processed is determined by the value of

60 inb leve ls through the formula:

la~t-sec=4('"~=levels-1)-1.

Since in this case, since inb_levels=5, last_sec=255 (i.e.,
the data is processed in 256 sections at the recursive level

65 inblevels). The cal l ingt id is the task ID of the master
program (the first slave task uses this to determine where to
send its results back to). The recursion level, level, is equal

US 6,895,115 B2
9 10

to 1 for the Oth task (the master program is considered to at
recursion level 0). For our TM data set, ncols=7680 and
nrows=6912.

Since the slave program for the Oth task is operating at a
level of recursion less than inb leve ls (its recursion level is
“1” which is less than inblevels=5), it sends a request to
the master program for four branch slave task IDS. Upon
receiving these four branch slave task IDS, the Oth task slave
program initiates the l”‘, 2nd, 3rd and 4th tasks, respectively,
on these four branch slave task IDS, with the task specific

one-quarter of the data sections on each of the 4 tasks called.
The calling_tid is the task ID of the recursion level=4 slave
task (the called slave tasks use this to determine where to
send their results back to). The recursion level parameter,

s level, for the branch tasks is equal to 5. For our TM data set,
ncols=480 and nrows=432 for the tasks at recursion level 5 .

For this example, the slave programs operating at recur-
sion level 5 are operating at the intermediate recursion level,
inb-levels (=5), each send a request to the master program

i o for the input data for its section (section=first_sec=last-
parameters again including first-sec, last-sec, callinLtid, sec). Each of these programs then call the subroutine, lrhseg,
level, ncols and nrows. The values of first-sec and last-sec which is a sequential implementation of the recur-hseg
are determined so as to process the 1”‘ quarter of the data subroutine described above (for details on lrhseg see the
sections on the 1”‘ task, the 2”d quarter of the data sections section of this document entitled “IMPLEMENTING A
on the 2”d task, the 3rd quarter of the data sections on the 3rd is RECURSIVE HIERARCHICAL SEGMENTATION
task and the 4th quarter of the data sections on the 4th task. ALGORITHM ON A COMPUTER. ” At recursion level 6,
The cal l ingt id is the task ID of the recursion level=l slave lrhseg initiates the processing of the data with ncols=240
task (the called slave tasks use this to determine where to and nrows=216. At recursion level 7, lrhseg initiates the
send their results back to). The recursion level, level, is equal processing of the data with ncols=120 and nrows=108. At
to 2 for the l”‘, 2nd, 3rd and 4th tasks. For our TM data set, 20 recursion level 8, lrhseg initiates the processing of the data
ncols=3840 and nrows=3456 for the tasks at recursion level with ncols=60 and nrows=54. Finally, at recursion level 9,
2. lrhseg initiates the processing of the data with ncols=30 and

Since the slave programs operating at recursion level 2 are nrows=27.
operating at a level of recursion less than inb leve ls (=5), At recursion level 9, lrhseg calls the hseg subroutine,
each of these tasks send a request to the master program for zs which is an implementation of the basic HSEG algorithm
four branch slave task IDS. Upon receiving these four branch described above, but without convergence checking (for
slave task IDS, each of the slave programs at recursion level details on hseg see the section of this document entitled
2 initiate 4 tasks, resulting in the initiation of 16 tasks (tasks “IMPLEMENTING A RECURSIVE HIERARCHICAL
5 through 20). Each slave task at recursion level 2 calls 4 SEGMENTATION ALGORITHM ON A COMPUTER.
slave tasks at recursion level 3 with task specific parameters 30 When the number of regions reaches minregions (a preset
again including first-sec, last-sec, call ingtid, level, ncols parameter), the results are returned to the lrhseg subroutine
and nrows. The values of first-sec and last-sec are deter- at recursion level 8. After all four calls are made and
mined so as to process the one-quarter of the data sections completed to lrhseg at recursion level 9, the lrhseg subrou-
on each of the 4 tasks called. The cal l ingt id is the task ID tine at recursion level 8 calls the hseg subroutine. After all
of the recursion level=2 slave task (the called slave tasks use 3s four calls are made and completed to lrhseg at recursion
this to determine where to send their results back to). The level 8, the lrhseg subroutine at recursion level 7 calls the
recursion level parameter, level, for the branch tasks is equal hseg subroutine. After all four calls are made and completed
to 3. For our TM data set, ncols=1920 and nrows=1728 for to lrhseg at recursion level 7, the Irhseg subroutine at
the tasks at recursion level 3. recursion level 6 calls the hseg subroutine. After all four

Again, since the slave programs operating at recursion 40 calls are made and completed to lrhseg at recursion level 6,
level 3 are operating at a level of recursion less than the lrhseg subroutine at recursion level 5 calls the hseg
inb-levels (=5), each of these tasks send a request to the subroutine.
master program for four branch slave task IDS. Upon receiv- When the slave programs operating at recursion level 5
ing these four branch slave task IDS, each of the slave complete their calls to the hseg subroutine, they each return
programs at recursion level 3 initiate 4 tasks, resulting in the 4s their results and their input data to the slave programs that
initiation of 64 tasks (tasks 21 through 84). Each slave task called them at recursion level 4. When the slave programs at
at recursion level 3 calls 4 slave tasks at recursion level 4 recursion level 4 receive the results from each of their four
with task specific parameters again including first-sec, branch tasks, each of them then call the hseg subroutine.
last-sec, calling-tid, level, ncols and nrows. The values of When the slave programs operating at recursion level 4
first sec and last-sec are determined so as to process the SO complete their calls to the hseg subroutine, they each return
one-quarter of the data sections on each of the 4 tasks called. their results and their input data to the slave programs that
The cal l ingt id is the task ID of the recursion level=3 slave called them at recursion level 3.
task (the called slave tasks use this to determine where to When the slave programs at recursion level 3 receive the
send their results back to). The recursion level parameter, results from each of their four branch tasks, each of them
level, for the branch tasks is equal to 4. For our TM data set, ss then call the hseg subroutine. Now since these slave pro-
ncols=960 and nrows=864 for the tasks at recursion level 4. grams are operating at the final recursion level, fnb_levels=

Yet again, since the slave programs operating at recursion 3, upon completion of the call to the hseg subroutine, they
level 4 are operating at a level of recursion less than do not return their input data to the slave programs that
inb leve ls (=5), each of these tasks send a request to the called them at the recursion level 2, and only return their
master program for four branch slave task IDS. Upon receiv- 60 segmentation results except for the region label map.
ing these four branch slave task IDS, each of the slave When the slave programs at recursion level 2 receive the
programs at recursion level 4 initiate 4 tasks, resulting in the results from each of their four branch tasks, each of them
initiation of 256 tasks (tasks 85 through 340). Each slave then call the hseg subroutine. Upon completion of the call to
task at recursion level 4 calls 4 slave tasks at recursion level the hseg subroutine, these slave programs make a special
5 with task specific parameters again including first-sec , 65 call to the slave programs at recursion level fnb leve ls
last-sec, call ingtid, level, ncols and nrows. The values of below them that updates the region label map based on the
first-sec and last-sec are determined so as to process the results from the hseg subroutine. Then these slave programs

US 6,895,115 B2
11

return their segmentations results (except for the region label
map) to the slave program that called them at recursion level
1 (in this case, the slave program running task 0).

When the slave program at recursion level 1 (this is the
slave program running task 0) receives the results from each
of its four branch tasks it calls the hseg subroutine, with
minregions reset to the value of chkregions (see the HSEG
Basic Algorithm Description above). Upon completion of
the call to the hseg subroutine, this slave program makes a
special call to the slave programs at recursion level fnbL
levels to update the region label map based on the results
from the hseg program. Then this slave program calls the
phseg subroutine, which is an implementation of the basic
HSEG algorithm with convergence.

In lhseg the region label map data are not updated (the
region label map data are updated all at once after lhseg
exits). However, in phseg the region label map data, which
is maintained by the slave programs running the tasks at
recursion level fnblevels , is updated after each group of
region growing and spectral clustering merges (steps 2
through 5 of the basic HSEG algorithm described above). In
addition, the global criterion value, critval, is calculated after
each group of region growing and spectral clustering merges
from information calculated by the slave programs running
the tasks at recursion level fnb leve ls and accumulated by
the slave program running task 0 at recursion level 1. When
a convergence iteration is found, phseg sends its results to
the master program and causes the slave programs running
the tasks at recursion level fnb leve ls to send their region
label map data to the master program.

If we had not used the above-described parallel
implementation, it would not have been possible to process
our example Landsat TM image on any presently available
parallel computing platform. To simulate this situation,
consider the case where rnb-levels=inb_levels=fnbL
levels=9 and we try to process our 7680 columns by 6912
row Landsat TM image.

In this case, the initialization portions of the descriptions
for recursion levels 1 through 4 will the same as above with
the following exception: last-sec would equal 65,535 (the
data would be processed in 65,536 sections at the new value
for inb-levels). In addition, at recursion level 5 (the previ-
ous value of inblevels), no request for input data would be
made. Instead, a request would be made to the master
program for four-branch slave task IDS. This would result in
the initiation of 1024 tasks for recursion level 6. Similarly
4096 tasks would be initiated at recursion level 7, 16,384
tasks would be initiated at recursion level 8 and 65,636 tasks
would be initiated at recursion level 9. This would result in
a total of 87,381 slave tasks being initiated on the on the
parallel computing system. This would either not be allowed
by the parallel computing system, or would totally swamp
the system, probably resulting in a system failure.

Consider also the significance of setting the value of
fnbleve ls to a value less than inblevels . To simulate this
situation, consider the case where rb_levels=9, inbL
levels=fnb~levels=5. In this case, the phseg subroutine
would have to communicate with 256 slave tasks at recur-
sion level 5 to update the region label map, perform con-
vergence checking, or cause the region label map results to
be sent to the master program. When fnb_levels=3 as in the
original example, the phseg subroutine only has to commu-
nicate with 16 slave tasks at recursion level 3 to perform
these tasks, significantly reducing the interprocessor com-
munication requirements of the program.

Finally, consider yet another pathological situation where
fnbleve ls=l . In this case the slave task 0 would have to

12
maintain in memory the full Landsat TM data set plus the
full region label map. For our example, the data volume of
just these items is about 425 megabytes. On the augmented
HIVE system, if the RAM is distributed evenly among the

s processors, the Dell PCs have 125 megabytes RAM per
processor, the Gateway PCs have 250 megabytes RAM per
processor and the Pentium Pro PCs have just under 220
megabytes RAM per processor. Thus, slave task 0 would
crash due to memory constraints on any of these processing

i o nodes if fnb leve ls was set to 1 for a Landsat TM data set
of this size (7680 columns by 6912 rows).

The description that follows is intended to assist one of
ordinary skill in the art implement the present invention. The
following description is merely one approach, and it can be

15 appreciated by one of ordinary skill in the art that numerous
other approaches are possible as well. The below materials
assume familiarity with the “C” programming language, and
with programming parallel computers using “PVM’ soft-
ware.

While the implementation described here is the imple-
mentation for the HIVE, this implementation has also been
applied, with minor modifications, to other MIMD parallel
computers including the Cray T3E and IBM NetFinity
computers. Based on this description, individuals should

2s also be able to implement this approach using other pro-
gramming languages and/or other system software for par-
allel computers on other parallel computers.

The recursive hierarchical image segmentation algorithm,
RHSEG, is implemented in three distinct parts:
1. a generic interface program that sets up a remote call to a

parallel computer, and which should be runable on any
workstation running UNIX or many of its variants,

ii. a “master” program that runs on the front end of a parallel
computer, accepts inputs from the part (i) program, calls
many instances of the “slave” program (see below),
provides the required inputs to the “slave” programs,
accepts and assembles the results from the various “slave”
programs, sending the assembled results back to the
interface program of part (i), and

111. the “slave” program, many instances of which run on the
multiple processors of the parallel computer and perform
the recursive version of the hybrid region growing and
spectral clustering algorithm summarily described in Sec-
tion I, Part B above, sending the results back to the
“master” program of part (ii).

Note that part (i) of the RHSEG program could be run on the
front end of the parallel computer, or combined with part (ii)
of the parallel computer, if the parallel computer’s host

In addition, an optional graphical user interface (GUI)
program, implemented under the KHOROS PRO 2000
Software Developer’s Kit is available. This GUI program
runs on any workstation running UNIX or many of its

5s variants. It creates the parameter file and the headerless
binary input data files required by the generic interface
program (i). This GUI program is totally optional, as the
parameter file and the headerless binary input data files
required by the generic interface program (i) can be created

60 manually. The optional user interface and data reformatting
program outputs the results in the form of Khoros data
objects. These Khoros data objects can be input to separate
programs for further analysis.

RHSEG requires the specification of the name of an input
65 parameter file as a UNIX command line argument (fully

qualified with path, if not in the local directory). This input
parameter file must specify of a number of file names and

20

3 u .

3s

40 ...

4s

so computer is running under a UNIX variant.

US 6,895,115 B2
13

several parameters. A user’s guide-like description of these
file names and parameters is given below:

input (required input file) Input image data file

The input image data file from which a hierarchical image
segmentation is to be produced. This image data file is
assumed to be a headerless binary image file in band
sequential format. The number of columns, rows, spectral
bands and the data type are specified by other required
parameters (see below). Data types “unsigned char” and
“unsigned short” are supported.

mask (optional input file) Input data mask (default = {none})

The optional input data mask must match the input image
data in number of columns and rows. Even if the input image
data has more than one spectral band, the input data mask
need only have one spectral band. If the input data mask has
more than one spectral band, only the first spectral band is
used, and is assumed to apply to all spectral bands for the
input image data. If the data value of the input data mask is
“1” (TRUE), the corresponding value of the input image
data object is taken to be a valid data value. If the data value
of the input data mask object is “0” (FALSE), the corre-
sponding value of the input image data object is taken to be
invalid, and a region label of “0” is assigned to that spatial
location in the output region label map data. The input data
mask data type is assumed to be “unsigned char.”

r l b l m a p i n (optional input file) Input region label map
(default = {none})

The optional region label map must match the input image
data in number of columns and rows. If provided, the image
segmentation is initialized according to the input region
label map instead of the default of each pixel as a separate
region. Wherever a region label of “0” is given by the input
region label map, the region labeling is assumed to be
unknown, and the region label map is initialized to one pixel
regions at those locations. The input region label map data
type is assumed to be “unsigned short.”

rlblmap (required output file) Output region label map data

The hierarchical set of region label maps that are the main
output of RHSEG. Region label values of “0” correspond to
invalid input data values in the image data object. Valid
region label values range from 1 through 65535. The data is
of data type “unsigned short” and is stored in band sequen-
tial format, where band corresponds to the segmentation
hierarchy level. If the optional region merges list,
regmerges, is specified, only the first, most detailed, region
label map from the segmentation hierarchy is stored.

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

14

rnpixlist (required output file) Output region number of pixels list

The region number of pixels list is a required output of
RHSEG. This list consists of the number of pixels (of data
type “unsigned int”) in each region stored as rows of values,
with the column location (with counting starting at 1)
corresponding to the region label value and the row location
corresponding to the segmentation hierarchy level (with
counting starting at 0).

regmerges (optional output file) Output region merges list
(default = {none})

The region merges list is an optional output of RHSEG. This
list consists of the renumberings of the region label map
required to obtain the region label map for the second
through the last (coarsest) level of the segmentation hierar-
chy from the region label map for the first (most detailed)
level of the segmentation hierarchy (data type “unsigned
short”). The data is stored as rows of values, with the column
location (with counting starting at 1) corresponding to the
region label value in the first (most detailed) level of the
segmentation hierarchy and the row location corresponding
to the segmentation hierarchy level (the lth row is the
renumberings required to obtain the (l+l)th level of the
segmentation hierarchy).

rmeanlist (optional output file) Output region mean list
(default = {none})

The region mean list is an optional output of RHSEG. This
list consists of the region mean value (of data type “float”)
of each region stored as rows of values and groups of rows,
with the column location (with counting starting at 1)
corresponding to the region label value, the row location (in
each row group) corresponding the spectral band, and row
group corresponding to the segmentation hierarchy level
(with counting starting at 0).

rcvlist (optional output file) Output region criterion value list
(default = {none})

The region criterion value list is an optional output of
RHSEG. This list consists of the region’s contribution to the
global criterion value (of data type “float”) stored as rows of
values, with the column location (with counting starting at
1) corresponding to the region label value and the row
location corresponding to the segmentation hierarchy level
(with counting starting at 0).

oparam (required output file) output parameter file

The required output parameter file contains (in binary form)
the number of hierarchical segmentation levels (nslevels) in
the hierarchical segmentation output, and the number of
regions (onregions) in the hierarchical segmentation with the
finest segmentation detail. These values are required to
interpret the rnpixlist, regmerges, rmeanlist, and rcvlist
output files.

US 6,895,115 B2
15 16

1 “1-Norm”,
2 “2-Norm”,
3 “Infinity Norm”, [default: 1 “1-Norm”]

Criterion for evaluating the dissimilarity of one region from
s another. The 1-Norm for regions j and k is (for B spectral

log_file (required output file) output log file

The required output log file records program parameters and
the number of regions and global criterion ratio value for
each level of the region segmentation hierarchy.

bands)

B

I. 1 - N o m = 1;; -it
b=l 10

(4)

ncols (required integer) Number of columns in input image data

nbands (required integer) Number of spectral bands in input image

dtype (required integer) Data type of input image data

mows (required integer) Number of rows in input image data where

I/’ data

dtype = 4 designates “unsigned char”
dtype = 16 designates “unsigned short”

1s 2 - N o m = [A (ii -8’j
b=l

normind (optional list Image normalization type
selection)

are the mean values for regions j and k, respectively, in
2o spectral band b. Similarly, the 2-Norm is

1 “No Normalization”,
2 “Normalize Across Bands”, I

3 “Normalize Bands Separately” [default: 2 “Normalize 2-Nom = [$ (x; - xi)’] 2
Across Bands”]
Let Xbi be the original value for the ith pixel (out of N pixels)
in the bth band (out of B bands). The mean and variance of 2s
the bth band are and the Infinity-Norm is

l N l N (1) Infinity-Norm = max{ I x; -$ I : b = 1, 2, . . . , B) . (6)
xb = ~ ~ x b , , and ui = - c (x b l -xb)’,

30 ,=I N - 1 ,=I

NOTE: Other dissimilarity criterion can be included as
additional options without changing the nature of the respectively. To normalize the data to have mean=M, and

variance=S2, set RHSEG implementation.

3s

extmean (optional Boolean) Flag for extracting mean
(default = TRUE)

For convenience, the data is normalized so that S2 (=S)=l.
Since the entropy criterion requires that all data values be
strictly positive, we set the mean value, M,, of the normal-
ized data to be the value that will produce a minimum value
of 2 (so as to avoid computational problems calculating
ln(y,J. That is,

40 If this flag is set TRUE, the vector mean is subtracted from
the spectral vectors before the dissimilarity criterion is
calculated between two spectral vectors. The absolute dif-
ference between the two vector means is subsequently added
back to the dissimilarity criterion. In the case of the 1-Norm,

45 this is represented mathematically for regions j and k as
follows (for B spectral bands):

Let zbJ = xbJ - xJ and zbk = xbk - x k ,

where xJ = B c x b J and xk = B c x b k .

Then

The above description of image normalization applies to l B l B
option 3: “Normalize Bands Separately.” For option 2: so

b= I b= I “Normalize Across Bands, ” use

B U = mX(Ub) (7)
b 1 - Nom(exmean == TRUE) = I zbJ - zbk I + I xJ - xk I .

b=l 5s

for ob in Equations (2) and (3), and perform the minimiza-

image pixels.
tion in Equation (3) bands as as The extracted mean versions for the Z-Norm, Infinity-Norm

and other dissimilarity criterion are defined similarly.
60

maxmdir (optional integer) Value equals number of nearest neighbors
(Permissible values: 4, 8, 12 or 20;
default = 8)

spclust (optional Boolean) Spectral clustering flag (default = TRUE)

simcrit (optional list Dissimilarity criterion
selection) 6s If the spectral clustering flag is TRUE, spectral clustering is

performed in-between each iteration of region growing.
Otherwise, no spectral clustering is performed.

US 6,895,115 B2
17 18

2 pixels regions: 0.875*m1u2 +0.125*c?

spatial-wght (optional float) Weight for spatial feature 3 pixels regions: 0.75 *m1u2 + 0.25 *u2

4 pixels regions: 0.625 *m1u2 + 0.375 c?
5 pixels regions:

6 pixels regions: 0.375 *m1u2 + 0.625 c?
7 pixels regions:

(spatial-wght >= 0.0, default = 0.0)
5

0.50 *m1u2 + 0.50 *u2

If the value of spatial-wght is more than 0.0, the spatial-
type parameter (below) determines whether the band maxi- 0.25 *m1u2 + 0.75 *u2
mum variance or standard deviation is used as a feature in
the dissimilarity criterion in combination with the spectral
band features. spatial-wght=l.O weights the spatial feature
equally with the spectral band features, spatial-wghtcl.0
weights the spatial feature less and spatial-wght>l weights If the spatial-type ‘‘Standard Deviation” is chosen, substi-
the spatial feature more. If D is the dissimilarity function 15 tute the region standard deviation (ab=sqrt(a;)) for the
value before combination with the spatial feature value, the region variance (abz) in the above discussion.
combined dissimilarity function value (comparing regions j
and k), DC, is:

10 8 pixels regions: 0.125*m1u2 +0.875*c?

2o rnb-levels (optional Total number of recursive levels
integer)

integer)

integer)

2s integer) recursive stages

(1 <= rnbleve ls <= 9, default = 4)

(1 <= inb-levels <= 9, default = 4)

(1 <= fnb-levels <= 9, default = 4)

inb-levels (optional Recursive level of intermediate level

fnb-levels (optional Number of recursive levels in final stage

minregions (optional Number of regions for convergence in

DC=D+spatiaZLwght* Isf,-sfkI (8)

where sf, and sfk are the spatial feature values for regions j
and k, respectively.

(2 <= minregions <= 4096, default = 384)
chkregions (optional Number of regions at which convergence

(2 <= chkregions <= 4096, default = 512)
spatial-type (optional list selection) Spatial feature type integer) factor checking is initiated in final stage

1 “Variance”, convfact (optional Convergence factor
2 “Standard Deviation” [default: 2 “Standard Deviation” 30 float) (1 <= convfact <= 100, default = 1.01)

NOTE:
It is required that fnb-levels <= i n b l e v e l s <= rnb-levels. The (optional) spatial feature is either the spectral band

maximum region variance or spectral band maximum region
standard deviation. This parameter is ignored if spatial- 35

wght=0.0.

variance for spectral band b is:

specified in the HSEG ~ ~ ~ i ~ d ~ ~ ~ i t h ~ Description, if
the calculated cvratio is greater than convfact, “raw” seg-
mentation results are output from the previous iteration. The
set of such segmentation results output make up the hierar-
chical segmentation output. The value of cvratio is com-
puted as the ratio between critval, the global criterion value
for the current iteration, and prevcritval, the global criterion
value for the previous iteration. The value of the global
criterion is calculated by computing the dissimilarity func-
tion at each image point between the original image values
and the region mean image and averaging the result over the
entire image.

F~~ regions consisting of 9 or pixels, the region

40
(9) 1 E x ; , - Nx; , d = - E (x b l - x b) 2 = - l N

N - 1 ,=I N - l I : 1
4 s where N is the number of pixels in the region, and xb is the

region mean for spectral band b:

SO process (optional list selection) Processing options flag
1 “All Stages Locally”,
2 “All Stages on HIVE’,
3 “All Stages on Cray T3E’,
4 “All Stages on NetFinity” The region spatial feature value is then defined as:

nb-pes (optional integer) Maximum number of
5s tasks or Cray PES to

(default = 384)

select queue

d=max{ob2:b=1,2, . . . , B } (10) be utilized

cray-time-limit (optional list selection) Cray time limit used to
where B is the number of spectral bands. 1 “20 minutes: pipe queue”,

2 “60 minutes:

3 “4.4 hours: t3e-all-queue” [default: 1 “20
minutes: pipe queue”,

host (required string) Workstation hostname
(default = {none})

tmpdir Path name to directory
in which temporary
files are to be stored
(default = $TMPDIR)

For regions consisting only 1 pixel, the maximum over
bands of the minimum local variance (mla’) calculated over 6o
all possible 3x3 windows containing the pixel is used as a

allL6OLqueue”,

substitute for the band maximum region variance.

For regions consisting of 2 up through 8 pixels, a
weighted average of the band maximum minimum local 65
variance and the band maximum region variance is substi-

(optional string)

tuted for the band maximum region variance as follows:

US 6,895,115 B2
19

-continued

20

-continued

tempfile (optional string) Prefix for temporary rlblmap-inf
file names (default
RHSEG#####, 5
where the # are
random characters) rlblmapf

rnpixlistf
Previous disclosures did not reveal a number of implemen-
tation details revealed by the above user’s guide description lo regmergesf
of RHSEG. The variables inblevels , and fnbleve ls did
not exist in implementations previously disclosed. In these
previously disclosed implementations, a single variable,
rnb leve ls (or nblevels), took the place of these new
variables. This is a key distinction between previously
disclosed implementations and the implementation rcvlistf
described in this patent application which enables RHSEG
to run significantly faster on a parallel computer, such as the
HIVE. See FIG. 7 for a graphical depiction of how the
values of rnb-levels, inb-levels, and fnb-levels control 2o oparamf
how processes are allocated and utilized on a parallel
computer.

FIG. 7 is a graphical representation of the “master”
process and “slave” processes executing the RHSEG pro-
gram on a parallel computer. In this case, fnb-levels is 2
(2x2), inb leve ls is 3 (4x4) and rnbleve ls is 5 (16x16),
and the input image has 512 columns and 512 rows. Slave
tasks at the highest level of recursion (here rnbleve ls 5)
process 32-by-32 pixel sections of data. A total of 21 slave
processes (tasks) are utilized. The number next to each slave
process node is the slave task number. Slave tasks at
level>=inb_levels make serial recursive calls within the
same task and slave tasks at leveleinblevels make parallel
recursive calls to different slave tasks (branch tasks). Data is 35 rmeanlist-flag
inputted at level=inblevels and the region label map output
is made from level=fnblevels .
C. Functional Operation

Description of part (i) of the RHSEG implementation:
Part (i) of the RHSEG program was implemented in “C” 40 SPclust-flag
under the gcc version 2.8.1 compiler. It was developed under
the Solaris 7 operating system on a SUN Workstation, but it
should both compile and run with other “C” compilers and
under other UNIX-type operating systems, possibly with
minor modification.

The RHSEG program initially determines the name of the
parameter file from the command line input, and reads in the
parameters from the file using the function read_param().
If a prefix for the temporary filenames in not provided in the
parameter file, the program generates a character string to SO
used at a prefix for file names for temporary files required by
the program. The “C” library function tempnam() is used for
this purpose. For the discussion below, this prefix is assumed
to be “RHSEGO000 .”

and outputs to it the program parameters using the function
print_param(). The following parameters are declared as
external variables, and can be utilized in the main program
and any “C” functions called subsequently.

rmeanlistf

log_file

host

25
tmpdir

tempfile

mask-flag

rlblmap-in-flag

regmerges-flag

30

rcvlist-flag

process

45 nb-pes

cray-time-limit

ribands

dtype

At this point the RHSEG main program opens the log file 55 maxmdir

normind

60

simcrit
inputf

maskf

A char array containing the name of the input
image data file extmean
A char array containing the name of the mask data
file, if it exists. If no mask data file exists,
maskf has the value “NULL.”

65

A char array containing the name of the input
region label map data file, if it exists. If no
mask data file exists, rlblmap-inf has the value
“NULL.”
A char array containing the name of the output
region label map data file.
A char array containing the name of the output
region number of pixels list data file.
A char array containing the name of the output
region merges list data file, if requested. If
the output region merges list data file is not
requested, regmergesf has the value “NULL.”
A char array containing the name of the output
region mean list data file, if requested. If the
output region mean list data file is not
requested, rmeanlistf has the value “NULL.”
A char array containing the name of the output
region criterion value list data file, if
requested. If the output region criterion value
list data file is not requested, rcvlistf has
the value “NULL.”
A char array containing the name of the output
parameter file.
A char array containing the name of the output
log file.
A char array containing the name of the
workstation running part (i) of the RHSEG
implementation.
A char array containing the path name to the
directory where temporary files are to be stored.
A char array containing the prefix for temporary
file names.
An int variable which has value TRUE if mask
data exist (FALSE otherwise).
An int variable which has value TRUE if input
region label map data is given (FALSE otherwise).
An int variable which has value TRUE if the
output region merges list is requested (FALSE
otherwise).
An int variable which has value TRUE if the
output region mean list is requested (FALSE
otherwise).
An int variable which has value TRUE if the
output region criterion value list is requested
(FALSE otherwise).
An int variable that is TRUE if spectral
clustering is to be performed (FALSE otherwise).
An int variable that specifies the computing

signifies the Cray T3E and
signifies the IBM NetFinity.
An int variable specifying the maximum number
of PES (processing elements) to be requested
on the Cray T3E. Utilized only if process = 3.
An int variable specifying the processing time
limit to be used in determining which queue to
request on the Cray T3E. Utilized only if
process = 3.
An int variable containing the number of
spectral bands in the input image data.
An int variable containing an indicator of the
data type of the input image data. (dtype ==

4 designates unsigned char and dtype == 16
designates unsigned short).
An int variable containing the number of
nearest neighbors considered.
An int variable containing an indicator of the
type of normalization requested. (normind ==

1 designates “No Normalization,”
normind == 2 designates “Normalization
Across Bands,” and normind == 3
designates “Normalize Bands Separately”).
An int variable indicating the dissimilarity
criterion to be used.
An int variable that is TRUE if the vector
mean is subtracted from the spectral vectors
before the dissimilarity criterion is
calculated. FALSE otherwise.

US 6,895,115 B2
22

If proc_nsecs==l, the RHSEG main program continues
in the manner described in the section of this document
labeled, “IMPLEMENTING A RECURSIVE HIERARCHI-

PUTER.”
by allocating the input-data, mask-data (if necessary)

and rlblmapdata data arrays, calling the function read-
data() to read the input data into the allocated arrays, and
calling the function find_stats() to compute the number of
image pixels, npixels, and, if normalization is requested, the
image statistics sum-stat, sumsq-stat and min-stat.

If proc_nsecs>l, the RHSEG main program must stage
through the data to compute the image statistics. To do so,
RHSEG allocates memory for the input-data array and, if
necessary, for the mask-data array using proc-mows (the
number of rows in each section processed) instead of nrows
for the rows dimension:

CAL SEGMENTATION ALGORITHM ON A COM-

21

-continued

spatial-type

rnb-levels

inb-levels

fnb-levels

sub-ncols

sub-mows

minregions

chkregions

max-nregions

spatial-wght

convfact

scale

offset

An int variable indicating the spatial feature
type employed (1 => “Variance”, and
2 => “Standard Deviation”).
An int variable containing the total number of
recursive levels to be utilized
An int variable containing the recursive level
of the intermediate level
An int variable containing the number of
recursive levels used in the final stage
An int variable containing the number of
columns of input data to be processed at the
highest level of recursion
An int variable containing the number of rows
of input data to be processed at the highest
level of recursion
An int variable containing the number of regions
for convergence in the recursive stages
An int variable containing the number of regions
at which convergence factor checking is initiated.
An int variable containing the maximum number of
regions that will be encountered in processing
the data.
A float variable which contains the value of the
weight for the spatial feature (a value of 0.0
indicates the spatial feature is not employed).
A float variable containing the value of the
convergence factor for detecting natural
convergence points.
A float array containing the multispectral scale
factor(s) for normalization.
A float array containing multispectral offset
factor(s) for normalization.

The program next sets the number of columns (sub-
ncols) and number of rows (sub-nrows) of the image data
sections to be processed at the highest level of recursion,
based on the value of rnblevels .

The RHSEG program must perform some preprocessing
of the input data prior to calling part (ii) of the RHSEG
implementation (on the parallel computer’s host computer).
If the input data set is very large, the input data will need to
be sectioned for processing. At this point in the program, the
RHSEG program checks to see if a large enough buffer can
be allocated to handle the input data and other associated
data arrays. If not, it recursively decreases the buffer size by
a factor of 2 until the allocation can be made. This deter-
mines the value of proc-nsecs, the number of sections in
which the data is processed in the preprocessing portion of
part (i).

The RHSEG main program next continues into a prepro-
cessing stage in which it computes image statistics. If image
normalization is requested, the image sum, sum of squares
and minimum values in each band are computed, along with
the number of image pixels. If image normalization is not
requested, only the number of image pixels is found. If
image normalization is requested, the sum-stat, sumsq-stat
and min-stat arrays are declared and allocated as follows:

Data Array DataType Size To Contain:

sum-stat double nbands Sum of the input image

sumsq-stat double nbands Sum of the squares of
data in each band

input image data in each
band

image data value in each
band

min-stat double nbands The minimum input

If required, the sum-stat and sumsq-stat arrays are initial-
ized to “O”, and the min-stat array is initialized to “MAX-
FLOAT” (the maximum floating point value on the system).

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

Data Arrav Data T w e Size To Contain:

input-data unsigned short ncols*proc-mows* Input image data

mask-data unsigned char ncols*proc-mows Input mask data
nbands

(if any)

The input data files are opened, the variable npixels is
initialized to zero (0), and a loop is entered which is repeated
proc-nsecs times. In this loop, proc-mows of the input
data is read, and the function find_stats() is called with the
following parameters and array variables:

input-data

maskkdata

ncols

maxnrow

sum-stat

An unsigned short array containing proc-mows of the
input image data
An unsigned char array containing proc-mows of the mask
data (if any)
An int variable containing the number of columns in the
input image data.
An int variable containing the number of rows in this
section of input image data (equal to proc-mows).
A double array containing the sum of the (possibly
masked) input image data in each band for the portion
of data previously processed.
A double array containing the sum of square of the
(possibly masked) input image data in each band for
the portion of data previously processed.
A double array containing the minimum value of the
(possibly masked) input image data in each band for
the portion of data previously processed.

sumsq-stat

min-stat

The global variables mask-flag, nbands and normind are
also used as inputs by find_stats(). The following arrays are
output by find_stats():

sum-stat A double array containing the sum of the (possibly masked)
input image data in each band for all portions of data
processed.
A double array containing the sum of square of the
(possibly masked) input image data in each band for all
portions of data processed.
A double array containing the minimum value of the
(possibly masked) input image data in each band for all
portions of data processed..

sumsq-stat

min-stat

The number of input pixels in this section of input data is
returned as the value of the function find_stats(), and is
added to the current value of npixels. If image normalization
is not requested, and no mask data is provided, the find-

US 6,895,115 B2
23

stats() function simply calculates the image number of
pixels as ncols*maxrow and returns. If image normalization
is not requested, and mask data is provided, the find-stats(
) function finds the image number of pixels by counting the
number of non-zero entries in mask-data and returns. If
image normalization is requested, the function find-stats()
scans through the input image data, taking the image mask-
ing in account if provided, and accumulates the sum, sum of
squares and minimum data values for each band, along with
the image number of pixels, and then returns.

After the program exits the loop over proc-nsecs, the
input files are closed.

The RHSEG main program now proceeds to allocate and
compute the scale and offset arrays for image normalization.
This is done in the same manner described in the section of
this document entitled, “IMPLEMENTING A RECURSIVE
HIERARCHICAL SEGMENTATION ALGORITHM ON A
COMPUTER.”

Depending on the parallel processor being utilized, the
RHSEG main program allocates and initializes a character
array, platform. For the HIVE, platform “hive”, for the Cray
T3E, platform=“t3e”, and for the IBM Netfinity, platform=
“netf”. This platform array is arbitrary, and is used to flag
which files need to be copied over to the parallel platform’s
host computer.

If spatial-wght>O.O, the RHSEG main program now
p r o c e e d s t o c o m p u t e a n d w r i t e to a file
(RHSEGOOOO.spatial.platform, where platform was defined
in the previous paragraph) the minimum over a 3x3 window
of the maximum over the spectral bands of the spatial feature
(variance or standard deviation) calculated over a 3x3
window. The input variable spatial-wght is multiplied by
nbands so that the spatial feature will have the same weight-
ing and the spectral features when the initial input value of
spatial-wght is 1.0.

If proc-nsecs=l, the spatial feature data array is com-
puted in the same manner as described in the section of this
document entitled, “IMPLEMENTING A RECURSIVE
HIERARCHICAL SEGMENTATION ALGORITHM ON A
COMPUTER,” with a single call to the function compute-
sptatial(). If proc-nsecs>l, the program must stage through
the input data in doing this computation, as described in the
next few paragraphs.

In setting up the staged approach of computing and
writing the spatial feature file, the input data array, and, if
necessary, the mask data array are reallocated. In addition,
the spatial feature data array and some temporary arrays are
allocated. These arrays end up being allocated as follows:

Data Array Data Type Size To Contain:

input-data unsigned
short

input-sub unsigned
short

mask-data unsigned

mask-sub unsigned
char

char

spatial-init float

ncols*
(proc-mows + 1)*
nbands
3*ncols*nbands

ncols*
(proc-mows + 1)
3*ncols

ncols*
(proc-mows + 1)

Input image data

Temporary array to
buffer 3 lines of input
data
Input mask data (if any)

Temporary array to
buffer 3 lines of mask
data (if any)
Spatial feature data
(local image variance
or standard deviation)

The input files, and an output file (RHSEG0000.max) are
opened, and the following variables are initialized: init-

24
flg=TRUE, last-flg=FALSE, nelements=ncols*(proc-
nrows+l) and marrow=proc-nrows. Then a loop is entered,
which is repeated proc-nsecs times. Each time through the
loop, nelements of input data are read. The last time through

5 the loop, nelements is readjusted to be ncols*(maxrow-1),
and last-flg set equal to TRUE. Other times through the
loop (except the first), nelements is readjusted to be
ncols*proc-nrows and initflg is set equal to FALSE. Each
time through the loop, the maximum over spectral bands of
the local spatial feature values over 3x3 pixel areas is now
calculated by calling the function compute-sptatial() with
the following input arrays and parameters:

input-data

input-sub

mask-data

20 mask-sub

An unsigned short array containing the current section
of input image data.
An unsigned short array to buffer 3 lines of input
image data.
An unsigned char array containing the current section
of mask data (if any).
An unsigned char array to buffer 3 lines of mask data
(if any).
An int variable that is TRUE if this is the first section
of data processed, and FALSE otherwise.
An int variable that is TRUE if this is the last section
of data processed, and FALSE otherwise.
An int variable containing the number of columns in the
input image data.
An int variable containing the number of rows processed
in this section of the input image data.
An int variable containing the size of data element
offset between bands of input image data. Equal to

init-flg

last-flg

25 ncols

maxrow

num-points

30 nelements in this case.

The global parameters mask-flag, nbands, scale, and offset
are also used as inputs to compute-spatial(). The following
data array is output by compute spatial():

3 s

spatial-init A float array containing the maximum over spectral
bands of the spatial feature calculated over a 3 x 3
window for the current section of data.

40

Note that when mask-data is provided, the value of spatial
init is set equal to MAXFLOAT (the maximum floating point
value) whenever A N Y data point in the 3x3 window is

45 masked out. Also, spatialinit is set equal to MAXFLOAT
for the first and last data rows and columns. (Internal to the
compute-spatial() function, the three line buffers, input-
sub and mask-sub, if necessary, are maintained such that
the middle line of the three line buffers correspond to the line

After each call to compute-sptatial(), ncols*maxrow
elements of the spatial-init are written to the file
RHSEG0000.max. After the program exits the loop over
proc-nsecs, the input and output files are closed. The

so currently being calculated of the spatialinit array.)

55 input-sub and mask-sub arrays are also freed.
An additional data array is now allocated:

Data Array DataType Size To Contain:

spatial-init-sub float 3*ncols Temporary array to
60

buffer 3 lines of spatial
feature data

65 The computation of the spatial feature data array contin-
ues with the finding of the minimum over 3x3 pixel areas of
the data array computed above by the function compute-

US 6,895,115 B2
25 26

spatial(). If proc_nsecs=l, the spatial feature data array is The actual call to the parallel computer system is made
computed in the same manner as described in the section of through a call to the function call_parallel(), with ncols and
this document entitled, “IMPLEMENTING ARECURSIVE nrows as input parameters. The functional description of call
HIERARCHICAL SEGMENTATION ALGORITHM O N A parallel() is given in a later section. The global variables
COMPUTER,” with a single call to the function s log-file, host, tmpdir, tempfile, mask-flag, r lblmapin-
find-min(1. If Proc-nsecs>l~ the Program must stage flag, regmerges-flag, spclust-flag, process, nb-pes, cray-
through the data in doing this computation, as described in time-limit, dtype, maxmdir, simcrit, extmean,
the next few paragraphs. spatialtype, rnb leve ls , inblevels , fnblevels , sub-

ncols, sub-nrows, minregions chkregions, max-nregions,
i o spatial-wght, convfact, scale, and offset are also utilized by (RHSEG0000.spatial.platform) are opened, and the follow-

ing variables are initialized: init-flg=TRUE, last-flg= the function call-parallel(). FALSE, nelements=ncols*(proc_nrows+l) and maxrow=

proc-nsecs times. Each time through the loop, nelements of parameter (Output from the part Of the program, run
input data are read. The last time through the loop, nele- on the Parallel machine host), RHSEG0000.oParam, is read
merits is readjusted to be nco~s*(maxrow-~) and last_flg is 15 to determine the number of hierarchical segmentation levels,
set equal to TRUE. Other times through the loop (except the nslevels, and maximum region label in the finest
first), nelements is readjusted to be ncols*proc_nrows and segmentation, onregions, that were produced on the parallel
init-flg is set equal to FALSE. Each time through the loop, computing platform by part (ii) of the RHSEG implemen-
the minimum over 3x3 pixel areas of maximum over spec- tation. Besides the log file, RHSEGOOOO.log, the other files
tral bands of the local spatial feature values over 3x3 pixel 20 output from part (ii) of the RHSEG implementation are
areas is found by calling the function find_min() with the R H S E G 0 0 0 0 . n p i x . i l (1=0 t o n s l e v e l s - 1) ,
following input arrays and parameters: RHSEG0000.mean.sbb.il (b=O to nbands-1; 1=0 to nslevels-

l) , and RHSEG0000.critval.il (1=0 to nslevels-1). If
regmerges_flag==FALSE, RHSEG0000.rlblmap.il (1=0 to

25 nslevels-1) are also output, and if regmerges-flag==TRUE,
RHSEG0000.rlblmap.i0 and RHSEG0000.regmerges.i1(1=1
to nslevels-1) are also output. These files are concatenated
together appropriately to form the files rlblmap, regmerges,
rnpixlist, rmeanlist, and rcvlist, which were described pre-

Functional description of the call_parallel() function:
The call-parallel() function first determines the number of
parallel tasks required based on the value of inb-levels.
(Note that this is one less than the total number of tasks as

35 listed in Table 1 of Section 1.C.) The number of parallel
tasks, inb tasks , is related mathematically to inb leve ls ,
by the equation:

The hut (RHSEGOOO.max)~ and the Output

proc_nrows, Then a loop is entered, which is repeated After the function parallel(returns, the Output

30 viously.

spatial-init A float array containing the maximum over spectral
bands of the spatial feature calculated over a 3 x 3
window for the current section of data.
An float array to buffer 3 lines of spatial feature
data.
An int variable that is TRUE if this is the first
section of data processed, and FALSE otherwise.
An int variable that is TRUE if this is the last
section of data processed, and FALSE otherwise.
An int variable containing the number of columns
in the input image data.
An int variable containing the number of rows
processed in this section of the input image data.

spatial-init-sub

init-flg

last-flg

ncols

maxrow

The following data array is output by find_min():

,nb_levels (12) c 22“-1’.
40 inb-tasks =

,=I spatial-init A float array containing the minimum over a 3 x 3 window
of the maximum over spectral bands of the spatial
feature calculated over a 3 x 3 window for the current
section of data. For the 200 processor HIVE, inb leve ls values of 4 or 5

are most appropriate, resulting in 85 or 341 tasks, respec-

(Internal to the find_min() function, the three line buffer,
spatial-init-sub is maintained such that the middle line of
the three line buffer corresponds to the line currently being
calculated of the output spatial-init array.)

After each call to the function find-min(),
ncols*maxrow elements of the spatial-init are written to the
file RHSEG0000.spatial.platform. After the program exits
the loop over proc-nsecs, the input and output files are
closed. The spatial-init and spatial-init-sub arrays are

tively. The available processors are somewhat underutilized
with 85 tasks, but 341 tasks require some multitasking (up
to 2 tasks per processor). However, due to the recursive
structure of the implementation, a maximum of 256 tasks out
of the 341 are actually performing computations at any
particular instance of time for inblevels=5.

A parameter file, “RHSEGOOOO.iparam,” is now gener-
ated through which the required parameters are transferred
to the parallel program. The required parameters are:

also freed. 55
The RHSEG main program continues by copying the

input data file, inputf, to RHSEGOOOO.input.platform, and if
p r o v i d e d , t h e m a s k d a t a fi 1 e , m a s k t o rlblmap-in-flag TRUE if an input region label data file exists
RHSEGOOOO.mask.platform, and the input region label map
data file, r lblmapinf, to RHSEG0000.rlblmap.platform. (If 60 :::ts
the Cray T3E, Netfinity or other parallel machine besides the
HIVE is to be utilized, substitute the appropriate string for d t p e
“hive” .)

will be encountered in processing any subsection of data is 65
now computed as equal to the maximum of 4* minregions

mask-flag

Wmerges-flag

TRUE if a mask data file exists

TRUE if an output region merges list file is requested
input image number of columns
input image number of rows
input image number of spectral bands
input image data type
(4 => “unsigned byte”, 16 => “unsigned short)
value equals number of nearest neighbors
dissimilarity criterion (1 => “1-norm”, 2 => “2-
norm”, and 3 => “Infinity-norm”.)
TRUE if vector mean is to be subtracted

The maximum number of regions, max-nregions, that

extmean

and sub_ncols*sub_nrows.

inb-tasks
fnb-levels
sub-ncols

sub-mows

minregions
chkregions

convfact
scale
offset

number of parallel tasks required
number of recursive levels used in the final stage
number of columns of image data section processed at
the highest level of recursion
number of rows of image data section processed at
the highest level of recursion
number of regions for convergence in recursive stages
number of regions at which convergence factor
checking is initiated
convergence factor
multispectral scale factor(s) for normalization
multispectral offset factor(s) for normalization

US 6,895,115 B2
27 28

On the HIVE, NetFinity and similar parallel computing
platforms, the master program then spawns the required
number of tasks (inbtasks), using the “pvm-spawn” com-
mand to spread the tasks across the available slave proces-

5 sors. The task IDS of the spawned tasks are recorded in an
array (bee_tid[*]). On the Cray T3E, the “start-pes” com-
mand is used to start processes on ibn tasks+l processors,
and the rest of the master program is run on the last
processor. The master program is provided with the task IDS
of the slave tasks by the slave tasks explicitly sending their
processor number and task IDS to the master program with
a “pvm-send” call.

Special note: For load balancing purposes on the HIVE,
the tasks are allocated to PCs as follows: Tasks e 4 are
allocated to Dell PCs 5-9. Tasks 5-52 are spread evenly
across the 16 Gateway PCs. Tasks 53-84 are spread evenly
across the 10 Dell PCs. Tasks 85 through 340 are first spread
across the Pentium Pro PCs until 2 tasks are allocated to
each available Pentium Pro PC. Then the remaininn tasks are

-continued

spclust-flag TRUE if spectral clustering is to be performed

“standard deviation”)
total number of recursive levels
recursive level of intermediate level

spatial-wght weight for spatial feature
spatial-type spatial feature type (1 => “variance”, and 2 =>

rnb-levels
inb-levels

10

dso required for the HIVE and NetFinity implements- spread evenly across the Gateway and Dell PCs.uThis load
20 balancing strategy takes into account that the clock speeds of

the Dell and Gateway PCs are twice as fast as the Pentium
tions are the following:

Pro PCs, and that the Pentium Pro PCs and Gateway PCs
have two processors per PC and the Dell PCs have four
processors per PCs. The load balancing strategy should be

2s modified accordingly for different heterogeneous Beowulf-
type clusters. Such tailored load balancing strategies are not

E o , a a m , necessary on homogeneous clusters such as the Cray T3E
and NetFinity.

The master program then multicasts the common param-
computing 30 eters to all slave tasks with the pvm-mcast routine. The

host
tmpdir

Hostname of the workstation setting up the parallel call
Directory for temporary files on the calling workstation

T h e f i l e s
RHSEGOOOO.input.platform, RHSEG0000.mask.platform
and RHSEG0000.spatial.platform are remotely copied with
the UNIX ((rCP)) command to the
platform, and a UNIX remote shell call is execute to start the
parallel program implementing part (ii) of the RHSEG
implementation. After the parallel program completes, the
output files are remotely copied from the parallel-computing

COmmOn Parameters are:

TRUE if a mask file exists or if padding is required

TRUE if an output region merge list file is requested

spatial feature type (1 => “variance”, and 2 =>
“standard deviation”)

platform’ Besides the log RHSEGOOO’log, and the 35 :i;i$:fn-flag TRUE if an input region label map is provided
Output parameter RHSEGOOOO.oparam, the Other

R H S E G 0 0 0 0 . n p i x . i 1 n s 1 e v e 1 s - 1) ,
RHSEG0000.mean.sbb.il (b=O to nbands-1: 1=0 to nslevels-

regmerges-flag

spatial-type
output from part (ii) of the RHSEG implementation are spatial-wght weight for spatial feature

(1 = 0 t 0

input image number of spectral bands
number of columns of image data section processed at
the highest level of recursion

the highest level of recursion

l) , and RHSEG0000.crit;al.il (1=0 to nslevels-1). If reg- 4o ~ ~ ~ ~ ~ c o l s

nslevels-1) are also output and if regmerges flag==TRUE, sub-mows
merges,, flag==FALSE, RHSEG0000.rlblmap.il (1=0 to

RHSEG0000.rlblmau.i0 and RHSEG0000.repmerpes.i1(1=1
number of rows of image data section processed at

- I \

to nslevels-1) are also output.

mentioned in previously, part (ii) of the RHSEG implemen-
tation is a “master” program that accepts inputs from part (i),
and calls many instances of the part (iii) “slave” program,
provides the required inputs to the “slave” programs, aggre-
gates the results from the “slave” programs, and sends the

The master program first determines the parameter file
name from the command line and reads in the program
parameters. Then, based on the values of rnb-levels ,

mines isub-ncols and isub-nrows, the number of columns
and rows at the intermediate level of recursion. The program
also similarly determines fsub-ncols and fsub-nrows

and isub-nrows. rnb-levels total number of recursive levels
Based on the values of ncols and sub-ncols, the master 60 ntasks

program finds the smallest full image size (pad-ncols and

isub-ncols number of columns of image data section processed at
the intermediate level
number of rows of image data section processed at
the intermediate level
number of columns of image data section processed
in the final stage
number of rows of image data section processed
in the final stage
multispectral scale factor(s) for normalization
multispectral offset factor(s) for normalization
dissimilarity criterion (1 => “1-norm”, 2 => “2-
norm”, and 3 => “Infinity-norm”.)
TRUE if vector mean is to be subtracted
value equals number of nearest neighbors
TRUE if spectral clustering is to be performed
number of regions for convergence in recursive stages
number of regions at which convergence factor
checking is initiated
number of recursive levels used in the final stage
recursive level of intermediate level

number of parallel tasks required (equal to inb-tasks)
task IDS of all slave tasks

task-section correspondence in final stage

Description of part (ii) of the RHSEG implementation: As

results back to part (i).

inb-levels , sub-ncols and sub-nrows, the program deter-

based on the values of inblevels , fnb leve ls , isub-ncols E’;:::;:
slave-tid

pad-nrows) that is an integer multiple of ncols and nrows. : ~ ~ ~ ~ ~ , s e c s number Of data sections in stage
Note that pad_ncols>=ncols and pad_nrows>=nrows.

The master program then determines the total number of
processing sections for the final stage, tot-nb-secs=(ncols/ 65
fsub-ncols)’, and the task, processing section correspon-
dence array (task-sec) at the final stage recursive level.

The master program then initiates the recursive stage of
the program by sending task specific parameters to the OCA
slave task. These task specific parameters are:

45 isub-mows

fsub-ncols

fsub-mows

scale
offset
simcrit

extmean
maxmdir
spclust-flag

55 minregions
chkregions

US 6,895,115 B2
29 30

On the Cray T3E, the above declarations are made dif-
ferently as follows:

runtype
first-sec

slave task run type (equal to “1” in this case)
first section to be processed by slave task
ieaual to 0 in this case) 5
\ I

last-sec last section to be processed by slave task
(equal to nb-secs-1 in this case. If ratio =

ncolslisub-ncols, nb-secs = ratio*ratio)
current task ID (master task ID in this case)
current level of recursion + 1 (equal to “1” in this

number of columns in current section of data
number of rows in current section of data

calling-tid
level

ncols
mows
convfact convergence factor

case) 10

Tedef union

unsigned short sec;
ushort-bit-field bits;
gb-union;

15
The master program then waits for branch task ID

requests from tasks at recursive levels 1 through inb-levels-
1. Tasks at these levels make 4 separate recursive calls to 4
separate tasks, for which the master program must provide
task IDS. 20

After all branch task ID requests are made and satisfied,
the master program waits for input data requests from the
tasks at recursive level inb-level. When a slave program
sends an input data request to the master program, it sends 25
its own task ID (requesttid) and the section number (sec)
it is requesting data for. The sections are numbered in a
recursive manner as illustrated in Table I.

The offset locations for each section in the recursive order 30

numbering scheme can be found in the following manner.
On the PCs of the HIVE or Netfinity, declare the following
structure and union:

typedef struct

unsigned b31:l;
unsigned b30:l;
unsigned b29:l;
unsigned b28:l;
unsigned b27:l;
unsigned b26:l;
unsigned b25:l;
unsigned b24:l;
unsigned b23:l;
unsigned b22:l;
unsigned b21:l;
unsigned b20:l;
unsigned b19:l;
unsigned b18:l;
unsigned b17:l;
unsigned b16:l;
unsigned b15:l;
unsigned b14:l;
unsigned b13:l;
unsigned b12:l;
unsigned b l1 : l ;
unsigned b10:l;
unsigned b09:l;
unsigned b08:l;
unsigned b07:l;
unsigned b06:l;
unsigned b05:l;
unsigned b04:l;
unsigned b03:l;
unsigned b02:l;
unsigned b01:l;
unsigned b00:l;

} ushort-bit-field;

{

int recur-sec, sub-coff, sub-roff, c-sec, r-sec;
gb-union getbits;

typedef union

unsigned short sec; The offsets for the recursive order section numbering
ushort-bit-field bits;

{

40 (recur-sec) are then found as follows:
} gb-union;

35 In the master program the following variable declarations
are made:

typedef struct

unsigned b00:l;
unsigned b01:l;
unsigned b02:l;
unsigned b03:l;
unsigned b04:l;
unsigned b05:l;
unsigned b06:l;
unsigned b07:l;
unsigned b08:l;
unsigned b09:l;
unsigned b10:l;
unsigned b l1 : l ;
unsigned b12:l;
unsigned b13:l;
unsigned b14:l;
unsigned b15:l;

} ushort-bit-field;

{

TABLE I

Numbering of sections in recursive order
sequence for inb-levels = 4. Each section is of size

inb-cols x fin-rows.

0 1 4 5 16 17 20 21
2 3 6 7 18 19 2.2 23
8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31
32 33 36 37 48 49 52 53
34 35 38 39 SO 51 54 55
40 41 44 45 56 57 60 61
42 43 46 47 58 59 62 63

getbitssec = recur-sec;
45 c-sec = getbits.bits.bO0 + 2*getbits.bits.b02 + 4*getbits.bits.b04 +

8*getbits.bits.b06 + 16*getbits.bits.b08 + 32*getbits.bits.blO +
64*getbits.bits.b12 + 128*getbits.bits.b14;

8*getbits.bits.b07 + 16*getbits.bits.b09 + 32*getbits.bits.bll +
64*getbits.bits.b13 + 128*getbits.bits.blS;

r-sec = getbits.bits.bO1 + 2*getbits.bits.b03 + 4*getbits.bits.b05 +

sub-coff = c_sec*isub_ncols;
sub-roff = r-sec*isubLncols;

If pad-ncols! =ncols or pad_nrows!=nrows, the input
data and, if present, the mask data and spatial feature data

5s are padded as necessary with zero (“0”) values just before
being sent to the requesting slave task.

After all the input data requests are received and satisfied
for the input image data (and mask data and/or spatial
feature data), the master program determines the correspon-

60 dence between the recursive order number scheme (Table I,
using fnb-levels rather than inblevels) and the raster order
numbering scheme (Table 11) for use in proper outputting of
the region label maps that will be generated.

In the master program the following variable declarations

int ratio, tot-nb-secs, sec, c-sec, r-sec, recur-sec,
65 are made:

*raster_sec; gb-union getbits;

US 6,895,115 B2
31

The recursive section numbering order (recur-sec) and the
raster section numbering order (raster-sec) are then asso-
ciated as follows:

ratio = pad-ncolslfsub-ncols;
tot-nb-secs = ratio*ratio;
sec-inv = (int *) malloc((size-t)(totLnbLsecs*sizeof(int)));
for (sec = 0; sec < tot-nb-secs; sec++)

getbitssec = recur-sec;
{

c-sec = getbits.bits.bO0 + 2*getbits.bits.b02 + 4*getbits.bits.b04 +
8*getbits.bits.b06 + 16*getbits.bits.b08 + 32*getbits.bits.b10 +
64*getbits.bits.b12 + 128*getbits.bits.b14;

r-sec = getbits.bits.bO1 + 2*getbits.bits.b03 + 4*getbits.bits.b05 +
8*getbits.bits.b07 + 16*getbits.bits.b09 + 32*getbits.bits.bll +
64*getbits.bits.b13 + lZS*getbits.bits.blS;

raster-sec = r-sec*ratio + c-sec;
secinv[raster-sec] = recur-sec;

I

The raster-sec-recur-sec association is stored for later use
in the sec-inv array.

TABLE I1

Numbering of sections in raster order
sequence for fnb-levels = 4. Each section is of size

fnb-cols x fnb-rows.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 SO 51 52 53 54 55
56 57 58 59 60 61 62 63

The master program now waits for the recursive process-
ing to complete, and the final stage processing to initiate on
the Oth slave task. When the Oth slave task finishes the
calculation of the initial global criterion value, this value is
reported back to the master program, where this value is
output to the lo file.

slave task detects a cvratio>convfact, it
sends the cvratio, the number of regions and the region
number of pixels, region means and region criterion values
to the master program. The master program, prints the
cvratio, the number of regions and hierarchical segmentation
level, 1, to the log file RHSEG0000.log. Then program then
performs byte-swapping on the region number of pixels and
writes the result to the file RHSEGOOOO.npix.il, performs
byte-swapping on the regions means and writes the result to
the files RHSEG0000.mean.sbb.il (b=O to nbands-1), and
performs byte-swapping on the region criterion values and
writes the result to the file RHSEG0000.critval.il. It then
requests the region label map section by section in raster
section order (based on the recursive section-raster section
numbering correspondence stored in the sec-inv array)
from the tasks at the recursive level fnb leve ls (using the
task-section correspondence stored in the task-sec array). If
regmerges-flag==FALSE or 1==0, the region label map data
is byte-swapped and written in raster section order to the file
RHSEG0000.rlblmap.il. If regmerges-flag ==TRUE and
1!=0, the region merges list data is byte-swapped and written
to the file RHSEG0000.regmerges.il.

Description of part (iii) of the RHSEG implementation:
As mentioned previously, part (iii) of the RHSEG imple-
mentation is a set of identical “slave” programs that request
and accept inputs from the part (ii) “master” program,
performs the hybrid region and growing and spectral clus-
tering algorithm on a particular section of data, and returns

tf When the 0

5

10

15

20

2s

30

3 s

40

4 s

so

55

60

65

32
results back to the “master” program. Most of these “slave”
programs also send and receive inputs from other “slave”
programs.

On the HIVE, NetFinity and similar parallel computing
platforms, the slave program can determine the task ID of
the master program through using the “pvm-parent” com-
mand. However, this is not the case on the Cray T3E. Instead
the master program must broadcast its task ID to all the other
tasks. Upon receiving this broadcast, each slave program (or
task) sends back to the master program its own task ID.

Once each slave task has the task ID of the master
program task, it waits for the multicast of the common
parameters from the master task. These common parameters
are listed above in the description of part (ii) of the RHSEG
implementation. Upon receiving the common parameters
each task determines its own task number by finding the
index of the s l a v e t i d array whose task ID number (tid)
matches its own process ID. Once the common parameters
are received, each slave task then waits for task specific
parameters for its particular processing task. Only one slave
task (task 0) receives its task specific parameters from the
master task. All other slave tasks receive their task specific
parameters from another slave task. These task specific
parameters were listed under the description of part (ii) of
the RHSEG implementation.

Upon receiving its task specific parameters, each slave
task determines the maximum number of regions the task
must handle at any particular time, max-nregions. In most
cases, max_nregions=4*minregions. However, if sub-
ncols*sub~nrows>4*minregions, then max-nregions=
sub_ncols* sub-nrows.

Each slave task now allocates data arrays as necessary,
depending the recursive level, level, it is running at. For
level>=fnb_levels, the following data arrays are allocated to
hold the input and output data:

Data Array Data Type Size To Contain:

input-data unsigned ncols*nrows* Input image data

mask-data unsigned ncols*nrows Input mask data (if any)

spatial-init float ncols*nrows Spatial feature data

short nbands

char

(local image variance or
standard deviation, if any)

data (if any) and output
region label map data

rlblmap-data unsigned ncols*nrows Input region label map
short

Note that ncols and nrows are the number of columns and
rows in the section of data being processed by the given task,
NOT the total number of columns and rows in the complete
data set. The above data arrays are used in runs of runtype=l,
2 and 7. The rlblmapdata data array is also used in runs of
runtype=4, 8 and 10.

For level=fnblevels, the following data arrays are allo-
cated:

Data
Data Array Type Size To Contain:

region-sum double nbands Region sum values
for a particular
region

cmp-region-sum double nbands Region sum values
for a the region
being compared to
region with values
in region-sum

US 6,895,115 B2
33

-continued

34

-continued

Data
Data Array Type Size To Contain:

rlblmap-prev unsigned ncols*nrows
short

rlabel-tmp unsigned max-nregions
short

npix-tmp unsigned max-nregions
int

sum-tmp double max-nregions*
nbands

Region label map
values from
previous iteration
Region label
values (temporary)
Region number of
pixels (temporary)
Region sum of
normalized input
data values in each

Data Array Data Type Size To Contain:

5 nghbr-sub unsigned (factor-1)* Subset of region
char max-nregions’ adjacency mask

where factor = (rnb-levels - inb-levels + 1).
For all other recursive levels, nghbr-sub is not allocated and the other
data arrays (npix-data, sum-data, sumsq-data and spatialdata are

10 declared with factor = 1. The nghbr-sub data array is required only for
tasks performing runs of runtype = 1 and 2. The other data arrays are
required when a task is performing runs of runtype = 1, 2 and 7.

band (temporary)
spatial-tmp double max-nregions Region spatial data 1s For level<rnb_levels AND level>=fnb_levels, the fol-

value (temporary) lowing data arrays are allocated:
(only if
spatial-wght > 0.0)

c v d a t a float max-nregions Convergence
criterion values

criterion values 2o
(temporary)

Data Array DataType Size To Contain:

input-sub unsigned short ncols*nrows* Subset of

c v t m p float max-nregions Convergence

invut image
Y

nbandsifactor data
maskksub unsigned char ncols*nrows/factor Subset of

input
mask data
(if any)

spatial-init-sub float ncols*nrows/factor Subset of
spatial
feature data

spatial-wght >

The above data arrays, except for rlblmap-prev, are only
required when a task is performing a run of runtype=7. The 25
data array rlblmap-prev is required when a task is perform-

For level<=fnblevels, the following data arrays are
ing runs of runtype=6, 8 or 9.

allocated: (if

0.0) 30

rlblmap-sub unsigned short ncols*nrows/factor Subset of

Data Array DataType Size To Contain: label map

first-col unsigned mows First column of region
short label values

last-col unsigned mows Last column of region
short label values

first-row unsigned ncols First row of region label
short values

last-row unsigned ncols Last row of region label

region

data

35 where factor = 2 if level == inb-levels and factor = 4 otherwise. These
data arrays are required only when a task is performing runs of runtype =

1 and 2.

short values 40 The following data arrays are allocated, as follows, for all
levels of recursion:

The above data arrays are required when a task is performing
runs of runtype=l, 2 and 4.

for all recursion levels. If spatial_wght>O.O, the data arrays 45
The data arrays n p i x d a t a and s u m d a t a are allocated Data Array Data Type Size To Contain:

sumsq_data and spatialpdata are also allocated for all rlabel-data unsigned short max-nregions Region label

recursion levels. However, for level<rnb-levels AND relabel-list unsigned short 2*max_nregions Region label
level==inb_levels, these data arrays are allocated in a relabelings
special manner, along with an additional data array, nghbr-

values

(renumberings)

mask

adjacency mask

SO nghbr-mask unsigned char max-nregions’ Region adjacency

nghbr-tmp unsigned char max-nregions Temporary region

rlblmap-4cols unsigned short 4*nrows Selected four

sub:

Data Array Data Type Size To Contain: columns of
<< region label

npix-data unsigned factor*

sum-data double factor*
max-nregions *
nbands

sumsq-data double factor*
max-nregions *
nbands

int max-nregions

spatial-data double factor*
max-nregions

Region number of pixels

Region sum of
normalized
input data values in
each spectral band
Region sum of the
square of the
normalized input data
values in each band
(if spatial-wght > 0.0)
Region spatial feature - .
value (if spatial-wght >
0.0)

i d

map data

rows of
region label
map data

6o region-store reg-struct max-nregions Structure
containing
information about
each region

region-list reg-list max-nregions + 1 Structure for
linking
region-store

together

rlblmap-4rows unsigned short 4*ncols Selected four

65 structures

US 6,895,115 B2
35

-continued

Data Array Data Type Size To Contain:

sort-store reg-list max-nregions Structure for
ordered linking
of region-store
structures

ordered linking
of region-store
structures

nbsort-store reg-list max-nregions Structure for

All of the above data arrays are required when a task is
performing runs of runtype=l and 2. In addition, the
relabel-list data array is required when a task is performing
runs of runtype=6 and 7, and the rlblmap-4cols and
rlblmap-4rows data arrays are required when a task is
performing runs of runtype=4.

The reg-struct (REGION) and reg_list (R L I S T) struc-
tures are defined in the section of this document entitled,
“IMPLEMENTING A RECURSIVE HIERARCHICAL
SEGMENTATION ALGORITHM ON A COMPUTER.”
This related disclosure also details how the region-list
structure array is initialized (by pointing to sequential ele-
ments of the region-store structure array).

From this point on, slave tasks running with different
values of runtype perform different tasks. Slave tasks of
runtype==l or runtype==2 perform recursive hierarchical
image segmentation on the portion of data input to the task,
down to minregions number of regions. The main difference
between these two runtypes is that runtype==l also performs
the final stage hierarchical image segmentation with con-
vergence checking down to cvnbregs (usually 2 regions).
The other difference is the a slave task of runtype==l returns
to the master task (part (ii) of the RHSEG implementation)
and a slave task of runtype==2 returns to another slave task.

Slave tasks of runtype==4 pass back to the calling slave
task the first and last rows and columns of the region label
map from its section of data. This is needed to update the
nghbr-mask for the newly adjoined sections of data when
four sections of data are joined together for processing at the
next lower level of recursion.

Slave tasks of runtype=6,7,8,9 and 10 only get activated
for tasks running at a recursive level equal to fnb-levels.
Slave tasks of runtype==6 update the section of region label
map stored by the task, based on a list of merges performed,
relabel-list, that is sent from the calling task. Slave tasks of
runtype==7 compute the contribution to the convergence
criterion from the section of data held by the task, based on
updated region information provided by the calling task
(always slave task 0). Slave tasks of runtype=8 store the
current values of the section of the region label map array,
rlblmap-data, which is stored by the task, to the “previous”
region label map array, rlblmap-prev (always called from
slave task 0). Slave tasks of runtype=9 copy their section of
rlblmap-prev array data to the calling task (always the
master task), while slave tasks of runtype=lO copy their
section of rlblmap-data array data to the calling task
(always the master task).

The following sections give more a more detailed descrip-
tion of part (iii) of the RHSEG implementation for slave
tasks of running with different values of runtype.

Slave tasks of runtype==l or runtype==2 continue as
follows: If level==inblevels the task requests the
input data (input-data, and if provided, mask data,
r lblmapdata and spatialinit) from the master task.
This input data is byte swapped as necessary.

S

10

1s

20

2 s

30

3s

40

4s

so

5s

60

65

36
If level==inblevels==rnb-levels, the function region

datapinit() is called in exactly the same manner as it
is called in the description of the HSEG main program
in the section of this document entitled, “IMPLE-

MENTATION ALGORITHM ON A COMPUTER.”
If level==inblevelsernb-levels, the function lrhseg() is

called in exactly the same manner as it is called in the
description of the RHSEG main program in the section
of this document entitled, “IMPLEMENTING A
RECURSIVE HIERARCHICAL SEGMENTATION
ALGORITHM ON A COMPUTER.”

If leveleinblevels, the slave ask requests four branch
slave task IDS from the master task. Once these branch slave
task IDS are received, the slave task calls the function
callLrecur2() with the following input variable and array
data:

MENTING A RECURSIVE HIERARCHICAL SEG-

ncols

mows

level

my-tid

branch-tid

slave-tid

old-first-sec

old-last-sec

task-sec

An int variable containing the number of columns
in the current section of input image data
An int variable containing the number of rows
in the current section of input image data
An int variable containing the value of the
current level of recursion
An int variable containing the ID of the
current slave task.
An int array containing the IDS of the four
slave tasks that the current slave task will
initiate in the function callLrecur2().
An int array containing the IDS of all of
the slave tasks.
An int variable containing the section number
of the first section to be processed by the
current slave task
An int variable containing the section number
of the last section to be processed by the
current slave task
An int array containing the task IDS of the
slave tasks processing each section of data
in the final stage of RHSEG

The global variables nbands, spatial-wght, inb leve ls and
fnb-levels are also used as inputs by call_recur2(). Certain
variables and arrays are output by call_recur2(). They are
as follows:

nregions An int variable containing the number of
regions in the segmentation of the section of
data processed.
An unsigned short array containing the current
section of input image data
An unsigned char array containing the current
section of mask data (if any)
An unsigned short array containing the output
region label map for the current section of
data. This region label map specifies the
spatial distribution of the regions.
A float array containing the current section
of input spatial feature data (local image
variance or standard deviation - if any)
An unsigned int array containing the current
region number of pixels list stored as a vector.
The j” element of the vector is the number of
pixels in region j + 1.
A double array containing the current sum of
the normalized input data values over all
pixels in each region. Element j + nregions*b
is the sum value for region j + 1 and band b
(first band is band number 0).

input-data

mask-data

rlblmap-data

spatial-init

npix-data

sum-data

US 6,895,115 B2
37

-continued

spatial-data

nghbr-mask

sumsq-data A double array containing the current sum of the
square of the normalized input data values over
all pixels in each region. (Actually contains
values only if spatial-wght > 0.0.) Element
j + nregions*b is the sum square value for
region j + 1 and band b (first band is band
number 0).
A double array containing the current region
spatial feature value list stored as a vector.
(Actually contains values only if spatial-wght >
0.0.) The j” element of the vector is the
spatial feature value for region j + 1.
An unsigned char array of numbers designating,
for the current section of data, whether or
not a pair of regions are spatially adjacent
&e., neighbors). The value of the mask at
array element j + max-nregions*k is TRUE
if and only if regions j + 1 and k + 1
are spatially adjacent.

cur-nb-secs = last-sec - first-sec + 1;
for (index = fnb-levels; index < inb-levels; index++)

cur-nb-secs I= 4;
first sec I= 4;

{

I

5

last-sec = first-sec + cur-nb-secs - 1;

10
If level>=fnblevels (where call_recur4() is not called),
the values of first-sec and last-sec must also be adjusted.
In this case this adjustment is based on the current recursive
level, level, rather that inb leve ls or fnb-levels. This is
done in “C” code as follows:

15

cur-nb-secs = last-sec - first-sec + 1;
for (index = level; index < inb-levels; index++)

cur-nb-secs I= 4;
first-sec I= 4;

20 c

I
Other data arrays are passed into callLrecur2() for use as
work space. These are input-sub, mask-sub, rlblmap-sub,

The purpose of the call_recur2() function is to initiate
slave tasks for each quadrant. The results from each slave 25 Back to the levelefnb-levels case, the following data arrays
task are assembled together by call_recur2() and returned
to the calling function. The internal operations of the func-

spatial-init-sub, rlabel-data, and group-tid. last-sec = first-sec + cur-nb-secs - 1;

are output by call-recur4(1:

tion call_recur2() are described in a later section.
If levelernb_levels, the neighbor mask, nghbr-mask, 30 rlblmap-4cols An unsigned short array containing the first,

last and middle two columns of region label map
data for the current section of data.

last and middle two rows of region label map data
for the current section of data.

must be updated to account for neighbors across the seams
of the data sections processed either by the branch slave

level>=fnb_levels, the region labels at the pair of rows and
columns adjacent to the seams of the quarters of the image 35
processed by the branch slave task are read directly from the
rlblmap-data array, which is present in the current slave
task‘s memory. If levelefnblevels, the required region
labels must be propagated up from level=fnblevels , where
the region label map data is stored. This is done through a
call to the function call_recur4(), with the following input
variables and array data:

rlblmap-4rows An unsigned short array containing the first,
tasks or the recursive calls in the function lrhseg(). If

The functional description of call-recur4(is given in a

40

later section.
In all cases for levelernb_levels, the array rlblmap-4cols

contains the first, middle two and last columns from
rlblmap-data, and the array rlblmap-4rows contains the
first, middle two and last rows from rlblmapdata. The
function update_nghbr_mask() is now called in exactly the
same manner as it is called in the section of this document
entitled, “IMPLEMENTING A RECURSIVE HIERAR-

PUTER.” In this call to update_nghbr_mask(), the middle
two rows and columns in rlblmap-4cols and rlblmap-
4rows is used to modify the neighbor mask, ngbr-mask, to
reflect the neighborhood relationships across the seams of

SO the four sections of data assembled together to form the
current of data being processed. The functional description
of update_nghbr_mask() is given in the section of this
document entitled, “IMPLEMENTING A RECURSIVE
HIERARCHICAL SEGMENTATION ALGORITHM ON A

The function region_list_init() is now called to initialize
the regionl is t structure. This call is made in the same
manner as it is called in the description of the RHSEG main
program in section of this document entitled, “IMPLE-

TATION ALGORITHM ON A COMPUTER.” The func-
for use as tional description of reg ionl i s t in i t () is also given in the

work space. These are first-col, last-col, first-row, and section of this document entitled, “IMPLEMENTING A
last-row. Prior to the call to callLrecur4(), the values of RECURSIVE HIERARCHICAL SEGMENTATION
first-sec and last-sec must be adjusted so that they are 65 ALGORITHM ON A COMPUTER.”
based on fnbleve ls rather than inb leve ls . This is done in After the call to regionlistpinit() is completed, the
“C” code as follows: following parameters are set: init-flg=TRUE and

45 CHICAL SEGMENTATION ALGORITHM ON A COM-
ncols

mows

An int variable containing the number of columns
in the current section of input image data
An int variable containing the number of rows in

level of recursion
An int variable containing the ID of the current
slave task.

the current section of input image data
An int variable containing the value of the current level

my-tid

branch-tid An int array containing the IDS of the four slave
tasks that the current slave task will initiate
in the function callLrecur4().
An int variable containing the section number of

slave task
An int variable containing the section number of

first-sec 55 COMPUTER.”
the first section to be processed by the current

the last section to be processed by the current
slave task

last-sec

60 MENTING A RECURSIVE HIERARCHICAL SEGMEN-

Other data arrays are Passed into call-recur4(

US 6,895,115 B2
39

onregions=nregions. If mntype==l, cvnbregs is set to chkre-
gions and if mntype==2, cvnbregs is set to minregions (note
that chkregions and minregions are user set parameters). The
program now proceeds in the same manner as in the descrip-
tion of the HSEG main program in the section of this
document entitled, “IMPLEMENTING A RECURSIVE
HIERARCHICAL SEGMENTATION ALGORITHM ON A
COMPUTER’ with calls to the functions lhseg() and
read-regionlist(). If nregionse=chkregions, the calls to
the functions lhseg() and read_region_list() are skipped
and, if nregions>2 and runtype==l, the program proceeds to
call the function phseg(). The function lhseg() performs
iterations of region growing and spectral clustering without
convergence checking while the function phseg() performs
iterations of region growing and spectral clustering with
convergence checking. The functional description of lhseg(
) is given in the section of this document entitled, “IMPLE-

TATION ALGORITHM ON A COMPUTER,” while the
functional description of phseg() is given in a later section
of the current document. Note that the variable init-flag is
set to FALSE after the function lhseg() is called, if it is
called.

If lhseg() and read regionl is t are called, the region label
map, rlblmapdata must be updated to reflect the merges
that occurred in lhseg() . Note that the rlblmap-data array
is NOT updated as the merges occur in the lhseg() function.
Instead, a list of region label merge pairs is maintained from
which the rlblmapdata is updated after the lhseg() func-
tion exits. If level>=fnblevels , the rlblmapdata array is
updated directly through a call to the function update-
rlblmap() in the same manner as in the description of the
HSEG main program in the section of this document
entitled, “IMPLEMENTING A RECURSIVE HIERAR-

PUTER.” If levelefnblevels, this region label merge pairs
list is sent to the underlying tasks at level=fnblevels,
through a mntype=6 call, and the rlblmapdata array is
updated at that level. This is done with a call to the function
call_runtype6() with the following input parameters and
data arrays:

MENTING A RECURSIVE HIERARCHICAL SEGMEN-

CHICAL SEGMENTATION ALGORITHM ON A COM-

first-sec An int variable containing the section number of
the first section to be processed by the current
slave task
An int variable containing the section number of
the last section to be processed by the current
slave task
An int array containing the task IDS of the slave
tasks processing each section of data in the final
stage of RHSEG
An int variable containing the ID of the current
slave task.
An int array containing the IDS of all of the
slave tasks.
An int variable containing the number of elements
in the relabel-list array
An unsigned short array containing the list of
pairs of region labels that were merged in the
previous call to lhseg().

last-sec

taskksec

my-tid

slave-tid

nelements

relabel-list

The group-tid data array is passed into call_mntype6()
for use as work space. There are no outputs from call-
runtype6(). The functional description of call-mntype6()
is given in a later section.

The preceding has described the process followed by the
slave tasks for runtype==l or runtype==2. At this point the
processing for these two runtypes diverges. For mntype==l,
the following parameters are set: cvnbregs=2 and

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

40
onregions=nregions. The slave task does not exit, but instead
waits for additional processing requests. Then the function
phseg() is called with the following parameters and array
data:

init-flag

ncols

mows

onregions

cvnbregs

my-tid

call inLtid

tot-nb-secs

slave-tid

task-sec

rlabel-data

npix-data

sum-data

sumsq-data

spatial-data

nghbr-mask

region-list

An int variable which is TRUE if the region-list
has just been initialized and FALSE otherwise.
An int variable containing the number of columns
in the input image data
An int variable containing the number of rows in
the input image data
An int variable containing the number of regions
existing when lhseg() is initially called.
An int variable indicating the number of regions
at which that this call to fhseg() will converge
(exit).
An int variable containing the ID of the current
slave task.
An int variable containing the ID of the task that
called the current slave task
An int variable containing the total number of
sections the data is processed in at the recursive
level fnb-levels.
An int array containing the IDS of all of the slave
tasks.
An int array containing the task IDS of the slave
tasks processing each section of data in the final
stage of RHSEG
An unsigned short array containing the region label
corresponding to the region for index j. This is
initialized to be rlabel_data[j] = j + 1;
An unsigned int array containing the region number
of pixels list stored as a vector. The j” element
of the vector is the number of pixels in region
j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square of
the normalized input data values over all pixels
in each region. (Actually contains values only if
spatial-wght > 0.0.) Element j + nregions*b is
the sum square value for region j + 1 and band b
(first band is band number 0).
A double array containing the region spatial feature
value list stored as a vector. (Actually contains
values only if spatial-wght > 0.0.) The j” element
of the vector is the spatial feature value for
region j + 1.
An unsigned char array of numbers designating whether
or not a pair of regions are spatially adjacent
(i.e., neighbors). The value of the mask at array
element j + max-nregions*k is TRUE if and only
if regions j + 1 and k + 1 are spatially adjacent.
A reg-list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about
each region.

The global variables regmerges-flag, nbands, scale,
offset, spclust-flag, spatial-wght, convfact, and max-
nregions are also used as inputs to phseg(). The arrays
groupt id , relabell ist , sort-store, and nbsort-store as
also passed to the phseg() functions for use as work space.
The purpose of the phseg() function is to perform multiple
iterations of region growing intermixed with spectral clus-
tering (if requested) until the number of regions becomes
less than or equal to cvnbregs (in this case, 2), and output
segmentation results when natural convergence points are
detected. See a later section for a functional description of
the phseg() function.

For runtype==2, and different process is followed. Here,
the current values of nregions, npix-data, sum-data, and
nghbr-mask are sent back to the calling slave task. If
spatial-wght>O.O, the current values of spatial-data and

US 6,895,115 B2
41 42

sumsqdata are also sent. In addition, if levebfnblevels, HIERARCHICAL SEGMENTATION ALGORITHM ON A
the current values of input-data, and rlblmap-data are also COMPUTER.”
sent. Further, if levebfnblevels and mask_flag==TRUE, Slave tasks running at level==fnblevels will also get
the current values for mask-data are sent and if levebfnb- called with mntype==7, A mntype==7 computes the contri-
levels and sPatial-wght>O.o, the current values for spatial- s bution to the global convergence criterion from the section
init are sent. The slave task does not exit, but instead waits of data processed by the task, The first mntype==7 call to
for additional processing requests. each task must provide a full update of the npix-data,

ing for mntype==l Or runtype==2. The processing Subsequent calls need only update these arrays with any data
i o that changed from the previous call, and also update the request for all slave tasks is of runtype==l or 2. All slave

tasks at recursion level<=fnb-levels receive additional pro-
cessing requests with other values for runtype. (Slave tasks rlblmap-data array in a manner to that under

the slave task scans through each data point in the section of request, but this is not done in the current version.)
slave tasks mnning at l<level<=fnblevels will get data processed by the task, accumulating into the cv-data

called with runtype==4, ~ ~ ~ t ~ ~ ~ = = 4 slave task determines 15 array the value of the global convergence criterion for the
the region label map data in the first and last columns and the Processed section of data. If this is the initial run of
first and last rows of the section of data processed by the task mntYPe==7, the cv-data array is computed for all regions
(first-col, last-col, first-row, and last-row) and sends this and sent back to the calling task. If this is a subsequent run
information back to the calling task. If level==fnb_levels, ofruntYPe==7, the cv-data array is computed only for those
first-col, last-col, first-row, and last-row are determined 20 regions that changed since the Previous mntYPe==7 call, and
directly from the rlblmapdata array, which is contained in only those elements of the cv-data array are sent back to the
memory at this level. If level<fnb_levels, first-col, last- calling task.
col, first-row, and last-row are determined from rlblmap- Slave tasks running at level==fnb-levels Will also get
4cols, and rlblmap-4rows obtained through a call to call- called with runtYPe==% 9 and 10. These tasks are very
recur4() with the following input variables and data arrays: 2s simple. For runtYPe==% the rlblmaP-Prev array is update to

equal the current value of the rlblmapdata array. For
mntype==9, the rlblmap-prev array is sent to the calling
task (always the master task), and for runtype ==lo, the
rlblmapdata array is sent to the calling task (always the

Functional description of the function callLrecur2(): The
function call-recud() first determines task specific param-
eters it will send to each slave branch task, namely:

This concludes the description Of the ’lave task process- s u m d a t a and if spatial-wght>O,O, the spatialpdata arrays,

at level>fnblevels could exit after the initial processing mntype==6. Once the data arrays are Or updated,

ncols An int variable containing the number of columns
in the current section of input image data
An int variable containing the number of rows in
the current section of input image data
An int variable containing the value of the current
level of recursion
An int variable containing the ID of the current
slave task.
An int array containing the IDS of the four slave
tasks that the current slave task will initiate
in the function callLrecur4().
An int variable containing the section number
of the first section to be processed by the current
slave task
An int variable containing the section number of
the last section to be processed by the current
slave task

mows

level

my-tid

branch-tid

30 master task)’

first-sec

last-sec

3s

runtype

first-sec

branch slave task run type
(equal to “2” in this case)
first section to be processed
by branch slave task

40 last-sec last section to be processed
by branch slave task

call inLtid current task ID
level current level of recursion + 1
ncols number of columns in section of

Other data arrays are passed into callLrecur4() for use as
work space. These are first-col, last-col, first-row, and 4 s
last-row. The following data arrays are output by call-
recur4():

data processed by branch slave
task (equal to ‘h of the number
of columns processed by the current
task)
number of rows in section of data
processed by branch slave task
(equal to 55 of the number of rows

mows

. .
processed by the current task) so

rlblmao 4cols An unsigned short arrav containing the first.
I - - -

The first and last sections to be processed by each branch
slave task are determined as illustrated by the following “C”

last and middle two columns of region label
map data for the current section of data.

rlblmap-bows An unsigned short array containing the first,
last andmiddle two rows of region label map extracts:

ss /* Initiate processing of first subsection (of 4) */
nb_secs=oldlast_sec-old-first-sec+ 1;
nb_secs=nb_secs/4;
first sec=old-first-sec;
last-sec=old-first-sec+nb-SeCS-l;

/* Initiate processing of second subsection (of 4) *I
f i r s t ~ s e c = o l d ~ f i r s t ~ s e c + n b ~ s e c s ~
1ast-sec=01d-first-sec+2*nb-secs-1~

/* Initiate processing of third subsection (of 4) */

data for the current section of data.

The functional description of call_recur4() is given in a
later section.

Slave tasks running at level==fnblevels will get called
with runtype==6. A mntype==6 updates the region label 60

receiving the update information from the calling task
(nelements and relabel-list) the region label map is updated
through a call to the function update_rlblmap(). A descrip-
tion of the calling of update-rlblmap() and a functional 65

document entitled, “IMPLEMENTING A RECURSIVE

map data for the section of data processed by this task. After . . .

description of this function is given in the section of this . . .

US 6,895,115 B2
43

f i rs t~sec=old~firs t~sec+2* nb-secs;
l as t~sec=old~f i r s t~sec+3*nb~secs- l ;
/* Initiate processing of fourth subsection (of 4) */
f i r s t~sec=old~f i r s t~sec+3*nb~secs ;
l as t~sec=old~f i r s t~sec+4*nb~secs- l ;

where “old-first-sec ” and “old-last-sec” are the current
(“old”) first section and last sections, respectively. After all
four branch slave tasks are initiated through the sending of
the task specific parameters to each branch slave task, the
slave task waits for the first branch slave task to complete.

Certain region parameters, arrays and vectors are pro-
duced by each of the slave tasks by combining the results
produced by the four branch slave tasks. They are as follows:

nregions

rlblmap-data

the number of regions in the section
of data processed.
an array of numbers specifying the
spatial distribution of the regions
(data type unsigned short).
the region number of pixels list stored
as a vector. The j” element of the
vector is the number of pixels in region
j + 1 (data type unsigned int).
a vector containing the sum of the
normalized input data values over all
pixels in each region. Element j + nregions*b
is the sum value for region j + 1 and band b
(first band is band number 0) (data type double).
an array of numbers designating whether or
not a pair of regions are spatially adjacent
&e., neighbors). The value of the mask at
array element j + max-nregions*k is TRUE if and
only if regions j + 1 and k + 1 are spatially adjacent
(data type unsigned char).
the region spatial feature value list stored
as a vector. The j” element of the vector is the spatial
feature value for region j + 1 (data type double).
a vector containing the sum of the square of
the normalized input data values over a1 pixels
in each region. Element j + nregions*b is the sum
square value for region j + 1 and band b
(first band is band number 0) (data type double).

npix-data

sum-data

nghbr-mask

spatial-data

sumsq-data

The slave task now waits for each branch slave task to
complete in turn (branch slave tasks t=O through t=3 in
numerical order.) When the tth branch slave task completes,
the s lave task receives the number of regions
(sub_nregions[t]) resulting from processing the tth branch
slave task‘s data sections with the RHSEG algorithm. If
sub-nregions[t]>O, the slave task receives the region
parameters npix-sub, sum-sub and nghbr-sub (and if
spatial-wghbO, also spatial-sub and sumsq-sub) for the
subsection of data processed. If sub_nregions[t]>O and
level>=fnblevels, the slave task also receives the input
data, input-sub (and also the input mask data, mask-sub,
if mask_flag==TRUE, and the input spatial feature data,
spatial-init-sub, if spatial_wght>O.O), and the region label
map result, rlblmap-sub for the subsection of data pro-
cessed.

The data output from each branch slave task must be
combined appropriately to form the input data for the calling
slave task‘s eventual running of the HSEG algorithm. If
level>=fnblevels, the calling slave task array rlblmap-
data is formed from the rlblmap-sub arrays by using the
array offsets sub_coff=O and sub_roff=O for t=O, subLCoff=
ncols and sub_roff=O for t=l , sub_coff=O and sub_roff=
nrows for t=2, and sub_coff=ncols and sub_roff=nrows for
t=3, where ncols and nrows are the number of columns and
rows, respectively, processed by each branch slave task. For
branch slave tasks t= l through t=3, the rlblmap-data values

44
are also offset by the value from the values in rlblmap-sub
by the value sum_nregions[t-11, where

This region label offset is applied to differentiate region j
from branch slave task t from region j in branch slave task
t’, where t d . If the branch slave task data outputs input-
sub, mask-sub and spatial-init-sub are received, these
data are placed with the same spatial offsets into the calling
slave task data arrays input-data, mask-data and spatial-
init, but with no offset in data value.

If level<=fnb_levels and branch slave task t>O, calls of
mntype=6 are made to the tasks at level=fnblevels, that are
under the calling slave task in the recursive tree, that causes
the rlblmapdata data values stored by those slave tasks to
be offset by the value sum_nregions[t-11. These calls of
mntype==6 are made through the function callLruntype6().

20 However, before these calls can be made, the values of
“old-first-sec”, “oldlast-sec” and “nb-secs” must be
adjusted to be based on fnb-levels rather than inb-levels.
This is done through the following “C” code extract:

2s

if (level <= fnb-levels)

/* Adjust old-first-sec, old-last-sec and nb-secs */
{

nb-secs = old-last-sec - old-first-sec + 1;
for (index = fnb-levels; index < inb-levels; index ++) 30

nb-secs /= 4;
old-first-sec /= 4;

{

I
oldlast-sec = olbfirst-sec + nb-secs - 1;
nb-secs /= 4;

I 3s

Then calls to callLruntype6() are made with the following
parameters:

40

first-sec

last-sec

task-sec

An int variable containing the section number
of the first section to be processed
An int variable containing the section number
of the last section to be processed
An int array containing the task IDS of the
slave tasks processing each section of data
in the final stage of RHSEG
An int variable containing the ID of the
current slave task.
An int array containing the IDS of all of
the slave tasks.
An int variable containing the number of
elements in the relabel-list array. Equal to
“1” in this case.
An unsigned short array containing one element
equal to the offset to be added to the

4s

my-tid

so slave-tid

nelements

relabel-list

5s rlblmap-data array.

In the above calls to callLruntype6(), first-sec and last-
sec must be specified differently for each value of t . For t=O,
a call to callLmntype6() is not required. For t=l , first-

6o sec=old_first_sec+nb_secs and last_sec=old_first_sec+
2*nb_secs-l. For t=2, f i r s t ~ s e c = o l d ~ f i r s t ~ s e c + 2 * n b ~
secs and las t~sec=old~f i r s t~sec+3*nb~secs- l . For t=3,
f i r s t ~ s e c = o l d ~ f i r s t ~ s e c + 3 * n b ~ s e c s and last-sec=old-
first_sec+4*nb-secs-l. The group-tid data array is passed

65 into call_mntype6() for use as work space. There are no
outputs from call mntype6(). The functional description of
callLruntype6() is given in a later section.

US 6,895,115 B2
45

For the first branch slave task (t=O), the data from
npix-sub, and sum-sub (along with spatial-sub and
sumsq-sub if spatialLwght>O) are simply placed in the
storage locations for npix-data and sum-data (and for
spatial-data and s u m s q d a t a if spatialLwght>O). For
branch slave task t= l through 3, the data from npix-sub,
and sum-sub (along with spatial-sub and sumsq-sub if
spatial_wght>O) are placed in the storage locations npix-
data[sum_nregions[t-1]] and sumdata[sum_nregions[t-
l]*nbands] (and at spatialdata[sum_nregions[t-1]] and
sumsq-data[sum-nregions[t- 11 * nbands] if spatial-
wght>O). Thus, for these output data from the branch slave
tasks the data is simply concatenated together to form the
input data for the calling slave task.

The calling slave task input data nghbr-mask is also
formed by concatenation of the branch slave task output data
nghbr-sub, but in a manner that takes into account the
region label data value offset that was applied.
The calling slave task’s initial number regions is

Functional description of the function callLrecur4(): The
recursive call of runtype=4 is initiated in a manner similar to
that used for runtype=l or runtype=2. The task specific
parameters for each branch slave task are the same, except
that runtype=4. After the recursive runtype=4 are made to
the four branch slave tasks, the slave task waits for each
branch slave task to complete in turn (branch slave tasks t=O
through t=3 in numerical order). When the tth branch slave
task completes, the slave task receives the region label data
from the first and last columns and rows of the branch slave
task. This data is loaded into arrays that, when the data from
all branch slave tasks is received, will contain the region
label data from the first, last and middle two columns and
rows of the region label data for the section of the image
covered by the slave task.

Functional description of the function call_runtype6():
The function callLruntype6() is constructed differently than
the functions callLrecur2() or callLrecur4(). While call-
recud() and call_recur4() initiate recursive calls to 4
branch slave tasks, callLruntype6() initiates a non-recursive
call directly to all slave tasks at level=fnb_levels under the
current task in the recursive tree used by call_recur2() and
call_recur4(). Included in the inputs to call_runtype6() are
the task-sec array, which contains the correspondence
between sections and tasks, and slave-tid array, which
contains the correspondence between tasks and process task
IDS. Using information from these two arrays, calls of
runtype==6 are made to the slave tasks that hold the data
corresponding to the appropriate sections. The g r o u p t i d
array is constructed to contain the process task IDS of these
slave tasks, and the nelements parameter and the relabell ist
array is broadcast to each of these slave tasks. Finally,
callLruntype6() returns to the calling function after waiting
for each task to report back that it has finished the task of
updating the rlblmap-data array for its section of data.

Functional description of the function phseg(): Finally,
we now describe the phseg() subroutine that implements the
HSEG algorithm for the case when the global convergence
criterion values IS calculated. The phseg() subroutine is
identical to the lhseg() function except for the added code
we discuss below (for a description of the lhseg() function
see the section of this document entitled, “IMPLEMENT-
ING A RECURSIVE HIERARCHICAL SEGMENTATION

46
ALGORITHM ON A COMPUTER.”) Also, phseg() termi-
nates when the number of region (nregions) is less than or
equal to cvnbregs (normally equal to 2). Note also that
phseg() is not called until the number of regions is less than

In Section I, part B the basic HSEG algorithm was
described. In step 7, it was noted that at certain iterations, the
region information from the previous iteration must be
saved. Accordingly, phseg() allocates and initializes and

i o updates data arrays to store this information. The data array
rlblmap-prev is initialized and updated through runtype=8
calls to the tasks at level=fnblevels, as that is where the
rlblmapdata array is maintained. Also, prevcritval is ini-
tialized to 0.0, and the current value of the global criterion

is value, critval, is calculated through a runtype=7 call to the
tasks at level=fnb_levels. This initial global criterion value
is sent to the master program. (The runtype==7 and
runtype==8 calls are performed through functions calls to
the functions callPruntype7() and call-runtypeS(),

20 respect ively, in a s imilar manner as done for
call_runtype6().)

In lhseg() the rlblmapdata is not updated. However, in
phseg() the rlblmap-data is updated after each group of
region growing and spectral clustering merges (steps 2

zs through 5 of the basic HSEG algorithm description in
Section I, part B). In addition, the region number of pixels
and region sum vectors are updated. If spatialLwght>O.O,
the region sum square vectors and region spatial feature
values are updated. This is all accomplished through a

30 runtype=7 call to the tasks at level=fnb_levels. Returned
from this call are the changes in the global criterion value for
each changed region. This information is used to update the
global criterion value, critval.

The value of cvratio=critval/prevcritval is now calculated.
3s If cvratio>convfact, then the region information for the

previous iteration (prior to the current group of region
growing and spectral clustering merges) is sent to the master
program. This information includes the number of regions,
the region number of pixels list, the region mean vector list

40 and the region criterion value list. (Upon receipt of this
information, the master program requests the previous itera-
tion region label map, rlblmap-prev, directly from the slave
tasks at level=fnblevels.)

At this point, phseg() finds the value of minbcomp in the
4s same manner as lhseg() and initiates another iteration of

region growing and spectral clustering.
After the number of regions reaches cvnbregs, after a set

of spectral clustering merges, phseg() sends the region
information for the current iteration to the master program.

SO This information includes the number of regions, the region
number of pixels list, the region mean vector list and the
region criterion value list. Upon receipt of this information,
the master program requests the current iteration region
label map, rlblmap-data, directly from the slave tasks at

Part (i) of the RHSEG program is written in the “C”
programming language, compiled under the gcc version
2.8.1 compiler(since upgraded to version 2.95.2), under the
Solaris 7 operating system (since upgraded to Solaris 8) on

60 a SUN Workstation. However, this software should both
compile and run using other “C” compilers under other
UNIX-type operating systems, possibly with minor modifi-
cations.

Parts (ii) and (iii) of the RHSEG program are written in
65 the “C” programming language, with additional function

calls to routines available from the “PVM” software pack-
age. On the HIVE the program is compiled under the gcc

s or equal to chkregions.

ss level=fnblevels.

US 6,895,115 B2
47

version egcs-2.91.66 compiler, with PVM version 3.4.2,
under RedHat LINUX operating system version 6.1 (since
upgrade to version 6.2). On the Cray T3E the program is
compiled under Cray Standard C Version 6.2.0.0, with PVM
version 3.3.10 (Cray PVM for UNICOS Version 3.2.0.0),
under the UNICOS version 10 operating system. However,
this software should both compile and run using other “C”
compilers under other UNIX-type operating systems, pos-
sibly with minor modifications. The most efficient running
of parts (ii) and (iii) of the RHSEG program requires an
appropriate number of processors depending on the size of
the image being processed.

Although a few preferred embodiments of the present
invention have been shown and described, it would be
appreciated by those skilled in the art that changes may be
made in these embodiments without departing from the
principles and spirit of the invention, the scope of which is
defined in the claims and their equivalents.

Implementing a Recursive Hierarchical
Segmentation Algorityhm on a Computer

This section is provided to help enable a reader to
implement a recursive algorithm on a computer. The
description below does not discuss the parallel
implementation, and is one example of a typical serial
implementation of a recursive hierarchical segmentation
algorithm.

The high-level description of the HSEG and RHSEG was
provided earlier. The following full-description of the
sequential version of the algorithm should be sufficient for
duplication of the algorithm by individuals with adequate
background in image processing and “C” language program-
ming.

Both HSEG and RHSEG require the specification of the
name of an input parameter file as a UNIX command line
argument (fully qualified with path, if not in the local
directory). This input parameter file must specify of a
number of file names and several parameters. A user’s
guide-like description of these file names and parameters is
given below. The detailed description of a parameter is
omitted wherever it is identical to that given previously for
the parallel implementation.

input

mask

r l b l m a p i n

rlblmap

rnpixlist

regmerges

rmeanlist

rcvlist

oparam

log_file

ncols

mows

nbands

(required
input file)
(optional
input file)
(optional
input file)
(required
output file)
(required
output file)
(optional
output file)
(optional
output file)
(optional
output file)
(required
output file)
(required
output file)
(required integer)

(required integer)

(required integer)

Input image data file

Input data mask (default =

Input region label map
(default = {none})
Output region label map data

Output region number of
pixels list
Output region merges list
(default = {none})
Output region mean list
(default = {none})
Output region criterion
value list (default = {none})
Output parameter file

Output log file

Number of columns in input
image data
Number of rows in input image
data
Number of spectral bands in

{none})

S

10

1s

20

2 s

30

3 s

40

4s

so

5s

60

65

48

-continued

dtype (required integer)

normind (optional list
selection)
1 “No Normalization”.
2 “Normalize
3 “Normalize
Bands Separately”

maxmdir (optional integer)

simcrit (optional list
selection)
1 “1-Norm”,
2 “2-Norm”,
3 “Infinity Norm”,

extmean (optional Boolean)

spclust (optional Boolean)

spatial-wght (optional float)

spatial-type (optional list
selection)
1 “Variance”,
2 “Standard
Deviation”

rnb-levels (optional integer)

minregions (optional integer)

chkregions (optional integer)

convfact (optional float)

tmpdir (optional string)

tempfile (optional string)

input image data
Data type of input image data
dtype = 4 designates “unsigned
char”
dtype = 16 designates “unsigned
short”

[default: 2 “Normalize Across
Bands”]
Value equals number of nearest
neighbors (Permissible values:
4, 8, 12 or 20; default = 8)
Dissimilarity criterion

[default: 1 “1-Norm”]
Flag for extracting mean
(default = TRUE)
Spectral clustering flag
(default = TRUE)
Weight for spatial feature
(spatial-wght >= 0.0,
default = 0.0)
Spatial feature type

[default: 2 “Standard Deviation”]

Total number of recursive levels
(only for RHSEG)
(1 <= rnb-levels <= 9,
default = 4)
Number of regions for
convergence in recursive
stages (only for RHSEG)
(2 <= minregions <= 4096,
default = 384)
Number of regions at which
convergence factor checking is
initiated
(2 <= chkregions <= 4096,
default = 512)
Convergence factor
(1 <= convfact <= 100,
default = 1.01)
Path name to directory in which
temporary files are to be stored
(default = $TMPDIR)
Prefix for temporary file names
(default = HSEG###### for
HSEG and RHSEG###### for
RHSEG, where the # are random
characters)

Previous disclosures also did not reveal the variations on
the dissimilarity criterion discussed above under the
extmean, spatial-type and spatial-wght optional param-
eters. These dissimilarity criterion variations facilitate a
more effective separation of regions of interest in certain
Earth science applications.

An optional graphical user interface (GUI) program,
implemented under the Khoros Pro 2000 Software Devel-
oper’s Kit is available. This GUI program runs on any
workstation running Unix or many of its variants. It creates
the parameter file and the headerless binary input data files
required by the HSEG and RHSEG programs. This GUI
program is totally optional, as the parameter file and the
headerless binary input data files required by HSEG and
RHSEG can be created manually. The optional user interface
and data reformatting program outputs the results in the
form of Khoros data objects. These Khoros data objects can

US 6,895,115 B2
49

be input to separate programs for further analysis. This
optional GUI program is not a part of this “Disclosure of
Invention and New Technology.”
Functional operation

The HSEG and RHSEG programs were implemented in
“C” under the gcc version 2.8.1 compiler. They were devel-
oped under the Solaris 7 operating system on a SUN
Workstation, but they should both compile and run with
other “C” compilers and under other UNIX-type operating
systems, possibly with minor modification.

In the this section, the HSEG and RHSEG programs main
programs are described, followed by description of func-
tions called by the HSEG and RHSEG main programs.
RHSEG calls all the functions called by HSEG, but not vice
versa.

Functional Description of the HSEG Main Program: The
HSEG main program initially determines the name of the
parameter file from the command line input, and reads in the
parameters from the file using the function read_param().
If a prefix for the temporary filenames in not provided in the
parameter file, the program generates a character string to
used at a prefix for file names for temporary files required by
the program. The “C” library function tempnam() is used for
this purpose. For the discussion below, this prefix is assumed
to be “HSEG0000 .”

At this point the HSEG main program opens the log file
and outputs to it the program parameters using the function
print_param(). The following parameters are declared as
external variables, and can be utilized in the main program
and any “C” functions called subsequently.

inputf

maskf

rlblmap-inf

rlblmapf

rnpixlistf

regmergesf

rmeanlistf

rcvlis tf

oparamf

l o L f i l e

tmpdir

tempfile

mask-flag

rlblmapin-flag

A char array containing the name of the input
image data file
A char array containing the name of the mask
data file, if it exists. If no mask data file
exists, maskf has the value “NULL.”
A char array containing the name of the input
region label map data file, if it exists. If no
mask data file exists, rlblmap-inf has the value
“NULL.”
A char array containing the name of the output
region label map data file.
A char array containing the name of the output
region number of pixels list data file.
A char array containing the name of the output
region merges list data file, if requested. If
the output region merges list data file is not
requested, regmergesf has the value “NULL.”
A char array containing the name of the output
region mean list data file, if requested. If
the output region mean list data file is not
requested, rmeanlistf has the value “NULL.”
A char array containing the name of the output
region criterion value list data file, if
requested. If the output region criterion value
list data file is not requested, rcvlistf has
the value “NULL.”
A char array containing the name of the output
parameter file.
A char array containing the name of the output
log file.
A char array containing the path name to the
directory where temporary files are to be
stored.
A char array containing the prefix for temporary
file names.
An int variable which has value TRUE if mask
data exist (FALSE otherwise).
An int variable which has value TRUE if input
region label map data is given (FALSE
otherwise).

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

50

-continued

regmerges-flag

rmeanlist-flag

rcvlist-flag

spclust-flag

nbands

dtype

maxmdir

normind

simcrit

extmean

spatial-type

chkregions

max-nregions

spatial-wght

convfact

scale

offset

An int variable which has value TRUE if the
output region merges list is requested (FALSE
otherwise).
An int variable which has value TRUE if the
output region mean list is requested (FALSE
otherwise).
An int variable which has value TRUE if the
output region criterion value list is
requested (FALSE otherwise).
An int variable that is TRUE if spectral
clustering is to be performed (FALSE
otherwise).
An int variable containing the number of
spectral bands in the input image data.
An int variable containing an indicator of
the data type of the input image data. (dtype ==

4 designates unsigned char and dtype == 16
designates unsigned short).
An int variable containing the number of
nearest neighbors considered.
An int variable containing an indicator of
the type of normalization requested.
(normind == 1 designates “No Normalization,”
normind == 2 designates “Normalization Across
Bands,” and normind == 3 designates “Normalize
Bands Separately”).
An int variable indicating the dissimilarity
criterion to be used.
An int variable that is TRUE if the vector
mean is subtracted from the spectral vectors
before the dissimilarity criterion is
calculated, FALSE otherwise.
An int variable indicating the spatial
feature type employed (1 => “Variance”,
and 2 => “Standard Deviation”).
An int variable containing the number of
regions at which convergence factor checking
is initiated.
An int variable containing the maximum
number of regions that will be encountered
in processing the data.
A float variable which contains the value
of the weight for the spatial feature
(a value of 0.0 indicates the spatial feature
is not employed).
A float variable containing the value of
the convergence factor for detecting natural
convergence points.
A float array containing the multispectral
scale facto+) for normalization.
A float array containing multispectral
offset facto+) for normalization.

The HSEG main program now allocates memory for the
inputda ta array and, if necessary, for the mask-data and
rlblmap-data arrays. These data arrays are declared and
allocated as follows:

Data Array Data Type Size To Contain:

input-data unsigned ncols*nrows*nbands Input image data

mask-data unsigned ncols*nrows Input mask data (if

rlblmap-data unsigned ncols*nrows Input region label

short

char any)

short map data (if any) and
output region label
map data

The HSEG main program then calls the readdata()
function with the following input variables:

US 6,895,115 B2
51 52

-continued

proc-nsecs An int variable containing the number of sections in
which the input data is to be processed in memory.
Since HSEG will always be used with relatively small
data sets, this variable is set to “1”.
An int variable containing the number of columns in
the input image data.
An int variable containing the number of rows in
the input image data.
An int variable containing the number of columns in
the padded input image data. Since padding is not
required for HSEG, pad-ncols = ncols.
An int variable containing the number of rows in
the padded input image data. Since padding is not
required for HSEG, pad-mows = nrows.

mows An int variable containing the number of rows in the
input image data.

5

ncols

mows

pad-ncols

pad-mows

The global variables mask-flag, nbands and normind are
also used as inputs by find_stats(). The following arrays are
output by find_stats():

10

sum-stat A double array containing the sum of the
(possibly masked) input image data in each
band.
A double array containing the sum of square
of the (possibly masked) input image data in
each band.
A double array containing the minimum value
of the (possibly masked) input image data in
each band.

1s sumsq-stat

min-stat
The global variables inputf, mask-flag, rlblmap-in-flag,
nbands, dtype and spatial-wght are also used as inputs by
read-data(). The following arrays are output by
read-data():

20
The number of input pixels, npixels, is returned as the value
of the function find_stats(). If image normalization is not
requested, and no mask data is provided, the find_stats()
function simply calculates the image number of pixels as

2s ncols*nrows and returns. If image normalization is not
requested, and mask data is provided, the find_stats()
function finds the image number of pixels by counting the
number of non-zero entries in mask-data and returns. If
image normalization is requested, the function find_stats()
scans through the input image data, taking the image mask-
ing in account if provided, and finds the sum, sum of squares
and minimum data values for each band, along with the
image number of pixels, and then returns.

The HSEG main Program now allocates memory for the
scale and offset arrays as follows:

input-data

mask-data

rlblmapdata

An unsigned short array containing the input image
data
An unsigned char array containing the mask data
(if any)
An unsigned short array containing the input
region label map data (if any).
A float array containing the input spatial feature
data (local image variance or standard deviation -
if any). Since no spatial feature data has been
generated at this point in the program, this is

spatial-init

30 .
just a NULL array here.

The purpose of the readdata() function is to read the input
data into the allocated data arrays.

The HSEG main program next computes image statistics.
If image normalization is requested, the image sum, sum of
squares and minimum values in each band are computed, Data Array Data Type S i ~ e
along with the number of image pixels. If image normal-

3s

To Contain:

ization is not requested, only the number of image pixels is 4o scale
found. If image normalization is requested, the sum-stat,
sumsq-stat and min-stat arrays are declared and allocated offset float nbands Offset values for the input
as follows:

float nbands Scale factors for the
input image data in each
band

image data in each band

45 If image normalization is not requested each element of
Data Array Data Type Size To Contain: the scale array is set to “1” and each element of the offset

array is set to “0. ” If image normalization is requested, the
sum-stat double nbands Sum of the input image data in each find_scale_offset() function is called with the following
sumsq-stat double nbands Sum of the squares of input image parameter and array variables:

so
band

data in each band

in each band
min-stat double nbands The minimum input image data value

npixels An int variable containing the number of
pixels in the input image data (after masking,
if provided).
A double array containing the sum of the
(possibly masked) input image data in each
band.
A double array containing the sum of the
squares of the (possibly masked) input image
data in each band.

of the (possibly masked) input image data in
each band.

If required, the sum-stat and sumsq-stat arrays are initial-
ized to “O”, and the min-stat array is initialized to “MAX- ss sum-stat

Then the find_stats() function is called with the following
parameters and array variables:

FLOAT” (the maximum floating point value on the system).
sumsq_stat

60 min-stat A double array containing the minimum value

input-data

mask-data

ncols

An unsigned short array containing the input image
data
An unsigned char array containing the mask data (if

An mt variable containing the number of columns in

The global parameters nbands and normind are also used as

function first computes the image variance, var-stat (a’),

any)
6s inputs to find-scale-offset(1. The find-scale-offset(

the input image data.
for each image band through the formula:

US 6,895,115 B2

(12) -continued

last-flg An int variable that is TRUE if this is the
last section of data processed, and FALSE
otherwise. TRUE in this case.
An int variable containing the number of columns
in the input image data.
An int variable containing the number of rows
processed in this section of the input image
data. Equal to mows in this case.
An int variable containing the size of data
element offset between bands of input image data.
Equal to ncols*nrows in this case.

5
where ss is sum of the squares of the data (sumsq-stat), s
is the sum of the data (sum-stat) and N is the number of

If normind==2 (“Normalize Across Bands”) is chosen, the
minimum of the band minimum value (min-stat) is set as 10 num-points
the minimum for each band, and the maximum of the band

ncols

maxrow pixels in the data (npixels).

variance value (var-stat) is set as the variance value for
each band. Then the values for the scale and offset arrays are
calculated such that the normalized image data will have The global parameters mask-flag, nbands, scale, and offset
unitary variance and minimum value of “2. ” (Minimum 1s are also used as inputs to comPute-sPatial(1. (The
value of “2” is used rather than “0” because certain dissimi- compute_spatial() function is designed to process the data

in sections as required for large input data sets. Since
larity criterion require the computation of logarithms, which practical processing times for HSEG and can only be
encounter computational difficulties for arguments near the obtained with small and moderately sized data sets, we
value “l”.) This is done for each band through the equations: assume the entire data is processed in one section in this

20 case.) The following data array is output by compute-
scale[band]=((float) (l.O/sqrt(var-stat[bandD)); (13a) spatial():

offset[band]=((float) (2.0-(min-stat[band]/sqrt
(var-stat[bandD))); (13b)

spatial-init A float array containing the maximum over
spectral bands of the spatial feature
calculated over a 3 x 3 window

(The normalized input image data is not calculated at this 25
time.) The main outputs of the find_scale_offset() function
are the scale and offset global array parameters, which are
the factors required to normalize the input data as designated
by the normind global parameter.

Note that when mask-data is provided, the value of
spatialinit is set equal to MAXFLOAT (the maximum

Next, the input variable spatial-wght is multiplied by 30 floating Point value) whenever A N Y data Point in the 3x3
window is masked Out. is set to
MAXFLOAT for the first and last data rows and columns. so that the spatial feature will have the Same weight-

ing and the spectral features when the initial input value of

array and the following temporary arrays are allocated:

If spatial~wght>O,O, the minimum Over 3x3 pixel
spatial-wght is l.o. If spatial-wght>O.O, the of maximum Over spectral bands of the local spatial feature

values over 3x3 pixel areas is found by calling the function
35 find_min() with the following input arrays and parameters:

spatial-init float ncols*nrows Spatial feature
data (local image
variance or standard
deviation, if any)

short buffer 3 lines of
input-sub unsigned 3*ncols*nbands Temporary array to

input data
mask-sub unsigned 3*ncols Temporary array to

char buffer 3 lines of
mask data

spatial-init-sub float 3*ncols Temporary array to
buffer 3 lines of
spatial feature data

Data Array DataType Size To Contain:
A float array containing the maximum over
spectral bands of the spatial feature
calculated over a 3 x 3 window.
An float array to buffer 3 lines of spatial
feature data.
An int variable that is TRUE if this is
the first section of data processed, and
FALSE otherwise. TRUE in this case.
An int variable that is TRUE if this is
the last section of data processed, and
FALSE otherwise. TRUE in this case.
An int variable containing the number of
columns in the input image data.
An int variable containing the number of
rows processed in this section of the input

_sub

spatial-init

40

spatial-init-

init-flg

45 last-flg

ncols

maxrow
so

image data. Equal to mows in this case.
If spatial-wght>O.O, the maximum over spectral bands of

the local spatial feature values over 3x3 pixel areas is now
calculated by calling the function compute-spatial() with
the following input arrays and parameters:

(The find-min(function is designed to Process the data in
sections as required for large input data sets. Since practical

5s processing times for HSEG and can only be obtained with
small and moderatelv sized data sets. we assume the entire
data is processed in one section in this case.) The following
data array is output by find_min(): input-data An unsigned short array containing the input

image data.
An unsigned short array to buffer 3 lines of
input image data.
An unsigned char array containing the mask
data (if any).
An unsigned char array to buffer 3 lines of mask
data (if any).
An int variable that is TRUE if this is the

input-sub

mask-data

mask-sub

init-flg

60

spatial-init A float array containing the minimum over a 3 x 3
window of the maximum over spectral bands of the
spatial feature calculated over a 3 x 3 window.

first section of data processed, and FALSE
otherwise. TRUE in this case.

65 The maximum number of regions, max-nregions, that
will be encountered in processing any subsection of data is
now computed as equal to ncols*nrows.

US 6,895,115 B2
55

The HSEG main program continues by allocating various
additional data arrays as listed below:

56
The members of the reg-struct (REGION) structure are:

c

Data Array Data Type Size To Contain:

rlabel-data

npix-data

sum-data

sumsq-data

unsigned max-nregions Region label
short values
unsigned max-nregions Region number
int of pixels
double max_nregions*nbands Region sum of

normalized input
data values in
each spectral
band

double max_nregions*nbands Region sum of the

spatial-data double max-nregions

nghbr-mask

nghbr-tmp

relabel-list

region-store

region-list

sort-store

nbsort-store

unsigned max-nregions’
char
unsigned max-nregions
char
unsigned 2*max_nregions
short

reg-struct max-nregions

reg-list max-nregions + 1

reg-list max-nregions

reg-list max-nregions

square of the
normalized input
data values in
each band (if
spatial-wght >

Region spatial
feature
value (if
spatial-wght >

Region adjacency
mask
Temporary region
adjacency mask
Region label
relabelings
(renumberings)
Structure con-
taining
information about
each region
Structure for
linking
region-store
structures together
Structure for
ordered linking of
region-store
structures
Structure for
ordered
linking of
region-store
structures

0.0)

0.0)

10

1s

20

2 s

30

3s

40

4s

The reg-struct (REGION) and r e g l i s t (R-LIST) struc-
tures listed above have the following declarations: so

typedef struct REGION

unsigned short
struct REGION
float
struct REGION
float
struct REGION

} reLstruct;
typedef struct R-LIST

{

struct REGION
struct R-LIST
unsigned char

{

} reg_list;

label region label
bnghbr

bncomp

bregion

brcomp

mgreg

pointer to structure containing information
for the most similar neighboring region
dissimilarity value between the region and
the most similar neighboring region
pointer to structure containing information
for the most similar non-neighboring region
dissimilarity value between the region and
the most similar non-neighboring region
if the region was merged into another region,
this is a pointer to the structure containing
information for the region this region was merge with

The members of the r e g l i s t (R-LIST) structure are:

link

next

active-flag

pointer to REGION structure containing
information for a particular region
pointer to R-LIST structure for next region
in the list
TRUE only if the R-LIST element is valid.

Upon declaration, the link members of the region-list
structure variable are initialized to point one after the other
to the elements of the region-store structure (i.e., region-
listh].link=®ion-storeh]), and the next members of the
regionl is t structure variable are initialized to point to the
next member of the regionl is t structure (i.e., region-list
h].next=®ion-listh+l]). The elements region-list
[max-nregions].link and region~list[max~nregions].next
are set to “NULL” initially. All of the active-flag members
of regionl is t are set initially to “FALSE.”

The function regiondatapinit() is now called with the
following input variable and array data:

input-data

mask-data

rlblmap-data

An unsigned short array containing the
input image data
An unsigned char array containing the
mask data (if any)
An unsigned short array containing the
input region label map data (if any).
(Will be overwritten by the output region
label map data.)
A float array containing the input spatial
feature data (local image variance or
standard deviation - if any)
An int variable containing the number of
columns in the input image data
An int variable containing the number of
rows in the input image data

spatial-init

ncols

mows

label;
*bnghbr;
bncomp;

*bregion;
brcomp;

*mgreg;

The global variables mask-flag, rlblmapin-flag, nbands,
max-nregions, scale, offset, maxmdir, spatial-wght and
spatialtype are also used as inputs by region-datainit().
The following variables and arrays are output by region-
datapinit():

*link,
*next;
active flag;

65

nregions

rlblmap-data

An int variable containing the initial number
of regions in the section of data processed.
An unsigned short array containing the initial
output region label map. This region label map
specifies the initial spatial distribution of
the regions.

US 6,895,115 B2
57

-continued

58

-continued

npix-data

s u m d a t a

sumsq-data

spatial-data

nghbr-mask

region-list

An unsigned int array containing the region
number of pixels list stored as a vector. The
j” element of the vector is the number of
pixels in region j + 1.
A double array containing the sum of the
normalized input data values over all pixels
in each region. Element j + nregions*b is the
sum value for region j + 1 and band b (first band
is band number 0).
A double array containing the sum of the square
of the normalized input data values over all
pixels in each region. (Actually contains values
only if spatial-wght > 0.0.) Element j + nregions*b
is the sum square value for region j + 1 and band b
(first band is band number 0).
A double array containing the region spatial
feature value list stored as a vector.
(Actually contains values only if spatial-wght > 0.0.)
The j” element of the vector is the spatial feature
value for region j + 1.
An unsigned char array of numbers designating
whether or not a pair of regions are spatially
adjacent (i.e., neighbors). The value of the mask
at array element j + max_nregions*k is TRUE if and
only if regions j + 1 and k + 1 are spatially
adjacent.
A reg_list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about
each region.

The array r labeldata is also passed to the function region-
datapinit() for use as work space. See a later section for a
functional description of the region_data_init() function.
The purpose of the region_data_init() function is to
initialize the variables and arrays output by the region-
datapinit() function based on the input variable and array
data.

After the call to regiondatapinit() is completed, the
following parameters are set: init_flg=TRUE, onregions=
nregions (as output from region-datapinit()) and
cvnbregs=chkregions (note that chkregions is a user set
parameter). If nregions<=chkregions, the calls below to the
functions lhseg() and read_region_list() are skipped and,
if nregions>2, the program proceeds to call the function
lhseg() (see below). Otherwise, call the function lhseg()
with the following input variable and array data:

init-flag

onregions

cvnbregs

npix-data

s u m d a t a

sumsq-data

An int variable which indicates whether or not
the region-list has just been initialized (in
this case init-flag = TRUE).
An int variable containing the number of regions
existing when lhseg() is initially called.
An int variable indicating the number of regions
at which that this call to lhseg() will converge
(exit).
An unsigned int array containing the region number
of pixels list stored as a vector. The jth element
of the vector is the number of pixels in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square
of the normalized input data values over all
pixels in each region. (Actually contains values
only if spatial-wght > 0.0.) Element j + nregions*b
is the sum square value for region j + 1 and band b
(first band is band number 0).

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

spatial-data A double array containing the region spatial
feature value list stored as a vector. (Actually
contains values only if spatial-wght > 0.0.) The
j” element of the vector is the spatial feature
value for region j + 1.
An unsigned char array of numbers designating
whether or not a pair of regions are spatially
adjacent &e., neighbors). The value of the mask
at array element j + max_nregions*k is TRUE if
and only if regions j + 1 and k + 1 are spatially
adjacent.
A reg-list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about
each region.

nghbr-mask

region-list

The global variables nbands, max-nregions, simcrit,
extmean, spclust, spatial-wght, and spatialtype are also
used as inputs to lhseg(). The following variables and arrays
are modified and output by lhseg():

nregions

npix-data

sum-data

sumsq-data

spatial-data

nghbr-mask

region-list

An int variable containing the number of regions
in the section of data processed.
An unsigned int array containing the region
number of pixels list stored as a vector. The
j” element of the vector is the number of pixels
in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square
of the normalized input data values over all
pixels in each region. (Actually contains values
only if spatial-wght > 0.0.) Element j + nregions*b
is the sum square value for region j + 1 and band b
(first band is band number 0).
A double array containing the region spatial
feature value list stored as a vector. (Actually
contains values only if spatial-wght > 0.0.) The
j” element of the vector is the spatial feature
value for region j + 1.
An unsigned char array of numbers designating
whether or not a pair of regions are spatially
adjacent (i.e., neighbors). The value of the mask
at array element j + max_nregions*k is TRUE if
and only if regions j + 1 and k + 1 are spatially
adjacent.
A reg-list (R-LIST) structure array pointing to
a sequence of reg-struct (REGION) structure
elements containing label and comparative
information about each region.

The arrays sort-store, and nbsort-store are also passed to
the lhseg() function to use as work space. See a later section
for a functional description of the lhseg() function. The
purpose of the lhseg() function is to perform multiple
iterations of region growing intermixed with spectral clus-
tering (if requested) until the number of regions becomes
less than or equal to cvnbregs (in this case, chkregions).

After the lhseg() function exits, the parameter init-flg is
set to FALSE, and the function read_regionlist() is called
with the following input variable and array data:

nregions

npix-data

An int variable containing the number of regions
in the section of data processed.
An unsigned int array containing the region number
of pixels list stored as a vector. The j” element
of the vector is the number of pixels in region j + 1

US 6,895,115 B2
59

-continued

s u m d a t a A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square
of the normalized input data values over all
pixels in each region. (Actually contains values
only if spatial-wght > 0.0.) Element j + nregions*b
is the sum square value for region j + 1 and band b
(first band is band number 0).
A double array containing the region spatial
feature value list stored as a vector. (Actually
contains values only if spatial-wght > 0.0.) The
j” element of the vector is the spatial feature
value for region j + 1.
An unsigned char array of numbers designating
whether or not a pair of regions are spatially
adjacent (i.e., neighbors). The value of the mask
at array element j + max_nregions*k is TRUE if
and only if regions j + 1 and k + 1 are spatially
adjacent.
A r e L l i s t (R-LIST) structure array pointing to
a sequence of reg-struct (REGION) structure elements
containing label and comparative information about
each region.

sumsq-data

spatial-data

nghbr-mask

region-list

The global variables nbands, max-regions and spatial-
wght are also used as input by read_region_list(). The
following variables and arrays are modified and/or output by
read_region_list():

npix-data

s u m d a t a

sumsq-data

spatial-data

nghbr-mask

region-list

relabel-list

An unsigned int array containing the region number
of pixels list stored as a vector. The jth element
of the vector is the number of pixels in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square
of the normalized input data values over all
pixels in each region. (Actually contains values
only if spatial-wght > 0.0.) Element j + nregions*b
is the sum square value for region j + 1 and band b
(first band is band number 0).
A double array containing the region spatial feature
value list stored as a vector. (Actually contains
values only if spatial-wght > 0.0.) The j” element
of the vector is the spatial feature value for
region j + 1.
An unsigned char array of numbers designating
whether or not a pair of regions are spatially
adjacent (i.e., neighbors). The value of the mask
at array element j + max_nregions*k is TRUE if
and only if regions j + 1 and k + 1 are spatially
adjacent.
A reg_list (R-LIST) structure array pointing to
a sequence of reg-struct (REGION) structure
elements containing label and comparative
information about each region.
An unsigned short array consisting of pairs of
region labelings representing a renumbering of
the region map labeling.

The array nghbr-tmp is also passed to the read-region-
list() function for use as work space. The read-region-
list() function finds a renumbering (relabel-list) of the
current region map labeling into the smallest possible range
of labels starting at label “1, ” and adjusts the various data
arrays and structures accordingly (npix-data, sum-data,
nghbr-mask, regionlist , and, if necessary, sumsqdata
and spatial-data).

After the read_regionlist() function exits, the variable
nelements is found as the number of non-zero elements in

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

60
the relabel-list array output by read_regionlist(), and the
function update_rlblmap() is called with the following
input variable and array data:

ncols

mows

nelements

relabel-list

An int variable containing the number of columns
in the input image data
An int variable containing the number of rows
in the input image data
An int variable containing the number of non-zero
elements in the relabel-list array
An unsigned short array consisting of pairs of
region labelings representing a renumbering of
the region map labeling.
An unsigned short array containing the region
label map data as it existed prior to the call
to lhseg().

rlblmap-data

The following data array is modified by update_rlblmap():

rlblmap-data An unsigned short array containing the region
label map data renumbered according to
relabel-list.

The update_rlblmap() function renumbers the rlblmap-
data array according to the input relabel-list array. This
updates the rlblmap-data to reflect the merges performed by
the call to lhseg() and the compacting of the region labeling
representation performed by the function read-region-
list().

After update_rlblmap() exits, the variable cvnbregs is set
equal to 2. Then if cvnbregsmregions, the function fhseg()
is called with the following input variable and array data:

init-flag

input-data

mask-data

rlblmap-data

spatial-init

ncols

mows

onregions

cvnbregs

npix-data

sum-data

sumsq-data

An int variable which is TRUE if the region-list
has just been initialized and FALSE otherwise.
An unsigned short array containing the input
image data
An unsigned char array containing the mask data
(if any)
An unsigned short array containing the region
label map. This region label map specifies the
initial spatial distribution of the regions.
A float array containing the input spatial
feature data (local image variance or standard
deviation - if any)
An int variable containing the number of columns
in the input image data
An int variable containing the number of rows in
the input image data
An int variable containing the number of regions
existing when lhseg() is initially called.
An int variable indicating the number of regions
at which that this call to fhseg() will converge
(exit).
An unsigned int array containing the region number
of pixels list stored as a vector. The j” element
of the vector is the number of pixels in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square
of the normalized input data values over all
pixels in each region. (Actually contains values
only if spatial-wght > 0.0.) Element j + nregions*b
is the sum square value for region j + 1 and band b
(first band is band number 0).

US 6,895,115 B2
61

-continued

spatial-data A double array containing the region spatial
feature value list stored as a vector. (Actually
contains values only if spatial-wght > 0.0.) The
j” element of the vector is the spatial feature
value for region j + 1.
An unsigned char array of numbers designating
whether or not a pair of regions are spatially
adjacent (i.e., neighbors). The value of the mask
at array element j + max_nregions*k is TRUE if
and only if regions j + 1 and k + 1 are spatially
adjacent.
A reg_list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about
each region.

nghbr-mask

region-list

The global variables mask-flag, regmerges-flag, nbands,
scale, offset, simcrit, extmean, spclust, spatial-wght,
spatial-type, convfact, max-regions, tmpdir and tempfile
are also used as inputs to fhseg(). The following variable is
returned by fhseg():

nslevels An int variable containing the number of hierarchical
segmentation levels found by the fhseg() function.

The arrays rlabel-data, sort-store, and nbsort-store as also
passed to the fhseg() functions for use as work space. The
fhseg() function also outputs data to a number of files. These
data output are the region number of pixels list (npixdata),
the region means list, the region criterion value list, and, if
requested, the region merges list for the iterations corre-
sponding to the detected natural convergence points. If the
region merges list is requested, the region label map data
(rlblmapdata) is output only for the first detected natural
convergence point. Otherwise the region label map data is
output for all the detected natural convergence points.

See a later section for a functional description of the
fhseg() function. The purpose of the fhseg() function is to
perform multiple iterations of region growing intermixed
with spectral clustering (if requested) until the number of
regions becomes less than or equal to cvnbregs (in this case,
2), and output segmentation results when natural conver-
gence points are detected.

The HSEG main program is now nearly finished. After the
fhseg() function exits, the program writes into a output
parameter file, HSEGOOOO.oparam, the number of hierar-
chical segmentation levels, nslevels, and the number of
regions that existed prior to the call to the fhseg() function.
These are the values that define the dimensions of the output
files. Finally, the output files rlblmap, rnpixlist, regmerges
(if requested), rmeanlist (if requested), and rcvlist (if
requested) are created by concatenating together the corre-
sponding output files from fhseg() for all the hierarchical
segmentation levels. The output log-file is now closed and
the program exits.

Functional Description of the RHSEG Main Program:
The RHSEG main program initially determines the name of
the parameter file from the command line input, and reads in
the parameters from the file using the function
read_param(). If a prefix for the temporary filenames in not
provided in the parameter file, the program generates a
character string to used at a prefix for file names for
temporary files required by the program. The “C” library
function “tempnam” is used for this purpose. For the dis-
cussion below, this prefix is assumed to be “RHSEGOOOO.”

62
At this point the RHSEG main program opens the log file

and outputs to it the program parameters using the function
print_param(). In addition to the parameters declared as
external variables for the HSEG program, the following

s parameters as declared as external variables for the RHSEG
program:

rnb-levels

minregions

sub-ncols

An int variable containing the total number of
recursive levels to be utilized
An int variable containing the number of regions
for convergence in the recursive stages
An int variable containing the number of columns
of input data to be processed at the highest level
of recursion
An int variable containing the number of rows of
input data to be processed at the highest level
of recursion

15 sub-mows

The program next sets the number of columns (sub-
2o ncols) and number of rows (sub-nrows) of the image data

sections to be processed at the highest level of recursion,
based on the value of rnb-levels. If the full image size
(ncols by nrows) is not an integer multiple of sub-ncols by
sub-nrows, the values of pad-ncols (mcols) and pad-

25 nrows (>nrows) are set to be the number of columns and
rows the full image would have to have in order to be an
integer multiple size of the subimage size at the highest level
of recursion. If the image size is already an integer multiple
size of the subimage size at the highest level or recursion,

30 pad-ncols and pad-nrows are set to ncols and nrows,
respectively. If sub_ncols=pad_ncols, this particular run of
RHSEG degenerates to a run of HSEG (see above).

The RHSEG main program now continues in the same
manner as the HSEG main program by reading in the input

35 data. If an input data mask is not provided and ncols!=pad-
ncols, the mask-data array is initialized to all “1’s’’ (TRUE)
for upper left ncols*nrows section of the array, and mask-
flag is set to TRUE. If ncols!=pad_ncols, the mask-data
array and all other input arrays are padded with “0” values

40 for columns greater than ncols and rows greater than nrows.
The RHSEG main program continues on as in the HSEG

main program by finding npixels and values for the scale and
offset arrays with calls to the find_stats() and find-scale-
offset() functions. If spatial-wghb0.0, calls are also made

The maximum number of regions, max-nregions, that
will be encountered in processing any subsection of data is
now computed. This is the maximum of 4*minregions and
sub-ncols* sub-nrows.

The various data arrays are now allocated as for the HSEG
main program, except that pad-ncols and pad-nrows
replaces ncols and nrows in the allocations. Also, the arrays
npix-data, s u m d a t a , sumsqdata , and spatialdata are
allocated with size rnb_levels*max_nregions rather than

ss just max-nregions. In the RHSEG main program, the
following additional data arrays are allocated:

45 to the compute_spatial() and find_min() functions.

SO

Data 60
Data Array TVpe Size To Contain:

input-sub unsigned (padLncols*padL Subset of
short nrows*nbands)/Z input image

data
mask-sub unsigned (padLncols*padL Subset of

65 char nrows)/2 input mask
data (if any)

US 6,895,115 B2
63

-continued

64

-continued

Data
Data Array Type Size To Contain:

5
rlblmap-sub

spatial-init-sub

nghbr-sub

rlblmap-4cols

rlblmap-4rows

unsigned
short

float

unsigned
char

unsigned
short

unsigned
short

(pabncols*padL
nrows)/2

(pad_ncols*pad_
nrows)/2

(rnb-levels - 1)*
max-nregions’

4*padLnrows

4*padLncols

Subset of
input region
label map
data (if any)
and output
region label
map data
Subset of
input spatial
feature data
(local image
variance or
standard
deviation, if

Region
adjacency
mask at other
levels of
recursion
Selected four
columns of
region label
map data
Selected four
rows of region
label map data

any),

The function lrhseg() is now called with the following input
variable and array data: 30

input-data

mask-data

rlblmapdata

An unsigned short array containing the current

An unsigned char array containing the current
section of mask data (if any)
An unsigned short array containing the current
section of input region label map data (if any).
(Will be overwritten by the output region label
map data.)

input spatial feature data (local image variance
or standard deviation - if any)
An int variable containing the number of columns
in the current section of input image data (initially
pad-ncols)
An int variable containing the number of rows in
the current section of input image data (initially
pad-nrows)
An int variable containing the value of the current
level of recursion (initially equal to 1)

section of input image data 3s

spatial-init A float array containing the current section of 40

ncols

mows 45

level

so
The global variables mask-flag, rlblmap-in-flag,

nbands, sub-ncols, sub-nrows, max-nregions, scale,
offset, maxmdir, simcrit, extmean, spclust, spatial-wght,
spatial-type, rnb-levels and minregions are also used as
inputs by lrhseg(). Certain variables and arrays are output ss
by lrhseg(). They are as follows:

The j” element of the vector is the number of
pixels in region j + 1.
A double array containing the current sum of
the normalized input data values over all pixels
in each region. Element j + nregions*b is the sum
value for region j + 1 and band b (first band is
band number 0).
A double array containing the current sum of the
square of the normalized input data values over
all pixels in each region. (Actually contains
values only if spatial-wght > 0.0.) Element
j + nregions*b is the sum square value for region
j + 1 and band b (first band is band number 0).
A double array containing the current region
spatial feature value list stored as a vector.
(Actually contains values only if spatial-wght >
0.0.) The jth element of the vector is the
spatial feature value for region j + 1.
An unsigned char array of numbers designating,
for the current section of data, whether or not
a pair of regions are spatially adjacent (i.e.,
neighbors). The value of the mask at array
element j + max_nregions*k is TRUE if and only
if regions j + 1 and k + 1 are spatially adjacent.

sum-data

sumsq-data

spatial-data

nghbr-mask

Other data arrays are passed into lrhseg() for use as work
space. These are input-sub, mask-sub, rlblmap-sub,
spatial-init-sub, rlabel-data, region-list, relabel-list,
nghbr-sub, nghbr-tmp, rlblmap -4cols, rlblmap-4 rows,
sort-store and nbsort-store.

The purpose of the lrhseg() function is to divide up the
input data into four equal quadrants and to call the function
recur_hseg() for each quadrant. The results from recur-
hseg() are assembled together by lrhseg() and returned to
the calling function. The internal operations of the function
lrhseg() are described in a later section.

The arrays rlblmap-4cols and rlblmap-4rows are now
loaded with values from rlblmapdata . The array rlblmap-
4cols contains the first, middle two and last columns from
rlblmapdata, and the array rlblmap-4rows contains the
first, middle two and last rows from rlblmap-data. The
function update-nghbr_mask() is now called with the
following input variables and data:

ncols

mows

nregions

An int variable containing the number of columns
in the current section of input image data
An int variable containing the number of rows
in the current section of input image data
An int variable containing the current value
of the number of regions is the current section
of segmented data
An unsigned short array containing the first,
middle two and last columns of the current
region label map data.
An unsigned short array containing the first,
middle two and last rows of the current region
label map data.
An unsigned char array of numbers designating,
for the current section of data, whether or not
a pair of regions are spatially adjacent (i.e.,
neighbors). The value of the mask at array element
j + max_nregions*k is TRUE if and only if regions
j + 1 and k + 1 are spatially adjacent.

rlblmap-4cols

rlblmap-4rows

nghbr-mask

60
nregions An int variable containing the number of regions

in the segmentation of the section of data
processed.
An unsigned short array containing the output
region label map for the current section of data.
This region label map specifies the spatial
distribution of the regions.

npix-data An unsigned int array containing the current 65
region number of pixels list stored as a vector.

r lblmapdata

The function update_nghbr_mask() modifies the input
nghbr-mask array so that it includes the neighbor relation-
ship across the middle two columns and rows of the current
region label map. The nghbr-mask array had been previ-
ously lacking this information. See a later section for a
functional description of update_nghbr_mask().

The function region_list_init() is now called with the
following input variable:

US 6,895,115 B2
65

nregions An int variable containing the number of regions
in the current section of segmented data

The following data array is output by reg ionl i s t in i t ():

region-list A r e L l i s t (R-LIST) structure array pointing to a
sequence of reg_stmct (REGION) structure elements
containing label and comparative information about
each region.

See a later section for a functional description of the
reg ionl i s t in i t () function. The purpose of the region-
l is t ini t () function is to initialize the regionl is t structure.

After the call to region_list-list() is completed, the
following parameters are set: init-flg=TRUE, onregions=
nregions and cvnbregs=chkregions (note that chkregions is
a user set parameter). As in the HSEG program, if
nregions<=chkregions, the calls to the functions lhseg() and
read_region_list() are skipped and, if nregions>2, the
program proceeds to call the function fhseg(). Otherwise,
call the function lhseg() is called in exactly same manner it
was called in the HSEG program. From this point the
RHSEG program proceeds in exactly the same manner as
the HSEG program.

Functional description of the regiondatapinit() func-
tion: The first operation performed by this function is to
initialize the region label map, rlblmapdata . If input
region label map data is provided, the maximum label,
max-reglbl, in the input region label map data is found, and
the elements of r lblmapdata with input value “0, ” that are
at non-masked out locations (according to mask-data), are
sequentially given unique labels higher than max-reglbl.
The region label map is then renumbered so that the regions
have unique labels running from 1 to nregions (the number
of regions in this section of data). If input region label map
data is not provided, each non-masked out location in
rlblmap-data is given a unique label, running from 1 to
nregions.

Next the first nregions elements of region-list, and the
reg-struct structures linked to these elements of region-
list, are initialized such that the active-flag is set to
“TRUE,” the label’s run sequentially from 1 to nregions, the
pointers bnghbr, bregion and mgreg are set to “NULL,” and
the values bncomp and brcomp are set to “MAXFLOAT”
(the maximum floating point value). In addition, the first
nregions elements of the npix-data (and spatial-data, if
spatial_wght>O.O) array(s) are initialized to 0.0 and the first
nregions of the nbands s u m d a t a (and sumsqdata , if
spatial_wght>O.O) array(s) are initialized to 0.0.

Next the npix-data, sum-data, spatial-data (if spatial-
wght>0.0), and sumsqdata (if spatial-wght>O.O) are cal-
culated by scanning through rlblmap-data, input-data,
spatial-init (if spatial_wght>O.O) and m a s k d a t a (if
provided). The value of npix-datah] is the number of pixels
in region j+ l and the value of sum data[b+j*nbands] is the
sum of the normalized input data for band b and region j+l .
If (spatial_wght>O.O), the value of spatial-datah] is the
sum of the input spatial-init values for region j+ l and the
value of sumsq_data[b+j*nbands] is the sum of the squares
of the normalized input data for band b and region j+l .

In the above initialization, if spatial-wght>O.O, spatial-
data is set to be the sum of the input spatial-init values in
each region. However, this is not the correct final value for

66
spatialdata. If np ixda tah] 2 9 , spatial-datah] should be
the maximum over the spectral bands of the variance or
standard deviation of region j+l , depending on the user
specified value of the spatial-type flag. If npix_datah]<9,

5 spatialdatah] should be a weighted average of the maxi-
mum over the spectral bands of the variance or standard
deviation of region j+ l with the average spatial-init values
for the pixels in the region.

For spatial-wght>O.O, npixdatah] 2 9 , and spatial-
type==l (“Variance”), spatial-datah] for region j+ l is cal-
culated as follows (see also Equations (9) and (10) above): 10

I sum_data[b + jB]

sum_data[b + jB]
npix_data[jl

sumsq_data[b + jB] - rr 15

var_data[j] = max

npi._data[j] - 1

20

where B is the number of spectral bands. If spatialtype==2
(“Standard Deviation”), the square root is taken before the
band maximum is found. Note that Equation (14) is math-
ematically equivalent to the combination of Equations (9)

25 and (10). For npixdatah]==l , spatial-datah] is set equal
to the input spatialinit value for the pixel in question. For
npix_datah]>l and npix_datah]<9, spatial-datah] is set
equal to a weighted sum of the spatial-datah] value calcu-
lated from Equation (14) and the average spatial-init values

Finally, the ngbr-mask is initialized by scanning
rlblmap-data. nghbr-mask h+k*max_nregions] is set to
the value TRUE (or 1) if and only if region j is a neighbor
of region k. Whether of not a pixel is considered to be a

35 neighbor of another pixel is determined by the value of
maxmdir. If a pixel is one of the maxmdir nearest neighbors
of another pixel, then it is a neighbor of that pixel.

Functional description of the lhseg() function: If init-flg
TRUE upon entering the lhseg() function, the dissimilarity

40 function values for all neighboring regions of each region
are calculated, and bnghbr and bncomp are updated for each
region. Then a sorted structure of type R L I S T , pointed to
by the pointer head-nbsorted-list, is created such that is
ordered by the value of bncomp. If there is more than one

45 region with the same value of bncomp, the regions are
secondarily ordered by region label value (lower to higher).
The value of the variable minbcomp is set equal to the value
of bncomp of the first element of this sorted list. If init-
flg=FALSE upon entering the lhseg() function, the dissimi-

SO larity function values for all neighboring regions need not be
calculated (they had been previously calculated), and sorted
lists of type R-LIST, pointed to by the pointers head-
nbsorted-list and head-sorted-list, are sorted by the value
of bncomp and brcomp, respectively. When ties occur in the

ss values of bncomp and brcomp, the regions are secondarily
ordered by region label value (lower to higher).

Next the region pointed to by the head-nbsortedlist,
and its most similar neighboring region, are merged. The
merged region is given the label of the region with the lower

60 valued label. The values for the new region in the npix-
data, s u m d a t a , and the nghbr-mask arrays are updated, as
are the sumsqdata and spatialdata arrays, if necessary.
The value of mgreg is updated for the region with the higher
region label value. The list pointed to by the pointer head-

65 nbsorted-list is resorted as necessary. If the region pointed
to by the resorted head-nbsorted-list has bncomp<=
minbcomp, the indicated regions are also merged. This

30 for the pixels in region j+ l as per Equation (11).

US 6,895,115 B2
67 68

continues until the region pointed to by the resorted head- region growing and spectral clustering merges) is sent to
nbsorted-list has bncomp>minbcomp. This constitutes an files. This information includes the number of regions, the
iteration of region growing. region number of pixels list, the region mean vector list and

If init-flg==TRUE, the dissimilarity function values for the region criterion value list, and, if requested, the region
all non-neighboring regions of each region are now 5 merges list. If the region merges list is not requested, the
calculated, and bregion and breomp are updated for each region label map is output each time. If the region merges
region. Then a sorted structure of type R-LIST, pointed to list is requested, the region label map is Output Only the first
by the pointer head-sortedlist, is created such that is time region information is Output.
ordered by the value of brcomp, If there is than one merges, the

number of regions is less than cvnbregs, the fhseg() function region with the same value of brcomp, the regions are i o outputs the current region segmentation information to files secondarily ordered by region label value (lower to higher). and then exits, The value of init-flg is now set to FALSE. If init-flg was function: Upon

values were previously calculated and sorted. are divided by 2 and the level variable is incremented by
If the region Pointed to by the head-sorted-list, and its 15 one. (This sets these variables to the proper values for the

most similar neighboring region, are merged if its value of next set of recursive calls to recur_hseg(1, described
brcomP<minbcomP (minbcomP was obtained from the below.) Then the nghbr-mask array is initialized to all
merges of neighboring regions). The merged region is given FALSE values, and the npix-sub, sum-sub, sumsq-sub,
the label of the region with the lower valued label. The and spatial_sub arrays are initialized to npix_data, sum-
values for the new region in the nPix-data, s u m d a t a , and 20 data, sumsqdata , and spatialdata, respectively. Next, the
the nghbr-mask arrays are updated, as are the sumsq-data data array starting points for the next level of recursion are
and spatialdata arrays, if necessary. The value of mgreg is saved into “_sub_sub” arrays as fo~~ows:
updated for the region with the higher region label value.
The lists pointed to by the pointer head-sorted-list and
head-nbsortedlist are resorted as necessary. If the region zs

minbcomp, the indicated regions are also merged. This

If after an iteration Of

Functional description of the lrhseg(
previously to FALSE, these function entering the lrhseg() function, the ncols and nrows variables

pointed to by the resorted head-sortedlist has brcompe=

continues until the region pointed to by the resorted head-
nbsortedlist has brcomp>minbcomp. This constitutes an
iteration of spectral clustering. 30 rlblmap-sub-sub = rlblmap-sub + ncols*nrows;

input-sub-sub = input-sub + ncols*nrows*nbands;
if (mask-flag)

if(spatia1Lwght > 0.0)
mask-sub-sub = mask-sub + ncols*nrows;

spatial-init-sub-sub = spatial-init-sub + ncols *mows;

nghbr-sub-sub = nghbr-sub + max-nregions *max_nregions; If the current number of region (nregions) is less than
cvnbregs, the lhseg() function exits. Otherwise, additional
alternate iterations of region growing (based on bncomp and Processing is now initiated for the first subsection of data
bnghbr) and spectral clustering (based on brcomp and (out of four). The data arrays input-sub, mask-sub (if
bregion) are performed until nregionse=minregions. In these 35 provided), spatial-init-sub (if provided), and rlblmap-sub
additional iterations, the exhaustive calculation of dissimi- (if provided) and loaded with data from the upper left
larity function values for neighboring and non-neighboring quadrant of the input data arrays input-data, mask-data,
regions is not required, as these values are updated at each spatialinit , and rlblmapdata, respectively.
merge. Note that lhseg() does not exit if nregionsecvnbregs The function recur_hseg() is now called with the fol-
after a region growing iteration. The function can only exit 40 lowing input variable and array data:
after a spectral clustering iteration.

Functional description of the fhseg() function: The
fhseg() function is identical to the lhseg() function except
for additional code for detecting the natural convergence An unsigned short array containing the current

section of input image data. Is renamed input-data
internal to recur h s e d).

input-sub

points and code to output the segmentation results at the 45
- - ~ ,

natural convergence points. maskksub An unsigned char array containing the current
section of mask data (if any). Is renamed mask-data
internal to recur-hseg().

section of input region label map data (if any).
(Will be overwritten by the output region label
map data.) Is renamed rlblmap-data internal to
recur_hseg().

input spatial feature data (local image variance
or standard deviation - if any). Is renamed
spatial-init internal to recur-hseg()
An int variable containing the number of columns
in the current section of input image data
An int variable containing the number of rows
in the current section of input image data
An int variable containing the value of the
current level of recursion
An int variable containing the offset value
required for the region labels to keep them
distinct from the region labels in the previous
quarter(s) of data (for the first quarter,
roffset = 0)

The basic HSEG algorithm was described earlier in the

noted that at certain iterations, the region information from
the previous iteration must be saved. Accordingly, fhseg() SO
allocates and initializes and updates data arrays to store this

equal the current value of rlblmapdata, and prevcritval is
initialized to 0.0, and the current value of the global criterion
value, critval, is calculated through a call to the function ss

In lhseg() the rlblmapdata is not updated. However, in
f hseg() the rlblmapdata is updated after each group of
region growing and spectral clustering merges (steps 2

addition, the region number of pixels and region sum vectors
are updated. If spatial-wght>O.O, the region sum square
vectors and region spatial feature values are also updated.

description Of the parallel imp1ementation’ In step 7, it was rlblmap-sub An unsigned short array containing the current

information. The data array prev-rlblmap is initialized to spatial-init-sub A float array containing the current section of

ncols

nrOwS

level

compute_cv().

through 5 of the basic HSEG algorithm description). In 60 roffset

After each region growing and spectral clustering (if
requested) iteration, the value of cvratio=critval/prevcritval 65
is calculated. If cvratio>convfact, then the region informa- The global variables mask-flag, rlblmap-in-flag,
tion for the previous iteration (prior to the current group of nbands, sub-ncols, sub-nrows, max-nregions, scale,

US 6,895,115 B2
69

offset, maxmdir, simcrit, extmean, spclust, spatial-wght,
spatial-type, rnb-levels and minregions are also used as
inputs by recur_hseg(). Certain variables and arrays are
output by recur_hseg(). They are as follows:

sumsq-sub

spatialhub

nghbr-sub

subLnregions[q] An int variable containing the number of regions
in the segmentation of the section of data
processed. (For the first quarter of data,

An unsigned short array containing the output
region label map for the current section of
data. This region label map specifies the
spatial distribution of the regions.
An unsigned int array containing the current
region number of pixels list stored as a vector.
The j” element of the vector is the number of
pixels in region j + 1.
A double array containing the current sum of
the normalized input data values over all pixels
in each region. Element j + subLnregions[q]*b is
the sum value for region j + 1 and band b (first
band is band number 0).
A double array containing the current sum of
the square of the normalized input data values
over all pixels in each region. (Actually
contains values only if spatial-wght > 0.0.)
Element j + sub_nregions[q]*b is the sum square
value for region j + 1 and band b (first band
is band number 0).
A double array containing the current region
spatial feature value list stored as a vector.
(Actually contains values only if spatial-wght >
0.0.) The j” element of the vector is the spatial
feature value for region j + 1.
An unsigned char array of numbers designating,
for the current section of data, whether or not
a pair of regions are spatially adjacent (i.e.,
neighbors). The value of the mask at array element
j + max_nregions*k is TRUE if and only if regions
j + 1 and k + 1 are spatially adjacent.

q = 0.)
rlblmap-sub

npix-sub

sum-sub

Other data arrays are passed into recur_hseg() for use as
work space. These are input-sub-sub, mask-sub-sub,
rlblmap_s,,-sub, spatial-init-sub-sub, rlabel-data,
region-list, relabell ist , nghbr-sub-sub, n g h b r t m p ,
rlblmap-4cols, rlblmap-4rows, sort-store and nbsort-
store. The arrays input-sub-sub, mask-sub-sub,
rlblmap-sub-sub, spatial-init-sub-sub, and nghbr-
sub-sub, are renamed to input-sub, mask-sub, rlblmap-
sub, spatial-init-sub, and nghbr-sub internal to recur-

If level==rnblevels, the function recur_hseg() per-
forms hierarchical segmentation on the specified section of
data. Otherwise, it makes a further recursive call to
lrhseg(), and then performs hierarchical segmentation on the
resulting data. The internal operations of the function recur-
hseg() are described in a later section.

The outputs from recur_hseg(are now translated into the
data arrays for the current reassembled section of data. The
nghbr-mask is updated as follows (for the first quarter of
data, q=O and roffset=O):

hseg(>.

for (index = 0; index < subLnregions[q]; index++)
for (subindex = 0; subindex < subLnregions[q]; subindex++)

nghbr_mask[(index+roffset)*max_nregions + (subindex+
roffset)] =

nghbr-sub[index*max_nregions + subindex];

The rlblmap-sub data is also loaded into the upper left
quarter of the rlblmapdata array. The npixdata , sum-
data, sumsq-data and spatial-data, arrays are updated

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

70
automatically by the way the npix-sub, sum-sub, sumsq-
sub and spatial-sub arrays are specified.

Processing is now initiated for the second subsection of
data (out of four). The data arrays input-sub, mask-sub (if
provided), spatial-init sub (if provided), and rlblmap-sub
(if provided) and loaded with data from the upper right
quadrant of the input data arrays input-data, mask-data,
spatialinit , and rlblmapdata, respectively, and the npix-
sub, sum-sub, sumsq-sub, and spatialhub arrays are
incremented as follows (here q=O):

npix-sub += subLnregions[q];

if (spatial-wght > 0.0)

sumsq-sub += subLnregions[q]*nbands;

sum-sub += subLnregions[q]*nbands;

{

I
spatialhub += subLnregions[q];

The function recur_hseg() is now called in the same
manner as for the first quarter of data except that q = l and
roffset=sub_nregions[O].

The outputs from recur_hseg() are now translated into
the data arrays for the current reassembled section of data.
The nghbr-mask is updated as follows (for the second
quarter of data, q = l and roffset=sub_nregions[O]):

for (index = 0; index < subLnregions[q]; index++)
for (subindex = 0; subindex < subLnregions[q]; subindex++)

nghbr_mask[(index+roffset)*max_nregions + (subindex+
roffset)] =

nghbr-sub[index*max_nregions + subindex];

The rlblmap-sub data is also loaded into the upper right
quarter of the rlblmap-data array. The npix-data, sum-
data, sumsqdata and spatial-data, arrays are updated
automatically by the way the npix-sub, sum-sub, sumsq-
sub and spatial-sub arrays are specified.

Processing is now initiated for the third subsection of data
(out of four). The data arrays input-sub, mask-sub (if
provided), spatial-init-sub (if provided), and rlblmap-sub
(if provided) and loaded with data from the lower left
quadrant of the input data arrays input-data, mask-data,
spatialinit , and rlblmapdata, respectively, and the npix-
sub, sum-sub, sumsq-sub, and spatialhub arrays are
incremented as follows (here q=1):

npix-sub += subLnregions[q];
sum-sub += subLnregions[q]*nbands;
if (spatial-wght > 0.0)

sumsq-sub += subLnregions[q]*nbands;
spatialhub += subLnregions[q];

{

I

The function recur_hseg() is now called in the same
manner as for the first quarter of data except that q=2 and
roffset=sub~nregions[O]+sub~nregions[11.

The outputs from recur_hseg() are now translated into
the data arrays for the current reassembled section of data.
The nghbr-mask is updated as follows (for the third quarter
of data, q=2 and roffset=sub~nregions[O]+sub~nregions
[ll):

US 6,895,115 B2
71

for (index = 0; index < subLnregions[q]; index++)
for (subindex = 0; subindex < subLnregions[q]; subindex++)

nghbr_mask[(index+roffset)*max_nregions + (subindex+
roffset)] =

nghbr-sub[index*max_nregions + subindex];

The rlblmap-sub data is also loaded into the lower left
quarter of the rlblmap-data array. The npix-data, sum-
data, sumsq-data and spatial-data, arrays are updated
automatically by the way the npix-sub, sum-sub, sumsq-
sub and spatial-sub arrays are specified.

Processing is now initiated for the fourth subsection of
data (out of four). The data arrays input-sub, mask-sub (if
provided), spatial-init-sub (if provided), and rlblmap-sub
(if provided) and loaded with data from the lower right
quadrant of the input data arrays input-data, mask-data,
spatialinit , and rlblmapdata, respectively, and the npix-
sub, sum-sub, sumsq-sub, and spatialhub arrays are
incremented as follows (here q=2):

npix-sub += subLnregions[q]; sum-sub +=
subLnregions[q]*nbands;
if (spatial-wght > 0.0)

sumsq-sub += subLnregions[q]*nbands;
spatialhub += subLnregions[q];

{

I

The function recur_hseg() is now called in the same
manner as for the first quarter of data except that q=3 and
roffset=sub~nregions[0]+sub~nregions[l]+sub-nregion

The outputs from recur_hseg() are now translated into
the data arrays for the current reassembled section of data.
The nghbr-mask is updated as follows (for the fourth
quarter of data, q=3 and roffset=sub~nregions[O]+sub~
nregions[l]+sub_nregion[2]):

P I .

for (index = 0; index < subLnregions[q]; index++)
for (subindex = 0; subindex < subLnregions[q]; subindex++)

nghbr_mask[(index+roffset)*max_nregions + (subindex+
roffset)] =

nghbr-sub[index*max_nregions + subindex];

The rlblmap-sub data is also loaded into the lower right
quarter of the rlblmapdata array. The npixdata , sum-
data, sumsq-data and spatial-data, arrays are updated
automatically by the way the npix-sub, sum-sub, sumsq-
sub and spatial-sub arrays are specified.

Finally, the function lrhseg() sets nregions=sub_nregions
[O]+sub_nregions[l]+sub~nregions[2]+sub~nregions[3]
and returns to the calling function.

Functional description of the recur_hseg() function: If
level==rnblevels, the function recur_hseg() calls the
regiondatapinit() function with the following input vari-
able and array data:

input-data

mask-data

An unsigned short array containing the current section
of input image data
An unsigned char array containing the current section
mask data (if any)

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

72

-continued

rlblmap-data An unsigned short array containing the current section
of input region label map data (if any). (Will be
overwritten by the output region label map data.)
A float array containing the current section of input
spatial feature data (local image variance or standard
deviation - if any)
An int variable containing the number of columns in
the current section of input image data
An int variable containing the number of rows in the
current section of input image data

spatial-init

ncols

mows

The global variables mask-flag, rlblmap-in-flag, nbands,
max-nregions, scale, offset, maxmdir, spatial-wght and
spatialtype are also used as inputs by region_datainit().
The following variables and arrays are output by region-
datapinit():

nregions

rlblmap-data

npix-data

sum-data

sumsq-data

spatial-data

nghbr-mask

region-list

An int variable containing the initial number of
regions in the current section of data.
An unsigned short array containing the initial output
region label map for the current section of data.
This region label map specifies the initial spatial
distribution of the regions.
An unsigned int array containing the initial region
number of pixels list stored as a vector for the
current section of data. The j” element of the vector
is the number of pixels in region j + 1.
A double array containing the initial sum of the
normalized input data values over all pixels in each
region for the current section of data. Element j +
nregions*b is the sum value for region j + 1 and band
b (first band is band number 0).
A double array containing the initial sum of the
square of the normalized input data values over all
pixels in each region for the current section of
data. (Actually contains values only if spatial-wght >
0.0.) Element j + nregions*b is the sum square
value for region j + 1 and band b (first band is band
number 0).
A double array containing the initial region spatial
feature value list stored as a vector for the current
section of data. (Actually contains values only if
spatial-wght > 0.0.) The j” element of the vector is
the spatial feature value for region j + 1.
An unsigned char array of numbers designating whether
or not a pair of regions are spatially adjacent
(i.e., neighbors) for the current section of data.
The value of the mask at array element j +
max-nregions*k is TRUE if and only if regions j + 1
and k + 1 are spatially adjacent.
A reg-list (R-LIST) structure array pointing to a
sequence of reLs t ruc t (REGION) structure elements
containing label and comparative information about
each region for the current section of data.

The array rlabel-data is also passed to the function region-
datapinit() for use as work space. See above for a functional
description of the regiondatapinit() function. The purpose
of the reg iondata in i t () function is to initialize the
variables and arrays output by the reg iondata in i t ()
function based on the input variable and array data.

The function lrhseg() is now called with the following
input variable and array data:

input-data

maskkdata

An unsigned short array containing the current section
of input image data
An unsigned char array containing the current section
of mask data (if any)

US 6,895,115 B2
73

-continued

74

rlblmapdata An unsigned short array containing the current section
of input region label map data (if any). (Will be
overwritten by the output region label map data.)
A float array containing the current section of input
spatial feature data (local image variance or standard
deviation - if any)
An int variable containing the number of columns in
the current section of input image data
An int variable containing the number of rows in the
current section of input image data
An int variable containing the value of the current
level of recursion

spatial-init

ncols

mows

level

The global variables mask-flag, rlblmap-in-flag,
nbands, sub-ncols, sub-nrows, max-nregions, scale,
offset, maxmdir, simcrit, extmean, spclust, spatial-wght,
spatial-type, rnb-levels and minregions are also used as
inputs by lrhseg(). Certain variables and arrays are output

ncols An int variable containing the number of columns in
the current section of input image data
An int variable containing the number of rows in the
current section of input image data
An int variable containing the current value of the
number of regions is the current section of segmented
data
An unsigned short array containing the first, middle
two and last columns of the current region label map
data.

rlblmap-4rows An unsigned short array containing the first, middle
two and last rows of the current region label map
data.
An unsigned char array of numbers designating, for the
current section of data, whether or not a pair of
regions are spatially adjacent &e., neighbors). The
value of the mask at array element j + max_nregions*k
is TRUE if and only if regions j + 1 and k + 1 are
spatially adjacent.

5 mows

nregions

rlblmap-4cols
10

nghbr-mask
1s

by lrhseg(). They are as follows: 2o The function update_nghbr_mask() modifies the input
nghbr-mask array so that it includes the neighbor relation-
ship across the middle two columns and rows of the current

nregions

rlblmapdata

npix-data

s u m d a t a

sumsq-data

spatial-data

nghbr-mask

An int variable containing the number of regions in
the segmentation of the section of data processed.
An unsigned short array containing the output region
label map for the current section of data. This region
label map specifies the spatial distribution of the
regions.
An unsigned int array containing the current region
number of pixels list stored as a vector. The j”
element of the vector is the number of pixels in
region j + 1.
A double array containing the current sum of the
normalized input data values over all pixels in each
region. Element j + nregions*b is the sum value for
region j + 1 and band b (first band is band number 0).
A double array containing the current sum of the
square of the normalized input data values over all
pixels in each region. (Actually contains values only
if spatial-wght > 0.0.) Element j + nregions*b is the
sum square value for region j + 1 and band b (first
band is band number 0).
A double array containing the current region spatial
feature value list stored as a vector. (Actually
contains values only if spatial-wght > 0.0.) The j’h
element of the vector is the spatial feature value for
region j + 1.
An unsigned char array of numbers designating, for the
current section of data, whether or not a pair of
regions are spatially adjacent &e., neighbors). The
value of the mask at array element j + max_nregions*k
is TRUE if and only if regions j + 1 and k + 1 are
spatially adjacent.

regon label map. The nghbr-mask array had been previ-
ously lacking this information. See a previous section for a

The function reg ionl i s t in i t () is now called with the
2s functional description of update nghbr_mask().

following input variable:

30
nregions An int variable containing the number of regions in the

current section of segmented data

The following data array is output by regionlistpinit():
3s

region-list A reg-list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about each

40 region.

See a previous section for a functional description of the
regionlistpinit() function. The purpose of the region-

4s listpinit() function is to initialize the region-list structure.
After the call to either reg iondata in i t () or lrhseg(),

update-nghbr-mask() and region-list-list() are
completed, the following parameters are set: init_flg= - _ -
TRUE, onregions=nregions and cvnbregs=minregions (note

Other data arrays are passed into lrhseg() for use as work 50 that minregions is a set parameter). If nregions<=
space. These are input-sub, mask-sub, rlblmap-sub, minregions, the to the lhseg(and
spatial-init-sub, rlabel-data, regionlist , relabell ist , read-region-list(are skipped. Othenvise, the
nghbr-sub, nghbr tmp, rlblmap-4cols, rlblmap-4rows, recur-hseg(the lhseg(with the
sort-store and nbsort-store.

input data into four equal quadrants and to call the function

input variable and array data:
The purpose of the lrhseg() function is to divide up the ss

recur-hseg(for each quadrant. The from recur- init-flag An int variable which indicates whether or not the
hseg() are assembled together by lrhseg() and returned to
the calling function. The internal operations of the function

The arrays r1b1maP-4c01s and r1b1maP-4rows are now
loaded with values from rlblmapdata. The array rlblmap-
4c01s contains the first, middle two and last columns from

first, middle two and last rows from rlblmap-data. The 6s sum-data
function update_nghbr_mask() is now called with the

region-list has just been initialized (in this case
init-flag = TRUE).
An int variable containing the number of regions
existing when lhseg() is initially called.
An int variable indicating the number of regions at
which that this call to lhseg() will converge (exit).
An unsigned int array containing the region number of
pixels list stored as a vector. The j” element of the
vector is the number of pixels in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.

6o onregions

cvnbregs

npix-data

lrhseg() are described in a previous section.

rlblmap-data, and the array rlblmap-4rows contains the

following input variables and data:

US 6,895,115 B2
75

-continued

Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square of the
normalized input data values over all pixels in each
region. (Actually contains values only if spatial-wght >
0.0.) Element j + nregions*b is the sum square
value for region j + 1 and band b (first band is
band number 0).
A double array containing the region spatial feature
value list stored as a vector. (Actually contains
values only if spatial-wght > 0.0.) The j” element of
the vector is the spatial feature value for region
j + 1.
An unsigned char array of numbers designating whether
or not a pair of regions are spatially adjacent (i.e.,
neighbors). The value of the mask at array element j +
max-nregions*k is TRUE if and only if regions j +
1 and k + 1 are spatially adjacent.
A reg_list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about
each region.

sumsq-data

spatial-data

nghbr-mask

region-list

The global variables nbands, max-regions, simcrit,
extmean, spclust, spatial-wght, and spatial-type are also
used as inputs to lhseg(). The following variables and arrays
are modified and output by lhseg():

nregions

npix-data

s u m d a t a

sumsq-data

spatial-data

nghbr-mask

region-list

An int variable containing the initial number of
regions in the section of data processed.
An unsigned int array containing the region number of
pixels list stored as a vector. The jth element of the
vector is the number of pixels in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square of the
normalized input data values over all pixels in each
region. (Actually contains values only if spatial-wght :
0.0.) Element j + nregions*b is the sum square
value for region j + 1 and band b (first band is
band number 0).
A double array containing the region spatial feature
value list stored as a vector. (Actually contains
values only if spatial-wght > 0.0.) The j” element of
the vector is the spatial feature value for region
j + 1.
An unsigned char array of numbers designating whether
or not a pair of regions are spatially adjacent (i.e.,
neighbors). The value of the mask at array element j +
max-nregions*k is TRUE if and only if regions j + 1
and k + 1 are spatially adjacent.
A reg_list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about
each region.

The arrays sort-store, and nbsort-store are also passed to
the lhseg() function to use as work space. See a previous
section for a functional description of the lhseg() function.
The purpose of the lhseg() function is to perform multiple
iterations of region growing intermixed with spectral clus-
tering (if requested) until the number of regions becomes
less than or equal to cvnbregs (in this case, minregions).

After the lhseg function exits, the function read-region-
list() is called with the following input variable and array
data:

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

nregions

npix-data

An int variable containing the number of regions in
the section of data processed.
An unsigned int array containing the region number of
pixels list stored as a vector. The j” element of the
vector is the number of pixels in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region
j + 1 and band b (first band is band number 0).
A double array containing the sum of the square of the
normalized input data values over all pixels in each
region. (Actually contains values only if spatial-wght >
0.0.) Element j + nregions*b is the sum square
value for region j + 1 and band b (first band is
band number 0).
A double array containing the region spatial feature
value list stored as a vector. (Actually contains
values only if spatial-wght > 0.0.) The j” element of
the vector is the spatial feature value for region
j + 1.
An unsigned char array of numbers designating whether
or not a pair of regions are spatially adjacent (i.e.,
neighbors). The value of the mask at array element j +
max-nregions*k is TRUE if and only if regions j + 1
and k + 1 are spatially adjacent.
A reg-list (R-LIST) structure array pointing to a
sequence of reg_struct (REGION) structure elements
containing label and comparative information about
each region.

sum-data

sumsq-data

spatial-data

nghbr-mask

region-list

The global variables nbands, max-nregions and spatial-
wght are also used as input by read_region_list(). The
following variables and arrays are modified and/or output by
read_region_list():

npix-data An unsigned int array containing the region number of
pixels list stored as a vector. The j” element of the
vector is the number of pixels in region j + 1.
A double array containing the sum of the normalized
input data values over all pixels in each region.
Element j + nregions*b is the sum value for region j +
1 and band b (first band is band number 0).
A double array containing the sum of the square of the
normalized input data values over all pixels in each
region. (Actually contains values only if spatial-wght >
0.0.) Element j + nregions*b is the sum square value
for region j + 1 and band b (first band is band number

A double array containing the region spatial feature
value list stored as a vector. (Actually contains
values only if spatial-wght > 0.0.) The j’h element of
the vector is the spatial feature value for region j +
1.

nghbr-mask An unsigned char array of numbers designating whether
or not a pair of regions are spatially adjacent (i.e.,
neighbors). The value of the mask at array element j +
max-nregions*k is TRUE if and only if regions j + 1 and
k + 1 are spatially adjacent.
A reg-list (R-LIST) structure array pointing to a
sequence of reg-struct (REGION) structure elements
containing label and comparative information about each
region.
An unsigned short array consisting of pairs of region
labelings representing a renumbering of the region map
labeling.

sum-data

sumsq-data

0).
spatial-data

region-list

relabel-list

The array nghbr-tmp is also passed to the read-region-
list() function for use as work space. The read-region-
list() function finds a renumbering (relabel-list) of the
current region map labeling into the smallest possible range
of labels starting at label “1, ” and adjusts the various data
arrays and structures accordingly (npixdata , s u m d a t a ,
nghbr-mask, region-list, and, if necessary, sumsq-data
and spatial-data).

US 6,895,115 B2
77

After the read-regionlist() function exits, the variable
nelements is found as the number of non-zero elements in
the relabel-list array output by read-regionlist(), and the
function update-rlblmap() is called with the following
input variable and array data:

ncols

mows

nelements

relabel-list

An int variable containing the number of columns in the
input image data
An int variable containing the number of rows in the
input image data
An int variable containing the number of non-zero
elements in the relabel-list array
An unsigned short array consisting of pairs of region
labelings representing a renumbering of the region map
labeling.
An unsigned short array containing the region label map
data as it existed prior to the call to lhseg().

rlblmap-data

The following data array is modified by update-rlblmap():

rlblmap-data An unsigned short array containing the region label
map data renumbered according to relabell ist .

The update-rlblmap() function renumbers the rlblmap-
data array according to the input relabel-list array. This
updates the rlblmap-data to reflect the merges performed by
the call to lhseg() and the compacting of the region labeling
representation performed by the function read-region-
list().

At this point the function recur-hseg() exits returning the
number of regions, nregions, to the calling function.

What is claimed is:
1. A method of implementing a recursive hierarchical

segmentation algorithm on a parallel computing platform,
comprising:

setting a bottom level of recursion that defines where a
recursive division of an image into sections stops
dividing;

setting an intermediate level of recursion where the recur-
sive division changes from a parallel implementation
into a serial implementation; and

implementing the segmentation algorithm according to
the set bottom level and the set intermediate level.

2. A method as recited in claim 1, further comprising
setting a convergence check level of recursion, wherein after
the recursive division is complete, a convergence check is
performed which communicates data between processes
running at the convergence check level and a top level.

3. A method as recited in claim 2, wherein when the
convergence check results in a favorable result, the conver-
gence check level processes send their region label map data
to a master program.

4. A method of implementing a recursive hierarchical
segmentation algorithm on a parallel computer, comprising:

dividing an image from a first level of recursion to a
bottom level of recursion, by:
when a current level of recursion is less than a preset

intermediate level, recursively dividing an image
into sections and spawning a new parallel process for
each of the divided sections;

when a bottom level of recursion is greater than the
current level of recursion which is greater than or
equal to the preset intermediate level, recursively
dividing the image into sections serially; and

implementing the segmentation algorithm using the
divided sections and each section’s respective process.

78
5 . A method as recited in claim 4, further comprising

performing a convergence check when the current level of
recursion equals the first level, and communicating between
a preset convergence check level of recursion and the first

5 level in performing the convergence check.
6. A method as recited in claim 5, wherein the conver-

gence check farther comprises communicating dissimilarity
criterion values (critvals) from each process at the conver-
gence check level of recursion to a process at the first level
of recursion.
7. A method as recited in claim 6, wherein the conver-

gence check further comprises using the process at the first
level of recursion, receiving the communicated critvals,
summing the received critvals, and calculating a ratio of the
summed critvals and the previously summed critvals.

8. Amethod as recited in claim 7, wherein if the calculated
ratio is higher than a preset threshold then the image data
from the convergence check level processes are saved by a
master program.

9. A method of implementing a recursive hierarchical
20 segmentation algorithm on a parallel computer, comprising:

recursively dividing an image into sections from a top
level of recursion to an intermediate level of recursion
using parallel processes;

recursively dividing the image into sections from the
intermediate level of recursion to a bottom level of
recursion using serial processing; and

implementing the segmentation algorithm from the bot-
tom level of recursion to the top level of recursion for
each divided section using the section’s respective

2s

30 process.
10. A method as recited in claim 9, further comprising:

performing a convergence check when a current level of
recursion reaches the first level, and communicating
between a preset convergence check level of recursion and

11. A method as recited in claim 10, further comprising:
sending, by processes running at the convergence check

level, region label map data to a master program if the
convergence check results in a favorable result.

12. A computer readable storage medium, storing a
method of implementing a recursive hierarchical segmenta-
tion algorithm on a parallel computing platform, the com-
puter readable storage medium instructing a computer to
perform:

setting a bottom level of recursion that defines where a
recursive division of an image into sections stops
dividing;

setting an intermediate level of recursion where the recur-
sive division changes from a parallel implementation
into a serial implementation; and

implementing the segmentation algorithm according to
the set bottom level and the set intermediate level.

13. A computer readable storage medium as recited in
claim 12, further comprising setting a convergence check

ss level of recursion, wherein after the recursive division is
complete, a convergence check is performed which com-
municates data between processes running at the conver-
gence check level and a top level.

14. A computer readable storage medium as recited in
60 claim 13, wherein when the convergence check results in a

favorable result, the convergence check level processes send
their region label map data to a master program.

15. A computer readable storage medium, storing a
method of implementing a recursive hierarchical segmenta-

65 tion algorithm on a parallel computing platform, the com-
puter readable storage medium instructing a computer to
perform:

35 the first level in performing the convergence check.

4o

45

50

US 6,895,115 B2
79 80

dividing an image from a first level of recursion to a
bottom level of recursion, by:

when a current level of recursion is less than a preset
intermediate level, recursively dividing an image
into sections and spawning a new parallel process for 5
each of the divided sections;

when a bottom level of recursion is greater than the
current level of recursion which is greater than or equal
to the preset intermediate level, recursively dividing the
image into sections serially; and i o process.

implementing the segmentation algorithm using the
divided sections and each section’s respective process.

claim 15, further comprising performing a convergence

level, and communicating between a preset convergence
check level of recursion and the first level in performing the
convergence check.

recursively dividing an image into sections from a top
level of recursion to an intermediate level of recursion
using parallel processes;

recursively dividing the image into sections from the
intermediate level of recursion to a bottom level of
recursion using serial processing; and

implementing the segmentation algorithm from the bot-
tom level of recursion to the top level of recursion for
each divided section using the section’s respective

21. A computer readable storage medium as recited in
202 further comprising:

16. A computer readable storage medium as recited in

check when the current level of recursion equals the first

performing a convergence check when a current level Of

between a Preset convergence check level of recursion
recursion reaches the first level, and communicating

and the first level in performing the convergence check.
medium as recited in 22. A computer

claim 21, further comprising:
I

17. A computer readable storage medium as recited in
claim 16, wherein the convergence check further comprises 2o
communicating dissimilarity criterion values (critvals) from
each process at the convergence check level of recursion to
a process at the first level of recursion.

18. A computer readable storage medium as recited in
claim 17, wherein the convergence check further comprises 25
using the process at the first level of recursion, receiving the
communicated critvals, summing the received critvals, and
calculating a ratio of the summed critvals and the previously
summed critvals.

claim 18, wherein if the calculated ratio is higher than a
19. A computer readable storage medium as recited in 30

sending, by processes running at the convergence check
level, region label map data to a master program if the
convergence check results in a favorable result.

23. An apparatus comprising:
an input unit, inputting a bottom level of recursion that

defines where a recursive division of an image into
sections stops dividing, and an intermediate level of
recursion where the recursive division changes from a
parallel implementation into a serial implementation;

a processing unit, implementing a recursive hierarchical
segmentation algorithm using the levels input from the
input unit.

24. An apparatus as recited in claim 23, wherein the input
preset threshold then the image data from the convergence unit furthe; comprises inputting a convergence check level
check level processes are saved by a master program. of recursion, wherein after the recursive division is

20. A computer readable storage medium, storing a complete, a convergence check is performed which com-
method of implementing a recursive hierarchical segmenta- 35 municates data between processes running at the conver-
tion algorithm on a parallel computing platform, the com- gence check level and a top level.
puter readable storage medium instructing a computer to
perform: * * * * *

