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(57) ABSTRACT 

A computer implemented physical signal analysis method is 
includes two essential steps and the associated presentation 
techniques of the results. All the steps exist only in a 
computer: there are no analytic expressions resulting from 
the method. The first step is a computer implemented 
Empirical Mode Decomposition to extract a collection of 
Intrinsic Mode Functions (IMF) from nonlinear, nonstation- 
ary physical signals based on local extrema and curvature 
extrema. The decomposition is based on the direct extraction 
of the energy associated with various intrinsic time scales in 
the physical signal. Expressed in the IMF’s, they have 
well-behaved Hilbert Transforms from which instantaneous 
frequencies can be calculated. The second step is the Hilbert 
Transform. The final result is the Hilbert Spectrum. Thus, 
the invention can localize any event on the time as well as 
the frequency axis. The decomposition can also be viewed as 
an expansion of the data in terms of the IMF’s. Then, these 
IMF’s, based on and derived from the data, can serve as the 
basis of that expansion. The local energy and the instanta- 
neous frequency derived from the IMF’s through the Hilbert 
transform give a full energy-frequency-time distribution of 
the data which is designated as the Hilbert Spectrum. 
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BACKGROUND OF THE INVENTION 
40 

1. Technical Field of the Invention 
This invention generally relates to a computer imple- 

mented physical signal analysis method and apparatus. More 
particularly, this invention relates to a computer imple- 
mented method and apparatus for analyzing nonlinear, non- 45 
stationary physical signals. 

2. Description of Related Art 
Analyzing physical signals is a difficult problem confront- 

ing many industries. These industries have harnessed vari- 
ous computer implemented methods to process data taken 50 
from physical phenomena such as earthquakes, ocean 
waves, tsunamis, ocean surface elevation and wind. 
Unfortunately, previous methods have not yielded results 
which are physically meaningful. 

cesses with physical signals may present one or more of the 
following problems: 

Among the difficulties is that representing physical pro- 55 

(a) The total data span is too short; 

(c) The data represent nonlinear processes. 
Although problems (a)-(.) are separate issues, the first 

two problems are related because a data section shorter than 
the longest time scale of a stationary process can appear to 
be nonstationary. Because many physical events are 65 
transient, the data representative of those events are nonsta- 
tionary. For example, a transient event such as an earthquake 

(b) The data are nonstationary; and 60 

2 
will  produce nonstationary data when measured. 
Nevertheless, the nonstationary character of such data is 
ignored or the effects assumed to be negligible. This 
assumption may lead to inaccurate results and incorrect 
interpretation of the underlying physics as explained below. 

A variety of techniques have been applied to nonlinear, 
nonstationary physical signals. For example, many com- 
puter implemented methods apply Fourier spectral analysis 
to examine the energy-frequency distribution of such sig- 
nals. 

Although the Fourier transform that is applied by these 
computer implemented methods is valid under extremely 
general conditions, there are some crucial restrictions: the 
system must be linear, and the data must be strictly periodic 
or stationary. If these conditions are not met, then the 
resulting spectrum will not make sense physically. 

A common technique for meeting the linearity condition 
is to approximate the physical phenomena with at least one 
linear system. Although linear approximation is an adequate 
solution for some applications, many physical phenomena 
are highly nonlinear and do not admit a reasonably accurate 
linear approximation. 

Furthermore, imperfect probesisensors and numerical 
schemes may contaminate data representative of the phe- 
nomenon. For example, the interactions of imperfect probes 
with a perfect linear system can make the final data nonlin- 
ear. 

Many recorded physical signals are of finite duration, 
nonstationary, and nonlinear because they are derived from 
physical processes that are nonlinear either intrinsically or 
through interactions with imperfect probes or numerical 
schemes. Under these conditions, computer implemented 
methods which apply Fourier spectral analysis are of limited 
use. For lack of alternatives, however, such methods still 
apply Fourier spectral analysis to process such data. 

In summary, the indiscriminate use of Fourier spectral 
analysis in these methods and the adoption of the stationary 
and linear assumptions may give misleading results some of 
which are described below. 

First, the Fourier spectrum defines uniform harmonic 
components globally. Therefore, the Fourier spectrum needs 
many additional harmonic components to simulate nonsta- 
tionary data that are nonuniform globally. As a result, energy 
is spread over a wide frequency range. 

For example, using a delta function to represent the flash 
of light from a lightning bolt will give a phase-locked wide 
white Fourier spectrum. Here, many Fourier components are 
added to simulate the nonstationary nature of the data in the 
time domain, but their existence diverts energy to a much 
wider frequency domain. Constrained by the conservation of 
energy principle, these spurious harmonics and the wide 
frequency spectrum cannot faithfully represent the true 
energy density of the lighting in the frequency and time 
space. 

More seriously, the Fourier representation also requires 
the existence of negative light intensity so that the compo- 
nents can cancel out one another to give the final delta 
function representative the lightning. Thus, the Fourier 
components might make mathematical sense, but they often 
do not make physical sense when applied. 

Although no physical process can be represented exactly 
by a delta function, some physical data such as the near field 
strong earthquake energy signals are of extremely short 
duration. Such earthquake energy signals almost approach a 
delta function, and they always give artificially wide Fourier 
spectra. 

Second, Fourier spectral analysis uses a linear uperposi- 
tion of trigonometric functions to represent the data. 
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Therefore, additional harmonic components are required to global frequency and energy utilized by computer imple- 
simulate deformed wave profiles. Such deformations, as will mented Fourier spectral analysis. 
be shown later, are the direct consequence of nonlinear Furthermore, a computer implementing the invention, 
effects. Whenever the form of the data deviates from a pure e,g,, via executing a program in software, to decompose 
sine or cosine function, the Fourier spectrum will contain 5 physical signals into intrinsic mode functions with EMD and 

generate a Hilbert spectrum is also disclosed. Because of the harmonics. 
Furthermore, both nonstationarity and nonlinearity can lack of close form analytic expression of either the basis 

induce spurious harmonic components that cause unwanted functions and the final Hilbert spectrum; computer imple- 

Fourier spectrum. The consequence is incorrect interpreta- the overall method, 
tion of physical phenomenon due to the misleading energy- Still further, the invention may take the form of an article frequency distribution for nonlinear and nonstationary data of manufacture. More specifically, the article of manufacture representing the physical phenomenon. is a computer-usable medium, including a computer- According to the above background, the state of the art 

computer-readable code causes a computer to execute the analyzing nonlinear, nonstationary physical signals. Geo- inventive method. physical signals provide a good example of a class of signals 
in which this invention is applicable, parent application ser, Further scope of applicability of the present invention will 

of nonlinear, nonstationary geophysica~-signa~s which are inafter. However, it should be understood that the detailed 
very difficult to analyze with traditional computer imple- ' O  description and specific examples, while indicating pre- 

signals, tsunami signals, Ocean altitude and Ocean circulation illustration only, since various changes and modifications 
signals, The inventions presented herein and the parent within the spirit and scope of the invention will become 
application are particularly well-suited to processing such 25 apparent to those skilled in the art from this detailed descrip- 
geophysical signals with a computer. tion. 

Furthermore, all the mathematic expressions are used as 
a short hand to express the inventive ideas clearly and are 
not limitative of the claimed invention. 

energy and frequency smearing in the mentation of the inventive is an important part of 

does not provide a useful computer implemented tool for program 'Ode embodied therein wherein the 

No. 081872,582 filed Juri. 10, 1997 illustrates several types become apparent from the description given here- 

merited techniques including earthquake signals, water wave ferred embodiments of the invention, are given by way of 

SUMMARY OF THE INVENTION 
The invention employs a computer implemented Empiri- 

cal Mode Decomposition method which decomposes physi- 
cal signals representative of a physical phenomenon into 
components. These components are designated as Intrinsic 
Mode Functions (IMFs) and are indicative of intrinsic 
oscillatory modes in the physical phenomenon. 

BRIEF DESCRIPTION OF DRAWINGS 30 

The file of this patent contains at least one drawing 
executed in color, copies of this patent with color drawings 
will be provided by the Patent and Trademark Office upon 

Contrary to almost all the previous methods, this new 35 request and payment of the necessary fee, 
computer implemented method is intuitive, direct, a The present invention will become more fully understood 
posteriori, and adaptive, with the basis of the decomposition 
based on and derived from the physical signal. The bases so 
derived have no close analytic expressions, and they can 
only be numerically approximated in a specially pro- 4o invention, and wherein: 
grammed computer by utilizing the inventive methods dis- 
closed herein. 

More specifically, the general method of the invention 
includes two main components or steps to analyze the 
physical signal without suffering the problems associated 
with computer implemented Fourier analysis, namely inac- 
curate interpretation of the underlying physics caused in part 
by energy spreading and frequency smearing in the Fourier 
spectrum. 

Mode Decomposition (EMD) method, with which the data 

from the detailed description given hereinbelow and the 
accompanying drawings which are given by way of illus- 
tration only, and thus are not limitative of the present 

FIG. l(a) is a high-level flowchart describing the overall 
inventive method which may be implemented on the com- 
puter system shown in FIG, 2; 

FIG. l(b) is a high-level flowchart describing the local 
45 extrema Sifting Process which may be implemented on the 

computer system shown in FIG. 2; 
FIG. l(c) is a continuation of the high-level flowchart in 

FIG. l(b) describing the local extrema Sifting Process which 
may be implemented on the computer system shown in FIG. 
2; 

The first step is to process the data with the Empirical so 

are decomposed into a number of Intrinsic Mode Function 
(IMF) components. In this way, the signal will be expanded 

l(d) is a high-1eve1 flowchart describing the 
ture extrema Sifting Process which may be imp1emented On 

by using a basis that is adaptively derived from the signal 
itself. 
ne second step of the general method of the present 

invention is to apply the Hilbert Transform to the decom- 
posed IMF's and construct an energy-frequency-time in 2; 
distribution, designated as the Hilbert Spectrum, from which FIG. 2 is a high-level block diagram of a computer system 
occurrence of physical events at corresponding times (time 60 which may be programmed with the inventive methods with 
localities) will be preserved. There is also no close analytic the result being a special purpose computer; 
form for the Hilbert Spectrum. As explained below, the FIG. 3(a) shows wind speed data in the form of a graph 
invention avoids this problem by storing numerical approxi- plotting wind speed as a function of time for explaining the 
mations in the specially programmed computer by utilizing computer implemented Empirical Mode Decomposition 
the inventive method. 

The invention also utilizes instantaneous frequency and FIG. 3(b) is a graph illustrating the upper envelope, lower 
energy to analyze the physical phenomenon rather than the envelope, envelope mean and original wind speed data 

the computer system shown in 
FIG. l(e) is a continuation of the high-level flowchart in 

FIG. l(d) describing the curvature extrema Sifting Process 
which may be implemented on the computer system shown 

2; 
55 

65 method of the invention using local extrema; 
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which are utilized to explain the computer implemented 
Empirical Mode Decomposition method of the invention 
using local extrema; 

FIGS. 3(c)<e) are graphs of the first, second and third 
component signals h l ,  h l l ,  h21, respectively which are 
generated by the local extrema Sifting Process of the inven- 
tion; 

FIG. 3 0  is a graph of the first intrinsic mode function 
component which is generated by the local extrema Sifting 
Process of the invention; 

FIG. 3(g) is a graph of data with intermittency for 
illustrating an optional intermittency test of the invention; 

FIGS. 3(g)-(j) are graphs of the first, second, and third 
intrinsic mode functions when the local extrema Sifting 
Process is applied to the data of FIG. 3(g) without applying 
the intermittency test option; 

FIGS. 3(k)<m) are graphs of the first, second, and third 
intrinsic mode functions when the local extrema Sifting 
Process is applied to the data of. FIG. 3(g) which applies the 
intermittency test option; 

FIG. 4(a) is a graph of a first signal X1 which is for 
explaining the computer implemented Empirical Mode 
Decomposition method of the invention using curvature 
extrema; 

FIG. 4(b) is a graph of a second signal X2 which is for 
explaining the computer implemented Empirical Mode 
Decomposition method of the invention using curvature 
extrema; 

FIG. 4(c) is a graph of a signal X (the summation of 
signals X1 and X2) which is for explaining the computer 
implemented Empirical Mode Decomposition method of the 
invention using curvature extrema; 

FIG. 4 ( 4  is a graph of the curvature function derived 
from the signal X and illustrating extrema of the curvature 
function; 

FIG. 4(e) is a graph of the signal X (the summation of 
signals X1 and X2) illustrating curvature extrema corre- 
sponding to the extrema of the curvature function and local 
extrema of the signal X; 

FIGS. 5(a)<b) are graphs of the first and second intrinsic 
mode functions ( c l  and c2, respectively) when the local 
extrema Sifting Process is applied to the signal X of FIG. 

FIGS. 6(a)-(c) are graphs of the first, second, nd third 
intrinsic mode functions (cl ,  c2, and c3 espectively) when 
the curvature extrema Sifting Process is applied to the signal 
X of FIG. 4(c) and illustrate the advantages of this invention 
over the local extrema Sifting Process; 

FIG. 7 illustrates an axial velocity field measured at eight 
different radii in the wake of a body with a propeller for 
explaining the computer implemented Empirical Mode 
Decomposition method of the invention using curvature 
extrema; 

FIG. 8 illustrates a typical axial velocity measured at a 
fixed radius in the wake of a body with a propeller for 
explaining the computer implemented Empirical Mode 
Decomposition method of the invention using curvature 
extrema; 

FIGS. 9(a)-(e) are graphs of the first, second, third, fourth 
and fifth intrinsic mode functions (cl ,  c2, c3, c4 and c5 
respectively) when the local extrema Sifting Process is 
applied to the axial velocity signal FIG. 8; 

FIGS. lO(a)-(g) are graphs of the first, second, third, 
fourth, fifth, sixth an seventh intrinsic mode functions (cl ,  

4(c); 

6 
c2, c3, C4, c5, c6 and c7, respectively) when the curvature 
extrema Sifting Process is applied (with the intermittency 
test) to the axial velocity of FIG. 8(c) and illustrate the 
advantages of this invention over the local extrema Sifting 

FIG. l l (a)  is a reconstruction of the flow pattern gener- 
ated from the first to fourth intrinsic mode functions pro- 
duced by the local extrema Sifting Process; 

FIG. l l (b)  is a reconstruction of the flow pattern from the 
lo first to fourth intrinsic mode functions from the curvature 

extrema Sifting Process; 
FIG. 12 is a reconstruction of the flow pattern generated 

from intrinsic mode functions produced by the curvature 
extrema Sifting Process; 

FIG. 13(a) is a graph of a wind speed signal which is for 
explaining the computer implemented Empirical Mode 
Decomposition method of the invention; 

FIGS. 13(b)-(k) show the wind speed signal and the nine 
2o intrinsic mode functions which are extracted from the wind 

speed signal by the EMD method of the invention; 
FIGS. 14(a)-Q are a series of graphs illustrating the 

successive reconstruction of the original wind speed data 
from the intrinsic mode functions; 

FIG. 15(a) is the Hilbert Spectrum generated by the 
invention from the wind speed data of FIG. 13(a); 

FIG. 15(b) is the conventional Morlet Wavelet spectrum 
generated from the wind speed data of FIG. 13(a); 

FIG. 15(c) shows the Hilbert Spectrum of FIG. 6(a) after 
30 smoothing by a 15x15 weighted Gaussian smoothing filter; 

FIG. 16 is a comparison of the marginal Hilbert spectrum 
(solid line) and the fourier spectrum (dotted line) which 
were generated from the wind speed signal of FIG. 13(a); 

FIG. 17(a) is a graph illustrating the Degree of Station- 
arity and Degree of Statistical Stationarity which were 
generated from the wind speed signal of FIG. 4(a) with time 
averages of 10, 50, 100 and 300; 

FIGS. 17(b) and (c) are sections of the wind speed data 
40 that was used by the invention to produce the Degree of 

FIG. 18(a) shows the profile of a Stokes wave in deep 

FIG. 18(b) shows the IMF generated by the invention 

FIG. lS(c) is a conventional Morlet Wavelet spectrum of 

FIG. 1 8 ( 4  is the Hilbert Spectrum generated by the 

s Process; 

15 

25 

35 

Stationarity shown in FIG. 17(a); 

water which may be processed by the invention; 

45 from the Stokes wave shown in FIG. 9(a); 

the Stokes wave shown in FIG. 18(a); and 

invention from the Stokes wave shown in FIG. lS(a). so 
DETAILED DESCRIPTION OF PREFERRED 

EMBODIMENTS 

Before describing the computer implemented Empirical 
55 Mode Decomposition method in detail, the definition and 

physical meaning of intrinsic mode functions will be dis- 
cussed. 

Intrinsic Mode Function 

6o An Intrinsic Mode Function (IMF) is a function that 

(a) in the whole data set, the number of extrema and the 
number of zero-crossings must either be equal or differ 
at most by one, and 

(b) at any point, the mean value of upper envelope defined 
by the maxima and the lower envelope defined by the 
minima is zero. 

satisfies the following two conditions: 

65 
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The first condition shares some similarity to the tradi- In other words, the invention adopts the time lapse 
tional narrow band requirements for a stationary Gaussian between successive extrema as the definition of the time 
process. The second condition is a totally new idea. scale for the intrinsic oscillatory mode because it gives a 
Conceptually, the second condition modifies the classical much finer resolution of the oscillatory modes and because 
global requirement to a local one. Furthermore, the second s it can be applied to data with non-zero mean (either all 
condition has the desirable result that the instantaneous Positive or all negative values, without zero-crossings). A 
frequency will not have unwanted fluctuations induced by systematic way to extract the intrinsic mode functions is the 
asymmetric wave forms, Mathematically, the second condi- 
tion should ideally be ‘the local mean of the data being zero,> 

computer imp1emented 
method Or Sifting Process which is described as fOllOWS. 

Mode Decomposition 

FIG. l(a) illustrates the overall inventive method includ- For nonstationary data, the ‘local mean’ requires a ‘local i o  . ing the Sifting Process in step 120. As explained below, the 

define. Fortunately, the local time scale need not be defined Sifting Process of FIGS, l(b) and l(c) or the curvature 
to fulfil the second condition, as will be discussed below. extrema sifting process illustrated in FIGS, l(+(e), 

utilizes the local mean of the signal envelopes to force the 15 process or phenomenon is sensed by an appropriate 
local symmetry. in step 100. 

In the local extrema Sifting Process, the signal envelopes After sensing in step 100, the analog signal is converted 
are defined by the local maxima and the local minima. This to the digital domain suitable for computer processing in the 
is an approximation which avoids the definition of a local A/D conversion step 105. 
averaging time scale. With the physical approach and the 20 Next, an optional smoothing step 110 may be applied to 
approximation adopted here, the inventive method does not the physical signal. The optional smoothing step 110 may be 
always guarantee a perfect instantaneous frequency under all applied to smooth the signal with, for example, a weighted 
conditions. Nevertheless, it can be shown that, even under running average to remove excessive noise. 
the worst conditions, the instantaneous frequency so defined Thereafter, the Sifting Process (either the local extrema or 
is still consistent with the physics of the system being zs curvature extrema Sifting Processes) is applied in step 120 

time to compute the mean, which is impossib1e to Sifting Process of step 120 may either be the local extrema 

To these concepts to physical data, the invention First, as illustrated in FIG. l(a), the physical activity, 

studied and represents the system being studied much more 
accurately than previous techniques based on Fourier analy- 
sis. 

The term “Intrinsic Mode Function (IMF)” is adopted 
because it represents the oscillation mode embedded in the 
data. With this definition, the IMF in each cycle, defined by 
the zero-crossings, involves only one mode of oscillation. In 
other words, each IMF represents only one group of oscil- 
lation modes or time scales and no riding waves are allowed. 

Before presenting the inventive EMD method for decom- 

to sift the signal with the Empirical Mode Decomposition 
method and thereby extract the intrinsic mode function(s). 
The intrinsic mode functions can then be displayed as shown 
in step 130 and checked for orthogonality in step 135. 

Before continuing with the main flow in FIG. l(a), the 
details of the local extrema Sifting Process will be explained 
with reference to the high level flowchart in FIGS. l(b), 2(c) 
and the series of graphs showing illustrative results of the 
local extrema Sifting Process in FIGS. 3(u)-@. 

As shown in FIG. l(b), the digitized physical signal from 

30 

35 
posing the data into IMFs, a qualitative assessment of the step 105 is first windowed by framing the end points in step 
intrinsic oscillatory modes may be roughly determined by 107. Then, the local extrema Sifting Process begins at step 
simply examining the data by eye. From this examination, 200 by identifying local maximum values of the digitized, 
one can immediately identify the different scales directly in framed physical signal from step 107. FIG. 3(a) shows a 
two ways: the time lapse between the successive alternations 40 typical physical signal 10 which, in this example, represents 
of local maxima and minima and the time lapse between the 
successive zero-crossings reveals the different scales. The 
interlaced local extrema and zero-crossings give us compli- 
cated data: one undulation is riding on top of another, and 
they, in turn, are riding on still other undulations, and so on. 
Each of these undulations defines a characteristic scale or 
oscillation mode that is intrinsic to the data: hence, the term 
“Intrinsic Mode Function” is adopted. 

To reduce the data into the needed IMFs, the invention 
utilizes a computer implemented Empirical Mode Decom- 

wind speed spanning a time interval of one second. 
Before construction of the envelope in steps 210 and 230, 

optional intermittency tests (201,221) may be introduced to 
alleviate the alias associated with intermittence in the data 

Optional intermittency test 201 checks the distance 
between successive maxima to see if this distance between 
is within a pre-assigned value n times the shortest distance 
between waves. If no, then an intermittency exists and the 

SO method proceeds to step 202. If yes, then there is no 

45 that can cause mode mixing. 

position Method which is described below. intermittency and the upper envelope is constructed in step 
210 as further described below. 

Similarly optional intermittency test 221 checks the dis- 
tance between successive minima to see if this distance is 

ss within a pre-assigned value n times the shortest distance 
between waves. If no, then an intermittency exists and the 
method proceeds to step 222. If yes, then there is no 
intermittency and the upper envelope is constructed in step 
230 as further described below. 

An example of such intermittency is given in FIG, 3(g), 
in which small scale appear only intermittently, B~ 

resulting I M F ~  are given in FIGS, 3(b)-~), in which two 
drastically different time scales are present in the first IMF 

65 component as shown in FIG. 3(g). This mixing of modes 
breaks up the main wave train by the small intermittent 

Empirical Mode Decomposition (EMD): The 
Sifting Process 

First, the Empirical Mode Decomposition method which 
deals with both nonstationary and nonlinear data will be 
discussed. Then, the physical meaning of this decomposition 
will be presented. 

the intrinsic oscillatory modes by their characteristic time 

The decomposition is based on the following assumptions: 
a. the signal has at least two extrema: one maximum and 

b. the characteristic time scale is defined by the time lapse 

The essence of the EMD method is to identify empirically 6o 

in the data, and then decompose the data strict application of the local extrema Sifting Process, the 

one minimum, and 

between the extrema. oscillations. 
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If intermittency tests (201,222) are employed which uti- 
lize a preassigned value of n-times the shortest distance 
between waves, the resulting IMFs are shown in FIGS. 
3(k)-(m), in which the modes are clearly and physically 
separated. The effective step to eliminate the mode mixing 
is achieved by treating the local extrema which failed the 
intermittency test as local maxima and minima (steps 202 
and 212), respectively. Therefore, the upper and lower 
envelope will be identical as the original data reference line. 

These intermittency tests (201,221) and the further steps 
(202,222) are optional. By selecting an artificially large n 
value utilized in steps 201 and 221 to test for intermittency, 
the test will be effectively passed. Otherwise, the test can be 
bypassed at the initial selection of the program. 

Then, the method constructs an upper envelope 20 of the 
physical signal 10 in step 210. The upper envelope 20 is 
shown in FIG. 3(b) using a dot-dashed line. This upper 
envelope 20 is preferably constructed with a cubic spline 
that is fitted to the local maxima. 

Next, the local minimum values of the physical signal 10 
are identified in step 220. To complete the envelope, a lower 
envelope 30 is constructed from the local minimum values 
in step 230. The lower envelope is also shown in FIG. 3(b) 
using a dot-dash line. Like the upper envelope 20, the lower 
envelope 30 is preferably constructed with a cubic spline 
that is fitted to the local minima. 

The upper and lower envelopes 20,30 should encompass 
all the data within the physical signal 10. From the upper and 
lower envelopes 20, 30, an envelope mean 40 is the deter- 
mined in step 240. The envelope mean 40 is the mean value 
of the upper and lower envelopes 20,30. As can be seen in 
FIG. 3(b), the envelope mean 40 bisects the physical signal 
10 quite well. 

Then, the method generates the first component signal h, 
in step 250 by subtracting the envelope mean 40 from the 
physical signal 10. This computer implemented step may 
also be expressed as: 

X(t)-ml=hl. (1) 

Where the envelope mean 40 is m, and the physical signal 
is X(t). 

FIG. 3(c) shows the first component signal h,. Ideally, the 
first component signal h, should be an IMF, for the con- 
struction of h, described above seems to have made h, 
satisfy all the requirements of an IMF. In reality, however, a 
gentle hump that resides on a slope region of the data can 
become an extremum when the reference coordinate is 
changed from the original rectangular coordinate to a cur- 
vilinear coordinate. For example, the imperfection of the 
envelopes 20, 30 can be seen by observing the overshoots 
and undershoots at the 4.6 and 4.7 second points in FIG. 

An example of this amplification can be found in the 
gentle hump between the 4.5 and 4.6 second range in the 
data in FIG. 3(a). After the first round of sifting, the gentle 
hump becomes a local maximum at the same time location 
in the first component signal h, shown in FIG. 3(c). New 
extrema generated in this way actually recover the proper 
modes lost in the initial examination. Thus, the local extrema 
Sifting Process extracts important information from the 
signal which may be overlooked by traditional techniques. 
In fact, the Sifting Process can recover low amplitude riding 
waves, which may appear as gentle humps in the original 
signal, with repeated siftings. 

Still another complication is that the envelope mean 40 
may be different from the true local mean for nonlinear data. 
Consequently, some asymmetric wave forms can still exist 

3(b). 
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10 
no matter how many times the data are sifted. This must be 
accepted because, after all, the inventive method is an 
approximation as discussed before. 

Other than these theoretical difficulties, on the practical 
side, serious problems of the spline fitting can occur near the 
ends, where the cubic spline fitting can have large swings. 
Left by themselves, the end swings can eventually propagate 
inward and corrupt the whole data span especially in the low 
frequency components. A numerical method has been 
devised to eliminate the end effects details of which will be 
given later. Even with these problems, the Sifting Process 
can still extract the essential scales from the data. 

The Sifting Process serves two purposes: to eliminate 
riding waves and to make the wave profiles more symmetric. 
Toward these ends, the Sifting Process has to be repeated. 
Because only the first component signal h, has been gener- 
ated so far, the decision step 260, which tests successive 
component signals to see if they satisfy the definition of an 
IMF, is bypassed during the first iteration. 

Thus, step 265 is performed which treats the component 
signal as the physical signal in the next iteration. The next 
iteration is then performed by executing steps 20&250. In 
step 250, the second component signal h,, is generated by 
subtracting the envelope mean from the physical signal (in 
this iteration, the first component signal h, is treated as the 
physical signal). In more formal terms: 

hl-mll=hll. (2) 

FIG. 3 ( 4  shows the second component signal h,,. 
Although the second sifting shows great improvement in the 
signal with respect to the first sifting, there is still a local 
maximum below the zero line. After a third sifting, the result 
(third component signal h12) is shown in FIG. 3(4 .  Now all 
the local maxima are positive, and all the local minima are 
negative, but to ensure this configuration is stable, the local 
extrema Sifting Process should be further repeated. In 
general, the Sifting Process is repeated at least 3 more times 
and, in general, K times to produce hlk If no more new 
extrema are generated, then h,, is an IMF. In formal terms: 

hl(k-l)-mlk=hlk; (3) 

The resulting first IMF component is shown in FIG. 3 0  
after 9 siftings. The first IMF component of the physical 
signal may be designated as such in step 270 and stored in 
step 275 in memory 415: 

Ci=hik, (4) 

As mentioned above, all these manipulations are carried 
out numerically in a computer 410. There is not explicit 
close form analytic expression for any of the computer 
implemented steps. 

As described above, the process is indeed like sifting of 
the data by the computer 410 because it separates the finest 
(shortest time scale) local mode from the data first based 
only on the characteristic time scale. The Sifting Process, 
however, has two effects: 

a. to eliminate riding waves, and 
b. to ensure the envelopes generated by maxima and 

While the first condition is necessary for the instantaneous 
frequency to be meaningful (as discussed below), the second 
condition is also necessary in case the neighboring wave 
amplitudes have too large a disparity. 

Unfortunately, the effects of the second condition, when 
carried to the extreme, could obliterate the physically mean- 

minima are symmetric. 
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ingful amplitude fluctuations. Therefore, the Sifting Process 
should be applied with care, for carrying the process to an 
extreme could make the resulting IMF a pure frequency 
modulated signal of constant amplitude. 

To guarantee that the IMF component retains enough 
physical sense of both amplitude and frequency 
modulations, a stopping criterion is employed to stop the 
generation of the next IMF component. 

This stopping criterion is part of the computer imple- 
mented method and is shown as step 260 in FIG. l(c). Step 
260 is a decision step that decides whether the stopping 
criteria has been satisfied. The preferred stopping criteria 
determines whether three successive component signals 
satisfy the definition of IMF. If three successive component 
signals all satisfy the definition of IMF, then the Sifting 
Process has arrived at an IMF and should be stopped by 
proceeding to step 270. If not, step 260 starts another 
iteration by proceeding to step 265 as described above. 

Alternatively, another stopping criteria could be used that 
determines whether successive component signals are sub- 
stantially equal. If successive component signals are sub- 
stantially equal, then the Sifting Process has arrived at an 
IMF and should be stopped by proceeding to step 270. If not, 
step 260 starts another iteration by proceeding to step 265 as 
described above. 

Determining whether successive component signals are 
substantially equal in the alternative stopping criteria limits 
the size of the standard deviation, sd, computed from the two 
consecutive sifting results as follows: 

Avery rigorous and preferred value for sd is set between 
0.2 and 0.3. Of course, if faster processing is desired, then 
a trade-off such as a less rigorous value for sd may be used. 

Overall, the first IMF component c1 should contain the 
finest scale or the shortest period component of the physical 
signal 10. 

Before extracting the next IMF component, a test should 
be conducted to determine if the local extrema Sifting 
Process should stop. The stopping criteria is shown in Step 
300. Step 300 determines whether the component signal has 
more than 2 extrema. If not, all of the IMF’s have been 
extracted and the local extrema Sifting Process is stopped by 
proceeding to step 310. If so, then additional IMF’s may be 
extracted by continuing the process in step 320. 

Step 270 recognizes that an IMF component has been 
successfully generated by the Sifting Process by setting the 
component signal equal to an intrinsic mode function. More 
specifically, step 270 causes the computer 410 to store the 
component signal hik as an intrinsic mode function in 
memory 415. 

Then, the first IMF is separated from the physical signal 
in step 290 to generate a residual signal. In particular, a 
residual signal is generated by subtracting the intrinsic mode 
function from the physical signal. In formal terms: 

X(t)-cl=rl. (6) 

Because the residue, rl, still includes information of 
longer period components, it is treated as the new physical 
data and subjected to the same Sifting Process as described 
above. Step 320 performs this function by treating the 
residual signal as the physical signal in the next iteration. 
Thereafter, the next iteration is performed beginning with 
the execution of step 200 as described above. 

12 
The Sifting Process is analogous to a mechanical sieve, 

except it is implemented here in specially programmed 
computer and applied to any digital data numerically rather 
than mechanically. 

The Sifting Process is repeated for all the subsequent rj’s. 
This iterative procedure may be expressed as: 

(7) 

Step 300 stops the local extrema Sifting Process by 
lo proceeding to stop step 310 if the residual signal r, has more 

than 2 extrema. Otherwise, the method proceeds to step 320. 
In other words, Step 310 stops the local extrema Sifting 

Process if the residual signal r, is monotonically increasing 
or decreasing. This stopping criterion is based on the fact 
that an IMF cannot be extracted from a monotonic function. 
If r, is not monotonically increasingidecreasing, then a next 
iteration is performed beginning with step 320. 

Even for data with zero mean, the final residue still can be 
different from zero. For data with a trend, the final residue 

In summary, the Sifting Process decomposes the physical 
signal X(t) into a series of intrinsic mode functions and a 
residue which may be expressed as: 

s 

r1-c2=r2, . . . , r+-c,,=rn. 

2o should be that trend. 

In other words, the invention extracts a series of IMFs by 
30 sifting the physical signal with a computer implemented 

Empirical Mode Decomposition method. This IMF series 
cannot be generated or derived by any analytic method. It 
can only be extracted by the invention through a specially 
programmed computer through the Sifting Process (local 

35 extrema or curvature extrema type). 

Curvature Extrema Sifting Process 

The local extrema Sifting Process described above is, as 
4o the name implies, based on the local extrema of the physical 

signal. Although this local extrema Sifting Process is an 
excellent tool, it has difficulty analyzing a composite signal 
having a weak signal component that cannot itself generate 
local extrema in the composite signal. This weak signal 

45 component physically represents a separate time scale in the 
physical signal, but often becomes a so-called “hidden 
scale” that could not be reliably found by the local extrema 
Sifting Process. 

To permit resolving and analyzing such hidden scales, the 
improvements described herein apply a curvature extrema 
Sifting Process to amplify the hidden scales. The implemen- 
tation of this procedure is based on the following discussion 
of the characteristic time scale. 

When interpreting any set of physical data, the most 
55 relevant parameters are the time scale and the energy dis- 

tribution with respect to the time scale. Until now no clear 
definition of the local time scale has been presented. In 
Fourier analysis, time scale is defined as the periods of 
continuous and constant amplitude trigonometric compo- 

60 nents. As discussed in the parent application, such a defi- 
nition only provides a global averaged meaning to the 
energy and time scale. As such, the Fourier definitions are 
totally divorced from the reality of time variations of either 
the amplitude or the frequency. 

Statistical Definitions of the time scale have been made by 
Rice, S. 0. [Mathematical Analysis of Random Noise. Bell 
Sys. Tech. J. 23, 282-310 (1944); Power Spectrum and 

65 
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Correlation Functions, Bell Sys. Tech. J. 23, 310-332 
(1944); Mathematical Analysis of Random Noise, Bell Sys. 
Tech. J. 24, 46-108 (1945); Noise Through Nonlinear 
Devices, Bell Sys. Tech. J. 24, 109-156 (1945)l. In this 
series of papers, Rice computes the expected number of 
zero-crossings, and the extrema for any data under linear, 
stationary and normal distribution assumptions.  
Mathematically, the time scales are defined for any data x(t), 
as follows: the locations of t for x(t)=O is defined as the 
location of the zero-crossings. The time spacing betweens 
successive zero-crossings is the zero-crossing time scale. 
Furthermore: 

the locations o f t  for 

k(t)=O 

are defined as the locations of the extrema. The time spacing 
between successive extrema is the extrema time scale and is 
used in the local extrema Sifting Process as described above. 

Under the linear, stationary and normal distribution 
assumptions, the expected number of zero crossings No is 
given by: 

and the expected number of extrema Ne is given by: 

in which m, is the I-th moment of the Fourier spectrum. 
Although Rice’s definitions are rigorous, they only offer 

a global measure of the signal. Furthermore, the Rice 
definitions cannot be applied to nonlinear and/or nonstation- 
ary data. 

Because of the limitations set forth in Rice’s assumptions, 
his results have also created some paradoxes: in may data 
sets, the number of the expected extrema computed from the 
above formula becomes unbounded. This is because the 
Fourier power spectra usually have asymptotic power law 
forms. For example, if the spectrum has a -3 power law 
spectrum, the m2 is unbounded. For white noise or a delta 
functions, the spectrum is white and the zero crossing is 
undefined. Because most data sets are assumed to be linear 
and stationary, the question arises as to why one cannot 
apply Rice’s formula. For example, ocean wave data has an 
asymptotic frequency spectrum which has a power law 
between -4 and -5. Then, according to the above formula, 
the expected number of extrema Ne is unbounded. Yet, one 
can certainly count the extrema without any difficulty. This 
dilemma, however, has not alerted investigators to question 
Rice’s formulae and the assumptions involved, but it has led 
most to reject any formula that involves moments higher 
than the 4th. Such an approach limited the past statistical 
measure of time scale to the computation of zero-crossings 
which is too crude to be of any real use. 

The spacing of extrema does offer a measure of the time 
scale and can be used to measure wide band data with 
multiple riding waves. Refined as the extrema criterion is, it 
still lacks precision sometimes. By examining the data in 
closer detail, it can be found that the extrema spacing can 
miss some subtle time scale variations especially when a 
weak signal oscillation is overwhelmed by a larger oscilla- 
tion. 

To remedy this imprecision, the curvature extrema Sifting 
Process was invented. To account for the weak signal or 

S 

10 

1s 

20 

2s 

30 

3s 

40 

4s 

so 

5s 

60 

65 

hidden scale, this invention introduces another type of time 
scale based on the variation of curvature. In this regard, a 
conventional curvature function 

x / (1+43 /2  

is utilized by the invention to introduce a curvature based 
time scale and curvature extrema Sifting Process. In terms of 
mechanics, this conventional curvature function is a mea- 
sure of weighted acceleration: any change of sign in curva- 
ture in displacement time series indicates a change of sign in 
the force. As such, the curvature variation indeed has strong 
dynamic significance. As described above, the local extrema 
statistics has encountered difficulties already. If applied to 
the curvature function, the expected number of extrema in 
curvature would involve the 8th moment of the spectrum 
from the data. Fortunately, this difficulty is an artifact and 
the consequence of the linear and stationary assumptions 
invoked. One certainly can compute the curvature and its 
extrema, then count them. Consequently, the failure of the 
Rice model is another indication of the falsehood of the 
commonly invoked linearity and stationarity assumptions. 

According to the invention, there are now three ways to 
measure the time spans: between successive zero-crossings, 
between successive extrema, and between successive cur- 
vature extrema. The last measure based on curvature 
extrema is newly introduced in this application and will be 
fully described in relation to the flowcharts of FIGS. l ( 4 -  
(e) below. 

The curvature extrema Sifting Process is based on the 
local extrema Sifting Process described in relation to FIGS. 
l(b)-(c) above. The basic difference is the method of 
determining extrema for the Sifting Process. 

More specifically, the curvature extrema Sifting Process 
begins in FIG. l(d) with the digitized physical signal from 
step 105 (FIG. l(a)). The frame end points step 107 
described above may then be applied to the physical signal. 

Then, step 500 computes the curvature function of the 
physical signal by applying the curvature equation above. 
Once the curvature function is computed, the invention finds 
extrema in the curvature function (step 510). 

Step 520 then identifies corresponding curvature extrema 
corresponding to extrema values in the curvature function. 
Step 520 may be performed by recording the time at which 
each extrema in the curvature function occurs then finding 
corresponding data points in the physical data at those same 
time instances. 

Step 530 then identifies local extrema in the physical data 
in a manner similar to steps 200 and 220 in the local extrema 
Sifting Process of FIG. l(b). 

The local extrema and the curvature extrema are then 
combined to form a total set of extrema in step 540. 

The optional intermittency test (steps 550 and 555) may 
then be applied to the total set of extrema. This intermittency 
test is equivalent to the intermittency test described above 
(steps 201, 202, 221 and 222). 

Then the upper and lower envelopes may be constructed 
in step 560 based on the total set of extrema. Furthermore, 
an envelope mean is calculated by step 570. These steps are 
essentially the same as the local extrema Sifting Process 
with the difference being the set of extrema utilized to 
construct the envelopes and envelope mean. Similarly, 
remainder of the Sifting Process is nearly identical as 
indicated by the like reference numerals applied in FIG. 

The steps that recursively and iteratively apply the cur- 
vature extrema Sifting Process differ from the local extrema 
Sifting Process. Namely, the recursion executed by step 265 

l(e). 
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loops back to step 580 (FIGS. l(d)<e)) in the curvature 
extrema Sifting Process which identifies the local extrema in 
the physical signal. Furthermore, the iteration executed by 
step 320 loops back to step 500, described above, which 
begins the identification of curvature extrema. 

In this way, the invention utilizes (1) local extrema for the 
component signal that is generated at each recursion of the 
curvature extrema Sifting Process and which becomes the 
physical signal during the next recursion and (2) curvature 
extrema and local extrema for the residual signal that is 
generated at each iteration of the curvature extrema Sifting 
Process and which becomes the physical signal during the 
next iteration. 

Examples of Curvature Extrema Sifting Process 

The first example is a mathematical model in which a low 
frequency strong signal X1 (FIG. 4(a) is added to a high 
frequency weak signal X2 (FIG. 4(b)) having an amplitude 
of only 2% of strong signal X1 to generate a composite 
signal X (FIG. 4(c)). 

FIG. 4 ( 4  illustrates the curvature function of composite 
signal X generated by step 500. FIG. 4(e) shows the com- 
posite signal X with both the local extrema and curvature 
extrema. From the total set of extrema, the upper and lower 
envelopes may be constructed in a manner similar to that 
shown in FIG. 3(b). 

Because of the small amplitude of X2 relative to X1, the 
weak signal X2 cannot generate local extrema in the com- 
posite signal X (see FIG. 4(c)). Therefore, the local extrema 
Sifting Process only produces two Intrinsic Mode Functions 
c l  and c2 shown in FIGS. 5(a)-(b), respectively. Actually, 
there is only one IMF c l  which corresponds to the strong 
signal X1 and the second IMF c2 is essentially zero. Thus, 
the local extrema Sifting Process fails to resolve the second 
IMF corresponding to the weak signal X2. 

In contrast, the curvature extrema Sifting Process (with 
the optional intermittency test) is able to resolve both signals 
X1 and X2 by generating two meaningful IMF’s c l  and c2 
shown in FIGS. 6(a)-(b). A third IMF c3 is also generated 
but this is a residual error (FIG. 6(c)) that has such a small 
amplitude, on the order of 0 (lo-’), as to be negligible. 

Before going further, a few words to differentiate the 
intermittency and curvature siftings are necessary. Both 
methods are designed to take certain anomalies out of the 
data. For intermittency sifting to work, the signals have to 
have waves in which the extrema will show-up. In other 
words, the signal strength has to be strong. For curvature 
sifting to work, the signal strength does not have to be 
strong. Once the curvature computation reveals the hidden 
scales, as in FIGS. 4 ( 4  and 4(e), the intermittency sifting 
may have to be invoked to separate this scale from that of the 
underlying longer waves. In summary, the intermittency and 
curvature are separate sifting options, which can be used 
separately or in conjunction to sort out signal anomalies. 

FIG. 7 provides a real fluid mechanics data set that further 
illustrates the advantages of the curvature extrema Sifting 
Process. The data set shown in FIG. 7 represents the axial 
velocity field in the wake of body with a propeller measured 
at eight different radii. The composite velocity field is shown 
in FIG. 7. FIG. 8 is a graph derived from FIG. 7 showing 
propeller axial velocity for a fixed radius against angle 
(degrees). 

Applying the local extrema Sifting Process to the physical 
data set of FIG. 8 results in only five IMF’s cl-c5 shown in 
FIGS. 9(a)<e), respectively. The IMF component c2 clearly 
contains additional modes, as suggested by the visible 
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variation of the data line. Since the sub-modes are all weak, 
it is impossible to extract them from the data by applying the 
local extrema Sifting Process. 

In contrast, applying the curvature extrema Sifting Pro- 
s cess to the physical data set of FIG. 8 results in seven IMF’s 

cl-c7 shown in FIGS. 10(a)-(g). The low frequency com- 
ponents are about the same as those generated by the local 
extrema Sifting Process. The differences are the additional 
IMF’s c2 and c3. One of the additional modes, c3, contains 
substantial amounts of energy. It contains 12 waves; 
therefore, it represents 12 modes. Furthermore, mode four is 
much cleaner in the curvature extrema Sifting (IMF c4 in 
FIG. l O ( 4 )  than mode four in the local extrema Sifting 
Process (IMF c2 in FIG. 9(b)). 

To further confirm the validity and accuracy of the cur- 
vature extrema Sifting Process, the flow pattern recon- 
structed from the fourth mode from both Sifting Processes 
(local extrema and curvature extrema) are shown in FIGS. 
ll(u)-(b), respectively. Overall, the reconstructions are very 

2o similar. On detailed examination, one can find the local 
extrema based sifting result in FIG. l l (a)  is more irregular 
and asymmetric that the curvature extrema based sifting 
reconstruction shown in FIG. ll(b). 

This indicates that the curvature extrema Sifting Process 
2s indeed can produce a clearer and purer mode than the local 

extrema Sifting Process. FIG. 12 illustrates the flow pattern 
of the additional modes (c3 of the curvature extrema Sifting 
Process shown in FIG. lO(c)). Thus, the curvature extrema 
Sifting Process generates a more detailed result, in this and 

The above examples illustrate the value of the curvature 
extrema Sifting Process. In general, the intermittency test 
(steps 55&555) should be applied. Moreover, the curvature 
extrema Sifting Process usually generates more IMF’s than 

3s the local extrema. Sifting Process. Furthermore, the curva- 
ture extrema Sifting Process should be monitored carefully 
especially when the signal to noise ratio of the physical 
signal is low which could result in noise corruption and false 
readings. 

As a general guide, the local extrema Sifting Process 
should be used first. If problems are detected in the results, 
the curvature extrema Sifting Process should be applied. 

Computer for Implementing Inventive Method 
A computer suitable for programming with the inventive 

method is diagrammatically shown in the block diagram of 
FIG. 2. The computer 410 is preferably part of a computer 
system 400. To allow human interaction with the computer 
410, the computer system includes a keyboard 430 and 

so mouse 435. The computer programmed with the inventive 
method is analogous to a mechanical sieve: it separates 
digital data into series of IMF’s according to their time 
scales in a manner analogous to a mechanical sieve which 
separates aggregated sand according to their physical size. 

Because the invention is applied to analyze physical 
signals, the computer system 400 also includes an input 
device 440, sensor 442 and/or probe 444 which are used to 
sample a physical phenomenon and generate physical signal 
representative thereof. More particular examples of such 

60 inputs (440,442 and 444) are described in relation to FIGS. 

To output the results of the computer implemented 
method, the computer system 400 also includes a display 
450 such as a cathode ray tube or flat panel display, printer 

65 460 and output device 470. Each of these outputs (450,460, 
470) should have the capability to generate color outputs 
because, for example, the Hilbert Spectrum may be in color. 

1s 
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Furthermore, the computer system 400 also includes a 
mass storage device 420. The mass storage device 420 may 
be a hard disk, floppy disc, optical disc, etc. The mass 
storage device 420 may be used to store a computer program 
which performs the invention when loaded into the com- 
puter 410. As an alternative, the input device 440 may be a 
network connection or off-line storage which supplies the 
computer program to the computer 410. 

More particularly, the computer program embodiment of 
the invention may be loaded from the mass storage device 
420 into the internal memory 415 of the computer 410. The 
result is that the general purpose computer 410 is trans- 
formed into a special purpose machine that implements the 
invention. 

Even more particularly, each step of inventive method 
will transform at least a portion of the general purpose 
computer 410 into a special purpose computer module 
implementing that step. For example, when the sifting step 
120 is implemented on the computer 410, the result is a 
computer implemented sifting apparatus (sifter) that per- 
forms the sifting functions of sifting step 120. 

Other embodiments of the invention include firmware 
embodiments and hardware embodiments wherein the 
inventive method is programmed into firmware (such as 
EPROM, PROM or PLA) or wholly constructed with hard- 
ware components. Constructing such firmware and hardware 
embodiments of the invention would be a routine matter to 
one of ordinary skill using known techniques. 

Article of Manufacture 

Still further, the invention disclosed herein may take the 
form of an article of manufacture. More specifically, the 
article of manufacture is a computer-usable medium, includ- 
ing a computer-readable program code embodied therein 
wherein the computer-readable code causes computer 410 to 
execute the inventive method. 

A computer diskette such as disc 480 in FIG. 2 is an 
example of such a computer-usable medium. When the disc 
480 is loaded into the mass storage device 480, the 
computer-readable program code stored therein is trans- 
ferred into the computer 410. In this way, the computer 410 
may be instructed to perform the inventive methods dis- 
closed herein. 

Illustration of Local Extrema Sifting Process 

To further illustrate the Local Extrema Sifting. Process, 
consider FIG. 13(a) which shows a physical signal repre- 
senting wind data collected in a laboratory wind-wave 
tunnel with a high frequency response Pitot tube located 10 
cm above the mean water level. The wind speed was 
recorded under the condition of an initial onset of water 
waves from a calm surface. Clearly, the physical signal is 
quite complicated with many local extrema but no zero- 
crossings such that the time series represents all positive 
numbers. 

Although the mean can be treated as a zero reference, 
defining it is difficult, for the whole process is transient. This 
example illustrates the advantage of adopting the successive 
extrema for defining the time scale and the difficulties of 
dealing with nonstationary data. In fact, a physically mean- 
ingful mean for such data is impossible to define using 
standard methods, the EMD eliminates this difficulty. 

FIG. 13(b) shows the wind speed signal of FIG. 13(a) on 
a different scale for comparison purposes. FIGS. 13(c)-(k) 
show all the IMFs obtained from repeatedly sifting the wind 
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speed signal in FIG. 13(b). The efficiency of the invention is 
also apparent: the local extrema Sifting Process produces a 
total of 9 intrinsic mode function. components while the 
Fourier transform needs components which number as many 

s as half of the total number of points in a given window to 
represent the wind data with the same accuracy. 

The separation of the wind speed data into locally non- 
overlapping time scale components is clear from FIGS. 
13(c)-(k). In some components, such as c1 and c3, the 

10 signals are intermittent, then the neighboring components 
might include oscillations of the same scale, but signals of 
the same time scale would never occur at the same locations 
in two different IMF components. 

The components of the EMD are usually physical, for the 
characteristic scales are physically meaningful. 

To further confirm the validity and completeness of the 
Sifting Process, the wind speed signal can be reconstructed 
from the IMF components. FIGS. 14(a)<i) show this recon- 

2o struction process starting from the longest period IMF to the 
shortest period IMF in sequence. For example, FIG. 14(a) 
shows the wind speed signal and the longest period 
component, c9, which is actually the residue trend, not an 
IMF. 

By itself, the fitting of the trend is quite impressive, and 
it is very physical: the gradual decrease of the mean wind 
speed indicates the lack of drag from the calm surface 
initially and the increasing of drag after the generation of 
wind waves. As the mean wind speed deceases, the ampli- 

30 tude of the fluctuation increases, another indication of wind- 
wave interactions. 

By adding the next longest period component, cs, the 
trend of the sum, c9+cs, takes a remarkable turn, and the 
fitting to the wind speed signal looks greatly improved as 

35 shown in FIG. 14(b). Successively adding more components 
with increasing frequency results in the series of FIGS. 
14(c)-(i). The gradual change from the monotonic trend to 
the final reconstruction is illustrative by itself. By the time 
the sum of IMF components reaches c3 in FIG. 14 (g) 

40 essentially all the energy contained in the wind speed signal 
is recovered. The components with the highest frequencies 
add little more energy, but they make the data look more 
complicated. In fact, the highest frequency component is 
probably not physical, for the digitizing rate of the Pitot tube 

45 is too slow to capture the high frequency variations. As a 
result, the data are jagged artificially by the digitizing steps 
at this frequency. The difference between the original data 
and the re-constituted set from the IMF’s is given in FIG. 
14Q. The magnitude of the difference is lo-’’, which is the 

2s 

50 limit of the computer 410. 

The Hilbert Spectrum 

Having obtained the Intrinsic Mode Function components 
55 (through either the local extrema or curvature extrema 

Sifting Processes), the next step in the computer imple- 
mented method is to apply the Hilbert Transform to each 
component and generate the Hilbert Spectrum as shown in 
step 140 in FIG. l(a). 

Abrief tutorial on the Hilbert transform with emphasis on 
its physical interpretation can be found in Bendat and 
Piersol, 1986, “Random Data: Analysis and Measurement 
Procedures”, 2nd Ed., John Wiley & Sons, New York, N.Y. 
Essentially, the Hilbert transform is the convolution of X(t) 

65 with lit. This convolution emphasizes the local properties of 
X(t). In more formal terms, given a time series X(t), the 
Hilbert Transform Y(t) can be expressed as 

60 
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where P indicates the Cauchy principal value. 
With this definition, X(t) and Y(t) form a complex con- 

jugate pair. This complex conjugate pair Z(t) may be 
expressed as: 

z(t)=x(t)+iY(t)=a(t)e'9(*), (14) 

in which 

After performing the Hilbert transform to each IMF 
component, we can express the time series data X(t) in the 
following form: 

In Equation (17), the residue, r,, is purposefully omitted, 
for it is either a monotonic function, or a constant. Although 
the Hilbert transform can treat the monotonic trend as part 
of a longer oscillation, the energy involved in the residual 
trend could be overpowering. In consideration of the uncer- 
tainty of the longer trend, and in the interest of information 
contained in the other low energy and higher frequency 
components, the final non-IMF component should be left 
out. It, however, could be included, if physical consider- 
ations justify its inclusion. 

Note that Equation (17) gives both amplitude and fre- 
quency of each component as functions of time. It should be 
pointed out that no analytical method can generate the 
expression in Equation (17). Instead, all the components 
may be extracted only by a specially programmed computer 
applying the inventive Sifting Process and the Hilbert trans- 
form. The variable amplitude and frequency have not only 
greatly improved the efficiency of the expansion, but also 
enabled the expansion to accommodate nonstationary data. 
With IMF expansion, the amplitude and the frequency 
modulations are also clearly separated. 

Equation (17) also enables the computer implemented 
method to represent the amplitude and frequency as func- 
tions of time in a three-dimensional plot, in which the 
amplitude can be contoured on the frequency-time plane. 
This frequency-time distribution of the amplitude is desig- 
nated as the Hilbert Amplitude Spectrum, H(o, t), or simply 
Hilbert Spectrum. Thus we have: 

In which H(o, t) is the Hilbert spectrum of the frequency 
(0) and time (t) and aj(t) is the j-th component of the IMF. 
In the presentation, the amplitude (with or without 
smoothing) can be expressed in color maps, black-grey 
maps, or contour maps. Color maps, however, greatly 
increase the operator's ability to fully analyze the spectrum. 
In some cases, a color map will permit the operator to 

discern relationships and trends that would not be apparent 
in black-grey maps thereby making a color display a nec- 
essary component in some cases. 

If amplitude squared is more desirable to represent energy 
5 density, then the squared values of amplitude can be sub- 

stituted to produce a Hilbert Energy Spectrum just as well. 
Various forms of Hilbert spectra presentations can be 

generated by the computer in the display step 190: both color 
coded maps and contour maps may be employed to present 
the Hilbert spectra with or without smoothing. The Hilbert 
Spectrum in the. color map format for the wind data is 
shown in FIG. 15(a). The Hilbert spectrum in FIG. 15(a) 
gives a very different appearance when compared with the 
corresponding Wavelet spectrum shown in FIG. 15(b). 
While the Hilbert Spectrum in FIG. 15(a) appears only in the 
skeleton form with emphasis on the frequency variations of 
each IMF, the Wavelet analysis result gives a smoothed 
energy contour map with a rich. distribution of higher 
harmonics. 

If a more continuous form of the Hilbert Spectrum is 
20 preferred, a smoothing method can be optionally. applied in 

step 155. The first type of a smoothing. method which may 
be used in the invention is a weighted spatial filter which 
averages over a range of cells. For example, a 15 by 15 
weighted Gaussian filter may be employed in step 155 as is 

25 known in the art to smooth this data. FIG. 15(c) shows the 
result of applying the 15 by 15 weighted Gaussian filter. 

Although smoothing step 155 degrades both frequency 
and time resolutions, the energy density and its trends of 
evolution as functions of frequency and time are easier to 

30 identify. In general, if more quantitative results are desired, 
the original skeleton presentation is better. If more qualita- 
tive results are desired, the smoothed presentation is better. 
As a guide, the first look of the data is better in the smoothed 
format. 

The alternative of the spatial smoothing is to select a 
lower frequency resolution and leave the time axis undis- 
turbed. The advantages of this approach are the preservation 
of events' locations and a more continuous frequency varia- 
tion. Furthermore, a lower frequency resolution saves com- 

To optimize such computation time, the optimal fre- 
quency resolution in the Hilbert spectrum can be computed 
as follows. Let the total data length be T, and the digitizing 
rate of the sensor be At. Then, the lowest frequency that can 

45 be extracted from the data is 1T /Hz, which is also the limit 
of frequency resolution for the data. The highest frequency 
that can be extracted from the data is l/(n At) Hz, in which 
n represents the minimum number of At needed to define the 
frequency accurately. 

Because the Hilbert transform defines instantaneous fre- 
quency by differentiation, more data points are needed to 
define an oscillation. The absolute minimum number of data 
points is five for a whole sine wave. Although a whole sine 
wave is not needed to define its frequency, many points 

55 within any part of the wave are needed to find a stable 
derivative. Therefore, the maximum number of the fre- 
quency cells, N, of the Hilbert spectrum should be 

10 

35 

40 putation time for the computer implemented method. 

so 

- 
T 

In order to make the derivative stable, the data is averaged 

To illustrate, consider the wind data of FIG. 13(a) which 
was digitized at a rate of 0.01 seconds and has a total length 

65 over three adjacent cell values for the final presentation. 
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of 30 seconds. Therefore, the highest frequency that can be 
extracted is 25 Hz. The total cell size could be 600, but they 
have been averaged to 200 in FIG. 15(a). 

Marginal Spectrum 

The marginal spectrum offers a measure of total ampli- 
tude (or energy) contribution from each frequency value. In 
other words, the marginal spectrum represents the cumu- 
lated amplitude over the entire data span. 

As shown in FIG. l(a), the marginal spectrum is calcu- 
lated by the computer implemented method in step 145 after 
applying the Hilbert Transform in step 140. The marginal 
spectrum is the Hilbert Spectrum integrated through all time. 
In this simplification, the time coordinate is lost as in the 
Fourier spectral analysis, which leaves a summary of the 
frequency content of the event. Therefore, this presentation 
should only be used when the phenomena being analyzed is 
stationary. Formally, the marginal spectrum h(o) is defined 
as: 

Because there is no analytic expression for H(o, t), the 
integration can only be performed in a computer as a sum. 

An example of a marginal spectrum is shown in FIG. 16. 
More particularly, FIG. 16 shows the corresponding mar- 
ginal spectrum of the Hilbert Spectrum given in FIG. 15(a). 

The frequency in either H(o, t) or h(o) has a totally 
different meaning from results generated by applying Fou- 
rier spectral analysis. In the Fourier representation, the 
existence of energy at a frequency, o, means a component of 
a sine or a cosine wave persisted through the time span of the 
data. 

In contrast, the existence of energy at the frequency, o, 
means only that, in the whole time span of the data, there is 
a higher likelihood for such a wave to have appeared locally. 
In fact, the Hilbert Spectrum is a weighted non-normalized 
joint amplitude-frequency-time distribution. The weight 
assigned to each time-frequency cell is the local amplitude. 
Consequently, the frequency in the marginal spectrum indi- 
cates only the likelihood of an oscillation with such a 
frequency exists. The exact occurrence time of that oscilla- 
tion is given in the full Hilbert spectrum. 

To illustrate this difference, the corresponding Fourier 
Spectrum of the wind speed signal is also given in FIG. 16 
using a dotted line. As can be observed, there is little 
similarity between the Fourier spectrum and the marginal 
spectrum. While the Fourier spectrum is dominated by the 
DC term because of the non-zero mean wind speed, the 
marginal spectrum gives a nearly continuous distribution of 
energy. The Fourier spectrum is meaningless physically, 
because the data is not stationary. In contrast, the marginal 
spectrum provides a physically meaningful interpretation of 
the wind speed signal. 

Instantaneous Frequency 

There are two types of frequency modulation: the inter- 
wave and the intra-wave modulations. The first type is 
familiar because the frequency of the oscillation gradually 
changes as the waves disperse. Technically, in dispersive 
waves, the frequency is also changing within one wave, but 
that is generally not emphasized either for convenience, or 
for lack of a more precise frequency definition. The second 
type is less familiar, but it is also a common phenomenon: 
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if the frequency changes from time to time within a wave its 
profile can no longer be a simple sine or cosine function. 
Therefore, any wave profile deformation from the simple 
sinusoidal form implies intra-wave frequency modulation. 

In the past, such phenomena were treated as harmonic 
distortions. Nevertheless, such deformations should be 
viewed as intra-wave frequency modulation because the 
intra-wave frequency modulation is a more physically mean- 
ingful term. 

In order to understand these frequency modulations, the 
invention applies a unique definition of instantaneous fre- 
quency. This definition stems from the EMD method and 
requires the signal to be reduced into IMF components. After 
extracting the IMF components, an instantaneous frequency 
value can be assigned to each IMF component.  
Consequently, for complicated data in which more than one 
IMF may be extracted by EMD, there can be more than one 
instantaneous frequency at a time locally. 

With the Hilbert Transform, a unique definition of instan- 
taneous frequency may be applied by the computer imple- 
mented method as illustrated by step 160. Step 160 calcu- 
lates the instantaneous frequency which is formally defined 
as follows: 

5 

lo 

2o 

By calculating instantaneous frequency, step 160 of the 
30 invention permits the frequency value to be defined for 

every point with the value changing from point to point. 
The validity and the implications of the instantaneous 

frequency for nonlinear signals may be analyzed by exam- 
ining an idealized Stokes wave in deep water. The wave 
profile of such a Stokeian wave is modeled by 3s 

X(t)=cos(wt+t sin wt) (22) 

Therefore, it is a intra-wave frequency modulated signal. 

X(t)=(l+t/2)cos W t + t  cos 2wt+ (23) 

The wave profile is also shown in FIG. lS(a). Because the 
intra-wave frequency can only be approximated by harmon- 

4s ics in Fourier analysis, we can still have the same profile, but 
not the same frequency content. The wave form shows 
sharpened crests and rounded off troughs, which make the 
crests and troughs asymmetric with respect to the mean 
surface. 

Processed with computer implemented EMD, this data 
yields only one IMF component as shown in FIG. 18(b), 
with a constant offset component (not shown). Although this 
wave has only one characteristic scale or IMF, the Wavelet 
analysis result shown in FIG. 18(c). FIG. lS(c) has many 

ss harmonics with two visible bands of energy corresponding 
to the highest order of approximations of the possible 
harmonics. 

In contrast, the IMF data can be processed by the inven- 
tive method to give the Hilbert Spectrum shown in FIG. 

60 18(d). The Hilbert Spectrum has only one frequency band 
centered around 0.03 Hz, the fundamental frequency of the 
wave train, but there is an intra-wave frequency modulation 
with a magnitude range of 0.02 to 0.04 Hz as the model truly 
represents. This intra-wave frequency modulation has been 

65 totally ignored in the past, for the traditional definition of 
frequency is based on the reciprocal of periodicity and 
Fourier Analysis. 

40 Approximately, equation (18) can be shown to be: 

SO 
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Instantaneous Energy Density 

Furthermore, the computer implemented method may also 
calculate the instantaneous energy density in step 150. The 
instantaneous energy density, IE, is defined as: 

Still further, this instantaneous energy density depends on 
time. Therefore, the IE can be used to check energy fluc- 
tuations. 

Stationarity 

To quantitatively measure the stationarity of a physical 
signal, the invention utilizes step 165 to calculate various 
stationarity measurements. Before introducing the preferred 
stationarity measurements, a brief review of conventional 
stationarity measurements is presented. 

The classic definitions of stationarity are dichotomous: a 
process is either stationary or nonstationary. This crude 
definition is only qualitative in nature. Such definitions are 
both overly stringent and useless at the same time: few data 
sets can satisfy the rigor of these definitions; consequently, 
no one even bothers using them to check stationarity of the 
signal. As a result, data as nonstationary as earthquake and 
seismological signals are routinely treated as stationary (see, 
for example, Hu, et al., 1996., Earthquake Engineering. 
Chapman & Hall, London). 

Sometimes, for some obviously nonstationary data, two 
less stringent definitions are invoked: piece-wise stationary 
and asymptotically stationary. These definitions are still 
dichotomous. 

To quantify the statistical processes further, an index is 
needed to give a quantitative measure of how far the process 
deviates from stationarity. A prerequisite for such a defini- 
tion is a method to present the data in the frequency-time 
space. 

With the energy-frequency-time distribution (Hilbert 
Spectrum) described above, stationarity of the physical 
signal may be quantitatively determined. Therefore, the 
invention introduces an index of stationarity as follows and 
calculates a Degree of Stationarity in step 165. 

The first step in defining the Degree of Stationarity, 
DS(o), is to find the mean marginal spectrum, n(o), as 

.(W)- l/Th(W) (25) 

Then, the Degree of Stationarity may be defined as: 

Again, the value of DS(o) can be determined by the com- 
puter. Therefore, the specialized computer 410 according to 
the invention can be treated as a stationary meter. 

For a stationary process, the Hilbert spectrum cannot be 
a function of time. Then, the Hilbert Spectrum will consist 
of only horizontal contour lines and DS(o) will then be 
identically zero. Only under this condition will the marginal 
spectrum be identical to the Fourier spectrum, then the 
Fourier spectrum will also make physical sense. On the other 
hand, if the Hilbert spectrum depends on time, the index will 
not be zero, then the Fourier spectrum will cease to make 
physical sense. 

In general, the higher the index value, the more nonsta- 
tionary is the process. The DS for the wind data is shown in 
FIG. 17(a). As the index shows, the data are highly nonsta- 
tionary especially for the high frequency components. 

Eq. (26) defines the stationarity as a function of frequency. 
This is necessary because certain frequency components can 
be nonstationary while other components remain stationary. 
An example is sporadic riding wind-generated waves on 
otherwise uniform swell: the low frequency swell compo- 
nent is stationary, while the high frequency wind waves are 
intermittent, and hence nonstationary. 

The degree of stationarity can also be a function of time 
implicitly, for the definition depends on the time length of 
integration in Eq. (26). Therefore, a process can be piece- 
wise stationary. On the other hand, for a singular outburst in 
an otherwise stationary signal, the process can be regarded 
as almost stationary if a long time integral is performed, but 
nonstationary the integral only encompasses the immediate 
neighborhood of the outburst. 

Stationarity can be a complicated property of the process: 
20 for any signal shorter than a typical long wave period, the 

process may look transient. Yet as the signal length gets 
longer, the process can have many longer wave periods and 
becomes stationary. On the other hand, the signal can be 
locally stationary while in a long time sense nonstationary. 

25 An index is therefore not only useful but also necessary to 
quantify the process and give a measure of the stationarity. 

The invention also calculates a Degree of Statistic Sta- 
tionarity in step 165. The degree of stationarity defined in 
Eq. (26) can be modified slightly to include statistically 

30 stationary signals, for which the Degree of Statistic 
Stationarity, DSS(o, AT), is defined as 

5 

10 . 

where the over-line indicates averaging over a definite but 
shorter time span, AT, than the overall time duration of the 
data, T. For periodic motions, the AT can be the period. Such 

40 a time scale, however, is hard to define precisely for high 
dimensional, nonstationary dynamic systems. 

Even with this difficulty, the definition for DSS could be 
more useful in characterizing random variables from natural 
phenomena. Furthermore, DSS will depend on both fre- 

45 quency and the averaging time span. For the wind data taken 
as an example, the DSS is given in FIG. 17(a) with AT=10, 
50, 100, and 300 time steps respectively. The results show 
that while the high frequency components are nonstationary, 
they can still be statistically stationary. Two frequency bands 

50 at 7 and 17 Hz are highly nonstationary as the DSS averaged 
at 100 time steps shown in FIG. 17(b). These components 
are intermittent as can be seen in the IMF components and 
the marginal spectrum. A section of the original wind data is 
also plotted in FIG. 17(c) to demonstrate that there are 

Display of Selected Results 
The invention displays various results of the above- 

described computer implemented method in step 190. These 
60 displays are extremely useful in analyzing the underlying 

physics of the physical phenomenon being studied as 
described above. Furthermore, particular examples of these 
displays and the increased understanding of the underlying 
physics which these displays permit are discussed in the 

For example, the invention generates various Hilbert 
spectra displays in the display step 190. As mentioned 

55 indeed prominent 7 and 17 Hz time scale oscillations. 

65 following section. 
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above, both color coded maps and contour maps may be The characteristic waves are defined by the last wave 
employed to display the Hilbert spectra in display step 190. within the data span at the end of the data span. In other 
In addition, the color coded maps convey information to the words, a characteristic wave is added to each end of the data 
operator in a uniquely accessible way permitting a more span having an amplitude and period matching the last wave 
thorough and deeper understanding of the physical phenom- s within the data span. This characteristic wave is a sinusoidal 
enon and may be considered as necessary to analyze some waveform that is extended three sinusoidal wave periods 
physical phenomena. beyond the data span at each end. This process is repeated 

The displays generated by the invention in display step at the other end of the data span. In this way, spline fitting 

operator to analyze the underlying physics of the physical 10 swing, is confined. In other words, by adding the extra 
phenomenon being studied. characteristic waves at the ends beyond the data span, the 
ne display step 190 outputs displays to display 450, spline curve will be tied down so that it will not have wild 

mentioned above, display 450 includes devices such as a or excessive swings that would otherwise corrupt the data 
cathode ray tube and a flat panel display. As an alternative, processing and 
display step 290 may generate a hard copy output by 15 Other than the spline fitting, the Hilbert transform may 
utilizing printer 460 or may send the generated display to also have end effects. Because the first and the last points of 
output device 470. the data are usually of different values, the Fourier transform 

will introduce additional components to bridge over the 
Alternative Embodiments difference resulting in the well-known Gibbs phenomena. To 

As described above, the invention constructs upper and 20 eliminate it in the Fourier transform, various windows have 
lower envelopes 20,30 with a cubic spline in steps 210 and been adopted (see, for example, Brigham, 1974, “The fasf 
230, respectively and in step 560. This cubic spline fitting, Fourier Transform”, Prentice-Hall, Englewood cliffs, N.J.). 
however, has both overshoot and undershoot problems. Instead of a window which will eliminate some useful 
These problems can be alleviated by using sore sophisticated data at the end, the invention again adds two characteristic 
spline methods, such as the taut spline in which the tension 25 waves at either end. These waves all start from zero at the 
of the spline curve can be adjusted. beginning, and end at zero at the end. Thus, the annoying 

Another alternative is higher-order spline fitting. Gibbs phenomena are greatly reduced. 
Although such higher-order spline fitting may be more Still further, the Hilbert transform needs over-sampled 
accurate, it will, however, introduce more inflection points 3o data to define the instantaneous frequency precisely. In 
or extrema, and consume more computing time. Therefore, Fourier analysis, the Nyquist frequency is defined by two 
it is not recommended as a standard operation. Only in points per wave, but the frequency is defined for a wave 
special cases, it may be tried. covering the whole data span. In the invention, the instan- 

As the spline fitting procedure is time consuming, more taneous frequency is defined through a differentiation 
efficient methods can be devised by using simple mean 35 process, and thus more data points will help defining the 
values of successive extrema instead of computing the frequency more accurately. Based on the inventor’s 
envelope-mean. In this way, only one spline fitting is experience, a minimum number of data points to define a 
required rather than two. Although this alternative is easier frequency is five (or four At’s ). The lack of fine time steps 
and faster to implement, the shortcomings are more severe can be alleviated through interpolating more points between 
amplitude averaging effects when the neighboring extrema 4o available data. As a spline interpretation. would also not 
are of different magnitudes. The successive-mean method create nor annihilate scales, it can also be used for the 
will have a stronger forcing to reach uniform amplitudes, in interpolation when the data is very jagged from under- 
which the true physics associated with amplitude will be sampled data. The smoothed data though have a longer 
destroyed. Therefore, the successive-mean method should length and are sometimes easier to process. The interpola- 
only be applied where the amplitudes of the physical signal 45 tion may give better frequency definition. 

190 are central to the invention because they allow an at the end of the data span, which can otherwise have a wide 

that these cubic 

components are constants. 
Either the envelope mean or the successive mean method, 

when applied with the requirement of absolute symmetry, The dependence on the existence of scale for mode 
will produce the absurd result of uniform amplitude IMF’s. definition has one limitation: the decomposition method 
Therefore, the criteria in the Sifting Process should be 50 cannot separate signals when their frequencies are too close. 
chosen judiciously. One should avoid too stringent a crite- In this case, there would not be any characteristic scale: 
rion that we would get uniform amplitude IMF’s. On the therefore, physically they are identical. This may be the most 
other hand, one should also avoid too loose a criterion that severe limitation of the invention, but even here, the 
would produce components deviating too much from IMF’s. invented method can still work as well as the Fourier 

fitting is at the ends, where cubic splines can have wide 
Particular Advantages of The Invention swings if left unattended. As an alternative, the invention 

may utilize a method of adding characteristic waves at the The strength of the EMD method should be reiterated. 
ends of the data span. This confines the large swings EMD is built on the idea of identifying the various scales in 
successfully. 60 the data which are quantities of great physical significance. 

The method of adding characteristic waves is not con- Therefore, in the local extrema and curvature extrema Sift- 
ventional. In contrast, the conventional window that is often ing Processes, orthogonality is not a consideration, but 
applied to fourier transform data results in loss of useful scales are. Since orthogonal decomposition is a character- 
data. To avoid this data loss and to confine swings at the ends istic for linear systems, violating this restriction is not a 
of the data span, the invention extends the data beyond the 65 shortcoming but a breakthrough. Therefore, the decomposed 
actual data span by adding three additional characteristic IMF’s may or may not be orthogonal. As such, this method 
waves at each end of the data span. can be applied to nonlinear data. Though the IMF’s in most 

Particular Limitations of The Invention 

It is well known that the most serious problem of spline 5s Analysis. 



US 6,631,325 B1 
27 28 

cases are practically orthogonal, it is a coincidence rather 
than a requirement of the EMD. 

Another advantage of the method is the effective use of all 
the data representing the physical phenomenon. In the 
Sifting Processes, the longest scale is defined by the full 5 
length of the data. As a result, EMD can define many long 
period oscillations. As is well known, the Hilbert transform 
without sifting tends to identify the highest frequency 
(Boashash, 1992, “Estimating and Interpreting the Znstan- 
taneous Frequency of a Signal, Part Z: Fundamentals”, Proc. 10 

components is indeed a new feature of the EMD. 
though the EMD method give IMF 

components, the individual component does not guarantee 
well-defined physical meaning. This is true for all 
decompositions, especially for the methods with a priori 

significance. Great caution should be exercised in making 
such attempts. The rule for interpreting the physical signifi- 
cance of the IMF’s is that the scales should be clearly 20 
separated. Together with the Hilbert spectrum, the totality of 
the presentation should give a much more detailed repre- 
sentation of the physical processes than conventional meth- 
ods. 

the same may be varied in many ways. Such variations are 
not to be regarded as a departure from the spirit and scope 
of the invention, and all such modifications as would be 
obvious to one skilled in the art are intended to be included 
within the scope of the following claims. 

local extrema during a first recursion of said recursive 
Sifting Process and from local extrema during subsequent 
recursions of said recursive curvature extrema Sifting Pro- 
cess. 

5 .  The apparatus according to claim 2, said sifter includ- 
ing: 

an extrema identifier identifying extrema signal, 
an envelop constructor constructing an upper envelope 

and a lower envelop of the signal from the respective 
maxima and minima in the identified extrema, 

mean from the upper and lower envelopes, 
a component signal generator generating a component 

signal by subtracting the envelope mean from the 
signal, 

during said sifters next recursive curvature extrema 
Sifting Process, and 

wherein said sifter recursively performs the curvature 
extrema Sifting Process until successive component 
signals are substantially equal. 

6. The apparatus according to claim 5, further comprising: 
a comparator comparing the component signal against a 

definition of intrinsic mode functions, 
said sifter recursively performing the curvature extrema 

Sifting Process until said comparator determines that 
three successive component signals satisfy the defini- 
tion of intrinsic mode functions. 

7. The apparatus according to claim 5, further comprising: 
a standard deviation calculator calculating a standard 

deviation between successive component functions; 
and, 

a comparator comparing the standard deviation to a 
predetermined threshold value, 

said sifter recursively performing the curvature extrema 
Sifting Process until the standard deviation exceeds the 
predetermined threshold value. 

8. The apparatus according to claim 5, further comprising: 
a tester testing extrema for an intermittency in the signal 

including testing maxima and minima of the extrema; 
said envelope constructor constructing the upper envelope 

step by treating the maxima failing said tester as 
minima values to construct the upper envelope of the 
signal; and, 

said envelope constructor constructing the lower envelope 
by treating the minima failing said tester as maxima to 
construct the lower envelope of the signal. 

9. The apparatus according to claim 2, further comprising: 
a residual signal generator generating a residual signal by 

subtracting the intrinsic mode function from the signal; 
wherein the residual signal is treated as the signal during 

a next iteration of the curvature extrema Sifting Process 
performed by said sifter; 

said sifter identifying extrema in the signal from curvature 
extrema and local extrema at each iteration of the 
recursive curvature extrema Sifting Process and from 

ture extrema Sifting Process, 
an iterator iterating the curvature extrema Sifting Process 

performed by said sifter to generate a second intrinsic 
mode function indicative of a second intrinsic oscilla- 

10. The apparatus according to claim 9, wherein said sifter 
continues to perform said curvature extrema Sifting Process 

IEEE, 80, 520-538.), the extraction Of the long period an envelope mean determiner determining an envelope 

basis. In most cases, however, the IMF’s do carry physical wherein the component is treated as the 

The invention being thus described, it will be obvious that 25 

30 

What is claimed is: 
1. An article of manufacture, comprising: 
a computer-usable medium including computer-readable 

Program code means, d x d i e d  therein, for causing a 35 
computer to analyze a physical signal representative of 
a physical phenomenon, the computer-readab1e pro- 
gram code means comprising: 
computer-readable program code means for inputting 

the physical signal; 
computer-readable program code means for recursively 

sifting said signal via Empirical Mode Decomposi- 
tion to extract an intrinsic mode function indicative 
of an intrinsic oscillatory mode in a physical phe- 
nomenon; and 

computer-readable program code means for displaying 
the intrinsic mode function on a display, 

said recursive sifting identifying extrema in said 
signal from curvature extrema. 

2. An apparatus for analyzing a physical signal represen- 
tative of a physical phenomenon, comprising: 

an input device inputting said signal; 
a sifter recursively performing a recursive curvature 

extrema Sifting process on the signal using ~ ~ ~ i ~ i ~ ~ l  
Mode ~ecomposition to extract an intrinsic mode func- 55 
tion indicative of an intrinsic oscillatory mode in the 
physical phenomenon, said sifter identifying extrema in 
the signal from curvature extrema; and, 

40 

45 

a display displaying the intrinsic mode function. 
3, The apparatus according to claim 2 wherein said sifter 60 local extrema at each recursion of the recursive curva- 

identifies curvature extrema in the signal by calculating a 
curvature function of the signal, finding extrema in the 
curvature function, and determining corresponding curva- 
ture extrema in the signal corresponding to the extrema in 
the curvature function. 65 tory mode in the physical phenomenon. 

4. The apparatus according to claim 2 wherein said sifter 
identifies extrema in the signal from curvature extrema and 
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to generate an n-th intrinsic mode function indicative of an 
n-th intrinsic oscillatory mode in the physical phenomenon 
until the residual signal is monotonically increasing or 
decreasing. 

11. The apparatus according to claim 9, wherein said sifter 
continues to perform said curvature extrema Sifting Process 
to generate an n-th intrinsic mode function indicative of an 
n-th intrinsic oscillatory mode in the physical phenomenon 
until the residual signal has less than two local extrema. 

12. The apparatus according to claim 11, further compris- 
ing: 

a Hilbert Spectrum generator applying a Hilbert transform 
to the intrinsic mode function to generate a Hilbert 
spectrum. 

13. The apparatus according to claim 12, further com- 

a marginal spectrum calculator calculating a marginal 

14. The apparatus according to claim 12, further com- 

an instantaneous frequency calculator calculating an 
instantaneous frequency from transformed intrinsic 
mode functions. 

15. The apparatus according to claim 12, further com- 

an instantaneous energy density calculator calculating an 
instantaneous energy density from the transformed 
intrinsic mode functions. 

16. The apparatus according to claim 12, further com- 

a stationarity calculator calculating a measure of station- 
arity from the transformed intrinsic mode functions. 

17. The apparatus according to claim 2, further compris- 

a Hilbert transformer transforming the intrinsic mode 
function with a Hilbert transform. 

18. The apparatus according to claim 2, 
said input device including: 

an analog signal; and, 

signal to a digital signal. 

prising: 

spectrum from the Hilbert spectrum. 

prising: 

prising: 

prising: 

ing: 

a sensor detecting the physical phenomenon to generate 

an analog to digital convertor converting the analog 

19. The apparatus according to claim 2, wherein the 
physical phenomenon is a geophysical phenomenon. 

20. A computer implemented method of analyzing a 
physical signal representative of a physical phenomenon, 
comprising the computer implemented steps of  

inputting the physical signal representative of the physical 
phenomenon; 

recursively sifting the physical signal via Empirical Mode 
Decomposition to extract an intrinsic mode function 
indicative of an intrinsic oscillatory mode in the physi- 
cal phenomenon; 

said recursive sifting step identifying extrema in the 
physical signal from curvature extrema wherein said 
recursive sifting step identifies curvature extrema in the 
signal by calculating a curvature function of the signal, 
finding extrema in the curvature function, and deter- 
mining corresponding curvature extrema in the signal 
corresponding to the extrema in the curvature function; 
and, 

displaying the intrinsic mode function. 
21. The computer implemented method according to 

claim 20, further comprising the steps o f  
detecting a physical phenomenon with a sensor to gener- 

ate an analog signal, and 

30 
converting the analog signal to a digital signal represen- 

22. The computer implemented method representative of 
a physical phenomenon according to claim 20, wherein the 

s physical phenomenon is a geophysical phenomenon. 
23. The computer implemented method according to 

claim 20, further comprising the step of  
transforming the intrinsic mode function with a Hilbert 

24. The computer implemented method according to 

said recursive sifting step identifying extrema in the 
signal from curvature extrema and local extrema during 
a first recursion of said recursive sifting step and from 
local extrema during subsequent recursions of said 
recursive sifting step. 

25. The computer implemented method according to 
claim 24, said recursive sifting step including the substeps 
O f  

tative of the phenomenon. 

transform. 
10 

claim 20, 

2o identifying extrema in said signal, 
constructing upper and lower envelopes of the signal from 

the respective maxima and minima of the identified 
extrema, 

determining an envelope mean from the upper and lower 
envelopes, 

generating a component signal by subtracting the enve- 
lope mean from the signal, and 

treating the component signal as the signal; 
said recursive sifting step being recursively performed 

until successive component signals are substantially 
equal. 

26. The computer implemented method according to 

testing the component signal against a definition of intrin- 
sic mode functions, 

said recursive sifting step being recursively performed 
until said testing step determines that three successive 
component signals satisfy the definition of intrinsic 

27. The computer implemented method according to 

computing a standard deviation between successive com- 
ponent functions, 

comparing the standard deviation to a predetermined 
threshold value, 

said sifting step being recursively performed until said 
comparing step determines that the standard deviation 
exceeds the predetermined threshold value. 

28. The computer implemented method according to 
claim 25, said recursive sifting step further including the 
substeps of  

testing the extrema for an intermittency in said signal 
including testing maxima and minima of the extrema; 

said constructing step constructing the upper envelope 
step by treating maxima failing said testing step as 
minima to construct the upper envelope of the signal; 

said constructing step constructing the lower envelope by 
treating minima failing said testing step as maxima to 
construct the lower envelope of the signal. 

29. The computer implemented method according to 

generating a residual signal by subtracting the intrinsic 

treating the residual signal as the signal during a next 

2s 

30 

claim 25, further comprising the step of  
35 

40 mode functions. 

claim 25, further comprising the steps of  

4s 

so 

ss 

60 

claim 20, further comprising the steps of  

mode function from the signal; 

iteration of said recursive sifting step; 

65 
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identifying extrema in the signal from curvature extrema 
and local extrema at each iteration of said recursive 
sifting step and from local extrema at each recursion of 
said recursive sifting step, 

iterating said recursive sifting step to generate a second 
intrinsic mode function indicative of a second intrinsic 
oscillatory mode. 

30. The computer implemented method according to 

continuing to perform said iterating step to generate an 
n-th intrinsic mode function indicative of an n-th intrin- 
sic oscillatory mode until the residual signal is mono- 
tonically increasing or decreasing. 

31. The computer implemented method according to 

continuing to perform said iterating step to generate an 

sic oscillatory mode until the residual signal has less 
than two extrema. 2o intrinsic mode functions. 

32. The computer implemented method according to 

applying a Hilbert transform to the intrinsic mode func- 

33. The computer implemented method according to 

calculating a marginal spectrum from the Hilbert spec- 

34. The computer implemented method according to 

calculating an instantaneous frequency from the trans- 

35. The computer implemented method according to 

calculating an instantaneous energy density from the 

36. The computer imp1emented method according to 

calculating a measure of stationary from the transformed 

tions to generate a Hilbert spectrum. 

claim 32, further comprising the step of  

trum. 

claim 32, further comprising the step of: 
claim 29, further comprising the step of  

formed intrinsic mode functions. 

claim 34, further comprising the step of  

claim 29, further comprising the step of  transformed intrinsic mode functions. 

n-th intrinsic mode function indicative of an n-th intrin- claim 343 further comprising the step Of: 

claim 31, further comprising the step of  * * * * *  


