LIQUID MOLDED HOLLOW CELL CORE COMPOSITE ARTICLES

An abstract of the patent describes a process for applying a bondable solid film to the open core surface of a hollow core base, laying up dry at least one dry face ply on top of the solid film, applying a liquid resin to the at least one dry face ply, and curing the hollow core composite assembly.

References Cited

U.S. PATENT DOCUMENTS

5,567,499 A 10/1996 Cundiff et al.
5,569,508 A 10/1996 Cundiff
5,851,336 A 12/1998 Cundiff et al.
5,897,739 A * 4/1999 Forster et al.
6,156,146 A 12/2000 Cundiff
6,440,521 B1 * 8/2002 Moore

* cited by examiner

Primary Examiner—Deborah Jones
Assistant Examiner—Wendy Boss
Attorney, Agent, or Firm—David J. Clement

ABSTRACT

A hollow core composite assembly is provided, including a hollow core base having at least one open core surface, a bondable solid film applied to the open core surface, at least one dry face ply laid up dry and placed on top of the solid film, and a liquid resin applied to the at least one dry face ply and then cured.

7 Claims, 3 Drawing Sheets
Applying a bondable solid film to the open core surface of a hollow core base

Applying an adhesive layer and solid film combination to the open core surface

Curing the solid film to the open core surface

Laying up dry at least one dry face ply on top of the solid film

Applying a liquid resin to the at least one dry face ply

Curing the hollow core composite assembly

FIG. 4
LIQUID MOLDED HOLLOW CELL CORE COMPOSITE ARTICLES

CROSS-REFERENCE TO RELATED APPLICATIONS

This is one of two related applications being filed on the same day. The second is entitled Liquid Molded Hollow Cell Core Composite Articles filed on Oct. 30, 2001, Ser. No. 10/012,664 (01-101/009783 BOE 0278 PA).

“GOVERNMENT INTEREST”

The invention described herein was made in the performance of work under NASA Contract No. NCC8-190 and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958 (72 Stat. 435: 42 U.S.C. 2457).

TECHNICAL FIELD

The present invention relates generally to hollow cell core composite articles and more particularly to a liquid molded honeycomb core composite articles.

BACKGROUND OF THE INVENTION

The cornerstone of aeronautics, avionics, and spacecraft design has been the ability to design lightweight components that maintain structural strength and integrity. These characteristics play a crucial role not only in traditional design considerations such as flight capabilities and structural integrity, but also play a crucial role in the adaptability and commercial performance of a given craft design. Reduced weight and structural fortitude can play a significant role in fuel consumption, craft profile, and cargo and/or passenger capacity. The increase in profitability associated with the aforementioned factors, as well as a variety of others, has provided strong motivation for design advancements in the area of strength/weight improvement.

A significant advancement in the development of low weight/high strength structures was the development of the hollow cell cores, such as honeycomb cores. Hollow cell cores provide a high strength structural base while minimizing the negative effects of the weight associated with the core material by containing voids within the core material that provide for significant weight savings as compared to a solid component. The high strength/low weight characteristic of hollow cell cores has therefore resulted in the popularity of their use within the aeronautics industry as well as a variety of other industries.

Despite the popularity of hollow cell core materials, such as honeycomb cores, there use has not been suitable for certain manufacturing processes. Liquid molding processes, for example, can present problems when applied to hollow cell core materials. Liquid molding composite manufacturing processes, such as resin transfer molding, vacuum assisted resin infusion, vacuum infusion molding, and others, present fundamental concerns for the use of hollow cell core materials. When these processes are used, it is possible for the hollow cells to fill with liquid resin prior to curing. This can make the resulting structure resin rich, heavy, and generally undesirable. It would be highly desirable to have the ability to apply liquid molding approaches to hollow cell core materials without the concerns for compromised cells.

Numerous approaches have been developed in an attempt to solve the hollow cell core/liquid molding dilemma. Often, however, the resulting solutions add undesirable weight to the resulti
providing a solid bondable film is intended for use within the aeronautics and spacecraft industry, although it is contemplated that the present invention may be utilized within a wide variety of fields. The hollow core composite assembly includes a lightweight and cost effective method of providing structural assemblies for use in aircraft and spacecraft design.

The hollow core composite assembly includes a hollow core base. A variety of hollow core base embodiments are known within the prior art. One such embodiment is a honeycomb core. The advantage of hollow core bases is that they provide a low weight/high strength structure popular within the aeronautics field. A traditional disadvantage to such hollow core bases is that they commonly contain at least one open core surface where the hollow cores are exposed. This open core surface provides access to the hollow cores and can provide a mechanism for liquid resin from the resin transfer molding process or vacuum assisted resin transfer molding process, to penetrate the hollow core base and thereby suffer losses to its weight benefits. Although it is possible for a hollow core base to have a single open core surface, commonly a hollow core base will have an upper open core surface and a lower open core surface.

The present invention seals and protects the open core surfaces through the use of a bondable solid film applied to the open core surfaces. A variety of bondable solid films are contemplated by the present invention. One embodiment contemplates the use of a polysulphone (PSU) film. Other embodiments include, but are not limited to, bondable solid films such as forms of, polyethylene-terephthalate (PET), nylon, thermostable polymer materials, metal foils, thermoset film materials, and urethane film materials. The primary characteristic of the solid bondable film is to be impervious to penetration of the liquid resin of choice in the composite liquid molding process (such as vinyl ester, polyester epoxies, phenolics, cyanate esters, etc.) and bondable to the hollow core base with or without the addition of an adhesive. The solid bondable film provides a barrier to prevent subsequent liquid molding materials from penetrating the hollow cores and thereby compromising the integrity of the hollow core composite assembly.

One novel embodiment contemplates the use of polyetherketonekeone (PEKK) as the solid bondable film. The use of PEKK provides a variety of advantages over many films when the hollow core composite assembly is used for use in unique applications. One advantage, is that the PEKK film has a relatively low dielectric constant. This can be an important factor when the hollow core composite assembly is intended for use within low observable aircraft. The low dielectric constant can be advantageous to designs wherein low radar profile or radar invisibility is desired. The use of PEKK also provides the advantage of providing a bondable film with improved bonding characteristics over many solid films. This can improve and simplify the manufacturing process as well as improve the integrity of the resulting composite. Although the PEKK film may be formed in a variety of dimensions, one embodiment contemplates the use of a 1.1 millimeter film.

The hollow core composite assembly can further include an adhesive layer positioned between the solid bondable film and the open core surface. The adhesive layer, such as an adhesive film, can be utilized to assist the bonding of the solid bondable film to the hollow core base. Although a variety of adhesive layers are contemplated, one embodiment contemplates the use of FM300 film adhesive. Other contemplated adhesives include, but are not limited to, thermoset adhesive, hot melt adhesive, epoxy paste, BMI paste, and cyanate ester paste adhesives. It is contemplated that the solid bondable film and the adhesive layer are attached to the hollow core composite assembly as part of the composite article perform. The thermal cycle to enhance the bonding characteristic of the solid bondable film to the open core surface can be included in the single processing cycle for the hollow core composite assembly and thereby lower processing costs and cycle time. It should be understood, however, that the solid bondable film may be bonded to the hollow core base prior to the composite article processing cycle as a separate processing step such as pre-curing. Pre-curing refers to curing the chemically active material of a detail/subassembly prior to a future cure of a more complete assembly. In one embodiment of the present invention, the hollow core base and bondable solid film can be “pre-cured” prior to a liquid molding operation. During a liquid molding operation the injectioned resin would then be cured.

In an alternate novel embodiment, illustrated in FIG. 2, the present invention can further include at least one outer adhesive film applied to the outer surface of the solid bondable film. A distinct and novel aspect of this embodiment, is that it can assist in improving the bondable outer surface of the solid bondable film in order to ensure an improved hollow core composite assembly when subjected to liquid molding techniques. Prior processes often required specialized surface preparation or coatings to insure that the liquid molding techniques securely bond to the hollow core composite assembly. These specialized preparations could undesirably increase the cost, process steps, and time of manufacture. The present embodiment provides a relatively quick and efficient way of improving the bondable outer surface of the solid bondable film without the need for expensive and time consuming processes. It may also serve to increase the range of solid bondable films available for a given application.

Referring now to FIG. 3, the present invention can further include at least one dry face ply laid up dry and placed on top of the solid bondable film. Although a single dry face ply can be used, it is contemplated that a plurality of dry face plies are to be used to result in a composite sandwich panel of face skins. The face ply (reinforcing ply, reinforcement, etc.) of the resulting composite article may consist of carbon fiber, fiberglass, Spectra, Kevlar fabric or other high performance reinforcement material. Although a single dry face ply can be used, it is contemplated that low resin content or tackified ply could be used. This type of reinforcement material and style of reinforcement form (weave, mat, yarn or tow) is dependent on the design and function of the resulting composite article and may be infinitely tailored to meet the desired need. A wide variety of dry face plies are well known in the industry and can be used in combination to provide structural surfaces with unique properties. One advantage of using a plurality of dry face plies is that the hollow core composite assembly can be quickly and simply assembled and a single liquid molding process and all of the subsequent thermal processing, bonding steps and resin infusion can be performed simultaneously. This provides significant production cost and time advantages over many prior art methods.

Finally, liquid resin is applied to the dry face ply, or plies, and the hollow core composite assembly is cured. The liquid resin wets out the dry plies. A single
liquid resin 32 may be applied, or a plurality of liquid resins 32 may be utilized. Once cured, the resulting assembly 10 becomes a sandwich panel of face skins surrounding a hollow core base 12. The liquid resin 32 is contemplated to be applied in any of a variety of known fashions. In one embodiment, it is contemplated that the liquid resin 32 is applied using a resin transfer molding process. In alternate embodiments, however, the liquid resin 32 can be applied using a variety of processes including, but not limited to, vacuum assisted resin transfer molding, vacuum infusion molding processes, etc. The liquid resin 32 may be applied to the composite article in a variety of means such as wet lay-up, resin transfer molding processes, SCRIMP, vacuum assisted resin transfer molding processes, vacuum infusion molding processes, etc. For each of the named processes, the liquid molding resin 32 is selected based on the process method, composite article end item requirements, composite article use and other factors. After the application of the liquid resin 32, the resin is allowed to set (or cure) to a rigid form permitting the composite article to be removed from the tool or mold. The method of cure is dependent upon the selected liquid resin 32. Many types of polyester resin commonly used in the marine industry cure at ambient temperatures (70 deg F) in a given amount of time, while many aerospace grade structural epoxy resins cure at 350 deg F. Each type of resin has varying cure requirements. After removal of the composite article from the tool or mold, it may undergo a post cure to enhance the resin properties or the composite article.

Referring now to FIG. 4, which is an embodiment of a method of producing a hollow core composite assembly in accordance with the present invention. The method includes applying a bondable solid film to the open core surface of a hollow core base 100. In one embodiment this includes applying an adhesive layer and solid film combination to the open core surface 104. The method may further optionally include curing the solid film to the open core surface 106. In an alternate embodiment, the solid film may be cured to the open core surface as part of a liquid molding process. The method may further include laying up dry at least one dry face ply on top of the solid film 108. It is contemplated that the at least one dry face ply may include a plurality of dry face plies. A liquid resin is then applied to at least one dry face ply 110. This may be accomplished in a single liquid resin application or may include a plurality of liquid resin applications. In addition, it is contemplated that the liquid resin ply may be applied in a variety of fashions including, but not limited to, resin transfer molding, vacuum assisted resin transfer molding, and vacuum infusion molding process. Finally, the hollow core composite assembly is cured 112. A variety of curing processes are contemplated by the present invention and may be used alone or in combination to effectuate curing base upon the curing requirements of the liquid resin, the adhesive film, and the hollow core base.

While particular embodiments of the invention have been shown and described, numerous variations and alternative embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.

What is claimed is:

1. A method of producing a hollow core composite assembly comprising:
 applying a film adhesive to an open core surface of a hollow core base;
 applying an uncured solid film to said open core surface;
 applying at least one liquid resin layer to said uncured solid film using a resin molding process, said at least one solid film preventing said at least one liquid resin layer from penetrating said hollow core base;
 laying up dry at least one dry face ply on top of the solid film;
 applying liquid resin to said at least one dry face ply; and
 curing the hollow core composite assembly.

2. A method of producing a hollow core composite assembly as described in claim 1, further comprising:
 curing said uncured solid film to said open core surface by said applying at least one liquid resin layer.

3. A method of producing a hollow core composite assembly comprising:
 applying a film adhesive to an open core surface of a hollow core base;
 applying an uncured solid film to said open core surface;
 applying at least one liquid resin layer to said uncured solid film using a resin molding process, said at least one solid film preventing said at least one liquid resin layer from penetrating said hollow core base;
 wherein said uncured solid film comprises polystyrene-terephthalate.

4. A method of producing a hollow core composite assembly comprising:
 applying a film adhesive to an open core surface of a hollow core base;
 applying an uncured solid film to said open core surface;
 applying at least one liquid resin layer to said uncured solid film using a resin molding process, said at least one solid film preventing said at least one liquid resin layer from penetrating said hollow core base;
 wherein said uncured solid film comprises a polysulfone.

5. A method of producing a hollow core composite assembly comprising:
 applying a film adhesive to an open core surface of a hollow core base;
 applying an uncured solid film to said open core surface;
 applying at least one liquid resin layer to said uncured solid film using a resin molding process, said at least one solid film preventing said at least one liquid resin layer from penetrating said hollow core base;
 wherein said uncured solid film comprises polyethylene-terephthalate.

6. A method of producing a hollow core composite assembly comprising:
 applying a film adhesive to an open core surface of a hollow core base;
 applying an uncured solid film to said open core surface;
 applying at least one liquid resin layer to said uncured solid film using a resin molding process, said at least one solid film preventing said at least one liquid resin layer from penetrating said hollow core base;
 wherein said uncured solid film is chosen from the group of nylon, thermoset film material, and urethane film materials.

7. A method of producing a hollow core composite assembly comprising:
 applying a film adhesive to an open core surface of a hollow core base;
 applying an uncured solid film to said open core surface;
 applying at least one liquid resin layer to said uncured solid film using a resin molding process, said at least one solid film preventing said at least one liquid resin layer from penetrating said hollow core base;
 applying an outer film adhesive to an outer surface of said uncured solid film.