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(57) ABSTRACT 

The present invention discloses a computer implemented 
signal analysis method through the Hilbert-Huang Transfor- 
mation (HHT) for analyzing acoustical signals, which are 
assumed to be nonlinear and nonstationary. The Empirical 
Decomposition Method (EMD) and the Hilbert Spectral 
Analysis (HSA) are used to obtain the HHT. Essentially, the 
acoustical signal will be decomposed into the Intrinsic Mode 
Function Components (IMFs). Once the invention decom- 
poses the acoustic signal into its constituting components, 
all operations such as analyzing, identifying, and removing 
unwanted signals can be performed on these components. 
Upon transforming the IMFs into Hilbert spectrum, the 
acoustical signal may be compared with other acoustical 
signals. 
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FIG. 26 
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FIG. 32 
Time Series : Abnormal Section nn.sIp04 
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EMPIRICAL MODE DECOMPOSITION FOR 
ANALYZING ACOUSTICAL SIGNALS 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This Application is a Continuation-In-Part of application 
Ser. No. 101011,206, “Empirical Mode Decomposition 
Apparatus, Method and Article of Manufacture for Analyz- 
ing Biological Signal and Performing Curve Pitting,” filed 
on Dec. 10, 2001, which claims priority under U.S.C. 9120 
to parent application Ser. No. 091282,424 filed on Mar. 31, 
1999 and now U.S. Pat. No. 6,381,559 which claims priority 
under U.S.C. 9120 to parent application Ser. No. 081872,586 
filed on Jun. 10, 1997 and now U.S. Pat. No. 5,983,162, 
which claims priority under 35 U.S.C. §119(e) to U.S. 
Provisional application Ser. No. 601023,411 filed on Aug. 
14, 1996 and Ser. No. 601023,822 filed on Aug. 12, 1996. 
This application claims priority under 35 U.S.C. §119(e) to 
U.S. Provisional application Ser. No. 601269,422 filed on 
Feb. 14, 2001. All of the above provisional and non- 
provisional patent applications are hereby incorporated by 
reference. 

ORIGIN OF INVENTION 

The inventor of the invention described herein is an 
employee of the United States Government. Therefore, the 
invention may be manufactured and used by or for the 
Government for governmental purposes without the pay- 
ment of any royalties thereon or therefor. 

COPYRIGHT NOTIFICATION 

Portions of this patent application contain materials that 
are subject to copyright protection. The copyright owner has 
no objection to the facsimile reproduction by anyone of the 
patent document or the patent disclosure, as it appears in the 
Patent and Trademark Office patent file or records, but 
otherwise reserves all copyright rights whatsoever. 

BACKGROUND OF THE INVENTION 

This invention generally relates to a signal analysis 
method. The results of processing several examples of 
biological and acoustical signals are discussed herein to 
show the particular utility of the invention in that field and 
to further demonstrate the broad applicability of the inven- 
tion. 

Although the present invention finds utility in processing 
acoustical signals, it is to be understood that any signal 
representative of a real world phenomenon such as a signal 
representative of a physical process including electrical, 
mechanical, biological, acoustical, chemical, optical, geo- 
physical or other process(es) may be analyzed and thereby 
more fully understood by applying the invention thereto. 
The real world signals to which the invention finds utility 
include a wide variety of real world phenomena such as the 
behavior of a stock market, population growth, traffic flow, 
etc. Furthermore, the term “real world signal” also includes 
“physical signals” representative of physical processes such 
as the electrical, mechanical, biological, chemical, 
acoustical, optical, geophysical process(es) mentioned 
above. 

Although the invention is not limited to a particular type 
of signal processing and includes the full range of real world 
data representative of processes or phenomena or combina- 
tions thereof, it is most useful when such real world signals 
are nonlinear and nonstationary. 

2 
DESCRIPTION OF RELATED ART 

In the parent application, several examples of geophysical 
data signals representative of earthquakes, ocean waves, 
tsunamis, ocean surface elevation and wind were processed 

5 to show the invention’s wide utility to a broad variety of 
signal types. The techniques disclosed therein and elabo- 
rated upon herein represent major advances in physical 
signal processing. 

Previously, analyzing signals, particularly those having 
i o  nonlinear and/or nonstationary properties, was a difficult 

problem confronting many industries. These industries have 
harnessed various computer implemented methods to pro- 
cess data signals measured or otherwise taken from various 
processes such as electrical, mechanical, optical, biological, 
and chemical processes. Unfortunately, previous methods 
have not yielded results which are physically meaningful. 

Among the difficulties found in conventional systems is 
that representing physical processes with physical signals 
may present one or more of the following problems: 

2o (a) The total data span is too short; 
(b) The data are nonstationary; and 
(c) The data represent nonlinear processes. 
Although problems (a)-(.) are separate issues, the first 

two problems are related because a data section shorter than 
zs the longest time scale of a stationary process can appear to 

be nonstationary. Because many physical events are 
transient, the data representative of those events are nonsta- 
tionary. For example, a transient event such as an earthquake 
will  produce nonstationary data when measured. 

30 Nevertheless, the nonstationary character of such data is 
ignored or the effects assumed to be negligible. This 
assumption may lead to inaccurate results and incorrect 
interpretation of the underlying physics as explained below. 

A variety of techniques have been applied to nonlinear, 
35 nonstationary physical signals. For example, many com- 

puter implemented methods apply Fourier spectral analysis 
to examine the energy-frequency distribution of such sig- 
nals. 

Although the Fourier transform that is applied by these 
40 computer implemented methods is valid under extremely 

general conditions, there are some crucial restrictions: the 
system must be linear, and the data must be strictly periodic 
or stationary. If these conditions are not met, then the 
resulting spectrum will not make sense physically. 

A common technique for meeting the linearity condition 
is to approximate the physical phenomena with at least one 
linear system. Although linear approximation is an adequate 
solution for some applications, many physical phenomena 
are highly nonlinear and do not admit a reasonably accurate 

Furthermore, imperfect probesisensors and numerical 
schemes may contaminate data representative of the phe- 
nomenon. For example, the interactions of imperfect probes 
with a perfect linear system can make the final data nonlin- 

Many recorded physical signals are of finite duration, 
nonstationary, and nonlinear because they are derived from 
physical processes that are nonlinear either intrinsically or 
through interactions with imperfect probes or numerical 

60 schemes. Under these conditions, computer implemented 
methods which apply Fourier spectral analysis are of limited 
use. For lack of alternatives, however, such methods still 
apply Fourier spectral analysis to process such data. 

In summary, the indiscriminate use of Fourier spectral 
65 analysis in these methods and the adoption of the stationarity 

and linearity assumptions may give inaccurate results some 
of which are described below. 

45 

SO linear approximation. 

ss ear. 
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First, the Fourier spectrum defines uniform harmonic 
components globally. Therefore, the Fourier spectrum needs 
many additional harmonic components to simulate nonsta- 
tionary data that are nonuniform globally. As a result, energy 
is spread over a wide frequency range. 

For example, using a delta function to represent the flash 
of light from a lightning bolt will give a phase-locked wide 
white Fourier spectrum. Here, many Fourier components are 
added to simulate the nonstationary nature of the data in the 
time domain, but their existence diverts energy to a much 
wider frequency domain. Constrained by the conservation of 
energy principle, these spurious harmonics and the wide 
frequency spectrum cannot faithfully represent the true 
energy density of the lighting in the frequency and time 
space. 

More seriously, the Fourier representation also requires 
the existence of negative light intensity so that the compo- 
nents can cancel out one another to give the final delta 
function representing the lightning. Thus, the Fourier com- 
ponents might make mathematical sense, but they often do 
not make physical sense when applied. 

Although no physical process can be represented exactly 
by a delta function, some physical data such as the near field 
strong earthquake energy signals are of extremely short 
duration. Such earthquake energy signals almost approach a 
delta function, and they always give artificially wide Fourier 
spectra. 

Second, Fourier spectral analysis uses a linear superpo- 
sition of trigonometric functions to represent the data. 
Therefore, additional harmonic components are required to 
simulate deformed wave profiles. Such deformations, as will 
be shown later, are the direct consequence of nonlinear 
effects. Whenever the form of the data deviates from a pure 
sine or cosine function, the Fourier spectrum will contain 
harmonics. Furthermore, both nonstationarity and nonlin- 
earity can induce spurious harmonic components that cause 
unwanted energy spreading and artificial frequency smear- 
ing in the Fourier spectrum. In other words, the 
nonstationary, stochastic nature of biological data suffers 
from conventional signal processing techniques and makes 
the interpretation of the processed data quite difficult. 
Biological Signal Analysis 

According to the above background, there is a need for a 
more accurate signal processing technique that produces 
results that are more physically meaningful and readily 
understood. Biological signals provide another example of 
physical signals in which this invention is applicable. Parent 
application Ser. No. 081872,586 filed Jun. 10, 1997 and now 
issued, U.S. Pat. No. 5,983,162, illustrates several other 
types of signals in which this invention is applicable. 
Namely, the patent provides specific examples of nonlinear, 
nonstationary geophysical signals which are very difficult to 
analyze with traditional computer implemented techniques 
including earthquake signals, water wave signals, tsunami 
signals, ocean altitude and ocean circulation signals. 

Many of the aforementioned signal processing problems 
exist when biological signals are processed. For example, 
most data in the field of biology are nonstationarily stochas- 
tic. When conventional tools such as Fourier Analysis are 
applied to such biological data, the result often-times 
obscures the underlying processes. In other words, conven- 
tional Fourier analysis of biological data throws away or 
otherwise obscures valuable information. Thus, the complex 
biological phenomena producing such data cannot be readily 
understood and is, in any event, represented imprecisely. 
The interpretation of the results of such conventionally 
processed data may, therefore, be quite difficult. The con- 
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4 
ventional techniques also make accurate modelling of the 
biological phenomena very difficult and, sometimes, impos- 
sible. 
Acoustical Signal Analysis 

The idea of recording and transmitting sounds and 
speeches depends, for example, on the variations of the 
density in the air, and currents in the telephone. The crucial 
element is on the variation, without which the sound would 
be a monotonic tone that would not carry any information. 
Speech consists of time varying acoustical signals, which 
are nonstationary and nonlinear. In fact, for the acoustical 
signal to carry any information at all, be it speech or music 
notes, there must be a time variation in amplitude and 
frequency continuously and, may be, subtly. Unfortunately, 
the tools we have to deal with nonstationary processes are 
quite limited; therefore, we are forced to make all kinds of 
approximations: As a result, there is a conflict between the 
human perception and automatic sound processes. 

Some publications listed, relating to acoustical signal 
analysis, are incorporated by reference: 

Allen, J. B., 1994: How do humans process and recognize 
speech? IEEE Trans. Speech and Audio Proc., 2, 

Banbrook, M, S. McLaughlin, and I. Mann, 1999: Speech 
characterization and synthesis by nonlinear methods. 
IEEE Trans. Speech and Audio Proc., 7, 1-17. 

Billa, J. and A. El-Jaroudi, 1998: An analysis of the effect 
of basilar membrance nonlinearities on noise 
suppression, J. Acoust. SOC. Am., 103, 2691-2705. 

Breen, A. 1992: Speech synthesis models: A Review. 
Electron. Commun. Eng. J., 19-31, February, 1992. 

Carmona, R., W. L. Hwang, and B. Torresani 1997: 
Characterization of signals by the ridges of their wave- 
let transform, IEEE Trans. Signal Processing, 45 

D’Alessandro, C., V. Darsinos and B. Yegnanarayana, 
1998: Effectiveness of a periodic and aperiodic decom- 
position method for analysis of voice sources, IEEE 
Trans. Speech and Audio Proc., 6, 12-23. 

Furui, S. and M. M. Sondhi, 1991: Advances in Speech 
Signal Processing, Marcel Dekker, New York. 

George, D. E. and E. Salari, 1997: Real-time pitch extrac- 
tion of voiced speech, J. Network and Computer 
Applications, 20, 379-387. 

Hoffmann, R. and C. M. Westendorf, 1997: The devel- 
opment of analysis methods for speech recognition. 
Behavioural Processes, 39, 113-125. 

Huang, N. E., 2000: A New Method For Nonlinear And 
Nonstationary Time Series Analysis: Empirical Mode 
Decomposition and Hilbert Spectral Analysis. Proceed- 
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Because our emphasis will be on speech analysis, we 
should first examine the principles of Human Speech Rec- 
ognition (HSR) and Automatic (Machine) Speech Recogni- 

is tion (ASR). As summarized in the classical paper by Allen 
(1994), typical ASR systems start with a front end that 
transforms the speech signal into a feature vector. This 
processes is mostly through spectral analysis over a fixed 
period of time, within such period the speech signal is 

20 assumed to be stationary. The analysis is strictly on fre- 
quency. HSR on the other hand, processes information 
across frequency localized in time. Thus, the process is 
assumed to be nonstationary. These localized speech fea- 
tures are known as the formats. To extract features localized 

zs in time but across all frequencies requires time-frequency 
analysis. The speech signals are divided into a time- 
frequency continuum of formants by the cochlea of the ear, 
which, by its mechanical properties, is a very poor frequency 
discriminator. Yet, classic experiments by Shower and Bid- 

30 dulph (1931) has shown that the ear can detect frequency 
difference as small as 3 Hz near a signal of 1000 Hz. Such 
perceptual acuity for pitch seems to violate the ‘uncertainty 
relation’ for stationary processes, where _f _t _, with _f 
as the standard deviation of the frequency, and _t as the 

35 given time period. Clearly, using the traditional method 
based on the stationary assumption cannot explain the HSR 
processes. Therefore, for an accurate sound perception, we 
need a different paradigm of sound signal analysis, one with 
time-frequency analysis. This is crucial for speech recogni- 

40 tion. It is also the cause of the long standing difficulty in 
Speech recognition as stated in the classic book by Rabiner 
and Juang (1993): “Although there is a solid basis for the 
linguist description of sounds and a good understanding of 
the associates acoustics of sound production, there is, at best, 

45 a tenuous relationship between a given linguistic sound and 
a repeatable, reliable, measurable set of acoustic param- 
eters.” To overcome this difficulty, we need a new signal 
analysis method. 

To deal with the nonstationary properties of speech, 
SO various methods have been employed (see, for example, the 

classical book by Rabiner and Schafer (1978), and more 
recent developments by Furui and Sonfhi (1992), Hoffman 
and Westendorf (1997)), that include spectral analysis, filter- 
bank, zero-crossing, pattern recognition dynamical 

ss programming, linear prediction, statistic methods, and neu- 
ral network. In many of these approaches, there lies a tactic 
assumption that the speech can be treated as locally station- 
ary. Although great progress has been made, in speech 
recognition, the locally stationary assumption has rendered 

60 speech synthesis to bear a flat, wooden and artificial tone. 
In addition to speech recognition, there are a wide variety 

of speech communications application that will depend on 
detailed signal analysis, such as digital transmission and 
storage of speech signals, speech synthesis, speaker verifi- 

65 cation and identification, and the enhancement of signal 
quality. The techniques used in all of these applications are 
not strictly limited to speeches alone, the same approach can 

5 
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also be applied to musical scores and recordings, and even without resorting to the spurious harmonics. It also elimi- 
to machine condition monitoring. nates the distortion that could be introduced through Fourier 

SO far, we have only touched on the problem of nonsta- based frequency filtering. Therefore, EMD is a natural 
tiOnary properties Of the aCOUStiCa1 Signal. Amore important choice, The product of EMD is actually the formant corn- 
Part is the nonlinear,ProPerties of the, acoustical signal in s ponents without the difficulties of frequency resolution in 
general and speech in particular, which has mostly been any range, 
neglected UP until very recently (see, for example, Kumar, 
1996). As it is known that the sound in speech is 

Speech signal analysis is the most fundamental require- 
ment for speech synthesis, speaker verification and 

generated by three mechanisms: identification, speech recognition, and enhancement and 
i o  restoration of speech record. The basic technique can also be 

applied to processing music 
(1) The vibration of the vocal chords, 
(2) The friction of air through construction of the vocal 

(3) The explosion of a sudden release of the air from 
An object of the present invention is to solve the above- 

Of the three mechanisms, the vowels are generated by the is mentioned problems in conventional signal analysis tech- 
vibration of the vocal cord with unrestricted passage of air. niques. 
Such sound can be generated for indefinite length as long as Another object of the present invention is to provide 
the lung can SUPPlY the airflow. Therefore, the ~ o w e l s  are the further examples of physical signal processing thereby fur- 
only sounds that could be approximated locally as stationary, ther demonstrating the broad applicability of the invention to 
but only locally. Unfortunately, in our speech, vowels are not 20 a wide array of physical signals which include acoustical 
the information carrying sounds, the consonant’s are. The signals. 
consotant’s varying of frequency is a necessity for trans- Another object is to provide a technique of distilling a 
mitting information. For example, if we write the sentence, physical signal to the point at which the signal can be 

tract, and 

complete closure of the vocal tract. 
SUMMARY OF THE INVENTION 

represented-with an analytic function. 
To achieve these objects, the invention employs a com- 

puter implemented Empirical Mode Decomposition method 
which decomposes physical signals representative of a 
physical phenomenon into components. These components 
are designated as Intrinsic Mode Functions (IMFs) and are 

2s Do you understand what John just said. 

as, 

D- y- - ad-rst-nd wh-t J-hn -jst s- -d. 
3 u  . indicative of intrinsic oscillatory modes in the physical 

phenomenon, 
Contrary to almost all the previous methods, this new 

computer implemented method is intuitive, direct, a 
3s posteriori, and adaptive, with the basis of the decomposition 

based on and derived from the physical signal. The bases so 
derived have no close analytic expressions, and they can 
Only be numerically approximated in a specially pro- 
grammed computer by utilizing the inventive methods dis- 

Most people can still figure out the meaning of the 
utterance. On the other hand, if we would write the sentence 
as 

-0 - 0~ u- -e- - -a- - - - a- -0- - _ _ _  u- -ai- , 

No one would be able to decipher what is its meaning at 
all. Consequently, in speech recognition, the precise analysis 
of the consonant signals is crucial. 

Consonants are highly transient and the generating 40 herein. 
mechanisms are all nonlinear. Such nonlinearity has been More specifically, the general method Of the invention 
known for a long time (See, for, example, Rabiner and the 
Schafer, 1978), but only recently has there been any inves- physical without the problems associated 
tigations (see, for example, Bills and El-Jaroudi, 1998; and with computer implemented Fourier analysis, namely inac- 
Maragos and Potamianos, 1999). Although the locally sta- 45 curate 
tionary assumption can be used for vowels better than the caused in part by energy and frequency smearing 

two main components Or steps to 

Of the physics Or 

consonants, we have to examine the consonants, for, as we in the Fourier spectrum. 
have seen, consonants contain far more information than The first step is to process the data with the Empirical 
vowels. This creates obvious difficulties for the present Mode DecomPosition (EMD) method, with which the data 
approach in speech signal analysis using based on so are decomposed into a number of Intrinsic Mode Function 
linear and stationary assumptions such as filter bank or (IMF) components. In this way, the signal Will be expanded 
spectrogram etc. Considering the generation mechanisms, by using a basis that is adaPtivelY derived from the signal 
we can immediately find that mechanisms involved in itself. 
generating the consonants are all nonlinear. Therefore, we The second step of the general method of the present 
need a signal analysis method that is not only applicable to ss invention is to apply the Hilbert Transform to the decom- 
nonstationary but also to nonlinear processes. The Empirical posed IMF’s and construct an energy-frequency-time 
Mode Decomposition (EMD) is the only method known for distribution, designated as the Hilbert Spectrum, from which 
the task. Previously, an application of the EMD has been the Occurrence of physical events at corresponding times (time 
Hilbert-Huang Transform (HHT), as described in previous localities) will be preserved. There is also no close analytic 
patent applications and publications.  In  speech 60 form for the Hilbert Spectrum. As explained below, the 
communication, we process information frequency and invention avoids this problem by storing numerical approxi- 
amplitude locally and instantaneously. The natural way is mations in the specially programmed computer by utilizing 
not to wait for a long string of data and then to process it the inventive method. 
spectrally. Built in with an intermittent test option, we can The invention also utilizes instantaneous frequency and 
use EMD as a perfect tool to construct a filter bank, but the 65 energy to analyze the physical phenomenon rather than the 
filter is in temporal space rather than in frequency space. global frequency and energy utilized by computer imple- 
This temporal space filtering retains the full nonlinearity mented Fourier spectral analysis. 
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Furthermore, a computer implementing the invention, 
e.g., via executing a program in software, to decompose 
physical signals into intrinsic mode functions with EMD and 
generate a Hilbert spectrum is also disclosed. Because of the 
lack of close form analytic expression of either the basis 
functions and the final Hilbert spectrum; computer imple- 
mentation of the inventive methods is an important part of 
the overall method, however other implementation of the 
invention may be done. 

Still further, the invention may take the form of an article 
of manufacture. More specifically, the article of manufacture 
is a computer-usable medium, including a computer- 
readable program code embodied therein wherein the 
computer-readable code causes a computer to execute the 
inventive method. 

Once the IMF’s are generated, the invention can then 
produce a distilled or otherwise filtered version of the 
original physical signal. This distillation process eliminates 
undesired IMF’s and thereby generates a filtered signal from 
which it is possible to perform a curve fitting process. In this 
way, it is possible to arrive at an analytic function which 
accurately represents the physically important components 
of the original signal. 

This invention discloses a method in which Hilbert spec- 
trum generated from IMF decomposed from a first signal 
may be compared with another Hilbert Spectrum to deter- 
mine identification of the first signal. 

Further scope of applicability of the present invention will 
become apparent from the detailed description given here- 
inafter. However, it should be understood that the detailed 
description and specific examples, while indicating pre- 
ferred embodiments of the invention, are given by way of 
illustration only, since various changes and modifications 
within the spirit and scope of the invention will become 
apparent to those skilled in the art from this detailed descrip- 
tion. Furthermore, all the mathematic expressions are used 
as a short hand to express the inventive ideas clearly and are 
not limitative of the claimed invention. 

BRIEF DESCRIPTION OF DRAWINGS 
The present invention will become more fully understood 

from the detailed description given hereinbelow and the 
accompanying drawings which are given by way of illus- 
tration only, and thus are not limitative of the present 
invention, and wherein: 

The file of this patent contains at least one drawing 
executed in color. Copies of this patent with color drawing 
(s)  will be provided by the Patent and Trademark Office 
upon request and payment of the necessary fee. 

FIG. l(a) is a high-level flowchart describing the overall 
inventive method which may be implemented on the com- 
puter system shown in FIG. 2; 

FIG. l(b) is a high-level flowchart describing the Sifting 
Process which may be implemented on the computer system 
shown in FIG. 2; 

FIG. l(c) is a continuation of the high-level flowchart in 
FIG. l(b) describing the Sifting Process which may be 
implemented on the computer system shown in FIG. 2; 

FIG. l(d) is a high-level flowchart describing EMD signal 
filtering and curve fitting which may be implemented on the 
computer system shown in FIG. 2; 

FIG. 2 is a high-level block diagram of a computer system 
which may be programmed with the inventive with the result 
being a special purpose computer; 

FIG. 3(a) shows wind speed data in the form of a graph 
plotting wind speed as a function of time for explaining the 

10 
computer implemented Empirical Mode Decomposition 
method of the invention; 

FIG. 3(b) is a graph illustrating the upper envelope, lower 
envelope, envelope mean and original wind speed data 

5 which are utilized to explain the computer implemented 
Empirical Mode Decomposition method of the invention; 

FIGS. 3(c)<e) are graphs of the first, second and third 
component signals h l ,  h l l ,  h12, respectively which are 
generated by the Sifting Process of the invention; 

FIG. 3 0  is a graph of the first intrinsic mode function 
component which is generated by the Sifting Process of the 
invention; 

FIG. 3(g) is a graph of data with intermittency for 
15 illustrating an optional intermittency test of the invention; 

FIGS. 3(h)-(j) are graphs of the first, second, and third 
intrinsic mode functions when the Sifting Process is applied 
to the data of FIG. 3(g) without applying the intermittency 
test option; 

FIGS. 3(k)-(m) are graphs of the first, second, and third 
intrinsic mode functions when the Sifting Process is applied 
to the data of FIG. 3(g) which applies the intermittency test 
option. 

FIG. 4(a) is a graph of a wind speed signal which is for 
25 explaining the computer implemented Empirical Mode 

Decomposition method of the invention; 
FIGS. 4(b)-(k) show the wind speed signal and the nine 

intrinsic mode functions which are extracted from the wind 
speed signal by the EMD method of the invention; 

FIGS. 5(a)-(j) are a series of graphs illustrating the 
successive reconstruction of the original wind speed data 
from the intrinsic mode functions; 

FIG. 6(a) is the Hilbert Spectrum generated by the inven- 
tion from the wind speed data of FIG. 4(a); 

FIG. 6(b) is the conventional Morlet Wavelet spectrum 
generated from the wind speed data of FIG. 4(a); 

FIG. 6(c) shows the Hilbert Spectrum of FIG. 6(a) after 
smoothing by a 15x15 weighted Gaussian smoothing filter; 

FIG. 7 is a comparison of the marginal Hilbert spectrum 
(solid line) and the Fourier spectrum (dotted line) which 
were generated from the wind speed signal of FIG. 4(a); 

FIG. 8(a) is a graph illustrating the Degree of Stationarity 
and Degree of Statistical Stationarity which were generated 

45 from the wind speed signal of FIG. 4(a) with time averages 
of 10,50,100 and 300; FIGS. 8(b) and (c) are sections of the 
wind speed data that was used by the invention to produce 
the Degree of Stationarity shown in FIG. 8(a); 

FIGS. 9(a)-(d), 0 and (g) are graphs of blood pressure 
data taken from the pulmonary artery of an normal, active rat 
which provide examples of biological data that may be 
processed by the invention; 

FIG. 9(e) shows an envelope linking the systolic pressure 
extrema values for explaining the concepts of the invention; 

FIG. lO(a) shows a conventional Fourier Spectrum 
(energy versus frequency) of the blood pressure data from 
FIG. 9(b) for illustrating advantages of the invention; 

FIGS. lO(b)<c) show conventional Fourier Spectrums 
6o (energy versus frequency) of the blood pressure data from 

FIGS. 9(c)-(d) for further illustrating advantages of the 
invention; 

FIG. 1O(d) shows a conventional Fourier Spectrum (time 
versus frequency) of the blood pressure data from FIG. 9(b) 

FIGS. lO(e)-@ show conventional three-dimensional 
Fourier Spectrum (amplitude of spectrum as a function of 

lo 

20 

30 

3s 

40 

55 

65 for illustrating advantages of the invention; 
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frequency in evcry 1-minute window on the time-frequency 
plane in linear scales) of the blood pressure data from FIG. 
9(b) for illustrating advantages of the invention; 

FIG. 1O(g) is a combined graph directly comparing a 
conventional Fourier Spectrum and a marginal Hilbert Spec- 
trum according to the invention calculated from the data of 
FIG. 9(c); 

FIGS. ll(a)-(h) are graphs of the first through eighth 
intrinsic mode functions which are extracted from the blood 
pressure signal of FIG. 9(c) by the EMD method of the 
invention; 

FIGS. 12(a)-(h) are graphs of the first through eighth 
intrinsic mode functions which are extracted from the blood 
pressure signal of FIG. 9 ( 4  by the EMD method of the 
invention; 

FIGS. 13(a) and (b) are reconstructions of the blood 
pressure signal of FIG. 9 ( 4  based on subsets of the intrinsic 
mode functions; 

FIG. 13(c) is another reconstructions of the blood pres- 
sure signal of FIG. 9 ( 4  based on a different subset of the 
intrinsic mode functions plotted together with the original 
signal (dotted line) of FIG. 9(4; 

FIG. 14(a) is a Hilbert Spectrum of the FIG. 9 ( 4  blood 
pressure signal calculated according to the invention; 

FIG. 14(b) is a Hilbert Spectrum of the FIG. 9(c) blood 
pressure signal calculated according to the invention; 

FIGS. 15(a)-(d) are graphs of pulmonary blood pressure 
signals in response to step changes in oxygen concentration 
in the breathing gas; 

FIGS. 15(e)-(h) illustrate the inventive sifting process as 
it is applied to the data of FIGS. 15(b); 

FIGS. 16(a)-(p) are graphs of the first through sixteenth 
intrinsic mode functions which are extracted from the blood 
pressure signal of FIG. 15(a) by the EMD method of the 
invention; 

FIGS. 17(a)-@ are mean trends of pulmonary arterial 
blood pressure which are computed according to the inven- 
tion; 

FIGS. 18(a)<c) are analytic functions derived by the 
invention and representing the indicial response of pulmo- 
nary arterial blood pressure to a step decrease in oxygen 
concentration from 20.9 to 10.0%; 

FIGS. 19(a)<c) are analytic functions derived by the 
invention and representing the indicial response of pulmo- 
nary arterial blood pressure to a step increase in oxygen 
concentration from 10.0 to 20.9%; 

FIGS. 20(a)<d) are oscillations about the mean trend as 
defined by the invention for k=l ,  2, 4 and 6, respectively; 

FIG. 21 shows the Hilbert energy spectrum Ek(t) accord- 
ing to the invention which is calculated from the instanta- 
neous amplitude spectrum of the oscillations about the mean 
Xk(t) with k=6 (the data from FIG. 20(4); 

FIGS. 22(a)-(h) are graphs of the first through sixteenth 
intrinsic mode functions which are extracted from the Hil- 
bert energy spectrum Ek(t) of FIG. 21 by the EMD method 
of the invention; 

FIGS. 23(a)<b) show the three dimensional (amplitude- 
frequency-time) and two-dimensional (contour of amplitude 
on the frequency-time plane) plot of the Hilbert Spectrum 
(HHT) taken from the data of FIG. 20(4; 

FIG. 24 shows a conventional two dimensional Fourier 
Spectrum (FFT) of the pressure signal in 1-minute segments 
under the assumption that the process is stationary in each 
segment; 

12 
FIG. 25 is a graph of heart pulse intervalversus time taken 

from a human with sleep apnea and including both a normal 
and abnormal (apnea) data section; 

FIG. 26 is a graph of a normal heart pulse interval versus 

FIGS. 27(a)-(h) are graphs of the first through seventh 
intrinsic mode functions and the residue which are extracted 
from the normal heart pulse interval data of FIG. 26 by the 
EMD method of the invention; 

5 time; 

10 
FIG. 28 is a blow up of FIG. 26; 
FIG. 29 is a Hilbert Spectrum of the FIG. 26 normal heart 

FIG. 30 is a graph of an abnormal heart pulse interval 

FIGS. 31(a)-(h) are graphs of the first through seventh 
intrinsic mode functions and the residue which are extracted 
from the abnormal heart pulse interval data of FIG. 29 by the 
EMD method of the invention; 

pulse interval data calculated according to the invention; 

IS versus time; 

2o FIG. 32 is a blow up of FIG. 30; 
FIG. 33 is a Hilbert Spectrum of the FIG. 30 abnormal 

heart pulse interval data calculated according to the inven- 
tion; 

FIG. 34 is heart pulse rate data for 45 minute interval 
during which the patient suffered an epileptic seizure (at 
time index 0); 

FIGS. 35(a)-(i) are graphs of the first through ninth 
intrinsic mode functions which are extracted from the heart 

3o pulse interval data of FIG. 34 by the EMD method of the 
invention; 

FIGS. 36(a)<c) are the first intrinsic mode function the 
original heart pulse interval data, and the third intrinsic 
mode function of the FIG. 34 epileptic seizure data plotted 

FIG. 37 is a Hilbert Spectrum of the FIG. 34 epileptic 
seizure, heart pulse interval data calculated according to the 
invention; and 

FIG. 38 is a conventional Wavelet Spectrum of the FIG. 
40 34 epileptic seizure, heart pulse interval data for comparison 

FIG. 39 is a block diagram describing the inventive 

FIG. 40 is a block diagram describing the inventive 

FIG. 41 is a block diagram describing the inventive 

FIG. 42 is a block diagram describing the inventive 

FIG. 43 is a block diagram describing the inventive 

FIG. 44 is a block diagram describing the inventive 

FIG. 45(a) shows acoustical signal data recorded from a 

FIG. 45(b) shows acoustical signal data recorded from a 

FIGS. 46(a)<b) show the EMD decomposed IMF com- 

FIGS. 47(a)-(b) show the Hilbert Spectra of FIGS. 

FIGS. 48(a)<b) show the Fourier Spectra of FIGS. 

FIGS. 49(a)-(b) show the detailed Hilbert Spectra of 

25 

35 on an expanded scale, respectively; 

with the inventive result of FIG. 37. 

method of speech analysis. 

method of speech synthesis. 

method of speaker identification. 

45 

so method of speech recognition. 

method of sound quality enhancement. 

method of machine health monitoring. 

male speaker, saying ‘Halloo.’ 

female speaker, saying ‘Halloo.’ 

ponents of FIGS. 45(a)-(b). 

55 

60 

46(a)<b). 

65 46(a)-(b). 

FIGS. 46(a)-(b). 
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FIG. 50 shows the wide banded Fourier Spectrogram of 
FIG. 45(a), constructed from 128 sampled points. 

FIGS. 51(a)<b) show the detailed Fourier Spectrogram 
of Spectra of FIGS. 46(a)-(b). 

FIGS. 52(a)-(b) show the detailed Morlet Wavelet Spec- 
tra of FIGS. 46(a)<b). 

FIGS. 53(a)-(b) show the detailed Hilbert Spectra of 
FIGS. 49(a)-(b). 

FIGS. 54(a)-(b) show the detailed Hilbert Spectra and the 
acoustical signal data of FIGS. 46(a)-(b). 

FIG. 55 shows the acoustical signal data of the sounds, 
“Halloo+Ding,” “Halloo,” and ‘‘Ding,’’ respectively. 

FIG. 56(a) shows the EMD decomposed IMF components 
of sound “Halloo+Ding”, wherein each of the components is 
plotted in the uniform vertical scale. 

FIG. 56(b) shows the EMD decomposed IMF components 
of sound “Halloo+Ding”, wherein each of component is 
plotted in the vertical scale normalized within its own frame. 

FIG. 57(a) shows the filtered IMF components of the 
sound “Halloo+Ding”, wherein the signal associated with 
the sound “Ding” has been eliminated. 

FIG. 57(b) shows the IMF components of the sound 
‘‘Ding,’’ separated from FIG. 56(a). 

FIG. %(a) shows the Hilbert Spectrum of the sound 
“Halloo+Ding.” 

FIG. 58(b) shows the HHT filtered Hilbert Spectrum of 
the sound “Halloo+Ding.” 

FIG. 59(a) shows the acoustical signal data, filtered with 
HHT and Fourier, respectively. 

FIG. 59(b) shows Fourier Spectra for the sound “Halloo+ 
Ding” and various filtered data. 

FIGS. 60(a)-(c) show the acoustical data from a grinder 
operating on a hard surface continuously for 95, 120, and 
200 hours, respectively. 

FIGS. 61(a)-(c) show the EMD decomposed IMF com- 
ponents of FIGS. 60(a)-(c). 

FIGS. 62(a)-(c) show the Hilbert Spectra of FIGS. 
60(a)-(c). 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

Before describing the computer implemented Empirical 
Mode Decomposition method in detail and its application to 
biological data and acoustical data, the definition and physi- 
cal meaning of intrinsic mode functions in general will be 
discussed. 

Intrinsic Mode Function 

An Intrinsic Mode Function (IMF) is a function that 

(a) in the whole data set, the number of extrema and the 
number of zero-crossings must either be equal or differ 
at most by one, and 

(b) at any point, the mean value of upper envelope defined 
by the maxima and the lower envelope defined by the 
minima is zero. 

The first condition shares some similarity to the tradi- 
tional narrow band requirements for a stationary Gaussian 
process. The second condition is a totally new idea. 
Conceptually, the second condition modifies the classical 
global requirement to a local one. Furthermore, the second 
condition has the desirable result that the instantaneous 
frequency will not have unwanted fluctuations induced by 

satisfies the following two conditions: 

14 
asymmetric wave forms. Mathematically, the second condi- 
tion should ideally be ‘the local mean of the data being zero.’ 
For nonstationary data, the ‘local mean’ requires a ‘local 
time scale’ to compute the mean, which is impossible to 

5 define. Fortunately, the local time scale need not be defined 
to fulfil the second condition, as will be discussed below. 

To apply these concepts to physical data, the invention 
utilizes the local mean of the signal envelopes to force the 
local symmetry. 

The signal envelopes are defined by the local maxima and 
the local minima. This is an approximation which avoids the 
definition of a local averaging time scale. 

With the physical approach and the approximation 
adopted here, the inventive method does not always guar- 
antee a perfect instantaneous frequency under all conditions. 
Nevertheless, it can be shown that, even under the worst 
conditions, the instantaneous frequency so defined is still 
consistent with the physics of the system being studied and 
represents the system being studied much more accurately 
than previous techniques based on Fourier analysis. 

The term “Intrinsic Mode Function” is adopted because it 
represents the oscillation mode embedded in the data. With 
this definition, the IMF in each cycle, defined by the 
zero-crossings, involves only one mode of oscillation. In 
other words, each IMF represents only one group of oscil- 

25 lation modes or time scales and no riding waves are allowed. 
Before presenting the inventive EMD method for decom- 

posing the data into IMFs, a qualitative assessment of the 
intrinsic oscillatory modes may be roughly determined by 
simply examining the data by eye. From this examination, 

30 one can immediately identify the different scales directly in 
two ways: the time lapse between the successive alternations 
of local maxima and minima and the time lapse between the 
successive zero-crossings reveals the different scales. The 
interlaced local extrema and zero-crossings give us compli- 

35 cated data: one undulation is riding on top of another, and 
they, in turn, are riding on still other undulations, and so on. 
Each of these undulations defines a characteristic scale or 
oscillation mode that is intrinsic to the data: hence, the term 
“Intrinsic Mode Function” is adopted. 

To reduce the data into the needed IMFs, the invention 
utilizes a computer implemented Empirical Mode Decom- 
position Method which is described below. 
Empirical Mode Decomposition (EMD): The Sifting Pro- 
cess 

First, the Empirical Mode Decomposition method which 
deals with both nonstationary and nonlinear data will be 
discussed. Then, the physical meaning of this decomposition 
will be presented. 

The essence of the EMD method is to identify empirically 
so the intrinsic oscillatory modes by their characteristic time 

scales in the data, and then decompose the data accordingly. 
The decomposition is based on the following assumptions: 

a. the signal has at least two extrema: one maximum and 

b. the characteristic time scale is defined by the time lapse 

In other words, the invention adopts the time lapse 
between successive extrema as the definition of the time 
scale for the intrinsic oscillatory mode because it gives a 

60 much finer resolution of the oscillatory modes and because 
it can be applied to data with non-zero mean (either all 
positive or all negative values, without zero-crossings). A 
systematic way to extract the intrinsic mode functions is the 
computer implemented Empirical Mode Decomposition 

FIG. l ( a )  illustrates the overall inventive method includ- 
ing the Sifting Process in step 120. First, the physical 

10 

20 

40 

45 

one minimum, and 

between the extrema. 
ss 

65 method or Sifting Process which is described as follows. 
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activity, process or phenomenon is sensed by an appropriate value utilized in steps 201 and 221 to test for intermittency, 
sensor in step 100. Appropriate sensors for detecting the the test will be effectively bypassed. Otherwise, the test can 
physical activity and generating a physical signal represen- be bypassed at the initial selection of the program. 
tative thereof are discussed in the practical examples below. Then, the method constructs an upper envelope 20 of the 
As an equivalent alternative, the physical signal can be s Physical signal 10 in step 210. The upper envelope 20 is 
inputted in step 100. shown in FIG. 3(b) using a dot-dashed line. This upper 

to the digital domain suitable for computer processing in the that is fitted to the local maxima. 

are identified in step 220. To complete the envelope, a lower 
envelope 30 is constructed from the local minimum values 

3(b) using a dot-dash line. Like the upper envelope 20, the 

spline that is fitted to the local minima. 
The upper and lower envelopes 20,30 should encompass 

all the data within the physical signal 10. From the upper and 
lower envelopes 20, 30, an envelope mean 40 is the deter- 
mined in step 240. The envelope mean 40 is the mean value 
of the upper and lower envelopes 20,30. As can be seen in 

Before continuing with the main flow in FIG. l(a), the 20 FIG. 3(b), the envelope mean 40 bisects the physical signal 
10 quite well. 

Then, the method generates the first component signal h, 
in step 250 by subtracting the envelope mean 40 from the 
physical signal 10. This computer implemented step may 

After sensing in step 100, the analog signal is converted 

AID conversion step 105, Depending upon whether the input 

envelope 20 is Preferably constmcted with a cubic spline 

Of the physical lo Next, the local minimum 
signal is analog or digital step 105 may be bypassed. 10 

Next, an Optional step 'lo may be to in step 230, The lower envelope 30 is also shown in FIG, 

lower envelope 30 is preferably constmcted with a cubic 
the physical signal. The optional smoothing step 110 may be 

running average to remove excessive noise. 
Thereafter, the Sifting Process is applied in step 120 to 15 

sift the signal with the Empirical Mode DecomPosition 
method and thereby extract the intrinsic mode function(s). 
The intrinsic mode functions can then be displayed as shown 
in step 130 and checked for orthogonality in step 135. 

details of the Sifting Process will be explained with refer- 
ence to the high level flowchart in FIGS. 2(a), 2(b) and the 
series of graphs showing illustrative results of the Sifting 
Process in FIGS. 3(a)+. 

step 105 is first windowed by framing the end points in step 
X(t)-m,=h, 1 107. Then, the Sifting Process begins at step 200 by iden- 

tifying local maximum values of the digitized, framed Where the envelope mean 40 is m, and the physical signal 
physical signal from step 107. FIG. 3(a) shows a typical is X(t). 
physical signal 10 which, in this example, represents wind 30 FIG. 3(c) shows the first component signal h,. Ideally, the 
speed spanning a time interval of one second. first component signal h, should be an IMF, for the con- 

Before construction of the envelope in steps 210 and 230, stmction of h, described above seems to have made h, 
optional intermittency tests (201,221) may be introduced to satisfy all the requirements of an IMF. In reality, however, a 
alleviate the alias associated with intermittence in the data gentle hump that resides on a slope region of the data can 
that can cause mode mixing. 35 become an extremum when the reference coordinate is 

Optional intermittency test 201 checks the distance changed from the original rectangular coordinate to a cur- 
between successive maxima to see if this distance between vilinear coordinate. For example, the imperfection of the 
is within a pre-assigned value n times the shortest distance envelopes 20, 30 can be seen by observing the overshoots 
between waves. If no, then an intermittency exists and the and undershoots at the 4.6 and 4.7 second points in FIG. 
method proceeds to step 202. If yes, then there is no 40 3(b). 
intermittency and the upper envelope is constructed in step An example of this amplification can be found in the 
210 as further described below. gentle hump between the 4.5 and 4.6 second range in the 

Similarly optional intermittency test 221 checks the dis- data in FIG. 3(a). After the first round of sifting, the gentle 
tance between successive minima to see if this distance is hump becomes a local maximum at the same time location 
within a pre-assigned value n times the shortest distance 45 in the first component signal h, shown in FIG. 3(c). New 
between waves. If no, then an intermittency exists and the extrema generated in this way actually recover the proper 
method proceeds to step 222. If yes, then there is no modes lost in the initial examination. Thus, the Sifting 
intermittency and the upper envelope is constructed in step Process extracts important information from the signal 
230 as further described below. which may be overlooked by traditional techniques. In fact, 

An example of such intermittency is given in FIG. 3(g), SO the Sifting Process can recover low amplitude riding waves, 
in which small scale waves appear only intermittently. By which may appear as gentle humps in the original signal, 
strict application of the Sifting Process, the resulting IMFs with repeated siftings. 
are given in FIGS. 3(b)-(j), in which two drastically differ- Still another complication is that the envelope mean 40 
ent time scales are present in the first IMF component as may be different from the true local mean for nonlinear data. 
shown in FIG. 3(h). This mixing of modes breaks up the ss Consequently, some asymmetric wave forms can still exist 
main wave train by the small intermittent oscillations. no matter how many times the data are sifted. This must be 

If intermittency tests (201,222) are employed which uti- accepted because, after all, the inventive method is an 
lize a preassigned value of n-times the shortest distance approximation as discussed before. 
between waves, the resulting IMFs are shown in FIGS. Other than these theoretical difficulties, on the practical 
3(k)-(m), in which the modes are clearly and physically 60 side, serious problems of the spline fitting can occur near the 
separated. The effective step to eliminate the mode mixing ends, where the cubic spline being fit can have large swings. 
is achieved by treating the local extrema which failed the Left by themselves, the end swings can eventually propagate 
intermittency test as local maxima and minima (steps 202 inward and corrupt the whole data span especially in the low 
and 212), respectively. Therefore, the upper and lower frequency components. A numerical method has been 
envelope will be identical as the original data reference line. 65 devised to eliminate the end effects details of which will be 

These intermittency tests (201,221) and the further steps given later. Even with these problems, the Sifting Process 
(202,222) are optional. By selecting an artificially large n can still extract the essential scales from the data. 

to smooth the with, for a weighted 

As shown in FIG. l(b), the digitized physical signal from zs also be expressed as: 
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The Sifting Process serves two purposes: to eliminate Process has arrived at an IMF and should be stopped by 
riding waves and to make the wave profiles more symmetric. proceeding to step 270. If not, step 260 starts another 
Toward these ends, the Sifting Process has to be repeated. iteration by proceeding to step 265 as described above. 
Because only the first component signal h, has been gener- Alternatively, another stopping criteria could be used that 
ated so far, the decision step 260, which tests successive 5 determines whether successive component signals are sub- 
component signals to see if they satisfy the definition of an stantially equal. If successive component signals are sub- 
IMF, is bypassed during the first iteration. stantially equal, then the Sifting Process has arrived at an 

iteration is then performed by executing steps 200-250. In 10 described above. 

subtracting the envelope mean from the physical signal (in 
this iteration, the first component signal h, is treated as the 
physical signal). In more formal terms: 

Thus, step 265 is performed which treats the component 
signal as the physical signal in the next iteration, The next 

step 250, the second component signal h,, is generated by 

IMF and be stopped by proceeding to step 270. If not, 
step 260 starts another iteration by proceeding to step 265 as 

Determining whether successive component are 
substantially equal in the alternative stopping criteria limits 
the size of the standard deviation, sd, computed from the two 
consecutive sifting results as follows: 

5 T n ( h i ( k - i ) ( r )  - h i k ( f ) ) n 2  
hl-mll=hll 2 

Although the second sifting shows great improvement in the 
signal with respect to the first sifting, there is still a local 
maximum below the zero line. After a third sifting, the result 

the local maxima are positive, and all the local minima are 
negative, but to ensure this configuration is stable, the 
Sifting Process should be further repeated. In general, the 
Sifting Process is repeated at least 3 more times and, in 25 
general, K times to produce hlk If no more new extrema are 
generated, then h,, is an IMF. In formal terms: 

sd = A 
FIG. 3 ( 4  shows the second component signal h,,. t=O [ h : ( k - l ) ( r )  

A very rigorous and preferred value for sd is set between 
20 o,2 and o,3, Of course, if faster processing is desired, then 

Overall, the first IMF component c1 should contain the 
finest scale or the shortest period component of the physical 
signal 

Before extracting the next IMF component, a test should 
be conducted to determine if the Sifting Process should stop. 
The stopping criteria is shown in Step 300. Step 300 
determines whether the component signal has more than 2 
extrema. If not, all of the IMF's have been extracted and the 

The resulting first IMF component is shown in FIG. 3 0  30 Sifting Process is stopped by proceeding to step 310. If so, 
after 9 siftings. The first IMF component of the physical then additional IMF's may be extracted by continuing the 
signal may be designated as such in step 270 and stored in process in step 320. 
step 275 in memory 415: Step 270 recognizes that an IMF component has been 

successfully generated by the Sifting Process by setting the 
4 35 component signal equal to an intrinsic mode function. More 

specifically, step 270 causes the computer 410 to store the 
component signal h lk  as an intrinsic mode function in 
memory 415, 

in step 290 to generate a residual signal. In particular, a 

function from the physical signal, In formal terms: 

(third component h12) is shown in 3(4'  Now a trade-off such as a less rigorous value for sd may be used, 

hl(k-l)-mlk=hlk; 

C i = h i k ,  

As mentioned above, all these manipulations are carried 
out numerically in a computer 410. There is not explicit 

implemented steps. 

the data by the computer 410 because it separates the finest 
(shortest time scale) local mode from the data first based 

'lose form expression for any Of the computer Then, the first IMF is separated from the physical signal 

As described above, the process is indeed like sifting of 40 residual signal is generated by subtracting the intrinsic mode 

only on the characteristic time scale. The Sifting Process, 
however, has two effects: 

a. to eliminate riding waves, and 4s 
b. to ensure the envelopes generated by maxima and 

While the first condition is necessary for the instantaneous 
frequency to be meaningful (as discussed below), the second 
condition is also necessary in case the neighboring wave 50 
amplitudes have too large a disparity. 

Unfortunately, the effects of the second condition, when 
carried to the extreme, could obliterate the physically mean- 
ingful amplitude fluctuations. Therefore, the Sifting Process 
should be applied with care, for carrying the process to an 55 
extreme could make the resulting IMF a pure frequency 
modulated signal of constant amalitude. 

minima are symmetric. 

X(t)-cl=rl. 6 

Because the residue, r,, still includes information of 
longer period components, it is treated as the new physical 
data and subjected to the same Sifting Process as described 
above. Step 320 performs this function by treating the 
residual signal as the physical signal in the next iteration. 
Thereafter, the next iteration is performed beginning with 
the execution of step 200 as described above. 

The Sifting Process is analogous to a mechanical sieve, 
except it is implemented here in specially programmed 
computer and applied to any digital data numerically rather 
than mechanically. 

The Sifting Process is repeated for all the subsequent rj's. 
This iterative procedure may be expressed as: 

v 

To guarantee that the IMF component retains enough 
physical sense of both amplitude and frequency 
modulations, a stopping criterion is employed to stop the 

This stopping criterion is part of the computer imple- 
mented method and is shown as step 260 in FIG. l(c). Step 
260 is a decision step that decides whether the stopping 
criteria has been satisfied. The preferred stopping criteria 
determines whether three successive component signals 65 Otherwise, the method proceeds to step 320. 
satisfy the definition of IMF. If three successive component 
signals all satisfy the definition of IMF, then the Sifting 

rl - c2 = r2,  
000, 

I 

generation of the next IMF component. 60 r,-l - cn = r,,. 

Step 300 stops the Sifting Process by Proceeding to stop 
step 310 if the residual signal r, has more than 2 extrema. 

In other words, Step 310 stops the Sifting Process if the 
residual signal r, is monotonically increasing or decreasing. 
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This stopping criterion is based on the fact that an IMF performed for a subset (k) of the IMFs. Further details and 
cannot be extracted from a monotonic function. If r, is not an example are discussed below. The result of step 370 is a 
monotonically increasingidecreasing, then a next iteration is signal that may be subjected to the Sifting Process to extract 
performed beginning with step 320. a set of IMFs in step 120. Although FIG. l(d) illustrates an 

Even for data with zero mean, the final residue still can be s infinite loop (steps 120, 350 and 370), at some point it will 
different from zero. For data with a trend, the final residue not be appropriate or possible extract further IMFs. Thus, 
should be that trend. this loop is not really infinite and is typically performed one 

In summary, the Sifting Process decomposes the physical or two times. 
signal X(t) into a series of intrinsic mode functions and a 

Computer for Implementing Inventive Method 

A computer suitable for programming with the inventive 
method is diagrammatically shown in the block diagram of 
FIG. 2. The computer 410 is preferably part of a computer 
system 400. To allow human interaction with the computer 

15 410, the computer system includes a keyboard 430 and 
435, The computer programmed with the inventive 

digital data into series of I M F ' ~  according to their time 

residue which may be expressed as: 10 

8 
X ( r )  = A c! + r,. 

,=I 

In other words, the invention extracts a series of IMFs by 

Empirical Mode Decomposition method. This IMF series 
Sifting the Physical signal with a computer implemented 

cannot be generated or derived by any analytic method. It 
can Only be extracted by the invention through a 

method is analogous to a mechanical sieve: it separates 

scales in a manner analogous to a mechanical sieve which 
20 separates aggregated sand particles according to their physi- 

programmed computer through the Sifting Process. cal size. 
Because the invention is applied to analyze physical 

signals, the computer system 400 also includes an input 
FIG. l(d) illustrates the inventive method of Performing device 440, sensor 442 and/or probe 444 which are used to 

filtering and curve fitting. The method begins, as in FIG. 25 sample a physical phenomenon and generate physical signal 
l(a), with sensing the Physical Phenomenon or inputting a representative thereof. More particular examples of such 
signal representative thereof in step 100. The optional inputs (440, 442 and 444) are described in relation to FIGS. 
smoothing 105 may then be applied to eliminate excess 21-25, 

To output the results of the computer implemented noise. 
Then, the signal is Sifted with the Empirical Mode 30 method, the computer system 400 also includes a display 

Decomposition Process to extract the intrinsic mode func- 450 such as a cathode ray tube or flat panel display, printer 
tions in step 120. The IMFs may then be directly displayed 460 and output device 470. Each of these outputs (450,460, 
130, stored 132 or transmitted 134. 470) should have the capability to generate or otherwise 

As mentioned above, fitting a curve to a signal is not handle color outputs because, for example, the Hilbert 
always possible. The reasons include too many data points 35 Spectrum may be in color. 
for efficient curve fitting and nonlinear data that does not The generalized output device 470 may also include a 
admit an curve fit. The IMFs3 however, extract network connection to connect the computer 400 to a local 
important information from the original signal while reduc- or wide area network, this way, the physical signal may 
ing the number of data Points and simplifying the resulting 4o be inputted from the network. Furthermore, all outputs can 
signal. BY Properly selecting only the most relevant I M h  be sent to another location via such a network connection. 

Furthermore, the computer system 400 also includes a one can construct a filtered version of the original signal. 
Step 350 Performs this Process of constructing a filtered mass storage device 420. The mass storage device 420 may 

signal from a subset Of the IMFS. Selecting which IMFS be a hard disk, floppy disc, optical disc, etc, The 
be an 45 storage device 420 may be used to store a computer program 

which performs the invention when loaded into the com- 
puter 410. As an alternative, the input device 440 may be a 
network connection or off-line storage which supplies the 
computer program to the computer 410, 

EMD Filtering and Curve Fitting 

in the subset and which not 
empirical or intuitive process. Typically, the IMFs having 
the lowest frequency components are chosen as Part of the 
selected subset with the higher frequency components 
excluded therefrom. In this way, a simplified (filtered) 
version Of the Original can be constructed which More particularly, the computer program embodiment of 

the invention may be loaded from the mass storage device unnecessary and, not physically 
420 into the internal memory 415 of the computer 410. The ponents (IMFs). 

More specifically, step 350 Performs a swmxhm of the result is that the general purpose computer 410 is trans- 
selected IMFs. The selection of IMFs can be automated, e.g. formed into a special purpose machine that implements the 
the n lowest frequency IMFS, or manual. 

Generating the filtered signal typically Permits curve Even more particularly, each step of inventive method 

is generated, conventional curve fitting techniques (step computer 410 into a special purpose computer module 
360) such as a least squares estimation Process can be implementing that step. For example, when the sifting step 
utilized. 60 120 is implemented on the computer 410, the result is a 

The fitted curve may then be outputted 362, displayed computer implemented sifting apparatus (sifter) that per- 
364, stored 366 or transmitted 368. forms the sifting functions of sifting step 120. 

The filtered signal may also be subjected to further Other embodiments of the invention include firmware 
processing in step 370. Namely, the oscillatory energy about embodiments and hardware embodiments wherein the 
the mean is calculated in step 370. This calculation is 65 inventive method is programmed into firmware (such as 
essentially the same as the instantaneous energy density EPROM, PROM or PLA) or wholly constructed with hard- 
calculation explained below, with the calculation being ware components. Constructing such firmware and hardware 

55 invention. 

fitting to be successful and efficient. Once the filtered signal will transform at least a portion of the general purpose 
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tude of the fluctuation increases, another indication of wind- 
wave interactions. 

By adding the next longest period component, cs, the 
trend of the sum, c9+cs, takes a remarkable turn, and the 

5 fitting to the wind speed signal looks greatly improved as 
shown in FIG. 5(b). Successively adding more components 
with increasing frequency results in the series of FIGS. 
5(c)-(i). The gradual change from the monotonic trend to the 
final reconstruction is illustrative by itself. By the time the 

10 sum of IMF components reaches c3 in FIG. 5(g), essentially 
all the energy contained in the wind speed signal is recov- 
ered. The components with the highest frequencies add little 
more energy, but they make the data look more complicated. 
In fact, the highest frequency component is probably not 

15 physical, for the digitizing rate of the Pitot tube is too slow 
to capture the high frequency variations. As a result, the data 
are jagged artificially by the digitizing steps at this fre- 
quency. The difference between the original data and the 
re-constituted set from the IMF’s is given in FIG. 50’). The 

20 magnitude of the difference is lo-’’, which is the limit of the 
computer 410. 

The Hilbert Spectrum 

Having obtained the Intrinsic Mode Function components 
(through either the local extrema or curvature extrema 
Sifting Processes), the next step in the computer imple- 
mented method is to apply the Hilbert Transform to each 
component and generate the Hilbert Spectrum as shown in 
step 140 in FIG. l (a ) .  A brief tutorial on the Hilbert 
transform with emphasis on its physical interpretation can be 
found in Bendat and Piersol, 1986, “Random Data: Analysis 
and Measurement Procedures”, 2nd Ed., John Wiley & 
Sons, New York, N.Y. Essentially, the Hilbert transform is 

35 the convolution of X(t) with lit. This convolution empha- 
sizes the local properties of X(t). In more formal terms, 
given a time series X(t), the Hilbert Transform Y(t) can be 
expressed as 

2s 

30 

embodiments of the invention would be a routine matter to 
one of ordinary skill using known techniques. 

Article of Manufacture 

Still further, the invention disclosed herein may take the 
form of an article of manufacture. More specifically, the 
article of manufacture is a computer-usable medium, includ- 
ing a computer-readable program code embodied therein 
wherein the computer-readable code causes computer 410 to 
execute the inventive method. 

A computer diskette such as disc 480 in FIG. 2 is an 
example of such a computer-usable medium. When the disc 
480 is loaded into the mass storage device 480, the 
computer-readable program code stored therein is trans- 
ferred into the computer 410. In this way, the computer 410 
may be instructed to perform the inventive methods dis- 
closed herein. 

Illustration of Sifting Process 

To further illustrate the Sifting Process, consider FIG. 
4(a) which shows a physical signal representing wind data 
collected in a laboratory wind-wave tunnel with a high 
frequency response Pitot tube located 10 cm above the mean 
water level. The wind speed was recorded under the condi- 
tion of an initial onset of water waves from a calm surface. 
Clearly, the physical signal is quite complicated with many 
local extrema but no zero-crossings such that the time series 
represents all positive numbers. 

Although the mean can be treated as a zero reference, 
defining it is difficult, for the whole process is transient. This 
example illustrates the advantage of adopting the successive 
extrema for defining the time scale and the difficulties of 
dealing with nonstationary data. In fact, a physically mean- 
ingful mean for such data is impossible to define using 
standard methods. The EMD eliminates this difficulty. 

FIG. 4(b) shows the wind speed signal of FIG. 4(a) on a 
different scale for comparison purposes. FIGS. 4(c)-(k) 
show all the IMFs obtained from repeatedly sifting the wind 
speed signal in FIG. 4(b). The efficiency of the invention is 
also apparent: the Sifting Process produces a total of 9 
intrinsic mode function components while the Fourier trans- 
form needs components which number as many as half of 
the total number of points in a given window to represent the 
wind data with the same accuracy. 

The separation of the wind speed data into locally non- 
overlapping time scale components is clear from FIGS. 
4(c)-(k). In some components, such as c1 and c3, the signals 
are intermittent, then the neighboring components might 
include oscillations of the same scale, but signals of the 
same time scale would never occur at the same locations in 
two different IMF components. 

The components of the EMD are usually physical, for the 
characteristic scales are physically meaningful. 

To confirm the validity and completeness of the Sifting 
Process, the wind speed signal can be reconstructed from the 
IMF components. FIGS. 5(a)-(i) show this reconstruction 
process starting from the longest period IMF to the shortest 
period IMF in sequence. For example, FIG. 5(a) shows the 
wind speed signal and the longest period component, c9, 
which is actually the residue trend, not an IMF. 

By itself, the fitting of the trend is quite impressive, and 
it is very physical: the gradual decrease of the mean wind 
speed indicates the lack of drag from the calm surface 
initially and the increasing of drag after the generation of 
wind waves. As the mean wind speed deceases, the ampli- 

1 ?’ X ( r # )  
p - - r - r #  Y ( r )  = - P U  -dr# 40 9 

where P indicates the Cauchy principal value. 
With this definition, X(t) and Y(t) form a complex con- 

45 jugate pair. This complex conjugate pair Z(t) may be 
expressed as: 

Z(t)=X(t)+iY(t)=a (t)&*), 10 

in which 

55 

After performing the Hilbert transform to each IMF 
component, we can express the time series data X(t) in the 
following form: 

60 

65 In Equation (13), the residue, r,, is purposefully omitted, 
for it is either a monotonic function, or a constant. Although 
the Hilbert transform can treat the monotonic trend as part 
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of a longer oscillation, the energy involved in the residual tive results are desired, the smoothed presentation is better. 
trend could be overpowering. In consideration of the uncer- As a guide, the first look of the data is better in the smoothed 
tainty of the longer trend, and in the interest of information format. 
contained in the other low energy and higher frequency The alternative of the spatial smoothing is to select a 
components, the final non-IMF component should be left 5 lower frequency resolution and leave the time axis undis- 
out. It, however, could be included, if physical consider- turbed. The advantages of this approach are the preservation 
ations justify its inclusion. of events' locations and a more continuous frequency varia- 

Note that Equation (13) gives both amplitude and fie- tion. Furthermore, a lower frequency resolution saves com- 
quency of each component as functions of time. It should be putation tirne for the computer implemented method, 
pointed out that no analytical method can generate the 
expression in Equation (13). Instead, the components 
may be extracted Only by a specially programmed computer 

To optimize such computation time, the optimal fie- 
quency resolution in the Hilbert spectrum can be computed 
as follows, k t  the total data length be T, and the digitizing 

the inventive Process and the trans- rate of the be _t, Then, the lowest frequency that can 
form. The variable amplitude and frequency have not only be extracted from the data is l/T Hz, which is also the limit greatly improved the efficiency of the expansion, but also 
enabled the expansion to accommodate nonstationary data, 1s Of frequency for the data. The highest frequency 
With IMF expansion, the amplitude and the frequency that can be extracted from the data is l/(n -t) Hz, in which 
modulations are also clearly separated. n represents the minimum number o f t  needed to define the 

Equation (13) also enables the computer implemented 
method to represent the amplitude and frequency as func- Because the Hilbert transform defines instantaneous fre- 
tions of time in a three-dimensional plot, in which the 20 quency by differentiation, more data points are needed to 
amplitude can be contoured on the frequency-time plane, define an oscillation. The absolute minimum number of data 
This frequency-time distribution of the amplitude is desig- points is five for a whole sine wave. Although a whole sine 
Dated as the Hilbert Amplitude Spectrum, H(-, t), or simply wave is not needed to define its frequency, many Points 
Hilbert Spectrum. Thus we have: within any part of the wave are needed to find a stable 

2s derivative. Therefore, the maximum number of the fre- 
quency cells, N, of the Hilbert spectrum should be 14 

~ ( w ,  r )  = 2, aJ(r)e%wJ(r)dr. 
J=I 

1 15 

1 nDr 
T 

- T  N = n D r = - ,  
In which H(-, t) is the Hilbert spectrum of the frequency 30 - 

(-) and time (t) and a,(t) is the j-th component of the IMF. 
In the presentation, the amplitude (with or without 

smoothing) can be expressed in color maps, black-grey In order to make the derivative stable, the data is averaged 
maps, or contour maps. Color maps, however, greatly over three adjacent cell values for the final presentation. 
increase the operator's ability to fully analyze the spectrum. 35 To illustrate, consider the wind data of FIG. 4(a) which 
In some cases, a color map will permit the operator to was digitized at a rate of 0.01 seconds and has a total length 
discern relationships and trends that would not be apparent of 30 seconds. Therefore, the highest frequency that can be 
in black-grey maps thereby making a color display a nec- extracted is 25 Hz. The total cell size could be 600, but they 
essary component in some cases. have been averaged to 200 in FIG. 6(a).  

Marginal Spectrum density, then the squared values of amplitude can be sub- 
stituted to produce a Hilbert Energy Spectrum just as well. The marginal spectrum offers a measure of total amPli- 

Various forms of Hilbert spectra presentations can be tude (Or energy) contribution from each frequency value. In 
generated by the computer in the display step 190: both color other words, the marginal spectrum represents the cumu- 
coded maps and contour maps may be employed to present 4s lated amplitude Over the entire data span. 
the Hilbert spectra with or without smoothing. The Hilbert As shown in FIG. l(a), the marginal spectrum is calcu- 
Spectrum in the color map format for the wind data is shown lated by the computer implemented method in step 145 after 
in FIG. 6(a). The Hilbert spectrum in FIG. 6(a) gives a very applying the Hilbert Transform in step 140. The marginal 
different appearance when compared with the corresponding spectrum is the Hilbert Spectrum integrated through all time. 
Wavelet spectrum shown in FIG. 6(b). While the Hilbert 50 In this simplification, the time coordinate is lost as in the 
Spectrum in FIG. 6(a) appears only in the skeleton form Fourier spectral analysis, which leaves a summary of the 
with emphasis on the frequency variations of each IMF, the frequency content of the event. Therefore, this presentation 
Wavelet analysis result gives a smoothed energy contour should only be used when the phenomena being analyzed is 
map with a rich distribution of higher harmonics. stationary. Formally, the marginal spectrum h(_) is defined 

If a more continuous form of the Hilbert Spectrum is ss as: 
preferred, a smoothing method can be optionally applied in 

be used in the invention is a weighted spatial filter which 
averages over a range of cells. For example, a 15 by 15 
weighted Gaussian filter may be employed in step 155 as is 60 
known in the art to smooth this data. FIG. 6(c) shows the 
result of applying the 15 by 15 weighted Gaussian filter. 

Although smoothing step 155 degrades both frequency 
and time resolutions, the energy density and its trends of 
evolution as functions of frequency and time are easier to 6s spectrum of the Hilbert Spectrum given in FIG. 6(a). 
identify. In general, if more quantitative results are desired, 
the original skeleton presentation is better. If more qualita- 

If amplitude squared is more desirable to represent energy 40 

step 155. The first type of a smoothing method which may T 16 
h(w) = U H ( w ,  r)dr. 

Because there is no analytic expression for H(-,t), the 
integration can only be Performed in a computer as a sum. 

An example of a marginal spectrum is shown in FIG. 7. 
More particularly, FIG. 7 shows the corresponding marginal 

The frequency in either H(-, t) or h(_) has a totally 
different meaning from results generated by applying Fou- 
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rier spectral analysis. In the Fourier representation, the 
existence of energy at a frequency, ~, means a component 
of a sine or a cosine wave persisted through the time span of 
the data. 

In contrast, the existence of energy at the frequency, ~, 
means only that, in the whole time span of the data, there is 
a higher likelihood for such a wave to have appeared locally. 
In fact, the Hilbert Spectrum is a weighted, non-normalized, 
joint amplitude-frequency-time distribution. The weight 
assigned to each time-frequency cell is the local amplitude. 
Consequently, the frequency in the marginal spectrum indi- 
cates only the likelihood of an oscillation with such a 
frequency exists. The exact occurrence time of that oscilla- 
tion is given in the full Hilbert spectrum. 

To illustrate this difference, the corresponding Fourier 
Spectrum of the wind speed signal is also given in FIG. 7 
using a dotted line. As can be observed, there is little 
similarity between the Fourier spectrum and the marginal 
spectrum. While the Fourier spectrum is dominated by the 
DC term because of the non-zero mean wind speed, the 
marginal spectrum gives a nearly continuous distribution of 
energy. The Fourier spectrum is meaningless physically, 
because the data is not stationary. In contrast, the marginal 
spectrum provides a physically meaningful interpretation of 
the wind speed signal. 

Instantaneous Frequency 

There are two types of frequency modulation: the inter- 
wave and the intra-wave modulations. The first type is 
familiar because the frequency of the oscillation gradually 
changes as the waves disperse. Technically, in dispersive 
waves, the frequency is also changing within one wave, but 
that is generally not emphasized either for convenience, or 
for lack of a more precise frequency definition. The second 
type is less familiar, but it is also a common phenomenon: 
if the frequency changes from time to time within a wave its 
profile can no longer be a simple sine or cosine function. 
Therefore, any wave profile deformation from the simple 
sinusoidal form implies intra-wave frequency modulation. 

In the past, such phenomena were treated as harmonic 
distortions. Nevertheless, such deformations should be 
viewed as intra-wave frequency modulation because the 
intra-wave frequency modulation is a more physically mean- 
ingful term. 

In order to understand these frequency modulations, the 
invention applies a unique definition of instantaneous fre- 
quency. This definition stems from the EMD method and 
requires the signal to be reduced into IMF components. After 
extracting the IMF components, an instantaneous frequency 
value can be assigned to each IMF component.  
Consequently, for complicated data in which more than one 
IMF may be extracted by EMD, there can be more than one 
instantaneous frequency at a time locally. 

With the Hilbert Transform, a unique definition of instan- 
taneous frequency may be applied by the computer imple- 
mented method as illustrated by step 160. Step 160 calcu- 
lates the instantaneous frequency which is formally defined 
as follows: 

By calculating instantaneous frequency, step 160 of the 
invention permits the frequency value to be defined for 
every point with the value changing from point to point. 

26 
The validity and the implications of the instantaneous 

frequency for nonlinear signals may be analyzed by exam- 
ining an idealized Stokes wave in deep water. The wave 
profile of such a Stokeian wave is modeled by 

X(t)=cos(wt+e sin wt) 18 

Therefore, it is a intra-wave frequency modulated signal. 
Approximately, equation (18) can be shown to be: 

5 

10 X(t)=(l+e/)cos wt+e cos 2wt 19 

The wave profile is also shown in FIG. 9(a). Because the 
intra-wave frequency can only be approximated by harmon- 
ics in Fourier analysis, we can still have the same profile, but 
not the same frequency content. The wave form shows 
sharpened crests and rounded off troughs, which make the 
crests and troughs asymmetric with respect to the mean 
surface. 

Processed with computer implemented EMD, this data 
yields only one IMF component as shown in FIG. 9(b), with 

2o a constant offset component (not shown). Although this 
wave has only one characteristic scale or IMF, the Wavelet 
analysis result shown in FIG. 9(c). FIG. 9(c) has many 
harmonics with two visible bands of energy corresponding 
to the highest order of approximations of the possible 

In contrast, the IMF data can be processed by the inven- 
tive method to give the Hilbert Spectrum shown in FIG. 
9(4.  The Hilbert Spectrum has only one frequency band 
centered around 0.03 Hz, the fundamental frequency of the 

30 wave train, but there is an intra-wave frequency modulation 
with a magnitude range of 0.02 to 0.04 Hz as the model truly 
represents. This intra-wave frequency modulation has been 
totally ignored in the past, for the traditional definition of 
frequency is based on the reciprocal of periodicity and 

25 harmonics. 

35 Fourier Analysis. 

Instantaneous Energy Density 

Furthermore, the computer implemented method may also 
calculate the instantaneous energy density in step 150. The 
instantaneous energy density, IE, is defined as: 

IE(t)=Zi,HZ(w, t)dw 20 

Still further, this instantaneous energy density depends on 
45 time. Therefore, the IE can be used to check energy fluc- 

40 . 

tuations. 

Stationarity 

To quantitatively measure the stationarity of a physical 
signal, the invention utilizes step 165 to calculate various 
stationarity measurements. Before introducing the preferred 
stationarity measurements, a brief review of conventional 
stationarity measurements is presented. 

The classic definitions of stationarity are dichotomous: a 
5s process is either stationary or nonstationary. This crude 

definition is only qualitative in nature. Such definitions are 
both overly stringent and useless at the same time: few data 
sets can satisfy the rigor of these definitions; consequently, 
no one even bothers using them to check stationarity of the 

60 signal. As a result, data as nonstationary as earthquake and 
seismological signals are routinely treated as stationary (see, 
for example, Hu, et al., 1996., Earthquake Engineering. 
Chapman & Hall, London). 

Sometimes, for some obviously nonstationary data, two 
65 less stringent definitions are invoked: piece-wise stationary 

and asymptotically stationary. These definitions are still 
dichotomous. 
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To quantify the statistical processes further, an index is 
needed to give a quantitative measure of how far the process 
deviates from stationarity. A prerequisite for such a defini- 
tion is a method to present the data in the frequency-time 
space. 

With the energy-frequency-time distribution (Hilbert 
Spectrum) described above, stationarity of the physical 
signal may be quantitatively determined. Therefore, the 
invention introduces an index of stationarity as follows and 
calculates a Degree of Stationarity in step 165. 

The first step in defining the Degree of Stationarity, 
DS(_), is to find the mean marginal spectrum, n(_), as 

21 1 
T n(w) = -h(w) 

Then, the Degree of Stationarity may be defined as: 

22 

Again, the value of DS(_) can be determined by the 
computer. Therefore, the specialized computer 410 accord- 
ing to the invention can be treated as a stationarity meter. 

For a stationary process, the Hilbert spectrum cannot be 
a function of time. Then, the Hilbert Spectrum will consist 
of only horizontal contour lines and DS(_) will then be 
identically zero. Only under this condition will the marginal 
spectrum be identical to the Fourier spectrum, then the 
Fourier spectrum will also make physical sense. On the other 
hand, if the Hilbert spectrum depends on time, the index will 
not be zero, then the Fourier spectrum will cease to make 
physical sense. 

In general, the higher the index value, the more nonsta- 
tionary is the process. The DS for the wind data is shown in 
FIG. S(a). As the index shows, the data are highly nonsta- 
tionary especially for the high frequency components. 

Eq. (22) defines the stationarity as a function of frequency. 
This is necessary because certain frequency components can 
be nonstationary while other components remain stationary. 
An example is sporadic riding wind-generated waves on 
otherwise uniform swell: the low frequency swell compo- 
nent is stationary, while the high frequency wind waves are 
intermittent, and hence nonstationary. 

The degree of stationarity can also be a function of time 
implicitly, for the definition depends on the time length of 
integration in Eq. (22). Therefore, a process can be piece- 
wise stationary. On the other hand, for a singular outburst in 
an otherwise stationary signal, the process can be regarded 
as almost stationary if a long time integral is performed, but 
nonstationary the integral only encompasses the immediate 
neighborhood of the outburst. 

Stationarity can be a complicated property of the process: 
for any signal shorter than a typical long wave period, the 
process may look transient. Yet as the signal length gets 
longer, the process can have many longer wave periods and 
becomes stationary. On the other hand, the signal can be 
locally stationary while in a long time sense nonstationary. 
An index is therefore not only useful but also necessary to 
quantify the process and give a measure of the stationarity. 

The invention also calculates a Degree of Statistic Sta- 
tionarity in step 165. The degree of stationarity defined in 
Eq. (22) can be modified slightly to include statistically 

28 
stationary signals, for which the Degree of Statistic 
Stationarity, DSS(_,_T), is defined as 

23 

where the over-line indicates averaging over a definite but to 
shorter time span, _T, than the overall time duration of the 

i o  data, T. For periodic motions, the _T can be the period. Such 
a time scale, however, is hard to define precisely for high 
dimensional, nonstationary dynamic systems. 

Even with this difficulty, the definition for DSS could be 
more useful in characterizing random variables from natural 

is phenomena. Furthermore, DSS will depend on both fre- 
quency and the averaging time span. For the wind data taken 
as an example, the DSS is given in FIG. S(a) with _T=lO, 
50, 100, and 300 time steps respectively. The results show 
that while the high frequency components are nonstationary, 

20 they can still be statistically stationary. Two frequency bands 
at 7 and 17 Hz are highly nonstationary as the DSS averaged 
at 100 time steps shown in FIG. S(b). These components are 
intermittent as can be seen in the IMF components and the 
marginal spectrum. Asection of the original wind data is also 

2s plotted in FIG. 8(c) to demonstrate that there are indeed 
prominent 7 and 17 Hz time scale oscillations. 

Display of Selected Results 

The invention displays various results of the above- 
30 described computer implemented method in step 190. These 

displays are extremely useful in analyzing the underlying 
physics of the physical phenomenon being studied as 
described above. Furthermore, particular examples of these 
displays and the increased understanding of the underlying 

35 physics which these displays permit are discussed in the 
following section. 

For example, the invention generates various Hilbert 
spectra displays in the display step 190. As mentioned 
above, both color coded maps and contour maps may be 

40 employed to display the Hilbert spectra in display step 190. 
In addition, the color coded maps convey information to the 
operator in a uniquely accessible way permitting a more 
thorough and deeper understanding of the physical phenom- 
enon and may be considered as necessary to analyze some 

The displays generated by the invention in display step 
190 are central to the invention because they allow an 
operator to analyze the underlying physics of the physical 
phenomenon being studied. 

The display step 190 outputs displays to display 450. As 
mentioned above, display 450 includes devices such as a 
cathode ray tube and a flat panel display. As an alternative, 
display step 290 may generate a hard copy output by 

55 utilizing printer 460 or may send the generated display to 
output device 470. 

45 physical phenomena. 

Bilogical Signal Processing 

The above description provides a foundation of signal 
60 analysis methodologies which has broad applicability to a 

wide variety of signal types. Once such applicable signal 
type is biological signals which are signals measured or 
otherwise representative of a particular biological phenom- 
enon. 

65 For example, any given physiological process has a 
number of quantities that can be measured to produce a 
signal or otherwise be represented by a signal. The invention 
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can be applied to such signals in an effort to better under- 
stand the underlying biological phenomenon. For example, 
the relationships between different biological variables can 
be studied with a precision and depth of understanding not 
possible before. s data. The residual IMF R, is constant. 

The invention can also be used to arrive at an analytical 
function representative of the biological phenomenon. By 
using the inventive filtering methods, the biological signal 
can be simplified to eliminate components not particularly 

represent the signal with a function. 

FIGS. ll(a)-(h) show the results of applying the empiri- 
cal mode decomposition method of the invention to the 
blood pressure data of FIG. 9(c). As shown therein, the 
invention produces eight IMFs from this blood pressure 

FIGS, lqa)-(h) show the of applying the ~ ~ ~ i ~ i -  
Mode ~ ~ ~ ~ ~ ~ ~ ~ i ~ i ~ ~  method of the invention to the 

blood pressure data of FIG, 9 ( 4 ,  As shown therein, the 
invention produces eight IMFs (c,-c,) from this blood 

In FIGS. 12(a)<h), the IMF components have very 

to the and to thereby make it possible to 10 pressure data, The residual IMF C, (a,k,a R,) is constant, 

Blood pressure data, such as the data shown in FIGS. 
9(a)-(g), are examples of the invention’s applicability to 

pressure data and the analysis that follows focusses on 

different amp1itudes. The IMFs having the most energy are 

main components closely approximate their respective, con- 
analyzing and characterizing biological signals, This blood ‘2, ‘3 and ‘4. The amp1itude and periodicity Of these three 

changes in blood pressure over the course of day. 
To collect this data, a pressure probe was implanted into BY recognizing the main Or most significant T M h  one 

the pulmonary artery of a rat, Measurements were taken with can reconstruct a filtered version of the signal that eliminates 
the rat under controlled conditions (e.g. rat breathing normal undesired components while continuing to faithfully repre- 
atmosphere at sea level, quiet room, lit for 12 of the 24 hour sent the original signal. For example, FIG. 13(b) shows a 
time span, etc.). In the experiment, a Statham P23ID trans- 2o combination of IMFs cz, c3 and c4. The sum of these 
ducer was utilized, data collected by the computer 400, and components faithfully represents the original signal as can 
also recorded on a chart recorder. A standard AID converter be Seen by comparing the IMF sum in FIG. 13(b) with the 
was utilized to converted the transduced analog signal to original signal in FIG. 9(C). 

digital data for storage and processing by the computer 400. Of course, other filters can be constructed with the IMFs. 
It is to be understood that this particular set-up is exemplary 25 One such example is FIG. 13(a) which shows a summation 
in nature and illustrates one of the various ways in which the of IMFs C,, C2 and C3 that were calculated from the blood 
biological data can be obtained for processing by the inven- Pressure signal of FIG. 9(c). 
tion. Another filtering example is shown in FIG. 13(c) which is 

FIG. 9(a) shows the results of measuring the rat’s blood 3o a sum of IMFs C4, C5, C,, C, and C, shown in solid line. 
pressure for a 24-hour period with the pressure waveform These components are the lower-frequency components and 
being sampled at a rate of 100 points/second. A one hour their sum recovers the slow variation of the pressure signal. 
strip of this data is shown in FIG. 9(b). Two separate The dotted line in FIG. 13(c) shows the original pressure 
10-second strips of this data are shown in FIGS. 9(c)-(d) signal. 
with 9(c) exhibiting less regularity than 9 ( 4 .  FIGS. 9(e)-u> 35 FIGS. 14(a)-(b) show the Hilbert spectrums of the IMF 
are the systolic peaks and diastolic troughs for the one hour components derived from the FIGS. 9(d) and 9(c) blood 
record shown in FIG. 9(b), obtained by connecting the pressure signals, respectively. Specifically, The Hilbert spec- 
successive peaks and successive valleys, respectively. trum of FIG. 14(a) shows that the most prominent energy 

In order to compare the invention against conventional bands are centered at 6.5, 3.0 and 1.5 Hz. As shown, there 
methodologies, FIG. lO(a) is presented which shows the 4o are intra-wave frequency modulations in this spectrum 
conventional Fourier Spectrum for the one-hour data of FIG. which are indications of nonlinear dynamics. The wide 
9(b). FIG. lO(a) shows this Fourier Spectrum from which fluctuations of frequency values in the FIG. 14(b) Hilbert 
one can easily identify spectral peaks at 1.5, 6.5 and 13 Hz. spectrum make any visual mean estimation exceedingly 
The 6.5 Hz peak represents the heartbeats which necessarily difficult. 
affect blood pressure. The 13 Hz peak is the harmonic of the 45 By further applying the inventive methodologies, a mar- 
6.5 Hz heartbeat peak. The 1.5 Hz peak is probably related ginal Hilbert Spectrum can be calculated by integrating the 
to respiration. Hilbert Spectrum. An example is shown in FIG. 1O(g) which 

FIGS. 10(b)-(c) show conventional Fourier spectra for uses a solid line to plot the marginal Hilbert spectrum of the 
the two 10-second sections of data (FIGS. 9(c)-(d)). Fourier FIG. 9(c) blood pressure signal. Prominent spectral peaks 
analysis for the one-hour data of FIG. 9(b) is shown in FIG. occur at 7 and 1.3 Hz. 
1O(d) in which the locations of the highest peaks of the FIG. 1O(g) also uses a dotted line to plot the correspond- 
Fourier spectra in every 1-minute window are plotted on the ing Fourier Spectrum. By comparing these spectra, one can 
time-frequency plane. A perspective view of the windowed see that the mean peaks line up. However, the Hilbert 
1-hour and 10-sec Fourier results Fourier results are given in spectrum clearly depicts the fluctuation of energy over 
FIGS. lO(e) and 1 0 0 ,  respectively and show the variation of 55 frequencies without allowing the frequency of oscillation to 
the amplitudes of the signals. be variable in the whole time window. 

FIG. 1O(g) directly compares the inventive results against One basic difference between the conventional spectra of 
conventional techniques. In FIG. lO(g), the Fourier (dotted FIG. 1O(d) and the inventively derived spectra of FIG. 14(a) 
line) spectra and the Marginal Hilbert (solid line) spectra of lies in the stationarity hypothesis. In FIG. lO(d), the Fourier 
the blood pressure data from FIG. 9(c) are plotted together. 60 spectrum assumes stationary oscillation. In FIG. 14(a), the 
As can be seen from this comparison, the Fourier spectra Hilbert spectra, does not make this assumption and is valid 
devotes a great deal of energy to the higher-harmonic for nonstationary oscillations. 
components. By using the invention, one can more readily and accu- 

As explained above, the invention adopts the spacing of rately recognize the various features of blood pressure 
extrema values to analyze the data. Specifically, the sifting 65 signals. Moreover, the invention offers a more comprehen- 
process is applied to the data to extract a set of intrinsic sive view of the blood pressure fluctuation than the classical 
mode functions. Fourier analysis. 

15 stant levels. 
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The invention may also be used to study the effect of one 
variable on another variable. Specifically, by changing one 
variable of a system, measuring the effect on another 
variable, and then applying the invention one can arrive at 
a much deeper understanding of underlying system. The 
invention also permits the modelling or representation of 
data with an analytic function that was not possible with 
conventional techniques. 

Biological systems are examples of systems which can be 
better understood and modelled by applying the invention. 
Biological systems are often studied by changing one vari- 
able and recording the changes of other variables The 
resulting data is often oscillatory, stochastic and non- 
stationary. Data having these properties are particularly 
susceptible to processing by the invention. 

Aparticular example elaborated upon here is the effect of 
changing the breathing gas concentration of oxygen on the 
blood pressure of an animal. Analyzing such stochastic data 
to obtain crystal clear results describing the effects of 
oxygen concentration changes on blood pressure has been 
impossible with conventional techniques such as Fourier 
analysis. 

Concrete data illustrating this example is shown in FIGS. 
15(a)-(d). Specifically, the pulmonary blood pressure in the 
arterial trunk of two rats breathing normal air at sea level is 
shown in the upper trace of FIGS. 15(a)-(b) with the lower 
trace showing the oxygen concentration. 

These same rats where then subjected to step changes in 
oxygen concentration: FIG. 15(c) shows a step increase and 
15(d) shows a step decrease in oxygen concentration and the 
effect thereof on blood pressure. From this raw data, one can 
see certain trends. However, there is no definitive way to 
handle this overwhelmingly complex data to reveal the 
underlying physiological variations. Fourier analysis simply 
does not work for such nonstationary signals. By applying 
the invention, however, which works particularly well with 
nonstationary signals, one can arrive at a much deeper 
understanding of the underlying physiology. 

As described above in detail, the invention applies a 
unique Sifting Process. FIGS. 15(e)<h) illustrate this Sifting 
Process as it is applied to the blood pressure signal of FIG. 
15(b). Specifically, FIG. l5(e) illustrates generating the 
envelopes (dot-dash line) by connecting successive 
extremas (peaks and troughs) of the signal (solid line) with 
cubic splines. The mean of these two envelopes is shown in 
FIG. 15(e) with a thick solid line and is denoted by the 
symbol m,(t). 

The difference, X(t)-m,(t) is designated h,(t) as is shown 
in FIG. 1 5 0 .  From this figure, it can be seen that h,(t) has 
a few negative local maxima and positive local minima, 
suggesting that further Sifting needs to be performed before 
the first intrinsic mode is generated by the invention and that 
the quantity h,(t) is not yet a true representation of an 
“oscillation about the mean.” 

To improve this situation, two definitive requirements are 
imposed for a function that represents the “oscillations about 
the mean”: (i) in the whole data set, the number of extrema 
and the number of zero-crossings must either be equal or 
differ at most by one, and (ii) at any time, the mean value of 
the envelope of the local maxima and the envelope of he 
local minima must be zero. As oscillatory function that is 
processed to satisfy these definitions is called an intrinsic 
mode function (IMF) as more fully described above. 

The function h,(t) shown in FIG. 1 5 0  does not satisfy 
this definition or the requirements of an IMF. Thus, further 
Sifting is performed by treating h,(t) as the new data set and 
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repeating the Sifting Process including determining the new 
upper and lower envelopes, computing their new mean 

The difference h,(t)-m,,(t) is designated at h,,(t) which 
is treated as the new data set. The process is repeated a 
number of times (FIGS. 16(g)-(h)) until it converges. The 
convergent result, FIG. 16(g), is designated by C,(t) and is 
the first intrinsic mode function, which has a zero local 
mean. 

The difference between X(t) and C,(t) is a function of 
time representing a “mean tread” after the first round of 
Sifting. It is designated as the “first residue” R,(t) X(t)-C, 

The first residue, R,(t), is again oscillatory and can be 
analyzed as new data by another round of Sifting in the 
Empirical Mode Decomposition Process, yielding the sec- 
ond intrinsic mode function C,(t) and the second residue 
R2(t). The process is continued until either the residue of the 
intrinsic mode function becomes less than a predetermined 
small number of the residue becomes nonoscillatory. The 
resulting IMFs are shown in FIGS. 16(a)+). 

If the process takes n steps, the original signal X(t) can be 
represented as follows: 

m,,(t). 

(t)=R,(t) 

X(t)=C,(t)+C,(t)+ . . . C,(t) 24 

The last term C,(t) represents the nonoscillatory mean 
trend of the signal. As such, important information exists in 
this mean trend particularly for certain types of data. 

The other terms C,-,, C,-,, etc represent the oscillatory 
portion of the mean trend. Each term represents a different 
spectral portion of the mean trend. 

With the IMFs in hand, further processing is possible. One 
such processing technique is filtering in which certain IMFs 
are combined or summed while leaving out other IMFs. 

For example, a low-pass filter or low-frequency represen- 
tation Mk(t) of the mean trend of the signal X(t) can be 
generated as follows: 

Mk(t)=Ck+Ck+,+ . . . C, 2s 

where 2eken 
The lower the value of k, the more oscillations Mk(t) 

contains. By adjusting the values of k and n, a variety of 
filters may be constructed each having desired characteristic 

Representing the original data, e.g. of FIG. 15(a), with an 
analytic expression is not always possible or practicable. 
The invention, however, offers a technique of accurately 
representing the physically meaningful portions of a signal 
with an analytic function. 

For example, when one examines the indicia1 functions 
that represent the changes of the signal X(t) in response to 
step changes in oxygen concentration, one looks for changes 
in the mean treads M,(t), M,-,(t), and . . . with respect to 
changes in 0, level. To do this, it is helpful to fit the 
experimental result on Mk(t) with an analytic function. 
Particularly, if one takes the origin of time t=O at the time of 
imposing a step change in oxygen concentration, the result- 
ing change in the mean blood pressure in response thereto 
for t>O can be represented as: 

6). 

Mk(t)=A,+A,eC12‘+A,te13’+A,,,teC1mt 26 

where constants A,, . . . 4, and -,, . . . --m may be 
determined with a conventional least-squares estimation 
technique. 

The above estimation is greatly affected by the choices of 
k and m. By appropriately selecting k and m, different 
degrees of detail can be presented. 



US 6,862,558 B2 
33 34 

In reality, one can only approximate a step function 
change of 0,. The dropping step of FIG. 15(d) and the rising 
step of FIG. W(c) cause different changes in blood pressure. 
Hence, two different empirical functions are utilized. For the 
first case, the equation is: 

Mk(f) = 

The oscillatory energy about the mean E,(t) is another 
nonstationary stochastic variable that can be treated in the 
same manner as outlined above. Specifically, the progression 
from steps 350 to 370 to 120 in FIG. l(d) provide a process 

s for applying EMD to Ek(t) to generate another set of IMFs. 
The IMFs thus generated may be further processed accord- 
ing to the techniques disclosed herein. The process may be 
repeated as many times as desired as indicated by the loop 
in FIG. l(d). 

From the IMF's shown in FIGS. 16(a)-(p), one can 
compute the mean trend functions M, from equation 25 set 
forth above. The results are shown in FIGS. 17(a)+ which 
are the main results to be used for the indicial response 
determination. 

The next step (360 FIG. l(d)) is to generate analytic 
functions or otherwise perform a curve fitting process. This 
is a chief advantage of the present invention because for 

(29) many data sets, such as the blood pressure data in FIGS. 
where t, is the time when the 0, concentration increases 15(a)-(d), deriving analytic functions is impossible. By 
suddenly. The variables A,, A,, A3 and A4 are dimension- 20 applying the inventive methodologies, however, deriving 
less. such analytic functions is possible. Specifically, the mean 

Taking the analysis into the spectral domain, the invention trend data extracts relevant data and removes unnecessary or 
offers further tools. As defined above, the Hilbert transform irrelevant data thereby producing a simplified data set for 
of X(t) is Y(t). Hilbert has shown that the complex variable which it is possible to derive an analytic function. The 
z(t)=X(t)+iy(t) is an analytic function of t and can be 25 degree of simplification and extraction can be controlled by 
written in polar coordinates as a(t)exp{i_(t)}, thus defining properly selecting which IMF components are included in 
the amplitude a(t) and phase angle _(t). the mean trend data. 

can be calculated from the derivative of _(t) with respect to tions of FIGS. 17(a)+ by equations 26-28 was done with 

functions of time, one can plot contour maps as shown in Is(a)-(c) and 19(a)<c). These are the primary results of 
FIG. 23(a). The contour maps of the amplitude as functions interest for tissue engineering analysis and design. 
of frequency and time are called the Hilbert amplitude Specifically, the results shown in FIGS. Is(a)<c) and 
spectrum, H(_,t). 19(a)-(c) provide indicial response functions of the mean 

The vanishing of the local means of the IMF's c , ,  . . . 35 pulmonary blood pressure at the arterial trunk in response to 
C,-, is a very important result because the amplitude a(t) a step decrease or a step increase in breathing gas oxygen 
and phase angle _(t) of the Hilbert spectrum are sensitive to concentration. A similar analysis can be directed toward the 
the local means. oscillation modes defined by equation 29. 

Using the definition above {M,(t)=C,+C,,+ . . . C,, The oscillation modes for k=l ,  2,4,  and 6 are respectively 
where 2<k<n} to represent the mean trend, the invention 40 shown in FIGS. 20(a)-(d). The signals shown in these 
further defines the corresponding sum as follows: figures contain a lot of information that needs to be extracted 

into simple, understandable terms. This can be done by 
applying the Hilbert transform and generating the Hilbert 

to represent the oscillations about the mean trend M,+,(t). spectrum. The results are shown in FIGS. 21, 22(a)-(h), 
The Hilbert amplitude spectrum of X,(t) may be designated 45 23(a)-(b). Specifically, FIG. 21 is a plot of the oscillatory 
as H,(_,t). The square of Hk(_,t) represents an oscillatory energy defined by equation 29 as a function of time. This 
energy density. Thus, the invention also defines the oscilla- spectrum is analyzed as a nonstationary random signal by 
tory energy about the mean, E,(t), by an integration over all the invention to resolve it into oscillatory IMF modes and 
frequencies as follows: mean trend functions M,(t), with the associated analytic 

SO functional representation as illustrated in FIGS. 22(a)-(h) 
for k=9, 10, . . . , and 16. 

Ek(r) = H (w. r)dw To further analyze the data, the results of calculating the 
instantaneous frequency and amplitude of oscillations of the 
pressure signal X(t), made possible by the Hilbert 

The variations of Ek(t) and Mk(t) with oxygen level O,(t) ss transformation, can be plotted against time in a three- 
yield the desired summary of information about the transient dimensional manner as sown in FIG. 23(a). The same can be 
response of X(t) to O,(t). plotted two-dimensionally on the plane of time and fre- 

The oscillatory energy about the mean Ek(t) is quite quency by the contour lines of equal amplitudes, as show in 
similar to the instantaneous energy instantaneous energy FIG. 23(b). 
density, IE, described above. The difference is that the Ek(t) 60 FIG. 24 is a conventional FFT amplitude spectrum of the 
is calculated from a subset (k) of the IMFs while IE is pressure signal in 1-min segments under the assumption that 
calculated from the full set of IMFs. In other words, the the process is stationary in each segment. This conventional 
oscillatory energy about the mean is derived from a filtered spectrum provides a basis of comparison against the Hilbert 
version of the original signal in which a subset (k) of the spectra generated by the invention. 
IMFs is utilized to construct the filtered signal. This con- 65 As mentioned above, Fourier analysis is based on the 
trasts with instantaneous energy density which is derived hypothesis of segmental stationary random oscillation, the 
from the full set of IMFs. principle of linear superposition of sine waves, and a global 

(27) 

-1 :-in -1 ?-To 
p,(ro)[l + A l ( r - r o ) e  T I  + A 2 ( r - r o ) e  ~2 + A 3 [ l  -e -L3i?I~ ,  

for ro ~ 

i o  

for tos t ,  where to is the instant of time when 0, concen- 
tration drops suddenly, and p,(to) is the measured value of 
Mk(to). For the second case the following equation appears 15 
good enough: 

M,(t)=p,(t,)[l+A,[e~l("l)-l]], for t ,  St, 

As further defined above, an instantaneous frequency _(t) The analytic representation of the indicial response func- 

time. &owing the amplitude a(t) and frequency _(t) as 30 a least-squares error method. The results are shown in FIGS. 

X,(t)=C,(t)+C,(t)+ . . . C,(t) 30 

u 2  

w k  
31 
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average of waveform convolution over each time segment. 
The HHT is based on the hypothesis of nonstationary 
processes, the principle of linear superposition of nonlinear 
IMF’s, and local determinations of amplitude and frequency 
(through differentiation rather than convolution) of each 
IMF. In terms of the IMF, the first k modes can be added 
together the represent oscillations about the mean trend 

The Fourier series cannot represent time variation of a 
nonstationary signal and does not have a property or capa- 
bility to separate a signal into two parts, one part represent- 
ing a mean trend while the other part represents oscillations 
about the mean. The number of intrinsic modes, n, is finite: 
in general, nelog, N, where N is the total number of data 
points. The number of harmonics in Fourier analysis is Ni2. 

Comparison of the Hilbert and Fourier spectra respec- 
tively shown in FIGS. 23(b) and 24 shows that both spectra 
display a major frequency component at approximate 5 Hz 
where the energy is concentrated. This is close to the heart 
rate of the rat subject. This rate decreases when the oxygen 
concentration is decreased. These two spectra are in different 
vertical scales. The Hilbert spectrum contains no energy 
with frequency>lO Hz, and it also has fewer yet more 
diffused frequency bands that the Fourier spectrum. This is 
because the Hilbert spectrum gives only the global mean. 
The mean values certainly will show less variations. 

The Fourier spectrum of FIG. 24 contains more frequency 
bands because any deviation of the waveform from the basic 
sinusoidal harmonic will result in strong higher harmonics 
whereas the Hilbert spectrum allows variation of instanta- 
neous frequencies, hence the fuzzy spread in the frequen- 
cies. This calls attention to the fact that the heart rate is also 
a stochastic variable, which could be studied by the inven- 
tive methods disclosed herein. The strong higher harmonic 
band with frequency>lO Hz in the Fourier spectrum is 
probably spurious. In other words, the Fourier components 
above 10 Hz (staring at around 15 Hz at time 0) have no 
physical meaning. 

In contrast, the inventive results of FIG. 23(b) show a rich 
variety of low frequency components thereby conveying 
important information not available in the conventional 
result of FIG. 24. Thus, the invention is capable of more a 
more accurate physical representation of the underlying 
phenomenon than conventional Fourier-based analysis. 
Moreover, the clarity of the set of mean trends and the 
corresponding set of the oscillations is a unique contribution 
of the invention. 

Thus, the invention provides useful tools for concisely 
and precisely describing the affect of changing one variable 
on another variable. The effect on blood pressure caused by 
changing the 0, concentration provides a good illustrative 
example of these tools. 

To further illustrate the broad applicability of the inven- 
tion and its potential as a diagnostic tool, an abnormal 
condition (disease) was chosen. The particular abnormal 
condition chosen for illustration purposes is sleep apnea. 
This is a common condition in which the airway is tempo- 
rarily obstructed during sleep causing the subject to even- 
tually gasp for air. To study this condition, heart rate data 
was taken from a subject as shown in FIG. 25. More 
accurately, the data is a measure of the time interval between 
pulses (pulse interval) of the heart plotted against time. 
Thus, small values indicate a fast heart rate and large values 
indicate a slow heart rate. This data includes a normal data 
section and an abnormal data section, both of which are 
labelled. 

As will be shown in detail below, the invention provides 
powerful tools for studying this condition. Although the 
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results to date are preliminary, they do indicate that the 
invention is capable of diagnosing this condition. Of course, 
further studies are necessary before a reliable diagnosis can 
be made using the invention. 

To improve the analysis, the data of FIG. 25 was pro- 
cessed to make the spacing between data points even. 
Furthermore, a section of the normal data (no apnea episode) 
was extracted for separate analysis. A blowup of the normal 
data having even spacing between data points is shown in 
FIG. 26. A further blowup is shown in FIG. 28. 

The data of FIG. 26 was then subjected to the inventive 
EMD to produce eight IMFs, C,-C,, as shown in FIGS. 
27(a)-(h). The resulting IMFs provide important, and here- 
tofore unavailable, data to a person attempting to gain a 
better understanding of sleep apnea particularly when these 
normal IMFs are compared against abnormal (apnea) IMFs. 

The IMFs of FIGS. 27(a)-(h) were then utilized to 
construct the Hilbert Spectrum shown in FIG. 29. This 
Hilbert Spectrum provides additional information about 
normal sleep patterns and how they are reflected in the 
subject’s heart rate. 

To continue the analysis, an abnormal data section (FIG. 
30) was subjected to the inventive EMD to produce eight 
IMFs, C,-C,, as shown in FIGS. 31(a)-(h). The third IMF 
C, is believed to be particularly important in analyzing and 
perhaps even diagnosing sleep apnea. 

FIG. 32 is a blowup of the abnormal data of FIG. 30. The 
abnormality is apparent around second 5005 where the 
airway is temporarily blocked thereby causing the heart to 
race in an effort to extract the diminishing oxygen still 
available in the lungs. The sharp spike just after second 5005 
illustrates the gasping breath and the resulting sharp increase 
in the pulse rate interval (corresponding to a decrease in the 
heart rate). 

FIG. 33 is the resulting Hilbert Spectrum of the abnormal 
data of FIG. 30. Comparisons between the normal Hilbert 
Spectrum of FIG. 39 with the abnormal Hilbert Spectrum of 
FIG. 30 yields further information for studying and under- 
standing sleep apnea. 

To further illustrate the wide applicability of the 
invention, it was applied to study epilepsy. Epileptic seizures 
occur when the brain’s neurons fire in synchronism. The 
sequence starts from an epicenter and then propagates to an 
entire hemisphere of the brain. Even at this stage, the patient 
can still function in a relatively normal manner. When the 
synchronization propagates to both hemispheres of the 
brain, then the patient will suffer a seizure. 

To study epilepsy, heart beat rate data was chosen. FIG. 34 
shows heart rate data (beats per minute) that was collected 
from a patient before, during and after a seizure. The time 0 
is the starting point of the seizure. 

FIGS. 35(a)-(i) show the IMF generated by the inventive 
EMD method applied to the FIG. 34 data. These IMFs reveal 
important and physiologically meaningful data not available 
to a researcher before the application of the present inven- 
tion. 

FIGS. 36(a) and (c) illustrate two IMFs (modes 1 and 3) 
which may be utilized to correlate the data and study 
epilepsy. These IMFs are shown in alignment with the 
original heart rate data (FIG. 36(b)). As is apparent from 
these figures, the first and third have components that appear 
to correlate with the onset of a seizure. 

The Hilbert Spectrum of FIG. 37 was generated by the 
invention from the data of FIG. 34. The trace along 18 to 20 
cyclesimin correlates to time 0, the start of the seizure. To 
compare the invention against conventional techniques, a 
corresponding Wavelet Spectrum is shown in FIG. 38. 
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As can be seen by the above illustrative examples, the 
invention is a powerful tool capable of analyzing data and 
producing new, quantitative measurements that enhance the 
understanding of the underlying phenomenon producing the 
data. The IMFs themselves are important results of the 
inventive data analysis techniques and permit one to gain a 
level of understanding not possible with conventional tech- 
niques. 

Although blood pressure, heart pulse interval, and heart 
rate data provide good examples of the invention’s applica- 
bility to biological signals, it is to be understood that a large 
variety of other biological signals may be processed by the 
invention to gain a better understanding of the underlying 
biological process(es). Other examples include plethysmo- 
gram signals, electro-encephalogram (EEG) signals and 
temperature signals. Furthermore, the signal need not be 
taken from a living body and include in vitro studies such as 
current flow across membranes (patch clamping), fluores- 
cence in confocal microscopy, spectroscopic signals, etc. 

As mentioned above, the invention is also not limited to 
biological signal processing and includes the full range of 
real-world, data representative of an electrical, chemical, 
mechanical, optical, geophysical processes or phenomenon 
or combinations thereof all of which fall under the term 
“physical signal” as it was defined in the parent application. 

Even further, the invention provides tools for studying the 
influence of one variable on another variable in a multi- 
variable system. The effect of hypoxia on blood pressure 
provides one illustrative example of this analysis. However, 
it is to be understood that any physical signal in a process or 
phenomenon having multiple variables of which the physi- 
cal signal is one can be analyzed with the invention. 
Alternative Embodiments of Biological Signal Analysis 

As described above, the invention constructs upper and 
lower envelopes 20,30 with a cubic spline in steps 210 and 
230, respectively and in step 560. This cubic spline fitting, 
however, has both overshoot and undershoot problems. 
These problems can be alleviated by using sore sophisticated 
spline methods, such as the taut spline in which the tension 
of the spline curve can be adjusted. 

Another alternative is higher-order spline fitting. 
Although such higher-order spline fitting may be more 
accurate, it will, however, introduce more inflection points 
or extrema, and consume more computing time. Therefore, 
it is not recommended as a standard operation. Only in 
special cases, it may be tried. 

As the spline fitting procedure is time consuming, more 
efficient methods can be devised by using simple mean 
values of successive extrema instead of computing the 
envelope-mean. In this way, only one spline fitting is 
required rather than two. Although this alternative is easier 
and faster to implement, the shortcomings are more severe 
amplitude averaging effects when the neighboring extrema 
are of different magnitudes. The successive-mean method 
will have a stronger forcing to reach uniform amplitudes, in 
which the true physics associated with amplitude will be 
destroyed. Therefore, the successive-mean method should 
only be applied where the amplitudes of the physical signal 
components are constants. 

Either the envelope mean or the successive mean method, 
when applied with the requirement of absolute symmetry, 
will produce the absurd result of uniform amplitude IMF’s. 
Therefore, the criteria in the Sifting Process should be 
chosen judiciously. One should avoid too stringent a crite- 
rion that we would get uniform amplitude IMF’s. On the 
other hand, one should also avoid too loose a criterion that 
would produce components deviating too much from IMF’s. 

38 
It is well known that the most serious problem of spline 

fitting is at the ends, where cubic splines can have wide 
swings if left unattended. As an alternative, the invention 
may utilize a method of adding characteristic waves at the 

s ends of the data span. This confines the large swings 
successfully. 

The method of adding characteristic waves is not con- 
ventional. In contrast, the conventional window that is often 
applied to Fourier transform data results in loss of useful 

i o  data. To avoid this data loss and to confine swings at the ends 
of the data span, the invention extends the data beyond the 
actual data span by adding three additional characteristic 
waves at each end of the data span. 

The characteristic waves are defined by the last wave 
is within the data span at the end of the data span. In other 

words, a characteristic wave is added to each end of the data 
span having an amplitude and period matching the last wave 
within the data span. This characteristic wave is a sinusoidal 
waveform that is extended three sinusoidal wave periods 

20 beyond the data span at each end. This process is repeated 
at the other end of the data span. In this way, spline fitting 
at the end of the data span, which can otherwise have a wide 
swing, is confined. In other words, by adding the extra 
characteristic waves at the ends beyond the data span, the 

zs spline curve will be tied down so that it will not have wild 
or excessive swings that would otherwise corrupt the data 
processing and analysis that utilizes these cubic splines. 

Other than the spline fitting, the Hilbert transform may 
also have end effects. Because the first and the last points of 

30 the data are usually of different values, the Fourier transform 
will introduce additional components to bridge over the 
difference resulting in the well-known Gibbs phenomena. To 
eliminate it in the Fourier transform, various windows have 
been adopted (see, for example, Brigham, 1974, “The fast 

3s Fourier Transform”, Prentice-Hall, Englewood Cliffs, N.J.). 
Instead of a window which will eliminate some useful 

data at the end, the invention again adds two characteristic 
waves at either end. These waves all start from zero at the 
beginning, and end at zero at the end. Thus, the annoying 

40 Gibbs phenomena are greatly reduced. 
Still further, the Hilbert transform needs over-sampled 

data to define the instantaneous frequency precisely. In 
Fourier analysis, the Nyquist frequency is defined by two 
points per wave, but the frequency is defined for a wave 

4s covering the whole data span. In the invention, the instan- 
taneous frequency is defined through a differentiation 
process, and thus more data points will help defining the 
frequency more accurately. Based on the inventor’s 
experience, a minimum number of data points to define a 

SO frequency is five (or four t ’ s  ). The lack of fine time steps 
can be alleviated through interpolating more points between 
available data. As a spline interpretation would also not 
create nor annihilate scales, it can also be used for the 
interpolation when the data is very jagged from under- 

ss sampled data. The smoothed data though have a longer 
length and are sometimes easier to process. The interpola- 
tion may give better frequency definition. 

Acoustical Signal Analysis 
Referring to FIG. 39, an application of the invention will 

be to analyze the acoustical signal through the Hilbert- 
Huang Transformation (HHT), which consists of the Empiri- 
cal Decomposition Method (EMD) and the Hilbert Spectral 
Analysis (HSA). Essentially, the signal will be decomposed 

65 into the Intrinsic Mode Function Components (IMFs). This 
decomposition is outlined in Huang’s publications and pat- 
ents. Once the invention decomposes the acoustic signal into 

60 
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its constituting components, all the operations can be per- 
formed on these components. 
Speech Analysis and Speaker Identification: 

Referring to FIGS. 41 and 42, we will first discuss the way 
HHT analyzes speech. Then, based on the analysis results, s 
we can discuss how to identify a speaker, i,e,, to single out 
one speaker from others, L~~ us start with the following 
example. 

are digitalized at 44100 Hz with 16 bits resolution as shown i o  

The EMD decomposed IMF components are given in 

the resonant beat period from the speaker’s vocal cavities. 
This beat pattern can be easily seen from the IMF 
components, which can serve as crucial data for speaker 
identification too. 

In order to show the unique Properties of the HHT 
analysis results, we decided to examine the male voice in 
more details as follows: First, we give the spectrum it wide 
banded Fourier spectrogram as in FIG. 50, constructed from 

wide banded spectrogram with band width of 344.5 Hz. 
Clearly neither the narrow nor the wide banded spectro- 

more clearly if we present the detailed views in FIGS. 51a 

Two speakers both said ‘Halloo,’ and the acoustic signals 128 points in a window, which corresponds to a 

in 45a for a speaker, and for a speaker. grams give us any detailed information, This is shown even 

46a and b. Each signal consists of 12 components, and each 
component consists Of 30,000 points. They are plotted with 

and b, in which the spectrograms are plotted for the fie- 
quency range between 0 to 1000 Hz, corresponding to the 

the Same 46. As the IMFs are the condition represented in FIG. 49a. The comparison is clear, 
results of scale separation of the original signals, each while the Fourier based spectrograms could give us some 
component represents different time scales, which can be qualitative information, the results is so crude that they 
translated to the frequency ranges. It should be pointed out cannot be used as a based for any serious acoustic signal 
that this frequency separation is not in the Fourier sense, for analysis. 
the signals separated in scale could be nonlinear; therefore, 20 In order to emphasize the superior performance of the 
it can contain both sub and super harmonic components in HHT, we also process the same data with Morlet Wavelet 
Fourier frequency space. Consequently, the decomposition analysis, a continuous Wavelet analysis. The result is given 
is not necessarily narrow banded in Fourier sense, but, as in FIGS. 52a and b. These figures clearly identify the 
explained in Huang (1999), this decomposition preserves all different time-energy-frequency distribution characteristics 
the nonlinear properties of the signal. One can immediately zs between male and female speakers, the strong high fre- 
see from these figures that the two decompositions contain quency energy concentration for female and the strong low 
very different IMFs. For the signal given in FIG. 45a, the frequency energy concentration for the male speaker. This 
decomposition is given in FIG. 46a. There, we have very clear difference aside, the Wavelet results really lacks the 
regularly periodic signals for all the IMFs. Comparing this detailed analysis ability of HHT. When on comparing the 
with the corresponding results in FIG. 46b from the second 30 pair of FIGS. 52a and b with those in FIGS. 49a and b, one 
speaker, we can see the differences. The second speaker does can immediately see the lack of time-frequency resolution of 
not have the regularity in the time scale. In the second the Wavelet results. These differences have been discussed 
speaker’s results, we can see that the strongest signal is the in great details by Huang et a1 (1998, 1999). 
third component, but for the first speaker the corresponding To illustrate the lack of resolution in the Wavelet analysis 
component is relatively weak. By the time we come to the 35 further, we can smooth the Hilbert Spectrum result given in 
6th component of the first speaker, the component is still FIG. 49a by filters in 100 and 200 time-steps. The results are 
very strong, but there is almost no more signal in the second given in FIGS. 9a and b respectively. By the time we 
speaker’s result in FIG. 46b. The richness of the low smoothed the results with filter width of 200 points, the 
frequency components for the male speaker, and high fre- results are clearly much smoother, but we will never 
quency for the female speaker should be expected. This 40 obtained the kind of overly smoothed result given by the 
difference in frequency components can be seen vividly in Wavelet, for the two analysis methods are very different: The 
the Hilbert spectral analysis as follows. Hilbert spectrum gives the genuine instantaneous frequency 

From these components, we can construct the Hilbert based on an adaptive basis totally independent of the kind of 
Spectra as given in FIGS. 47a and b, in which time- a priori basis adopted in the Wavelet analysis. Furthermore, 
frequency-energy representation of the signals are 45 the components in HHT are almost orthogonal, which gives 

in 

presented, with the corresponding narrow banded Fourier 
based spectrograms given in FIGS. 48a and b constructed 
with 1028 sampling points in the window, which corre- 
sponding to the window width of 43 Hz. In these figure, the 
total frequency range is represented by 200 bins to cover the 
frequency range from 0 to 10,000 Hz. In FIG. 47a, we can 
identify a clear consistent low frequency energy concentra- 
tion near 100 to 200 Hz, but there is no equivalent energy at 
this low a frequency in FIG. 47b. To examine the results in 
more details, we have given the Hilbert spectra of the cases 
presented in FIG. 47a and b in FIGS. 49a and b, in which 

no energy leakage among different modes. The continuous 
Wavelet, on the other hand, has a non-orthogonal represen- 
tation. The energy leakage among different frequency bands, 
and the over redundancy have rendered the method to only 

The detailed time-frequency-energy presentation gives us 
many more reference points for speaker identification and 
verification. The continuous modulation of frequency and 
energy will provide more reference points to separate one 

ss speaker from the other. HHT analysis could also identify 
peculiarities of one speaker from another. All these details 

SO extract qualitative information. 

the same 200 frequency bins are reassigned to cover the just cannot be found in any other analysis method. 
frequency range from 0 to 1,000 Hz. In these new and more To summarize the material discussed in this section, we 
detailed presentations of the signals, we can see that the will first give a flow chat of speech analysis: Speech 
male voice represented by the Hilbert spectrum by FIG. 49a 60 containing various phonemes will be recorded, and the 
contains a strong modulated energy below or around 100 Hz, signal will pass through the sifting process to get the IMFs. 
while the female voice represented by the Hilbert Spectrum In this step, the critical task is to identify the phonemes and 
given in FIG. 49b contains the most energetic modulated formants (Hilbert Spectra) for each sound element with 
components above 100 Hz. Furthermore, the female voice modulations in both frequency and amplitude as functions of 
also contains wider range of high frequency energy distri- 65 time. Databases will be build from the recorded speech data. 
butions. In FIG. 49, we can see the regular spaced vertical Such analysis is not available from any other method of 
striations in the Hilbert spectra, which are the indications of analysis. 
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There are two types of speaker identifications: to verify continuous lines of the time-frequency curve are in form and 
that the speaker is a known person, and to separate the substance a better formant. But they are indeed better 
speech from different speakers. The essential steps for both defined than the conventional formants, for they also 
tasks are as follows: included the nonlinear deformation of the signal rather than 

To verify a known speaker, we have to have the database s assigning all the waveform deformation to harmonics. As 
of the targeted speaker built ahead of time. The database can the frequency is defined by differentiation, the information 
be built following the steps listed in the speech analysis. To provided here is might be too much. If that is the case, the 
separate speakers from one another, we can record the frequency variation can be simplified by smoothing either 
speakers and analyze their speech as listed in the speech through filtering, or defined as differentiation with larger 
analysis part. Once the analyses are done, we can compare i o  time steps. 
the details of the Hilbert spectra in their over all and the The essential steps for this task can be summarized in the 
details of the spectral patterns, including the beat periods for following flow chart: Again, we have to establish the data- 
the same phoneme and formant. Given the super temporal base consisting of templates of the key phonemes and 
and frequency resolutions of the Hilbert spectra, the Hilbert formants. In this case, the templates will be constructed from 
spectra actually give a much better formant representation. is the averaged value of a large number of different speakers. 
With so many details in the Hilbert spectra, we can use many In addition to the averaged value, the range of scattering 
features as references. In the example given in this section, from the differences will also be recorded. When a new 
the overall pattern is sufficient. speech is given, the record will be analyzed as in the 
For Speech Recognition: previous part to have the speech breakdown to phonemes 

Speech analysis such as speech recognition as shown in 20 and formants. Each sound element will be compared with 
FIG. 42, the goal is not to identify a specific speaker. Rather the existing templates and identified. The identified sound 
the task is to identify the meaning of an utterance so that the will be put together, and translated into sentences. Grammar 
commands contained in the speech can be translated into check and corrections should be made here to guarantee that 
actions as in man-machine interaction. Because, the speak- the speech makes sense. The final text will then be translated 
ers can have a variety of accents, the approach is to obtain zs into instruction for further actions, such as an order to a 
a limited number of uniquely identifying parameters to servomechanism. 
define the meaning of the utterance, rather than to obtain Speech Synthesis: 
more and more detailed descriptions of the sound. In such Referring to FIG. 40 the speech synthesis problem has 
applications, two approaches can be adopted for the HHT. been review recently by Breen (1992). Basically, the syn- 

The first is by smoothing as in the cases of FIGS. 53a and 30 thesis is based on a phoneme base. Having established the 
b. More smoothing can be obtained by time-frequency analysis part, we can take sections of the sound record as 
averaging, rather than just time smoothing described here. phonemes and build a database for it. This phoneme data- 
The Laplacian filter is readily available. However, for most base can then be used to synthesize speech. The advantage 
acoustic signal applications, there are lot more time steps of this phoneme base has the unique advantage over the 
than possible frequency bins. Therefore, time-wise smooth- 3s conventional one in that no local stationary assumption has 
ing is a more logical approach. Other than smoothing to been evoked. Therefore, the frequency is continuously 
obtain the time-frequency-energy pattern as means for modulating, which can make the final result sounds more 
recognition, the formants identification is also a powerful naturally. 
method. Here we will discuss this approach as follows: The detailed time-frequency-energy distribution results 

Formants by definition are the few characteristic time- 40 given by the HHT also give us a means to synthesize sound 
frequency distribution of the maximum energy concentra- with higher fidelity, for the frequency modulation can be 
tion in a speech section analyzed with filter bank or spec- truly simulated by the instantaneous values in frequency and 
trogram methods (see, for example, Rabiner and Schafer, energy. This overcomes one of the fundamental shortcom- 
1978). Conventionally, to make the number of components ings of the Fourier based analysis, in which a local stationary 
manageable, the formants are defined from the low fre- 4s assumption is to be invoked. This piecewise stationary 
quency components only. The ideal of formant is to sharpen analysis simply cannot closely simulate the constantly 
the poor time-frequency analysis in the spectrograms. Simi- modulated frequency modulation as shown in the Hilbert 
lar approaches have also been explored by Carmona et a1 spectral analysis results. 
(1997) using Wavelet analysis. As discussed by Huang et a1 Also from FIGS. 54a and b, we can define the beginning 
(1998, 1999), the inherited poor time-frequency resolution SO of the speech clearly and un-ambiguously. The separation of 
cannot be overcome by post analysis smoothing or selection. syllables has also been a hard problem in speech analysis 
The only alternative is to change to a genuine instantaneous and synthesis. 
frequency analysis as in the HHT, which in form and in A key to the potential value of our approach is that HHT 
substance is a much better formant representation of the gives time varying modulation of frequency and amplitude. 
speech. Let us examine an example. If we take the beginning ss The essential steps are as follows: 
of the sound for ‘Halloo’ signal, and analyze it with HHT, Based on the database of all the phonemes and formants, we 
the result is given in FIGS. 54a and b. This is actually the can translate the given text to the time varying IMF com- 
consonant part of the ‘h’ sound. These figures, in fact, are ponents from the database. This translated data is checked 
simply obtained by the enlargement of the same section of again with prosody patterns, and synthesized into sound. 
the figure of 47a and 49a. One of the great advantages of 60 Speech Quality Enhancement: 
HHT is that the frequency is defined by differentiation; 
therefore, we can breakthrough the limitation of the uncer- 
tainty principle and expanding the results to the limit of the 
sampling rate. 

the expansion of FIG. 49a, both with the original signal 
plotted. Here we have the lower frequency emphasized. The 

Referring to FIG. 43 one of the most important applica- 
tions of acoustic signal analysis is to enhance the speech 
quality. For example, during the utterance of the word, 
‘Halloo,’ a noise simulated by the drop of a spoon on the 

FIG. 54a is the expansion of FIG. 47a, while FIG. 54b is 65 table was also heard. How to separate this noise from the 
speech signal is an important application. Traditionally, the 
cleaning up of a speech is carried through filtering But 
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Fourier based filtering has inherited shortcomings: Local- then filtered the data with a similar filter but with a cutoff 
ized signal in time is broad in frequency; localized signal in frequency set at 1000 Hz. This certainly eliminated the 
frequency is broad in time. Furthermore, as discussed above, ‘ding’ sound, but the quality of the sound was very much 
the generating mechanisms of most consonant sound are downgraded. 
nonlinear; therefore, most of the consonants, the information s The Fourier filtering is strictly in frequency space, while 
carrying sounds, have a lot of sub as well as super harmon- EMD filtering is in time scale. By operating in a rigid 
ics. We cannot remove certain frequency without altering the frequency range, the Fourier filter will not eliminate the 
harmonics of other sound signal, which will down-grade the bounded super and sub harmonics of the signal outside of the 
filtered result through loss of the harmonics. Here we pre-selected filtering frequency range. It, however, will 
propose the filtering through EMD. The filtering strictly by i o  remove the bounded super and sub harmonics of other signal 
scale, the filtering here has to be implemented jointly in components that happened to fall within this pre-selected 
time-frequency space. frequency range, even if the fundamentals are outside this 

Let us examining the signal of the sound, ‘Halloo+ding,’ frequency range. As a result, through Fourier filter is local- 
given as the top line in FIG. 55. This signal is decomposed ized in frequency, it actually affects signals of all frequency. 
through EMD and we obtained the IMF components as is In EMD, each IMF could be nonlinear; therefore, each of 
given in FIGS. 56a and b. FIG. 56a gives all the components them is not banded limited in Fourier sense. By eliminating 
with the uniform vertical scale, while FIG. 56b gives the the first three IMF components, we still could have energy 
same information with the vertical scale in each IMF com- at Nyquist frequency in Fourier sense through the existence 
ponents normalized within its own frame. From FIG. 56a, of the harmonics. So, through filtering by EMD, we can 
we can see that the ‘ding’ sound, occurring slight after 1.5 20 really limit the frequency to the components in time scale 
second mark, has the higher amplitude than any other IMF rather then in Fourier sense. This time space filtering will not 
components. FIG. 56b indicates that at the same time scale influence the lower frequency components because it would 
components with the ‘ding’ sound, there are also signals leave the bounded super and sub harmonics of other com- 
from the ‘Halloo,’ as indicated by the low level signal in c3. ponents untouched, and it will also eliminate all the bounded 
As a result, we cannot simply filter out the high frequency zs super and sub harmonics associated with the selected time 
components by eliminating the first three IMFs. scale component. We have plotted the results of the Fourier 

Now we will accesses the performance of the EMD vs spectra of the EMDT filtered, the “Fourier” type of filtering 
Fourier filtering. First, let us implement only the filtering by by eliminating the first three IMF components, the Fourier 
simply eliminate the first three IMF components. This based FIR with cutoff frequency set at 2000 and 1000 Hz all 
approach is similar to the thinking of Fourier filtering as 30 in FIG. 59b. As we discussed above, only by setting the 
discussed by Huang (2000), but the result is not exactly the cutoff frequency at 1000 Hz can we eliminate the ‘ding’ 
same. We will design this filtering as the “Fourier” type and sound. The spectra showed the difference: Fourier filtering 
discuss the difference later. The result certainly does not has eliminated all the energy at the high frequency range, but 
show the ‘ding’ sound any more. But this brute force filtering EMD filtering can leave some energy there. The result is a 
has also eliminated all the high frequency sound including 3s greatly improved voice quality. 
some higher frequency elements from the ‘Halloo’ sound. Another application for the present invention is on music 
The quality of the sound is degraded considerably. A better recording. Using EMD rather then Fourier based filter we 
way is to eliminate the ‘ding’ sound in both time and can surgically remove the unwanted noises or sound to 
frequency space by selectively removing energy associated enhance the final quality of the product. As discussed above, 
with the ‘ding’ sound. This was achieved by first studying 40 the EMD filter is much more sophisticated than the Fourier 
each of the IMF component, identifying the ‘ding’ sections based one, for the EMD filter operates with the signal 
in each component by their sounds, frequencies, and occur- separated by temporal scales; therefore, it can keep track of 
rence time location. Then, selectively removing the sections the events precisely on the temporal axis. This operational 
that contain the ‘ding’ associated signals from each IMF principle is totally different from the Fourier based filter, 
component. After this is done, and separated ‘Halloo’ and 4s which operates in Frequency space only. As discussed 
‘ding’ signals are represented by their respective IMF above, the localized signal in frequency space means the 
decompositions in FIGS. 57a and b. In FIG. 57a, we can see signal is uniformly distributed in time space, and localized 
that there is no longer signal associated with the ‘ding’ signal in time space means uniformly distribution in fre- 
sound, while, in FIG. 57b, we see the clear ‘ding’ sound quency space, it is just impossible to perform the precision 
stands by itself. The Hilbert spectra for the original and the SO surgical-like filter localized both in time and frequency 
EMD filtered signals are shown in FIGS. 58a and b. When spaces. Furthermore, many of the sound full of harmonics 
all the IMF’s are summed up, the re-constituted sound will be degraded no matter which frequency the Fourier 
signals for ‘Halloo’ and ‘ding’ are given in FIG. 55. The filter will remove. In the EMD filter, however, the IMF 
sound quality is so much improved over the brute force components retained all the harmonics within a single scale 
approach. ss component. The harmonics are represented by the frequency 

Next, we will implement the Fourier based filtering with modulation as discussed by Huang et a1 (1998, 1999) and 
two 48 degree FIR filters with cutoff frequency set at 2000 Huang (1999). Consequently, any filtering operation will not 
and 1000 Hz respectively. The filtered data with a cutoff downgrade signal at other scales, which can still retain all its 
frequency at 2000 Hz together with the HHT filtered data is harmonics, if viewed in theFourier sense. 
given in FIG. 59a. Based on the results plotted here, one can 60 A step in this task is to identify the unwanted sound in its 
hardly see the difference. But if one pays attention to the time coordinate. It is impossible to blindly apply this method 
relative darkness of the two side-by-side signals, one would as in the traditional Fourier analysis to remove high fre- 
see that Hilbert filtered signal is darker, an indication of quency components. If that is the case, then we can also use 
more high frequency components being retained. EMD to remove the highest frequency IMF component. This 
Furthermore, if one plays the filtered data back through a 65 approach has one unique advantage: By removing the high- 
speaker, we can immediately tell the difference, for there are est frequency component locally or globally, it will not alter 
still residual ‘ding’ sound in the Fourier filtered case. We the quality of the low frequency sounds, for HHT does not 
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depend on harmonics to represent nonlinear distortion of the 
waveforms of sounds. With the additional time tag, we can 
also implement HHT filter locally and globally with the 
precision unmatched by Fourier window-based filters. 

If the unwanted sound is identified on the time axis, we 
can zero in the IMFs and test each component, or a com- 
bination of several components, to determine which one or 
which components should be removed. Once the unwanted 
component (or components) is removed, the cleansed sound 
could be re-constituted locally. 
Acoustical Signal Storage and Transmission: 

Acoustical signal storage and transmission might require 
limited bandwidth or data quantity. Using HHT, one could 
also reduce the amount of data to represent a given signal 
with acceptable, albeit reduced, quality. This can be 
achieved by re-sampling of the IMF components of longer 
time scales at a lower sampling rate. At the same time, we 
can also eliminate the short time scale components without 
too much of a reduction of the signal quality. The result of 
this re-sampling will enable us to store and transmit a given 
signal with reduced amount of data. 

Data storage is a concern as the HHT is designed to 
examine the details of the signals. For storage, however, 
there are steps HHT can help. These steps are described as 
follows: 

From the designed signals, decompose the data into IMFs. 
Test the recombined IMF without the highest few compo- 
nents to determined the degradation of the sound quality. 
Within the tolerable range, eliminate the maximum number 
of high frequency components. Re-sample the data by 
decimating (i. e., with large sampling steps). This will result 
in a smaller number of data, but also with slightly down 
graded sound quality. 
Machine Operating Condition Monitoring 

Referring to FIG. 44 the acoustic signal emitted from an 
operating machine can be compared to a kind of speech 
made by the machine trying to inform us of it condition. A 
chipped gear, a broken bearing, a cracked shaft, a worn 
grinder, cutter, or saw blade will all send its distinct sound 
and particular vibration signals. Such signals can be ana- 
lyzed much the same way as speech signals discussed above. 
We will use a grinder as an example. 

FIGS. 60a, b and c show the acoustical data from a 
grinder operating on a hard surface continuously for 95,120, 
and 200 hours designed as TR095, TR120 and TR200 
respectively. From the signals, it is hard to say whether the 
grinder operated at its optimal condition. Of course, the 
magnitude of the signal representing the loudness of the 
sound is increasing, but that alone is not a criterion for 
determining the condition of the grinder, for there might not 
be a priori record of the grinder at other time periods. Also 
from the record, we can determine the rotating speed of the 
grinder. The rotating speed is also changing. For the cases of 
TR120 and TR200, the rotating speed is 8,000 rpm; while 
the rotating speed for the case of TR095 is slightly higher at 
around 14,000 rpm. None of the above characteristics can be 
used as an indication of the health condition of the grinder. 

To determine the health condition of the machine, one has 
to establish a criterion based on the condition of the machine 
at the time of monitoring. This can be implemented by HHT 
analysis. Using HHT analysis, we can first sift the data and 
obtain their IMF components as shown in FIGS. 61a, b and 
c. Then, we can also construct the Hilbert spectra from the 
IMFs as shown in FIGS. 62a, b and c. Here some distinct 
characteristics appear. When the grinder is sharp and oper- 
ating smoothly, there is a clear frequency of the acoustic 
signature as in FIG. 62a. The energy concentrates around the 

46 
rotating speed as indicated. As the grinder becomes dull, it 
happens first to only part of the grinder surface. The noise 
generated by the dull part causes signal with greater ampli- 
tude or energy density. This intermittent acoustic signature 

5 occurs proportional to the dull surface of the grinder. This 
diffusion of acoustical signal can cover a much broader 
range, but only intermittently. The intermittence, however, is 
only detectable by the HHT analysis as shown in FIG. 62b. 
To the ear, the sound might still be continuous. As the 
wearing progresses, all parts of the grinder becomes dull. At 
this stage, the acoustical signal will be a diffused signal 
everywhere as shown in FIG. 62c. 

The grinder is but only one example. Other telltale signs 
from the chipped gear, the broken bearing, the cracked shaft, 
the worn cutter, or saw blade can be identified in a similar 

To summarize the steps in machine health monitoring, we 
can state that this task is similar to speech identification. We 
can establish the templates database of normal and various 
abnormal operation conditions from the sound and/or the 

20 vibration signal of the machine. To diagnosis a machine, just 
record the operational sound and/or the vibration signal of 
the machine at any time to make comparison with the 
templates in the database to identify the problems. Knowing 
problems with existing templates, the problem can be iden- 

25 tified. For safety sake, whenever the machine sound and/or 
its vibration signals are not within the tolerable range of the 
normal condition template, warning signal should be given. 

The dependence on the existence of scale for mode 
definition has a limitation in that the decomposition method 
cannot separate signals when their frequencies are too close. 

30 In this case, there would not be any characteristic scale: 
therefore, physically they are identical. 

10 

15 way. 

Particular Advantages of The Invention 
The strength of the EMD method should be reiterated. 

35 EMD is built on the idea of identifying the various scales in 
the data which are quantities of great physical significance. 
Therefore, in the local extrema and curvature extrema Sift- 
ing Processes, orthogonality is not a consideration, but 
scales are. Since orthogonal decomposition is a character- 

40 istic for linear systems, violating this restriction is not a 
shortcoming but a breakthrough. Therefore, the decomposed 
IMF’s may or may not be orthogonal. As such, this method 
can be applied to nonlinear data. Though the IMF’s in most 
cases are practically orthogonal, it is a coincidence rather 

Another advantage of the method is the effective use of all 
the data representing the physical phenomenon. In the 
Sifting Processes, the longest scale is defined by the full 
length of the data. As a result, EMD can define many long 

50 period oscillations. As is well known, the Hilbert transform 
without sifting tends to identify the highest frequency 
(Boashash, 1992, “Estimating and Interpreting the Instan- 
taneous Frequency of a Signal, Par t  I: Fundamentals”, 
Proc. IEEE, 80,520-538.), the extraction of the long period 

Finally, though the EMD method will give IMF 
components, the individual component does not guarantee 
well-defined physical meaning. This is true for all 
decompositions, especially for the methods with a priori 

60 basis. In most cases, however, the IMF’s do carry physical 
significance. Great caution should be exercised in making 
such attempts. The rule for interpreting the physical signifi- 
cance of the IMF’s is that the scales should be clearly 
separated. Together with the Hilbert spectrum, the totality of 

65 the presentation should give a much more detailed repre- 
sentation of the physical processes than conventional meth- 
ods. 

45 than a requirement of the EMD. 

5s components is indeed a new feature of the EMD. 
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The invention being thus described, it will be obvious that 
the same may be varied in many ways. Such variations are 
not to be regarded as a departure from the spirit and scope 
of the invention, and all such modifications as would be 
obvious to one skilled in the art are intended to be included 5 
within the scope of the following claims. 

8. The computer implemented method according to claim 

wherein the first acoustical signal is generated from a first 

9, The computer implemented method according to claim 

wherein the first acoustical signal is generated from a first 
human voice source and the second acoustic signal is 
generated from a second human voice source. 

10. The computer implemented method according to 

wherein the step of comparing said first and second 
Hilbert spectra includes obtaining a correlation coeffi- 

11. The computer implemented method according to 

providing a second Hilbert spectrum; and 
comparing said first and second Hilbert spectra. 
12. A computer implemented method of analyzing an 

inputting the acoustical signal; 
extracting a set of intrinsic mode functions from the 

7, 

human voice source. 

7, 
What is claimed is: 
1. A computer implemented method of analyzing an 

inputting the acoustical signal; 
extracting a set of intrinsic mode functions from the 

storing said set of intrinsic mode functions of the acous- 

identifying a specific acoustical signal; 
wherein said specific acoustic signal is identified in said 

2. The computer implemented according to claim 1, 
wherein said specific acoustical signal is noise. 
3. The computer implemented method according to claim 

removing said specific acoustical signal from said set of 

acoustical signal, comprising: 
lo 

claim 7, 
acoustical signal; and 

tical signal; and 15 cient between said Hilbert spectra. 

72 further comprising: 

set of intrinsic mode functions. 

20 
acoustical signal, comprising: 

1, further comprising: 

intrinsic mode functions; and - -  acoustical signal; 
reconstructing the acoustical signal. 
4. A computer implemented method of analyzing an 

inputting the acoustical signal; 
extracting a set of intrinsic mode functions from the 

storing said set of intrinsic mode functions of the acous- 

transforming said set of intrinsic mode functions with a 

identifying a specific acoustical signal in the Hilbert 

storing the Hilbert spectrum. 
5. The computer implemented method according to claim 

acoustical signal, comprising: 

acoustical signal; 

tical signal; 

Hilbert transform to generate a Hilbert spectrum; 

spectrum; and 

4, 

23 
storing said set of intrinsic mode functions of the acous- 

identifying a specific acoustical signal; 
removing said specific acoustical signal from said set of 

reconstructing the acoustical signal. 
13. The computer implemented method according to 

wherein reconstructing the acoustical signal includes 

14. A computer implemented method of analyzing an 

inputting the acoustical signal; 
extracting a set of intrinsic mode functions from the 

tical signal; 

30 intrinsic node functions; and 

claim 12, 

35 summing up said set of intrinsic mode function. 

acoustical signal, comprising: 

40 
acoustical signal; 

wherein said specific acoustical signal is noise. 
6. The computer implemented method according to claim 

removing said specific acoustical signal from said set of 45 
intrinsic mode functions; and 

reconstructing the acoustical signal. 
7. A computer implemented method of analyzing an 

inputting a first acoustical signal; 

4, further comprising: 

acoustical signal, comprising: so 

storing said set of intrinsic mode functions of the acous- 

transforming said set of intrinsic node functions with a 

identifying a specific acoustical signal in the Hilbert 

removing said specific acoustical signal from said set of 

reconstructing the acoustical signed. 

tical signal; 

Hilbert transform to generate a Hilbert spectrum; 

spectrum; 

intrinsic mode functions; and 

extracting a first set of intrinsic mode functions from the 
first acoustical signal; claim 14, 

transforming said first set of intrinsic mode functions with 
a Hilbert transform to generate a first Hilbert spectrum; ss 
and 

15. The computer implemented method according to 

wherein reconstructing the acoustical signal includes 

16. A computer implemented method of analyzing an 

inputting a first acoustical signal; 
extracting a first set of intrinsic mode functions from the 

transforming said first set of intrinsic mode functions with 
a Hilbert transform to generate a first Hilbert spectrum: 

summing up said set of intrinsic mode function. 

storing said first Hilbert spectrum; 
inputting a second acoustical signal; 
extracting a second set of intrinsic mode functions from 

the second acoustical signal; 6o first acoustical signal; 
transforming said second set of intrinsic mode functions 

with a Hilbert transform to generate a second Hilbert 
spectrum; and 

storing said second Hilbert spectrum of the second acous- 65 
tical signal; and 

comparing said first and second Hilbert spectra. 

acoustical signal, comprising: 

storing said first Hilbert spectum; 
wherein the first acoustical signal is generated from a first 

human voice source. 
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17. A computer implemented method of analyzing an 

inputting a first acoustical signal; 
extracting a first set of intrinsic mode functions from the 

first acoustical signal; 5 ond Hilbert spectrum from a database. 

transforming said first set of intrinsic mode functions with 
a Hilbert transform to generate a first Hilbert spectrum; 

storing said first Hilbert spectrum; 

18. The computer implemented method according to 

wherein the step of providing the Hilbert spectrum of the 
specific acoustical signal includes retrieving said sec- 

acoustical signal, comprising: claim 17, 

19. The computer implemented method to claim 17, 
wherein the step Of 'Omparing said first and second 

Hilbert spectra includes obtaining a correlation coeffi- 
cient between said Hilbert spectra. 

providing a second Hilbert spectrum; and 
comparing said first and second Hilbert spectra. 

10 
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