
(12) United States Patent
Whitaker et al.

(54) DIGITAL DESIGN USING SELECTION
OPERATIONS

(75) Inventors: Sterling R. Whitaker, Albuquerque,
NM (US); Lowell H. Miles,
Albuquerque, NM (US); Eric G.
Cameron, Lake Forest, CA (US)

(73) Assignee: Science & Technology Corporation @
UNM, Albuquerque, NM (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(*) Notice:

(21) Appl. No.: 10/172,494

(22) Filed: Jun. 14, 2002

(65) Prior Publication Data

US 200310126579 A1 Jul. 3, 2003

Related U.S. Application Data
(60) Provisional application No. 601298,832, filed on Jun. 15,

2001.

(51) Int. C1.7 .. G06F 17/50
(52) U.S. C1. .. 716/18; 716117
(58) Field of Search 71612-3, 17-18,

(56) References Cited

71611, 8-11; 326139, 113

U.S. PATENT DOCUMENTS

4,792,909 A 1211988 Serlet 716110
4,849,928 A * 711989 Hauck 71611
5,040,139 A 811991 Tran
5,051,917 A 911991 Gould et al.
5,128,871 A 711992 Schnitz 716117
5,162,666 A 1111992 Tran
5,200,907 A 411993 Tran
5,225,991 A 711993 Dougherty
5,349,659 A 911994 Do et al.
5,461,557 A * 1011995 Tamagawa 363160
5,526,276 A 611996 Cox et al.
5,548,231 A 811996 Tran
5,596,742 A 111997 Aganval et al.

(io) Patent No.:
(45) Date of Patent:

US 6,792,589 B2
Sep. 14,2004

5,649,165 A
5,712,806 A
5,780,883 A
5,796,128 A
5,801,551 A
5,805,462 A
5,859,547 A
5,894,227 A
5,953,519 A
5,987,086 A
6,051,031 A
6,173,435 B1
6,184,718 B1
6,185,719 B1
6,205,572 B1
6,263,483 B1
6,275,973 B1
6,282,695 B1

711997 Jain et al.
111998 Hennenhoefer et al.
711998 Tran et al.
811998 Tran et al.
911998 Lin 3261113
911998 Poirot et al.
111999 Tran et al.
411999 Acuff
911999 Fura

1111999 Raman et al.
412000 Shubat et al.
112001 Dupenloup
212001 Tran et al.
212001 Sako
312001 Dupenloup
712001 Dupenloup
812001 Wein
812001 Reddy et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

WO WO 021103757 1212002

OTHER PUBLICATIONS

Balajee, S. et al., "Automated AC (timing) characterization
for digital circuit testing", VLSI Design, 1998. Eleventh
International Conference on, Jan. 4-7, 1998 pp.: 374-377.*

(List continued on next page.)

Primary Examiner-Vuthe Siek
Assistant Examine rqaum B Levin
(74) Attorney, Agent, or Firm-Townsend and Townsend
and Crew LLP

(57) ABSTRACT

A digital integrated circuit chip is designed by identifying a
logical structure to be implemented. This logical structure is
represented in terms of a logical operations, at least 5% of
which include selection operations. A determination is made
of logic cells that correspond to an implementation of these
logical operations.

20 Claims, 18 Drawing Sheets

US 6,792,589 B2
Page 2

U.S. PATENT DOCUMENTS

6,288,593 B1
6,289,491 B1
6,289,498 B1
6,292,931 B1
6,295,636 B1
6,313,666 B1
6,356,112 B1
6,359,468 B1
6,367,065 B1 *
6,467,074 B1

200210069396 A1
200210087939 A1

912001 Tran et al.
912001 Dupenloup
912001 Dupenloup
912001 Dupenloup
912001 Dupenloup

1112001 Yamashita et al. 3261113
312002 Tran et al.
312002 Park et al. 326139
412002 Leight et al. 716118

1012002 Katsioulas et al.
612002 Bhattacharya et al.
712002 Greidinger et al.

OTHER PUBLICATIONS

Patel, D., “CHARMS: characterization and modeling system
for accurate delay prediction of ASIC designs”, Custom
integrated Circuits Conference, 1990., Proceedings of the
IEEE 1990, May 13-16, 1990 pp.: 9.511-9.5/6.*
Leung, S.C. et al., “A syntax-directed translation for the
synthesis of delay-insensitive circuits”, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol.: 2,
Issue: 2, Jun. 1994 pp.: 196-210.*
Rollins, J.G., “Numerical simulator for superconducting
integrated circuits”, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol.: 10, Issue:
2, Feb. 1991 pp.: 245-251.*

Devadas, S. Optimal Layout Via Boolean Satisfiablility,
1989 IEEE International Conference on Computer-Aided
Design Nov. 5, 1989, pp. 294-297.

Falkowski, B.J. et al., Efficient Algorithms For the Calcu-
lation of Arithmetic Spectrum from OBDD and Synthesis of
OBDD from Arithmetic Spectrum for Incompletely Speci-
fied Boolean Functions 1994 IEEE International Sympo-
sium on Circuits and Systems, May 30, 1994, vol. 1, pp.
197-200.

Method for Identifying Technology Primitive in Logic IBM
Technical Disclosure Bulletin, May 1992 Vo. 34, No. 12, pp.

Upton, M. et al. Integrated Placement for Mixed Macro Cell
and Standard Cell Designs Proceedings of 27th ACMDEEE
Design Automation Conference, Jun. 24, 1990, pp. 32-35.

Fletcher, William I., An Engineering Approach to Digital
Design, MSI and LSI Circuits and Their Applications, 1980,
Prentice-Hall, Inc., Englewood Cliffs, NJ, pp. 210-226.

Yano, Kazuo, et al., “Lean Integration: Achieving a Quan-
tum Leap in Performance and Cost of Logic LSIs,” IEEE
1994 Custom Integrated Circuits Conference, pp. 603-606.

359-361.

* cited by examiner

us. Patent Sep. 14,2004 Sheet 1 of 18

100-1 108

1

Sep. 14,2004 Sheet 1 of 18

100-1 104 108
I I , 1 CK

Q- - 1" DR i MUX Q--D Q--DBUf

QN-
R

Fig. 3A

108 112
100-2

I

Fig. 1B

100-3 104 108

t

US 6,792,589 B2

112
1

Fig. IC

U S . Patent Sep. 14,2004 Sheet 2 of 18

I

Q- - 4
i MIJX Q--DBUf

- 1, QN-

100-4 104 112

Fig. 10

208
J

108

1

Fig. 2A 204

108
1 208

US 6,792,589 B2

204 Fig. 2B

U S . Patent Sep. 14,2004 Sheet 3 of 18 US 6,792,589 B2

- I/ 7

m

CQ
0
0

x ‘3 c

t--

n

\ n

U

/ I
r

J , - 0
0 m

L

U S . Patent Sep. 14,2004 Sheet 4 of 18 US 6,792,589 B2

U S . Patent Sep. 14,2004 Sheet 5 of 18 US 6,792,589 B2

U S . Patent Sep. 14,2004 Sheet 6 of 18 US 6,792,589 B2

802 \
820

V
- -

804 806

FIG. 8A

852 850 848 854

a44 846

FIG. 8B

U S . Patent

880

L

874

Io
874 =

874 =

874 -

874 z

,-- 876

Sep. 14,2004 Sheet 7 of 18

1 4

880

L

1

876
880 F/ 876

US 6,792,589 B2

/*,,

i

i

i

-z
Q

FIG. 8C

U S . Patent

BEGIN WITH
SYNTACTIC

EXPRESSION FOR
CELL

Sep. 14,2004

902
/

Sheet 8 of 18

r
INVERT
BUFFER REASSIGN

CONTROL W ITH INTERCHANGE

INVERT
TRUTH
TABLE

US 6,792,589 B2

MAP-ENTERED ' 912
STATE GROUPS

OF SIZE 2" VARIABLE

,
GO TO NEXT

TRANSFORMATION

\
914

FIG. 9A

U S . Patent Sep. 14,2004 Sheet 9 of 18

REMOVE EXISTING
REDUNDANCIES

FROM PREVIOUS
TRANSFORMATION

BEGIN WITH SYNTACTIC

9,8
/

ENTER CONTROL
VARIABLES INTO TRUTH

TABLE

GO TO NEXT
TRANSFORMATION

922

US 6,792,589 B2

FIG. 9B

U S . Patent Sep. 14,2004 Sheet 10 of 18 US 6,792,589 B2

BEGIN WITH SYNTACTIC
EXPRESSIONS FOR

MULTIPLE CELLS
928
/

CORRESPONDING

INTO MAP-ENTERED
VARIABLES

1
COMBINE CONTROL L 9 3 4 -4
DEFINE STATES IN

MERGED EXPRESSION

GO TO NDCT I TRANSFORMATION

FIG. 9C

U S . Patent

PERFORM
PERMUTATIONS TO
ALIGN LOW STATES

CHANGECONTROL
VARIABLE TO RESET

INPUT TO A
FLIP FLOP

Sep. 14,2004 Sheet 11 of 18 US 6,792,589 B2

FROM PREVIOUS 1 TRANSFORMATION

BEGIN WITH SYNTACTIC
EXPRESSION FOR CELL

1

PERFORM
TRUTH-TABLE STATE PERMUTATIONS TO

HIGH? ALIGN HIGH STATES

I
I No

CHANGE CONTROL
VARIABLE TO SET
INPUT TO A FLIP

I 954

GO TO NEXT ’ TRANSFORMATION

FIG. 9D

U S . Patent

REMOVE CONNECTION
CELLS TO VDDNSS

Sep. 14,2004

1016
/

Sheet 12 of 18

REMOVE REDUNDANT
NODES

US 6,792,589 B2

1M8
/

TRANSLATE NETLIST boa
TO ULG NETLIST

1

c' REMOVE NON- Lorn
I

REMOVE IWERTERS 024 b
--I---

d FANOUTNODES?

MORE VARIABLE TO
RESET INPUT

!,,, 1 M O R E V F T O
SET INPUT

IDENTlPl 1 SUB-FUNCTIONS

MAKE ALL BUFFERS
INVERTING

p c o , * STANDARD CELLS

FIG. 10

U S . Patent Sep. 14,2004 Sheet 13 of 18 US 6,792,589 B2

INPUT
DEVICES

CPU(S)

1100 I
-

COMPUTER
READABLE
STORAGE

MEDIA READER

OUTPUT STORAGE
DEVICES DEVICES

111ob

COMPUTER
READABLE

STORAGE MEDIA

I \ill* \

PROCESSING
ACCELERATION

1124/

/" WORKING

MEMORY

1 OPERATING
SYSTEM

OTHER CODE
(PROGRAMS) I

FIG. I 1

U S . Patent Sep. 14,2004

’

Perform Verification and Any

1200

A220 -f

1

Sheet 14 of 18 US 6,792,589 B2

Determine Layout Rules for
Target Fabrication Process

Layout Kernel Cells with I Manual Custom ization

Specify Basic
Cell Configurations

Automatically Generate
Basic Celts

I Hand Optimization of Basic Cells I

Fig. 12

U S . Patent Sep. 14,2004 Sheet 15 of 18 US 6,792,589 B2

7

7

T
m

0
ni
c3

U S . Patent Sep. 14,2004

d,
ii

Sheet 16 of 18 US 6,792,589 B2

0 4
0

U S . Patent Sep. 14,2004

X J r-
v

Sheet 17 of 18 US 6,792,589 B2

.Y Q
ci
ii

I

U S . Patent

1900

1

Sep. 14,2004 Sheet 18 of 18 US 6,792,589 B2

(-1 904 I Edit Design with]
HDL Entry Tool

1906

Problems?

1912

-
Timing Analysis

Perform Dynamic-J
Timing Analysis

m 1916

Perform Dynamic
Timing Analysis

:No =
,Continue

v

Fabricate 19" Design

Fig. 19

US 6,792,589 B2
1

DIGITAL DESIGN USING SELECTION
OPERATIONS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a nonprovisional of and claims priority
to U.S. Prov. Pat. Appl. No. 601298,832 entitled
“MULTIPLEXOR-BASED DIGITAL DESIGN,” filed Jun.
15,2001 by Sterling R. Whitaker et al., the entire disclosure
of which is herein incorporated by reference for all purposes.

This application is also related to the following commonly
assigned, concurrently filed U.S. patent applications, each of
which is also incorporated herein by reference in its entirety
for all purposes: U.S. patent application Ser. No. 101172,742
entitled “PASS-TRANSISTOR VERY LARGE SCALE
INTEGRATION,” by Gary K. Maki and Prakash R. Bhatia
U.S. patent application Ser. No. 101172,746, entitled “OPTI-
MIZATION OF DIGITAL DESIGNS,” by Sterling R. Whi-
taker and Lowell H. Miles U.S. patent application Ser. No.
101172,745, entitled “INTEGRATED CIRCUIT CELL
LIBRARY,” by Sterling R. Whitaker and Lowell H. Miles
Ser. No. 101172,743, entitled “DIGITAL LOGIC OPTIMI-
ZATION USING SELECTION OPERATIONS,” by Ster-
ling R. Whitaker, Lowell H. Miles, Eric G. Cameron, and
Jody W. Gambles U.S. patent application Ser. No. 101172,
744, entitled “DIGITAL CIRCUITS USING UNIVERSAL
LOGIC GATES,” by Sterling R. Whitaker, Lowell H. Miles,
Eric G. Cameron, Gregory W. Donohoe, and Jody W.
Gambles. These applications are sometimes referred to
herein as “the Universal-Logic-Gate applications.”

STATEMENT AS TO RIGHTS TO INVENTIONS
MADE UNDER FEDERALLY SPONSORED

RESEARCH OR DEVELOPMENT

The U.S. Government has a paid-up license in this inven-
tion and the right in limited circumstances to require the
patent owner to license others on reasonable terms as
provided for by the terms of Grant No. NAGS-9152 awarded
by NASA.

BACKGROUND

This invention relates in general to digital circuits and,
more specifically, to design of digital circuits that are
laid-out with cells.

Mathematics is one attempt for humankind to understand
the universe around them. As technological advancement
occurs, mathematical concepts and algorithms grow to
enable and/or support those advancements. Within the con-
text of digital design, Boolean logic is the mathematical
construct used to manipulate and optimize digital circuits.
Nearly every electronic device today relies upon some type
of Boolean logic for any embedded digital circuits. Other
mathematical constructs, however, are possible that allow
further optimization of digital designs. Changes to the
processing of digital design are necessary when avoiding
Boolean logic elements.

Today application specific integrated circuit (ASIC) are
specified using netlists of library cells for a particular
process of a foundry or fabrication facility. These netlists are
used to fabricate integrated circuits made up of the library
cells. A few hundred library cells are typically available for
a particular process that include AND gates, OR gates,
flip-flops (F/F), and buffers. When a new fabrication process
is developed, engineers custom layout each of the library
cells to get the most optimal performance from each cell.

2
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in conjunction with the
appended figures:

FIG. 1 A is a block diagram of an embodiment of a basic
cell composed of kernel cells;

FIG. 1B is a block diagram of another embodiment of a
basic cell composed of a memory and a buffer kernel cells;

FIG. 1C is a block diagram of yet another embodiment of
a basic cell composed of a selection and memory kernel
cells;

FIG. 1D is a block diagram of still another embodiment
of a basic cell composed of a selection and a buffer kernel
cells;

FIG. 2A is a block diagram of an embodiment of a
memory cell with a synchronous reset;

FIG. 2B is a block diagram of another embodiment of a
memory cell with an asynchronous reset;

FIG. 3 is a block diagram of an embodiment of a universal
20 logic gate layout;

FIG. 4 is a block diagram of an embodiment of a memory
kernel cell layout;

FIG. 5 is a block diagram of an embodiment of a buffer
kernel cell layout;

FIG. 6 is a block diagram of an embodiment of a basic cell
abutted together from the kernel cells of FIGS. 3-5;

FIG. 7 is a block diagram of an embodiment of two basic
cells laid out together;

3o FIG. SA provides a schematic illustration of an
enhancement-mode transistor;

FIG. 8B provides a schematic illustration of a depletion-
mode transistor;

FIG. 8C provides a circuit layout for a universal logic gate
35 according to an embodiment of the invention that uses

depletion-mode transistors;
FIG. 9Ais a flow diagram illustrating how inversions may

be removed in logical expressions implemented in embodi-
ments of the invention;

FIG. 9B is a flow diagram illustrating how nodes may be
reduced in logical expressions implemented in embodiments
of the invention;

FIG. 9C is a flow diagram illustrating how nodes may be
combined in logical expressions implemented in embodi-

FIG. 9D is a flow diagram illustrating how set and reset
inputs may be used in performing optimizations according to
embodiments of the invention;

FIG. 10 is a flow diagram illustrating an embodiment for
a ULG netlist optimization;

FIG. 11 provides a schematic illustration of a computer
system on which methods of the invention may be embod-
ied;

FIG. 12 is a flow diagram of an embodiment of a process
for preparing a ULG ASIC cell library;

FIG. 13 is a block diagram of an embodiment of a design
flow that uses syntactic manipulation after synthesis;

FIG. 14 is a block diagram of another embodiment of a
60 design flow that uses syntactic manipulation and the ULG

ASIC cell library;
FIG. 15 is a block diagram of another embodiment of a

design flow that uses the ULG ASIC cell library for the final
netlist;

FIG. 16 is a block diagram of yet another embodiment of
a design flow that combines synthesis and syntactic manipu-
lation into a single tool;

5

1s

25

40

45 ments of the invention;

55

65

US 6,792,589 B2
3 4

FIG. 17 is a block diagram of still another embodiment of
a design flow that uses a verification tool throughout the
design flow;

FIG, 18 is a block diagram of still another embodiment of
a design flow that
design flow and after fabrication; and

process.
In the appended figures, similar components and/or fea-

tures may have the same reference label. Further, various

following the reference label by a dash and a second label
that distinguishes among the similar components. If only the
first reference label is used in the specification, the &scrip-
tion is applicable to any one of the similar components
having the Same first reference label irrespective of the
second reference label.

ULG, memory element, and buffer are implemented with a
relatively-small number of kernel cells, which typically have
layouts that are individually optimized, and often, by hand.
The kernel cells are arranged into the higher-level basic cells

and buffer,
but the basic cells do not have more than one of any type of
kernel cell in this embodiment. For a given semiconductor
process, there is a ULG ASIC cell library which is composed
of the basic cells and specialized cells. These specialized
cells may differ from the basic cell construct and could
include, for example, clock dividers, memory arrays, analog

Referring first to FIG. 1A, an embodiment of a basic cell
loo is shown in diagram form. This embodiment
includes all three of a ULG or selection circuit 104, a
memory cell 108 and a buffer 112. Some of the kernel cell
components of the basic cell 100 are shown in a generalized
manner. The ULG 104 is shown having any number of data
and selection control inputs, however the relationship
between the maximum data inputs for a number of selection

20 control inputs follows the following relationship 2y=I. The
memory kernel cell 108 shown is a resetable D F/F. A buffer
kernel cell 112 shown has both an inverting and
inverting output, although, other buffer implementations
will have either an inverting or non-inverting output,

The ULG 104 in this embodiment is implemented with a

Boolean function, but are not Boolean operators, Combina-
torial logic in conventional designs is not implemented with
selection functions, but uses Boolean logic gates. Further,

30 multiplexors in conventional circuits are converted to Bool-
ean equivalents during synthesis.

One embodiment:

a verification tool throughout the 5 having at least One Of the ULG, memory

l9 is a flow diagram Of an embodiment Of a

components of the Same type may be distinguished by circuits, phase-locked loops, oscillators, analog circuits, etc.

DETAILED DESCRIPTION

The ensuing description Provides Preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the invention. Rather, the
ensuing description of the preferred exemplary embodiment
(s) will provide those skilled in the art with an enabling 25

embodiment of the invention. It is to be understood that
various changes may be made in the function and arrange-
ment of elements without departing from the spirit and scope
of the invention as set forth in the appended claims.

In certain embodiments, a method is provided for design-
ing a digital integrated circuit chip. A logical structure to be

fied. This logical structure is represented in terms of a
plurality of logical operations in which at least 5% of the
logical operations comprise selection operations. In various 35
specific embodiments, the fraction of logical operations that
comprise selection operations may be higher. A determina-
tion is made of logic cells that correspond to an implemen-

description for a preferred multiplexor, Multiplexors can be used to implement any

implemented by the digital integrated circuit chip is identi- The below Table 1 shows the fourteen kernel Cells used in

TABLE I

ULG
Component Symbol Description

tation of the logical operations. In some of these ULG U 8 to 1 (US), 4 to 1 (U4) or 2 to 1
embodiments, the selection operations may function either 40

Boolean values. In one embodiment, none of the logic cells
that correspond to the implementation of the logical opera-
tions comurises a Boolean logic element having more than

(U2) Multiplexors

Resetable D FIF - Synchronous (DRl),
Clock Edge Synchronization (DR2)
or Asynchronous (DR3)
Setable D FIF - Synchronous (DSl), Clock Edge

on base Boolean values or on a higher-order function of base E l r r y
FIF (D1)

DR

DS
I I

a single input.

designing a digital integrated circuit chip in which a logical
structure. In these embodiments. the logical structure is CB High-drive buffer (CB1)

Synchronization (DS2) or Asynchronous (DS3)’

Inverting and Non-inverting buffer (B2)
45 Buffers B Non-inverting buffer (Bl) or Hybrid In other embodiments, a method is also provided for

BN Inverting buffer (BN1) -
represented in terms of logical operations in which fewer ZB Tristatable buffer (ZB1)

than 50% comprise a Boolean logical operation having more 50
than a single output. Logic cells that correspond to an The embodiment of the kernel cells in the above Table I
implementation of the logical operations are then deter- could be augmented in other embodiments to include other
mined. cells. The ULGs could include multiplexors of any size, for

The methods of the present invention may be embodied in example, 16 to 1, 32 to 1, 64 to 1, etc. Larger multiplexors
a computer-readable storage medium having a computer- ss could be formed with a number of smaller multiplexors if a
readable program embodied therein for directing operation larger multiplexor is not supported in the kernel cells.
of a computer system. Such a computer system may include
a communications system, a processor, and a storage device.
The computer-readable program includes instructions for
operating the computer system as part of designing a digital
circuit in accordance with the embodiments described
above.
I. Cells

In one embodiment, a basic cell is a construct that
includes one or more of a universal logic gate (ULG), a
memory element or flip-flop (FIF), and/or a buffer. In this
embodiment, the ULG is a multiplexor or select circuit. The

Various other types of memory cells could also be supported
such as EEPROM, EPROM, PROM, DRAM, SRAM,
NVRAM, magnetic core memory, J-K F/Fs, setable and

60 resetable F/Fs, various F/F with scan ATPG capability, etc.
The J-K, setable, or resetable functionality of a F/F can be
implemented by a D F/F and logic that can be embedded in
the mux before or after the D F/F. The F/Fs could also be
falling edge triggered in some embodiments. Also the buff-

65 ers could be of various strengths and sizes. Some buffers
could support input and output pins of the chip with various
thresholds, voltages, etc.

US 6,792,589 B2
5 6

Table I1 lists the various configurations in which kernel Referring next to FIG. lC, a block diagram of yet another
cells are used to create basic cells 100-1 that use all of a embodiment of a basic cell 100-3 is shown that is composed
ULG 104, a memory cell 108 and a buffer cell 112 such as of ULG and memory kernel cells 104,108. This is just one
the example in FIG. 1A. These basic cells 100-2 are the example of the various similar basic cells 100-3 that might
variations found in one embodiment of the ULG ASIC cell s form an embodiment of the ULG ASIC cell library. Other
library. possible configurations are enumerated in Table IV below.

TABLE I1

Basic Cell Configuration
Type Mux - Mem - Buf Various Basic Cell Layout Names

UDB U - D - B

UDBN U - D - B N
UDZB U - D - Z B
UDRB U - D R - B

UDRBN U - DR - BN

UDRZB U - DR - ZB

UDSB U - D S - B

UDSBN u - DS - BN

UDSZB u - DS - ZB

U2D1B1,U4D1B1,U8D1B1,U2D1B2,U4D1B2,
U8D1B2,
U2D1BN1, U4D1BN1, U8D1BN1
U2D1ZB1, U4D1ZB1, U8D1ZB1
U2DR1B1, U2DR2B1, U2DR3B1, U2DR1B2,
U2DR2B2, U2DR3B2, U4DR1B1, U4DR2B1,
U4DR3B1, U4DR1B2, U4DR2B2, U4DR3B2,
U8DR1B1, U8DR2B1, U8DR3B1, U8DR1B2,
U8DR2B2, U8DR3B2
U2DR1BN1, U2DR2BN1, U2DR3BN1,
U4DR1BN1, U4DR2BN1, U4DR3BN1,
U8DRIBN1, U8DR2BN1, U8DR3BN1
U2DR1ZB1, U2DR2ZB1, U2DR3ZB1,
U4DR1ZB1, U4DR2ZB1, U4DR3ZB1,
U8DR1ZB1, U8DR2ZB1, U8DR3ZB1
U2DS1B1, U2DS2B1, U2DS3B1, U2DS1B2,
U2DS2B2, U2DS3B2, U4DS1B1, U4DS2B1,
U4DS3B1, U4DS1B2, U4DS2B2, U4DS3B2,
U8DS1B1, U8DS2B1, U8DS3B1, U8DS1B2,
U8DS2B2, U8DS3B2
U2DS1BN1, U2DS2BN1, U2DS3BN1,
U4DS1BN1, U4DS2BN1, U4DS3BN1,
U8DS1BN1, U8DS2BN1, U8DS3BN1
U2DS1ZB1, U2DS2ZB1, U2DS3ZB1,
U4DS1ZB1, U4DS2ZB1, U4DS3ZB1,
U8DS1ZB1, U8DS2ZB1, U8DS3ZB1

With reference to FIG. lB, a block diagram of another 4o

embodiment of a basic cell 100-2 composed of memory and
buffer kernel cells 108, 112 is shown. This is but one
example of a basic cell 100-2 of this general configuration.
Other basic cells of this general configuration that could be
found in an embodiment of a ULG ASIC cell library are 45

listed in Table 111.

TABLE I11

Configura-

Basic tion Me-

Cell mory -
Type Buffer Various Basic Cell Layout Names

so

<<

DB

DBN

DZB

DRB

DRBN

DRZB

DSB

DSBN

DSZB

i d

D - B D1B1, D1B2

D - BN DlBNl

D - ZB DlZBl

DR - B

DR - BN DR1BN1, DR2BN1, DR3BN1

DR - ZB DR1ZB1, DR2ZB1, DR3ZB1

DS - B DS1B1, DS2B1, DS3B1, DS1B2, DS2B2, DS3B2

DS - BN

DS - ZB DS1ZB1, DS2ZB1, DS3ZB1 65

DR1B1, DR2B1, DR3B1, DR1B2, DR2B2, DR3B2
60

DS1BN1, DS2BN1, DS3BN1

TABLE IV

Basic Cell Configuration
Type Mux - Mem Various Basic Cell Layout Names

UD U - D U2D1, U4D1, U8D1
UDR U - D R U2DR1, U4DR1, U8DR1, U2DR1, U4DR2,

UDS U - D S U2DS1, U4DS1, U8DS1, U2DS2, U4DS2,
U8DR2 U2DR3, U4DR3, U8DR3

U8DS2, U2DS3, U4DS3, U8DS3

With reference to FIG. lD, a block diagram of still
another embodiment of a basic cell 100-4 composed of ULG
and buffer kernel cells 104, 112 is shown. There are other
possible configurations of this type of basic cell 100-4. The
variations of this basic cell 100-4 for one embodiment of the
ASIC library are listed in Table V. From Tables 11-V, around
80% of the 142 available basic cells include ULG circuits.
The 142 basic cells are based upon the 14 kernel cells of
Table I.

Although the embodiment in Tables 11-V show some
possible basic cells, other embodiments could include addi-
tional basic cells. These additional basic cells could be
optimized for output power, power consumption, layout
area, response time, leakage, etc. such that there are multiple
cells with the same logical properties, but that are optimized
for particular circumstances. For example, there may be

US 6,792,589 B2
7

three non-inverting buffers of having different drives to
support larger fanout and/or higher speeds. In various
embodiments, there could be less than, for example, 100,75,
50,40,30,20, or 10 kernel cells. At the lower limit, there is
three kernel cells in one embodiment with just one of each
of the types of kernel cells.

TABLE V

Basic Cell Configuration
Type Mux - Buf Various Basic Cell Layout Names

UB U - B U2B1, U4B1, U8B1, U2B2, U4B2, U8B2
UBN U - BN U2BN1, U4BN1, U8BN1

The building blocks of a digital circuit could be abstracted
beyond the ULG ASIC cell library. In some embodiments,
the ULG ASIC cell library components could be combined
in higher-level macro cells such as adders, multipliers,
registers, barrel shifters, ALUs, comparators, decoders, state
machines, counters, etc. There could be thousands of pos-
sible macro cells. Further, designs can be abstracted to a
level higher than the macro cells by using cores that imple-
ment higher level functions such as microprocessors, graph-
ics processors, interface busses or ports, digital signal
processors, etc. These cores could use macro cells and/or
components from the ULG ASIC cell library. Often the cores
are written in a hardware description language (HDL) that
can be easily synthesized into any ULG ASIC cell library for
a particular process.

With reference to FIGS. 2A and 2B, various embodiments
of a memory kernel cell 108 are shown in block diagram
form. These embodiments divide the D F/F 208 out from the
memory cell and implement some functionality with a
separate buffer cell 204. In various embodiments, the buffer
cell 204 could be used to customize the D F/F 208 with
synchronous reset of FIG. 2A or asynchronous reset of FIG.
2B. In other embodiments, a separate circuit could be used
to make a D F/F 208 behave as a setable D FIF, a J-K F/F
or a F/F with scan capability. In other embodiments, the
separate circuit could be implemented with a selection
circuit.

This buffer cell 204 in an ASIC cell library could be used
for other purposes also. For example, an 8 to 1 mux function
could be implemented with a buffer cell 204 and a 4 to 1 mux
104 in some circumstances to reduce the chip area needed to
implement the functionality. Table VI shows the thirteen
kernel cells used in this embodiment. Table VI1 shows a
truth table for the enable buffer 204 where the enable input
is R, the input is D and the output is Q.

TABLE VI

Kernel
Cell
Component Symbol Description

ULGs U

Memory D
Cells DS

Buffers B

BN
EBN
CB
ZB

8 to 1 (US), 4 to 1 (U4) or 2 to 1 (U2)
Multiplexors
D FIF (Dl)
Setable D FIF - Synchronous (DSl), Clock Edge
Synchronization (DS2) or Asynchronous (DS3)
Non-inverting buffer (Bl) or Hybrid Inverting
and Non-inverting buffer (B2)
Inverting buffer (BN1)
Inverting buffer with an enable input (EBN1)
High-drive buffer (CB1)
Tristatable buffer (ZB1)

S

10

1s

20

2s

30

3 s

40

4s

so

5s

60

65

8

TABLE VI1

R D Q

0 1
1 1
0 1
1 0

11. Layout of Cells
Each fabrication process at a fab or foundry generally has

a conventional ASIC cell library that is customized for that
process. Each of the hundreds of cells in the conventional
ASIC cell library is typically manually laid out to optimize
its configuration. In this embodiment, however, a small
number of customized kernel cells are used to automatically
or manually compile the basic cells 100. For a target
fabrication process, care is taken to optimize the layout of
kernel cells 104, 108, 112 for factors such as power
consumption, chip area, number of masks, number of pro-
cess steps, yield, capacitance, inductance, resistance,
glitches, I/O placement, etc. In some cases, the fabrication
processes are similar enough to other fabrications processes
that only minor tweaking to kernel cells is done.

With reference to FIG. 3 a block diagram of an embodi-
ment of a ULG layout 300 is shown. A cloud graphic is used
to represent the layout of the circuit to implement the 2 to 1
ULG 104. Input ports 316, 320 and I/O 324 are detailed
within the circuit cloud, more specifically, ports for the
inputs (I, and 11) 316 and the select (Yo) 320 and a trace is
shown for the Q output 324. For the ULG kernel cell, the
input and select signals are ports 316, 320 within the ULG
layout 300. The ULG circuit 304 is attached by traces to
latitudinal power traces 308, 312.

Abutment is used to link certain signals by coupling
adjacent kernel cells. Adjacent placement of the cells may
join the abutted I/O or a small conductive trace may join the
abutted I/O. The kernel cells have a uniform height and
differing depths such that the power traces 308,312 for each
kernel cell align with the next kernel cell. Also, certain I/O
signals use a uniform latitude. For example the Q output 324
of the ULG layout 304 would align latitudinally with an
input for an adjacent memory or buffer kernel cell.

Referring next to FIG. 4, a block diagram of an embodi-
ment of a memory kernel cell layout 400 is shown. This
memory circuit 404 implements a D F/F with a D input 412,
a clock input 408 and a Q output 416. Coupled to the
memory circuit 404 are a VDD and V,, power busses 308,
312. The height of the memory kernel cell layout 400 is the
same as the ULG cell layout 300 such that the power busses
for both kernel cells align latitudinally.

With reference to FIG. 5, a block diagram of an embodi-
ment of a buffer kernel cell layout 500 is shown. As with the
other kernel cell circuits 304, 404, a non-inverting buffer
kernel cell circuit 504 is coupled to power busses 308, 312
with a height uniform to the other kernel circuits 304, 404.
The buffer circuit includes a D input 508 and a Q output 512,
where the D input 508 is latitudinally aligned with the
outputs from either a ULG circuit 304 or a memory circuit
404. In this embodiment, the Q output 512 is offset from the
latitude of the D input 508.

Referring next to FIG. 6, a block diagram of an embodi-
ment of a basic cell 600 abutted together from three kernel
cells 300, 400, 500 is shown. A U2 ULG, D1 F/F and B1
non-inverting buffer kernel cells 300, 400, 500 are con-
nected in serial to form the basic cell 600. The power busses
308, 312 for each kernel cell 300, 400, 500 align to form a

US 6,792,589 B2
9

larger whole. The Q output 324 from the U2 ULG circuit
304 aligns with the D input 412 to the D1 memory circuit
404, and the Q output 416 from the D1 memory circuit 404
aligns with the D input 508 to the B1 buffer circuit 504.
Other embodiments could have additional power busses, for
example, a substrate bus connection.

With reference to FIG. 7, a block diagram of an embodi-
ment of two basic cells 600, 704 laid out together in a row
700 is shown. During layout of a chip, all the ULG ASIC
cells are arranged. The basic cells 600, 704 are aligned in
horizontal rows. In some cases (not depicted), there is
routing of one or more signals between the basic cells 600,
704. In the depicted embodiment, an output from a first basic
cell 704 is coupled with a trace 712 to an input of a second
basic cell 600. The clock inputs for both basic cells 600,704
are latitudinally aligned such that a clock bus can pass strait
across a row 700 of basic cells.

In some embodiments, additional size reductions are
realized in the ULGs by having them comprise one or more
depletion-mode transistors. Schematic diagrams are pro-
vided in FIGS. SA and 8B that compare enhancement-mode
and depletion-mode transistors. FIG. SA shows the structure
of an n-type enhancement-mode transistor 802 that com-
prises a source 804, a drain 806, and a gate 810. Connections
are made with the source 804 and drain 806 respectively
through pads 812 and 814. The gate 810 usually comprises
a metal formed over an oxide such as SO,. For such an
n-type transistor 802, both the source 804 and drain 806
comprise n-doped regions in a p-doped substrate. The tran-
sistor operates so that when at least a threshold voltage is
applied to the gate 810, current flows between the source
804 and drain 806 through an intermediate channel region.
In circuits, the enhancement-mode transistor 802 is denoted
with symbol 820.

The depletion-mode transistor 842 illustrated in FIG. 8B
also comprises a source 844, a drain 846, and a gate 850
formed over an oxide 848, with connections to the source
844 and drain 846 provided respectively by pads 852 and
854. For the depletion-mode transistor, however, the channel
region 856 between the source 844 and drain 846 is also
n-doped, allowing the flow of current even without a gate
voltage. The current can be stopped by applying at least a
negative cutoff voltage to the gate 850. In circuits, the
depletion-mode transistor 842 is denoted with symbol 860.

FIG. 8C provides an example of a circuit for a ULG
element that exploits the different properties of
enhancement- and depletion-mode transistors to allow a
smaller circuit area than a ULG design that uses only
enhancement-mode transistors. The illustration is provided
for the U8 cell, which acts as an 8 : l multiplexor. The U8 cell
872 comprises eight inputs 874 labeled I, , , , three
selection controls 876 labeledY[O . . .2], and one output 878
labeled Q. The multiplexing functions of the cell are gov-
erned by the action of 48 transistors, of which half are
provided as depletion-mode transistors. Each of the controls
876 and its inversion is provided to a transistor along the
path of one of the inputs 874, with the inversions being
effected by inverters 880. To effect the multiplexing
functions, the depletion-mode transistors are distributed
according to the level of the control. For the least significant
control, the depletion-mode transistors are positioned alter-
nately; for the next significant control, they are positioned
alternately in pairs; for the next significant control, they are
positioned alternately in quads; etc. Thus, for the U8 cell
872, depletion-mode transistors for are provided for inputs
I,, I,, I,, and I,, and for the inverted control YN[O],
depletion-mode transistors are provided for inputs I,, I,, I,,

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

10
and I,. For Y[l], depletion-mode transistors are provided for
inputs I,, I,, I,, and I,, and for the inverted control YN[1],
they are provided for inputs I,, I,, I,, and I,. Similarly,
depletion-mode transistors are provided for Y[2] for inputs
I,, I,, I,, and I,, and for YN[2] for inputs I,, I,, I,, and I,.

For certain embodiments of the ULGs that comprise
depletion-mode transistors, this pattern may be used for a
cell of any size. For a U2"+' ULG that has 2"+' inputs and
n+l controls, depletion-mode transistors may be provided
for each controliinput combination as follows:

(i) For controlY[i=O . . . n], depletion-mode transistors are
provided for inputs I, where k c 2 mod 2+';

(ii) For control YN[i=O . . . n], depletion-mode transistors
are provided for inputs I,, where k ' 2 2 mod 2+'.

In other embodiments, a different distribution of depletion-
mode transistors may be used to implement the multiplexing
functions of the ULG.
111. Logical Structures

In addition to the structural characteristics described
above, there are a number logical properties and features that
may be used both to characterize individual cells and to
characterize libraries of such cells. An example of a formal-
ism that may be used in one embodiment to describe the
functionality of the basic cells and from which at least some
such logical characterizations may be extracted is now
described.

As discussed above, the selection circuits embodied by
ULGs used for forming basic cells may be implemented
using 2:1,4:1,8:1, or perhaps even larger, multiplexors. The
inputs and control of each multiplexor are programmed to
achieve the desired logical characteristics of the cell. The
following syntax has been developed to describe the pro-
gramming of such inputs and selection controls in a general
fashion:
Q<QN>.xxxx <E> Y[n-l:O] I , ~ ~ ~ , I , ~ ~ ~ , . . . I,<R/S> <CLK>

In addition to describing the programming of the ULG
kernel cells, the syntax may be used to describe any of the
basic cells, including both those that comprise ULG kernel
cells and those that do not comprise ULG kernel cells.
Optional parameters in the syntax are denoted with angular
brackets and the components of the syntax are summarized
in Table I.

(Parameter=Option);

TABLE VI11

Component Meaning

Q
<QN>

<E>
Y[n - 1:0]

.xxxx

<RIS>
<CLK>
(Parameter
Option)

Non-inverting output
Optional inverting output
Cell name
Optional tri-state enable
Control variables
State variables
Truth-table state
Next state
Optional reset or set input
Optional clock input
Selects an option

Terminator

There are a number of features of the syntax worthy of
comment. The first component of the syntax indicates the
output of the cell, using either Q or QN respectively to
denote the output Q or 0. This is followed by the name of
the cell, which is generally constructed by concatenating the
names of the kernel cells comprised by the cell. The names
of the kernel cells have been set forth above in Table VIII.
Thus, for example, a basic cell that comprises a D FIF and

US 6,792,589 B2
11

a non-inverting buffer would be named .DB (Dk-B); a basic
cell that comprises a resetable D F/F and an inverting buffer
would be named .DRBN (DRk-BN); a basic cell that
comprises a ULG multiplexor and a setable D F/F would be
named .UDS (Uk-DS); and a basic cell that comprises a
ULG multiplexor, a D FIF, and a tristatable buffer would be
named .UDZB (Uk-Dk-ZB). It is noted that some of these
examples of basic cells include a ULG multiplexor kernel
cell while others do not, but all of these may be described
with the syntax.

In those instances where the syntax is used to describe a
basic cell comprising a ULG, the number of selection
control inputs provided to the ULG is n. In a specific
embodiment, the control inputs are ordered by significance,
with the most significant control on the left and the least
significant control on the right. While the syntax is equally
robust for describing basic cells for any value of n, for
purposes of explanation the examples provided herein gen-
erally correspond to cases in which 1153. The states of the
n control inputs Y dictate which of 2” inputs are passed to
the output of the ULG. While in some instances, the control
inputs may be identified individually, in other instances a
range of control inputs is identified by using a colon in the
argument of Y. Specifically, “Y[a:b]” is intended to refer to
the full expression “Y[a] Y[a-1] Y[a-21. . . Y[b+2] Y[b+l]
Y[b].” The set of parameters 12n-112n-2 . . . I, represents the
logical function to be applied by the cell, and as discussed
in greater detail below may comprise a truth table for
implementing a combinational logic device or may comprise
an identification of the next state of a sequential circuit. In
some embodiments, these logical states 12n-112n-2
be assigned to logical 1’s or 0’s (sometimes referred to
herein as “base Boolean values”), but may more generally
include map-entered variables as well. For the basic cell, this
corresponds to a connection to VDD for a logic 1, to a
connection to VSS for a logic 0, and to a connection to a
signal for a mapped entered variable. Parameters such as the
type of reset, i.e. asynchronous, synchronous, or clock-edge,
are assigned and enclosed in parentheses at the end of the
statement.

This formalism permits the expression of a number of
manipulations that are possible with embodiments of the
invention and which are discussed in detail in order to enable
one of skill in the art to perform such manipulations. The
nature of such manipulations may be clarified with a simple
example for the combinational logic function C=A+B. This
logic function may be expressed in a concise hardware
description language (“CHDL”) formalism as follows:

C .UB A B VDD VDD VSS VDD;
That this is a correct implementation of the logic function in
which C is equal to “Aor not B” is evident by comparing the
entries in the expression to the syntax discussed above. The
name of the cell . UB indicates that the function is imple-
mented with a cell that comprises a universal logic gate U
and a non-inverting buffer B. On either side of the name, the
parameters involved in the function are denoted, with the
left-most component of the expression C indicating the
output, and the variables to the right of the name A and B
indicating the inputs. The following four entries before the
terminator define the following truth table 12n-l12n-2. . . I, for
the combinational function, with VDD being equivalent to a
logic 1 and VSS being equivalent to a logic 0. The individual
truth-table states I are noted:

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

12

TABLE IX

C A B

I, = 1 0 0
I, = 1 0 1
I, = 0 1 0
I, = 1 1 1

When logical operations are performed on expressions in
this formalism, they indicate directly how the resulting
expression may be implemented with basic blocks in accor-
dance with an embodiment of the invention. For example, a
simple logical operation is inversion of the output, which
may be implemented by using an inverting buffer:

CN .UBN A B VDD VDD VSS VDD;
As can be seen, the same truth table as that defined in Table
IX is used for implementing C, but the implementation is
with a basic cell comprising a universal logic gate U and an
inverting buffer BN. An alternative implementation of C
uses the same .UB basic cell, but instead uses a different
truth table by inverting all of the input states:

CN .UB A B VSS VSS VDD VSS;
In other instances, alternative implementations of the

same logical function may be achieved by performing
operations on the control inputs. For example, the control
inputs A and B may be permuted. Permuting the control for
the function acts to rearrange the truth table. In an embodi-
ment that includes this example, the truth-table states I, and
I, remain in the same position because they represent states
where both controls are high or both are low. States I2 and
11, which represent states where one control is high and the
other is low, are interchanged:

C .UB B A VDD VSS VDD VDD;
A permutation of the truth table may also result from

inversion of one or more of the control inputs. In this
example, inverting the least significant control B inter-
changes neighboring states in the truth table:

This alternative expression for may be viewed as defining an
implementation for C that uses the general truth table for
X+Y, but with control inputs defined so that X=A and Y=B.
If the next significant control A is inverted in the original
expression instead, neighboring pairs of states in the truth
table are interchanged:

C .UB A BN VDD VDD VDD VSS;

C .UB AN B VSS VDD VDD VDD;
It is evident that this expression implements the general truth
table for x+Y, but with control inputs defined so that X = x
and Y=B. If both control inputs are inverted,

C .UB AN BN VDD VSS VDD VDD;
The truth table in this expression implements the general
function x+Y, but with control inputs defined so that X = x
and Y=B.

The CHDL syntax also permits control variables to be
entered as elements in the truth-table states. For example,
the syntax makes it easy to recognize that the result C is high
whenever A is high and that C takes the value of BN when
A is low. This may be expressed in this CHDL syntax as

C .UB A VDD BN;
and corresponding to the truth table shown in Table X:

US 6,792,589 B2
13

TABLE X

C A

1 0 - I, =

I, = B 1

Equally, the syntax makes it easy to recognize that the result
C is high whenever B is low and that C takes the value of
A when B is low. This may be expressed in this CHDL
syntax as

and corresponding to the truth table shown in Table XI:
C .UB B A VDD;

TABLE XI

C B

I, = A 0
I, = 1 1

Not only does the CHDL syntax presented here easily admit
control variables to be presented as map-entered variables,
but this same ability is manifested in the implementations
with the cells described above. In particular, either of the two
above examples may be as easily implemented using a
combination of a ULG and buffer (“.UB”) as is any truth
table that uses the basic Boolean variables 0 and 1 exclu-
sively. Implementation of all of these logical functions is
simply a matter of assigning the truth-table states and
control variables in accordance with the universal logic
elements as described above.

The formalism thus makes clear that embodiments of the
invention permit the implementation of a diverse range of
logical functions. Specific examples of some of these prop-
erties are now discussed in greater detail. In discussing
logical properties that may be exploited in certain embodi-
ments of the invention, reference is sometimes made to the
formalism explained above. Such reference is made prima-
rily for reasons of convenience and is not in any way
intended to limit the scope of the invention. In particular, it
will be evident to those of skill in the art that it is possible
to implement each legitimate syntactical expression in the
formalism with the cells discussed above. Accordingly, the
logical properties of the formalism correspond directly to
logical functions that may be implemented with the cell
arrangements in different embodiments.

One property of the formalism, and therefore also of the
cell arrangements, is that no high-level distinction is made
between combinational and sequential circuits; both such
circuits are merely special cases of the more general types of
logical functions that may be implemented. Acombinational
circuit is one in which the output(s) are predetermined
functions of the input(s). As such, the logic implemented by
a combinational circuit can be represented by a truth table
setting forth a mapping between all possible Boolean states
of the input(s) to the Boolean states of the output(s). This
may be contrasted with a sequential circuit in which the
logical application of the circuit relies on a history of past
inputs. The application of such logic may instead be repre-
sented with a next-state equation that maps the past input(s)
to the output(s). Embodiments of the invention described
herein are not restricted either to combinational or sequential
logic. For example, only slight differences in cells are
needed to implement the following syntactic CHDL expres-
sions:

Q .UB A B VDD VDD C VSS;
Q .UD A B VDD VDD C VSS CLK,

S

10

1s

20

2s

30

3s

40

4s

so

5s

60

65

14
The first of these expressions represents a combinational
logic function and the second represents a sequential logic
function. In other embodiments, the formalism and corre-
sponding cell implementations may include both combina-
tional and sequential aspects so that a characterization of the
function is not properly limited to either category. This
additional flexibility permits certain optimizations, some of
which are discussed below, that are not available when
limited to either combinational or sequential logic.

This additional flexibility also arises in part from the more
general character of cells made in accordance with embodi-
ments of the invention to implement selection logic, in
addition to combinational and selection logic. As used
herein, a “selection operation” refers to a function in which
one or more of a plurality of inputs are passed as outputs. In
certain embodiments, the selection operation passes one of
a plurality of inputs as an output. Such a selection operation
differs from a sequential-logic operation because it does not
depend on a past history of the inputs. It also differs from
combinational-logic operations, which do not require that
the output correspond to one of the inputs. This is easily seen
for an NAND gate, which produces an output 1 in response
to two 0 inputs; the output does not correspond to either of
the inputs. It is also true, however, for an OR gate. Although
in every instance the output of an OR gate is equal to one of
the inputs, the gate does not act to pass one of the inputs as
an output; instead, a combinational mapping is performed
from the inputs to the outputs that happens to include some
commonality. In addition, selection operations are not lim-
ited to instances in which the number of inputs is two and/or
the number of outputs is one. More generally, any plurality
pin (2 2) of inputs may be accepted, of which a number pout
(2 1) are passed.

Embodiments of the invention also do not limit the inputs
and/or outputs to the base Boolean values 0 and 1. As noted
in connection with Tables X and XI and the associated
syntactic expressions, cells used in embodiments of the
invention may implement operations in which truth-table
entries are instead functions of such base Boolean values. In
this respect, the invention includes embodiments that pro-
vide for the implementation of Boolean functionals, which
are defined herein as operations that admit functions of
Boolean variables among their inputs and/or outputs, in
addition to admitting base Boolean values among their
inputs and/or outputs.

Both the formalism presented herein and the implemen-
tation with the cells described above permit a further gen-
eralization that increases the flexibility of digital design and
its optimization. Such a generalization may be understood
with reference to what are defined herein as higher-order
Boolean functions. Conventional digital circuit design uses
only what are referred to herein as zero-order Boolean
functions, which admit only base Boolean values among
their input(s) and/or output. In contrast, some embodiments
of the invention use a first-order Boolean function, which
corresponds to a Boolean functional and admits zero-order
Boolean functions in addition to base Boolean values among
its inputs and/or output(s). Other embodiments use a second-
order Boolean function, which admits first-order Boolean
functions, zero-order Boolean functions, and base Boolean
values among its inputs and/or output(s). In still other
embodiments of the invention, even greater orders of Bool-
ean functions are used, such orders admitting all lower
orders of Boolean functions among their inputs and/or
output(s) in addition to admitting the base Boolean values
used in conventional design. All orders of Boolean functions

US 6,792,589 B2
15 16

other than zero-order Boolean functions are sometimes
referred to herein collectively as “higher-order’’ Boolean
functions.

This generalization may be illustrated with an example
based on the C=A+B example discussed earlier:

J .UB G H VDD VSS F C
F .UB D E VSS C VDD C
C .UB A B VDD VDD VSS VDD
In this example, the third expression corresponds to the

zero-order function C=A+B, which admits only base Bool- i o

result with the previously described cells to achieve the
optimized function.

A number of the operations that may be performed with
logical functions as expressed using the formalism described

5 herein are summarized in FIGS. 9A-9D, which provide flow
diagrams to explain how some such operations may be
performed. In different embodiments, various combinations
of one or more such operations may be performed and the
invention is not limited to any particular order or number of
such operations. Accordingly, each of FIGS. 9A-9D indi-
cates that it may be entered as part of a greater flow of ean vales 0 and 1 among its arguments. Such a function uses operations from a previous transformation, It is not neces-

a mapping and may be imp1emented sary that a previous transformation necessarily have been

note that

gates, such as with an OR gate and a performed in any case, although the indication is included to

functional, that admits the zero-order function C as one of its is that previous transformations may have been performed,
arguments, in addition to admitting the base Boolean values. Also, while the flow diagrams in each of FIGS, 9A-9D
The first expression corresponds to a second-order function shows an exemplary order in which operations may be
that admits the first-order function F, the zero-order function performed, such an ordering is not necessary and alternative

first and second expressions thus each correspond to expres- 20 operations may
sions for higher-order functions. All three of the expressions be performed simultaneously, such as when different parts of
may be implemented in embodiments of the invention using a large structure are optimized at the Same time,

FIG. 9A summarizes a number of operations that may the cells as described above.

be seen with a comparison to the exclusive use of Boolean zs inversions, Accordingly, the method shown in FIG, 9A

that represent the base perhaps, but not necessarily, after certain previous logical

0 or 1 bound to it. Boolean minimization or optimization tification is made whether there are any inversions in the
techniques are based On decomposing the expressions being 30 syntactic expression for removal, If not, the method pro-
minimized to consider the meaningful possible combina- ceeds to a potentially subsequent transformation at block
tions of assignment of 0 or 1 to each Boolean variable (with 906, In the event that it is desirable to an inversion,
the possible existence Of “don’t care” states for Some the method may proceed along one of at least three branches
variables under some circumstances reducing the meaning- depending on the type of inversion, Branch 903 corresponds
ful possible combinations downward from the set of all 35 to inversions in the control or state variables y; branch 905
possible combinations). Higher-order functions allow one to corresponds to inversions in the truth table; and branch 90,
optimize, or minimize a circuit, without the requirement to corresponds to inversions in the buffer,
decompose the function result to each possible value and In one embodiment, inversions of the control or state

with the algorithms described below, one need not know 40 groups in the truth table, The size of the groups to be
what the value of the functions or variables are; optimization interchanged depends on the significance of the control or
is performed regardless. In conventional methods limited to state variable to be inverted, Thus, if a control y[k] is to be
the use of Boolean operators, each variable and function is inverted, groups of size 2k are inverted, This may be
decomposed into all possible values for the functions and illustrated by considering a cell comprising a ULG and a
variables, i.e. to define a complete truth table, before any 45 buffer:
optimization can be performed; in such conventional meth-
ods one must exhaustively assign a value to all variables and
functions.
IV. Optimization

by embodiments that use cells based on the ULGs and as .UB y[2] y[l] A E G;
represented by the formalism described permits increased
optimization. In many instances, these logical operations
may be used to determine optimized methods of implement- Q y[21 YN[ll y[O1 A E
ing a given function. Anumber of such logical operations are ss
illustrated, and it will be understood by those of skill in the
art that still other logical operations may derive from the
formalism in other embodiments of the invention. Moreover, Q .UB YN[2] Y[l] Y[O] A B C D E F G H;
while the formalism is used as a matter of convenience to Q .UB Y[2] Y[l] Y[O] E F G H A B C D;
illustrate the nature of the optimizations, it will be under- 60 The flow diagram in FIG. 9A provides a loop back to
stood that all the expressions that follow may be imple- block 904 after a particular control has been inverted by
mented using the previously described cells in the manner interchanging states. This contemplates the possibility of
explained. This is true even in instances where the expres- performing inversions on multiple controls, which are there-
sions correspond to functions not accessible by standard fore effected by performing the relevant interchanges in
Boolean logic. In some cases, use of the formalism shows 65 succession. The interchanges are commutative so that the
how multiple manipulations may be performed to achieve an resulting syntactic expression is independent of the order in
optimization, it being necessary only to implement the final which they are performed:

gate. The second
expression corresponds to a first-order function, Or embodiments of the invention

and the base among its arguments. The embodiments permit alternative orderings, Moreover, in
embodiments, it is possible that

One effect Of the to use higher-order functions may

Operators Operate Only On the base

co~~ect ive~y be considered to correspond to the removal of

begins at block 902 with a syntactic expression for a cell, Operations. Such
Or 1, Or On

Or 1, i.e. that have had a Of transformations have been effected, At block 904, an iden-

considering each In Other words, when a circuit variable may proceed at block 908 by interchanging adjacent

Q .UB Y[2] Y[l] YN[O] A B C D E F G H;
In this instance, the least significant control Y[O], defined by
k=O, is to be inverted so that adjacent states are inter-
changed:

In a similar fashion, when k = l for the control to be inverted,
adjacent pairs Of states are to be

The expanded availability of logical operations provided SO

Q .UB y[21 y[l1 y[o1 c D A B G H E F;
When k=2 for the control to be inverted, adjacent quads of
states are to be interchanged:

US 6,792,589 B2
17 18

Q .UB YN[2] YN[1] YN[O] A B C D E F G H;
Q .UB Y[2] Y[l] Y[O] H G F E D C B A,

identical, they are conceptually converse because in one
instance the goal of inverting the truth table is achieved by
inverting the buffer and in the other instance the goal of
inverting the buffer is achieved by inverting the truth table.

As noted with respect to block 908, this aspect emphasizes
that multiple of these transformations may be used in
effecting optimizations and that they may be performed in

instead of performing interchanges. In such cases, the ability 10 truth table; (2) second, permuting the control so that the
Of embodiments Of the invention to accommodate non- resulting truth table includes sequences that permit the entry
Boolean selection operations is exploited to achieve greater of control variables; and (3) finally, performing interchanges
levels of optimization. Within the syntax used to illustrate
the principles described herein, the identification of an The entry of a control variable into a truth table as a
inverted control YN with a sequence VSS VDD permits map-entered variable, such as discussed with respect to
removal of the inversion by entering the control into the block 910 in FIG. 9A not only has the effect of removing an
truth table: inversion, but also reduces the number of nodes in the cell.

There are other truth-table sequences that permit optimiza-
tion by accepting the entry of control variables and thereby

As indicated, entry of the control in the truth table will 20 reducing the number of nodes. The flow diagram in FIG. 9B

be achieved. Essentially, the same procedures are followed priate level.
In the truth as discussed with respect to block 910 for inversions: a

table to achieve such vss VDD sequences by permuting the truth-table having elements of certain sequences is identified
25 and permuted to realize those sequences, which are then control:

optimized by entering the corresponding control variable. A
simple example corresponds to the example discussed with
respect to block 910, but without the inversion:

The resulting expression, which may be implemented using
the cells as described above, follows from any order of

interchanges.
performing the control inversions and respective truth-table 5 Every ‘peration in the 9A cyc1es back to 904.

The flow diagram Of 9A notes at 910 that in
Some instances the
plished by entering the

Of inversions may be different orders, For example, for some cells, optimization
might be achieved by: (1) first, inverting a buffer to invert a as a map-entered

within the truth table to remove other control inversions,

Q .UB Y[11 YN[O] VSS VDD A A,
Q .UB Y[l] Y[O] A,

usually also require a repetition of a state A at the appro- provides a general Of how such sequences may

cases, it may be desirable to

Q .UB YN[1] Y[O] VSS A VDD A,
Q .UB Y[O] YN[11 VSS VDD A A,
Q .UB Y[O] Y[l] A, Q .UB Y[11 Y[O] VDD VSS A A,

Q ,UB y[l] y[o] A, In the above progression, optimization of the cell is achieved 30

by noting that the sequence vss VDD may be achieved In this example, a repetition of A with the sequence VDD
through a permutation of the truth table and by noting the vss (instead of the sequence vss VDD) is suficient to
repetition of state A. Permuting the controls results in a truth enter the least-significant control variable into the truth
table identical to that of the Preceding example, and there- table. This is done with the control variable directly, instead
fore the least significant control may become a map-entered 35 of with its inversion as was done in block 910,
variable. Thus, the general procedure illustrated in FIG. 9B begins

The Same Principles apply with more significant levels of at block 916 with a syntactic expression for a cell, with the
control, for which optimization may remove an inversion by figure noting that it is possible (but not
entering the more significant control as a maP-entered embodiments for certain other transformations to have been
variable under some circumstances. In one embodiment, for 40 performed previous~y with the syntactic expression, At
example, this is achieved when the less significant controls block 918, existing redundancies in the control are removed,
are redundant: Such redundancies are manifested by a repetition in the truth

Q .UB Y[2] YN[1] Y[O] A A A A VSS VSS VDD VDD; table at the level of the redundant control, i.e. in group of
Q .UB Y[2] A Y[11; size 2k for control Y[k]. A trivial case occurs for the lowest

in

The optimization has been achieved by recognizing the 45 level of control:
existence of an analogous pattern, namely the repetition of
A at a higher significance level and the existence of the
sequence VSS VSS VDD VDD. It will now be evident to
those of skill in the art that permutation of control may be
used to restructure the truth table to identify such sequences
and thereby optimize the function by removing the inver-
sion. In addition, it will also be evident that these principles
may be applied to any significance level for the control. For
example, an eightfold repetition of A coupled with the 55
sequence VSS VSS VSS VSS VDD VDD VDD VDD will
Permit r m ~ ~ a l of a YN[21 inversion, Perhaps after Permut- This result simply uses the fact that the higher control level
ing the controls to achieve such a sequence in the truth table. has no effect, with the output of the cell depending solely on

At block 912 of FIG. 9A, it is noted that inversion of the the least significant control, similarly, when k=2, the rep-
truth-table states may be achieved by inverting the buffer in 6o etition of quads of states may permit the removal of y[2]:
the cell:

Q .UB Y[O] A A;
Q .B A,

This example is trivial because the cell does nothing other
than produce the result A for every input; control is unnec-
essary and may be removed entirely. The same principle
applies, however, for higher levels of control. For example,
when k=l, the repetition of pairs of states may permit the
removal of Y[11:

Q .UB Y[l] Y[O] A B A B ;
Q ,UB y[o] A B;

Q .UB Y[2] Y[l] Y[O] A B C D A B C D;
Q .UB Y[l] Y[O] A B C D; Q .UBN Y[O] AN BN;

Q .UB Y[O] A B; This result expresses the fact that the output of the cell is
By inverting the buffer, all entries in the truth table are dependent only on the two lowest control levels and that the
inverted. Block 914 notes the converse function in which the 65 highest control has no effect. These principles may be
buffer is inverted by inverting all elements of the truth table. extended to still larger repeated blocks and the consequent
While the functional effect of blocks 912 and 914 is removal of still more significant control levels.

US 6,792,589 B2
19

At block 920, permutations may be performed in the
control to rearrange the truth table to identify sequences that
permit the entry of the control variables. For the entry of a
lowest level control, sequences of VDD VSS, coupled with
a pair of repeated variables AA, is sought. For the entry of
the next level control, sequences of VDD VDD VSS VSS,
coupled with four repeated variables AAAA, is sought. For
the next level control, sequences of VDD VDD VDD VDD
VSS VSS VSS VSS, coupled with eight repeated variables
AAAAAAAA, is sought. Similar sequences for still higher
control levels follow the same pattern. At block 922, the
control variable(s) are entered into the truth table to account
for these patterns.

Thus, one example of applying blocks 920 and 922 is as
follows:

Q .UB Y[2] Y[l] Y[O] VDD VDD VSS VSS A B A B;
Q .UB Y[2] Y[O] Y[l] VDD VSS VDD VSS A A B B;
Q .UB Y[2] Y[O] Y[l] Y[l] A B ;

In the initial syntactic expression, the sequence VDD VDD
VSS VSS appears, but it is not possible to remove the k = l
control because there is no corresponding sequence of four
repeated variables. The existence of duplicates of both A and
B, however, suggests that the controls may be permuted to
achieve sequences of VDD VSS coupled with pairs of
repeated variables. This is achieved in the second line by
permuting Y[l] and Y[O]. Accordingly, it is possible in the
third line to enter two occurrences of the Y[l], which is now
the lowest level of control, into the truth table. The corre-
sponding cell is therefore optimized by reducing the number
of nodes and entering the original Y[l] control variable into
the truth table.

Block 924 notes that the process of identifying and
removing redundancies and permuting control variables to
permit their entry into the truth table may be repeated to
achieve further optimizations. The method is thus looped
until these procedures have optimized the syntactic expres-
sion in this way as much as desired. At block 926, the
method thus proceeds to another type of transformation, if
desired, to effect further optimizations.

In addition to reducing nodes for a single cell, it is
possible in embodiments of the invention to provide opti-
mizations by combining nodes from multiple cells. The flow
diagram shown in FIG. 9C provides a method corresponding
to one embodiment for combining nodes. The method begins
at block 928 with syntactic expressions for multiple cells. As
for the other optimization procedures, FIG. 9C notes explic-
itly that prior transformations may have taken place on these
syntactic expressions, although this is not required. In con-
sidering whether nodes can be combined, a check is made at
block 930 whether any of the syntactic expressions outputs
a control variable present in another of the expressions. If so,
the control variables are converted into map-entered vari-
ables at block 932. Examples of combining nodes in which
such conversions are used are provided below, but the
principles of combining nodes are initially illustrated for
cases where there is no such conversion. One method for
combining nodes is thus summarized by blocks 934 and 936
in which the control for the multiple syntactic expressions is
combined and then states in the merged expression are
defined. For example, consider the following two syntactic
CHDL expressions in which the output of the second
expression, A, is one of the inputs to the first expression:

Q .UB YQ A B ;
A .UB YA C D;

The expressions are merged, and the nodes thereby
combined, in the following way. First, the control is com-

20
bined at block 934 by adding the control for the second
expression to the first expression-YQ then functions as a
k = l level control and YA functions as a k=O level control:

s As can be seen, increasing the level of the YQ control by a
single level to k = l acts to duplicate each of the truth-table
entries. The order in which the controls were combined was
determined by the relationship between the inputs and
outputs of the expressions. Specifically, since the expression

i o for Q has the output of the expression for A as an input, YQ
was made the higher-level control and YA the lower-level
control. After combining the controls, the states are defined
in the merged expression in accordance with the expressions
at block 936:

In this instance, the sequence A A i s substituted with C D in
accordance with the syntactic expression for A. The final
expression achieves the optimization by permitting imple-
mentation of the resulting expression with a single cell as

While this example showed how two expressions could be
merged, it may be applied more generally to any number of
expressions. For example, the following three expressions
may be merged in a similar fashion with a sequential

Q .UB YQ Y A A A B B;

15 Q . U B Y Q Y A C D B B ;

20 described above.

25 process:
Q .UB YQ A B ;
A .UB YA C D;
B .UB YB E F;

The second and third expressions both have outputs that
30 correspond to inputs of the first expression. Accordingly, in

combining control pursuant to block 934, the control of the
first expression is used as the highest level control. First, the
first and second expressions are merged by combining their
control and defining the states in the merged expression in

35 the same way as for the two-expression example:
Q .UB YQ Y A A A B B;
Q . U B Y Q Y A C D B B ;

Subsequently, the third expression is merged into this com-
4o bination. First, the additional control causes YQ to become

a k=2 level control and YA to become a k = l level control,
with YB remaining as a k=O level control:

Q .UBYQYAYB C C D D B B B B;
As seen in this expression, the additional level of control

45 causes a duplication of each of the truth-table elements. The
states in this expression are now defined according to block
936 in terms of the original third expression by substituting
pairs of B’s with the sequence E F:

Q .UBYQYAYB C C D D E F E F;
so This result thus corresponds to an expression that combines

the original three expressions and may be implemented as a
cell in the manner described above.

Both of these examples have begun with expressions that
correspond to ULG cells that may be implemented with

55 multiplexors of the same size. There is, however, no limi-
tation on embodiments of the invention that requires that
they be the same size. It is possible to perform optimizations
for combining nodes that correspond to merging a smaller
multiplexor into a larger multiplexor or to merging a larger

60 multiplexor into a smaller multiplexor. This may be seen in
the following examples in which each of the initial expres-
sions corresponds to a different-sized multiplexor when such
an implementation is used. For example, in the set

Q .UB YQ[l] YQ[O] A B C D;
65 A .UB YAE F;

the second expression has an output that is used as an input
in the first expression, and corresponds to a smaller-sized

US 6,792,589 B2
21

multiplexor than does the first expression. The nodes are
combined in the same fashion already described. First,
control is combined in accordance with block 934:

Q .UB YQ[l] YQ[O] Y A A A B B C C D D;
Subsequently, states are defined in the merged expression, in
this instance by substituting pairs of A's with E F:

Q . U B Y Q [l] Y Q [O] Y A E F B B C C D D ;
This final expression may thus be implemented as a cell and
achieves optimizations resulting from merging the smaller 10
multiplexor into the larger multiplexor.

It is similarly possible to combine nodes in a fashion that
corresponds to merging a larger multiplexor into a smaller
multiplexor in embodiments that use multiplexors:

5

1s
Q .UB YQ A B ;
A .UB Y a l] YaO] C D E F;

In this example the output of the expression corresponding
to the larger multiplexor is an input to the expression
corresponding to the smaller multiplexor. The nodes are 20
combined in the same way, by first combining the control of
the two expressions in accordance with block 934. Since two
levels of control from the second expression are to be
combined with the first expression, YQ becomes a k=2 level
control: 2s

Q .UB YQ Y a l] YaO] A A A A B B B B;
Subsequently, the states are defined in accordance with
block 936 by substituting quads of A's with C D E F as
dictated by the second original expression: 30

Q .UBYQYA[l]YA[O] C D E F B B B B;
Each of these examples illustrates how to combine nodes

in different circumstances where the output of one of the
expressions is one of the inputs to another of the expres-
sions. In some cases, however, the output of one of the 35
expressions may be one of the controls of another
expression, a condition checked for a block 930. In such
instances, the control variable is converted into a map-
entered variable at block 932 before combining control and
defining states. This may be illustrated with the following 40
two examples, the first of which corresponds to an AND
sub-function and the second of which corresponds to an OR
sub-function.

Thus, consider merging nodes for the following two

Q .UB YQ[l] YQ[O] A VDD VSS VSS;
YQ[l].UB YA B C;

syntactic expressions: 4s

The circumstance in this example differs from the previous
examples because the output of the second expression, so
YQ[l], is a control of the first expression and not an input
in the truth table entries. The ability of embodiments to
accept variables in the truth-table elements is thus exploited
to re-express the first expression with YQ[l] in the truth
table. First, the control variables are permuted so that YQ[l] 5s
is the least significant control:

Then, it is recognized that with YQ[l] as the least significant
control, the VDD VSS sequence in the Il-Io position simply
corresponds to YQ[l]. It is also recognized that in the I, 6o
position, YQ[l] and A are equivalent. Accordingly, after
converting control variables to map-entered variables pur-
suant to block 932, the expression may be written

Essentially, this conversion recognizes the equivalence of
truth tables XIIA and XIIB:

Q .UB YQ[O] YQ[l] A VSS VDD VSS;

Q .UB YQ[O] AYQ[l] VSS YQ[l] YQ[1]; 65

22

Combining control with the second expression at block 934
results in

Q .UBYQ[O]AYAYQ[l]YQ[l] VSS VSSYQ[l]yQ[l]
YQrll YQrl1;

Finally, defining states at block 936 so that pairs of YQ[l]
are substituted with B C as required by the original second
expression results in the merged expression

Q .UB YQ[O] AYA B C VSS VSS B C B C;
The same procedure may also be used for the following

two syntactic expressions:
Q .UB YQ[l] YQ[O] VDD VDD A VSS;
YQ[l].UB YA B C;

In this example, the question for YQ[l] is the same as in the
previous example, but the expression for Q is different.
Permuting the control variables so that YQ[l] is least
significant,

Recognizing that the VDD VSS sequence in the Il-Io posi-
tion corresponds to YQ[l] and that YQ[l] and A in the I,
position are equivalent results in

This conversion effectively recognizes the equivalence of
truth tables XIIIA and XIIIB:

Q .UB YQ[O] YQ[l] VDD A VDD VSS;

Q .UB YQ[O] A VDD YQ[l] YQ[l] YQ [l];

c)

Combining control with the second expression according to
block 934 results in

Q .UB YQ[O] AYAVDD VDD YQ[l] YQ[l] YQ[l]YQ

Finally, defining states at block 938 so that pairs of YQ[l]
are substituted with B C as required by the original second
expression results in the merged expression

[I1 yQ[l l YQ[11;

Q . U D Y Q [O] A Y A V D D V D D B C B C B C ;
It is noted that in certain instances, the method outlined in

FIG. 9C may be combined with moving flip flops forward to
facilitate reductions. For example, consider application of
the method to the following set of expressions

Q .UB Y[2:1] A B C D;
A .UD Y[O] E F CLK,
B .UD Y[O] G H CLK,
C .UD Y[O] I J CLK,
D .UD Y[O] K L CLK,

As previously mentioned, the notation Y[2:1] is equivalent
to the expression Y[2] Y[l]. This set of expressions could be
implemented using five cells, one that comprises a ULG and

US 6,792,589 B2
23

a buffer and four that comprise a ULG and a FIF. The result
of moving the flip flops forward is

Q .UD Y[2:1] A B C D CLK,
A .UB Y[O] E F;
B .UB Y[O] G H;
C .UB Y[O] I J;
D .UB Y[O] K L;

Accordingly, applying the method of FIG. 9C to combine
the nodes results in

This expression may be implemented with a cell comprising
a ULG and a D FIF in certain embodiments of the invention.

Thus, the method outlined in FIG. 9C permits nodes to be
reduced from multiple syntactic expressions. This includes a
variety of different circumstances, including cases where
there are arbitrarily many syntactic expressions, where some
of the expressions correspond to implementations of differ-
ent sizes, and cases where some of the expressions have
outputs that correspond to either inputs or controls of other
expressions. After nodes have been merged, the method may
proceed to another transformation at block 938, although
this is not a requirement.

Additional optimization functions may be realized by
using the set and reset facilities that are provided in the
formalism and which may be implemented by using those
facilities in cells according to embodiments of the invention.
The use of set and reset facilities are summarized in FIG. 9D
and arise primarily when half the truth table states are either
high or low. Thus, a method for optimizing begins with a
syntactic expression for a cell at block 940, with FIG. 9D
noting explicitly that previous transformations may also
have been performed on the cell expression, although this is
not a requirement. Acheck is made at block 944 whether half
the truth table states are low. If so, the control variable may
be changed to a reset to a F/F in accordance with block 946.
For example, consider the syntactic function

In this example, a cell that implements this function com-
prises a ULG and a D F/F. As previously mentioned, the
notation Y[2:0] is equivalent to Y[2] Y[l] Y[O]. Half of the
truth table states in this expression are low, i.e. VSS, so that
the highest level control may be entered into the map as a
reset input to the FIF:

The name of the cell explicitly notes that a resetable D FIF
(DR) is used and the reset has been noted. This function may
then be implemented using the cells described above.

FIG. 9D notes at block 942 that in some instances it may
be useful to perform permutations of the control variables to
put the truth table into a form that allows using the reset
input for optimization. If half the truth table states are low,
but do not appear as a group, they may be aligned with the
permutations. For example, the function

has half of its truth table states low, but they are not aligned.
Interchanging the control variables aligns them

so that the most significant control variable may be entered
into the map at block 946 as a reset input to the FIF:

Note that in this example, the lack of alignment amon the
low states has resulted in Y[O] being entered into the map as
part of the optimization rather than Y[l].

Similar optimizations may be achieved if half the truth
table states are high, as checked at block 948. If so,

Q .UD Y[2:0] E F G H I J K L CLK,

Q .UD Y[2:0] VSS VSS VSS VSS A B C D CLK,

Q .UDR Y[l.O] A B C D Y[2] CLK (RST='C');

Q .UD Y[l] Y[O] VSS A VSS B CLK,

Q .UD Y[O] Y[l] VSS VSS A B CLK,

Q .UDR Y[l] A B Y[O] CLK (RST='C');

24
permutations of the control variables may be performed at
block 950 to align the high states and the control variable
entered into the map as a set input to a F/F at block 952. For
example, consider the function

Half of the states in the truth table are high, i.e. VDD, so that
optimization with a set input may be achieved. Permuting
the control variables to align the high states in accordance
with block 950 results in

Q .UD Y[O] Y[l] VDD VDD A B C L K
Entering the most significant control as a map-entered
variable as a set input to the F/F results in

This function may then be implemented using the cells
described above in an embodiment.

Still other combinations of expansion, inversion, and/or
permutation may be used to achieve the conditions for using
set or reset for optimization. An example that illustrates
several of the optimization manipulations discussed above

5 Q .UD Y[l:O] VDD A VDD B CLK,

lo

Q .UDS [l] A B Y[O] CLK (SET='C');

2o begins with the syntactic expression
Q .UD AN VSS NOTLRESET CLK,

Optimization of this function may proceed by first expand-
ing the NOT RESET as a control variable:

Q .UD AN NOTLRESET VSS VSS VDD VSS CLK,
Inversion of the two control variables in accordance with
FIG. 9A results in two interchanges of the truth table, a first
interchange based on single entries and a second interchange
based on pairs:

Interchanging the controls to prepare for entering A as a
map-entered variable results in

The presence of the VDD VSS sequence and the repeated
35 VS S element permits the A control variable to be entered

into the map in accordance with FIG. 9B:

It is now apparent that since there are only two states in the
truth table and one of them is low, that half the states are low

40 and the control variable may be entered into the map as a
reset input to the F/F:

2s

3o Q .UD A RESET VSS VDD VSS VSS CLK,

Q .UD RESET A VSS VSS VDD VSS CLK,

Q .UD RESET VSS A CLK,

Q .DR A RESET CLK (RST='C');
Since all of the control variables have been entered into

the map, there is no need for a ULG element in implement-
45 ing this optimized expression. Instead, it may be imple-

mented in one embodiment using only a resetable D F/F,
even though the original expression corresponded to an
implementation comprising both a ULG and a D FIF.

Each syntactical expression of the formalism may be
SO viewed as an entry for a ULG netlist that defines a digital

circuit. The ULG netlist uses basic cells and follows the
CHDL syntax. Such a ULG netlist may be at least partially
optimized by successively performing some of the indi-
vidual manipulations described above. In some

ss embodiments, the resulting optimized ULG netlist may be
implemented directly using the cells described above. In
other embodiments, however, the manipulation of the ULG
netlist may be viewed as intermediate step in optimizing a
digital design that has been expressed in another netlist

60 format. In such instances, the other netlist format using
another cell library and/or another syntax (e.g., VHDL or
Verilog) is initially translated to the ULG netlist format.
After performing some optimization steps, the optimized
ULG netlist may be translated back into the original format

65 for implementation. In this way, an embodiment is provided
that achieves optimization of digital designs within preex-
isting netlist formats.

US 6,792,589 B2
25 26

There are a variety of ways in which the individual fanout nodes. A check is first performed at block 1036 to
manipulations of the syntactic expressions comprised by a identify whether the ULG netlist includes any fanout nodes,
ULG netlist may be performed and the degree to which the in which case they are reduced at block 1040 by performing
corresponding digital design is optimized may depend on permutations and reductions as described in connection with
how those manipulations are executed. While in some s FIG. 9C. The loop between blocks 1036 and 1040 is
instances it is possible for the manipulations to be performed included because the reductions performed at block 1040
by hand by a digital designer, it is expected that at least some may produce some new fanout nodes that may be identified
level of automation may be used. In one embodiment, for and merged through additional permutations and reductions.
example, a computer program may be provided that allows The method thus loops until no fanout nodes are identified
a digital designer to select the types of manipulations to be i o at block 1036.
performed and sections of the ULG netlist on which to After the fanout nodes have thus been merged, a check is
perform them, with the execution of the manipulations being made at block 1044 to identify syntactic expressions corre-
performed automatically. In another embodiment, a prede- sponding to synchronous cells in which half the truth-table
termined algorithm is used in a completely automated way states are low. If such an expression is identified, the
to perform the manipulations or optimizations. is corresponding control variable is moved to be a reset input

One example of such a predetermined algorithm is illus- at block 1048. A method for doing so is described in
trated with the flow diagram provided in FIG. 10, although connection with FIG. 9D and may include performing
it will be appreciated by those of skill in the art that permutations to align the low truth-table states. A similar
numerous other algorithms may alternatively be used. In check is made at block 1052 to identify syntactic expressing
some specific instances, alternative algorithms use the same 20 corresponding to synchronous cells in which half the truth-
manipulations but perform them in a different order. In some table states are high. If such an expression is identified, the
other specific instances, alternative algorithms use a differ- corresponding control variable is move to be a set input at
ent set of manipulations. The algorithm shown in FIG. 10 block 1056. A method for doing so is also described in
may begin at block 1004 by translating an existing netlist to connection with FIG. 9D and may include performing
a ULG netlist if the design to be optimized was not initially zs permutations to align the high truth-table states.
created using the ULG formalism. In one embodiment, At block 1060, the syntactic expressions are grouped by
translating from the existing netlist to the ULG netlist is common inputs. Such grouping permits identification of
performed as a one-to-one translation between syntactic subfunctions at block 1064. The common subfunctions have
expressions. For one embodiment, this translation may be shared characteristics that may be extracted before reducing
viewed conceptually in terms of the elements used in that 30 other nodes. At block 1068, buffers are made to be inverting
embodiment to implement the original and ULG netlists- buffers.
every logic gate, such as NAND, OR, etc. is converted into If the original ULG netlist produced at block 1004 was
a multiplexor-based implementation amenable to optimiza- nonoptimal, performing the above manipulations may pro-
tions provided by the syntactic manipulations discussed duce a different ULG netlist that is amenable to implemen-
above. 3s tation with smaller area, greater speed, and/or lower power

At block 1008, data and control elements are discerned in requirements. In some embodiments, it is possible that not
the resulting ULG netlist. The distinction between such data all of the manipulations will be performed, that some may be
and selection control elements was previously discussed performed multiple times, and that they may be performed
with respect to Table VIII. In one embodiment, such dis- in a different order than described. Once the method has
cernment may be performed with a high-level design lan- 40 produced a new ULG netlist, it may be implemented at block
guage. In certain embodiments, there are additional advan- 1072 by translating the syntactic expressions in the ULG
tages in the subsequent optimization where the data and netlist with the cells described above. In such embodiments,
control are identified from the original behavioral netlist. the method functions not only to optimize the digital design
Once the data and control elements have been identified, the but also to provide a multiplexor-based implementation of it.
operations identified in blocks 1016-1068 may be per- 4s In some alternative embodiments, the resulting ULG netlist
formed by using the syntactic manipulations described may be amenable to translation back into the original netlist
above. Thus, at block 1016, connection cells to base Boolean syntax for implementation using Boolean logic gates. In
values are removed by incorporating the corresponding these embodiments, the method may be viewed as providing
functions into the syntactic expressions. Similarly, non- an optimization of a digital design while retaining its under-
inverting buffers are removed at block 1020 and also incor- SO lying structural characteristics.
porated directly into the syntactic expressions. At block In some embodiments, it is desirable for the techniques
1024, inverters are removed by syntactically inverting the used for the syntactic manipulations to be embedded in an
relevant data elements in individual syntactic expressions. optimization tool or synthesizer. Accordingly, the methods
The removal of redundant nodes at block 1028 may proceed of the invention for converting a netlist into a ULG netlist
by reducing, combining, and permuting nodes in the syn- ss and for optimizing the ULG netlist may be performed by a
tactic expressions. Methods for such reductions, computer, one example of a suitable configuration for which
combinations, and permutations for certain embodiments
were described above in connection with FIGS. 9B and 9C.
At block 1032, inversions are removed. The inversions
removed may include control/state variable inversions, truth 60
table inversions and buffer inversions, for which methods of
removing were described above in connection with FIG. 9A.

A loop comprising blocks 1036 and 1040 may be
executed to identify and merge fanout nodes. A “fanout
node” describes a configuration in which a single output is 65
directed to multiple parts of truth tables and, in some

is shown in FIG. 11. This figure broadly illustrates how
individual system elements may be implemented in a sepa-
rated or more integrated manner. The computer 1100 is
shown comprised of hardware elements that are electrically
coupled via bus 1112, including a processor 1102, an input
device 1104, an output device 1106, a storage device 1108,
a computer-readable storage media reader 1110a, a commu-
nications system 1114, a processing acceleration unit 1116
such as a DSP or special-purpose processor, and a memory
1118. The computer-readable storage media reader lllOa is

instances, optimizations may be realized by merging such further connected to a computer-readable storage medium

US 6,792,589 B2
27 28

1110b, the combination comprehensively representing ASIC cell libraries that include ULG circuits. In one
remote, local, fixed, and/or removable storage devices plus embodiment, the ULG circuits come in various sizes, that
storage media for temporarily and/or more permanently have between two and eight inputs and between one and
containing computer-readable information. A communica- three select lines.
tions system 1114 may comprise a wired, wireless, modem, 5 The extensive use of ULGs or selection circuits in this
and/or other type of interfacing connection. invention could be characterized in a number of ways in the
ne computer 1100 also comprises software elements, various embodiments, those characterizations include:

shown as being currently located within working memory (1) A digital IC design using an ASIC cell library that
1120, including an operating system 1124 and other code includes a proportion of cells with selection circuits. In

selection circuits in the ASIC cell library could include, methods of the invention. It will be apparent to those skilled for example, 5% or more, 10% or more, 25% or more, in the art that substantial variations may be used in accor- 50% or more, 75% or more, 80% or more, 90% or
more. dance with specific requirements. For example, customized

(2) A digital IC design using an ASIC cell library that hardware might also be used and/or particular elements

includes a percentage of basic cells that each include might be implemented in hardware, software (including IS

two or more kernel cells. For example, that percentage portable software, such as applets), or both. Further, con-
could be more than 5%, lo%, 20%, 30%, 40%, 50%, nection to other computing devices such as network input/

output devices may be employed. 60%, 70%, 80%, or 90%.
EXAMPLE (2) A digital design that includes a proportion of selection

circuits. Where the proportion is defined in terms of
The method described with respect to FIG. 10 was used circuit area, power consumption or number of kernel

to optimize a netlist for a microcontroller. A synthesized cells. In various embodiments, the proportion of a
netlist of commercial library cells was translated to the ULG digital design that includes selection circuits could
netlist formalism and optimized by performing the described include 1% or more, 2% or more, 5% or more, 10% or
syntactic manipulations. The size of implementing the opti- zs more, 20% or more, 30% or more, 40% or more, or
mized ULG netlist with the cells described herein was then 50% or more.
compared with the size of the original implementation. The (3) A digital design implemented in a semiconductor
overall size was reduced by about 37%, a significant reduc- circuit where the digital building blocks include
tion. memory cells, one input Boolean operators and selec-
V. Digital Design with Syntactic Manipulation 30 tion circuits. The selection circuits are non-Boolean

Referring next to FIG. 12, a flow diagram of an embodi- operators and have three or more inputs. In some cases,
ment of a process for preparing a ULG ASIC cell library is there could be a small proportion of the digital building
shown. In this embodiment, a new fabrication process is blocks could be Boolean operators, such as 1% or less,
being adapted to use the kernel cell/basic cell topology. The 2% or less, 5% or less, 10% or less, or 20% or less.
depicted portion of the process begins in step 1204 where a 35 Those digital designs could be embodied in the form of,
layout engineer or technician analyzes the layout rules for for example, a structural netlist, a behavioral netlist, a HDL
the target fabrication process. The fabrication process could netlist, a full-custom ASIC, a semi-custom ASIC, an IP core
have different amounts of metalization layers, different circuit, an integrated circuit, a hybrid chip, one or more
semiconductor compositions, different transistor types, and masks, a FPGA, or a circuit card having a number of
different topologies such as SOI, etc. that are considered 40 integrated circuits. The full-custom and semi-custom ASICs
during layout. The kernel cells are laid out, at least partially, are defined as custom integrated circuits herein and could
by hand to optimize the circuitry in step 1208. Some use at least some standard cells. Structural netlists enumer-
embodiments could start the kernel cell layout with a ate low-level cells to use and how they are interconnected.
computer routed design that is hand-customized. Care is Behavioral netlists have high-level descriptions of the func-
taken to have kernel cells of a consistent height and to 45 tionality of a circuit similar to high-level programming
adhere to abutment guidelines such that clock signals and languages. Case statements, IF-THEN-ELSE statements can
some of the I/O are latitudinally aligned. Other embodi- be easily translated from behavioral constructs to ULG
ments could rely upon autorouting entirely to build the circuits. Examples of HDL netlists include RTL, VHDL,
kernel cells. Verilog and CHDL. The HDL netlists may be high-level

The kernel cells can be assembled in a number of ways to SO behavioral netlists or low-level structural netlists. ASIC
potentially create hundreds of basic cells 100 in the ULG designs can be full-custom or semi-custom designs. The
ASIC cell library. The basic cell configurations are specified full-custom designs have a full set of masks done for each
in step 1212. This could be done by editing a script fed to the design, whereas the semi-custom designs have some reus-
tool that combines the kernel cells into basic cells. In step able masks that define an array of gates that are custom
1216, the kernel cells are automatically assembled into basic ss interconnected with some unique masks. Where a semi-
cells 100 in this embodiment. Some embodiments could custom ASIC is done, the gates would include ULG circuits.
assemble the kernel cells manually or in-art manually. Once IP core circuits are netlists or maskwork that define a
the basic cells are generated, they are verified in step 1220. reusable function such as a microprocessor, bus interface,
This verification validates the digital and analog perfor- etc. that is typically provided by a third-party vendor. An
mance of the basic cells. Any problems uncovered in veri- 60 integrated circuit is simply a semiconductor chip. Where
fication can be fixed in the kernel and/or basic cells. To more than one chip is in a package, that package is referred
complete the ULG ASIC cell library, any specialized cells to as a hybrid integrated circuit or multi-chip-module. Cir-
are laid-out in step 1224. cuit cards can couple together a number of integrated

In one embodiment, selection logic is used in digital circuits soldered thereon, where the integrated circuits use
circuits to replace some or all combinatorial logic. A sig- 65 ULGs.
nificant proportion of the basic cells use a ULG 104. In There are several approaches to integrating syntactic
contrast, conventional semiconductor circuits do not use manipulation into digital design. In some embodiment, the

1122, such as a program designed to implement optimization 10 various embodiments, the proportion Of the with

2o

US 6,792,589 B2
29

designer anticipates using syntactic manipulation at the start
of the design process. Using HDL constructs, such as case
statements, allows easy mapping to the HDL ASIC cell
library. Digital designers often mix-and-match tools from
several vendors to develop a design flow suited to a par-
ticular digital designer. With that in mind, the various below
embodiments integrate the concepts of this invention in
various ways and to varying degrees. As those skilled in the
art can appreciate, the processing of the design can be
somewhat automated by using scripts to run the various

30
embodiment of the ULG ASIC cell library. This embodiment
of the ULG cell library can be somewhat simplified as the
variation used in an ASIC could be unnecessary when only
optimizing. Syntactic manipulation is performed upon the

s intermediate netlist according to the optimization priorities,
if specified. Some embodiments could perform a default
optimization that may or may not be modifiable by the
digital designer. Once the intermediate netlist is optimized,
it is converted to an optimized structural netlist that uses the

i o conventional cell library 1324.
tools on various design files. Static & dynamic timing analysis is run on the optimized

With reference to FIG. 13, a block diagram of an embodi- structural netlist. The static timing analysis takes into
ment of a design flow 1300 that uses syntactic manipulation account timing relationships for the optimized structural
after synthesis is shown. Included in this design flow are an netlist and identifies portions of the circuit that may fail to
HDL entry tool 1304, a synthesis tool 1308, a conventional is meet the timing requires of the circuit. Parameters can be
cell library 1324, an optimization tool, a static & dynamic entered into the synthesis and/or optimization tools 1308,
timing analysis tool 1316, and a place & route tool 1320. In 1312 to prioritize certain portions of the circuit to make
this embodiment, the digital designer uses all the tools of meeting static timing requirements easier.
their normal design flow, but includes the optimization tool Dynamic timing analysis can come in a few forms. Input
1312 after the synthesis tool 1308. The optimization tool 20 waveforms can be designed to stimulate the design, where-
1312 performs the syntactic manipulation in this design after the digital designer checks for correct output wave-
flow. forms. To automate this process, test vectors can be devel-

The HDL entry tool 1304 is a software edit tool that oped and applied to the inputs of the circuit whereafter
allows the digital designer to enter HDL as a behavioral output test vectors are tested against the actual output.
netlist. The HDL could be VHDL, Verilog or Concise zs Discrepancies are noted as errors and fixed by tweaking the
Hardware Description Language (CHDL). CHDL is a HDL behavioral code and synthesisioptimization tools 1308,1312
that is tuned for the design constructs beneficial for designs such that errors are not introduced into the process.
with ULG cells. The HDL entry tool 1304 could receive Once the digital designer is happy with the structural
feedback from the other tools to identify portions of the code netlist, the place & route tool 1320 performs a physical
that have problems found by those other tools. Other design 30 layout of the circuit. Alocation for each cell in the optimized
capture tools could be used instead of a HDL entry tool, for structural netlist is chosen and traces are laid-out to inter-
example, state machine tools, RTL tools, schematic capture connect those cells according to the netlist. These types of
tools, etc. Dynamic timing analysis could be performed on tools 1320 are automated or semi-automated. More accurate
the behavioral netlist to confirm proper functionality. timing values are available after place & route because the

A behavioral netlist is converted by the synthesis tool 3s trace lengths interconnecting the cells is known. Further
1308 into a structural netlist using the conventional cell staticidynamic analysis 1316 can be performed to assure that
library 1324 in this embodiment. The behavioral constructs new errors weren’t introduced during the place and route
are converted to Boolean constructs and optimized. From process. Once a suitable layout is achieved, masks can be
the conventional cell library 1324, cells are used for the produced and fabrication can start. Dynamic testing on the
optimized Boolean constructs. In some cases, typical timing 40 resulting chip may be performed to test functionality after
values are used by the synthesis tool 1308 to identify fabrication.
potential problems in the conversion process using static Referring next to FIG. 14, a block diagram of another
timing analysis. Dynamic timing analysis could also be embodiment of a design flow 1400 is shown that uses
performed on the structural netlist to confirm functionality syntactic manipulation and the ULG ASIC cell library. In
wasn’t compromised during the conversion. 4s this embodiment, a ULG cell library 1404 is used during

The optimization tool 1312 uses syntactic manipulation to synthesis 1308. By targeting the ULG cell library, the
improve the design in at least one of the following areas: synthesized structural netlist is in a format readily under-
power consumption, leakage current, fanout, chip area, stood by the optimization tool 1312 such that a conversion
number of masks, number of process steps, yield, to an intermediate netlist is unnecessary. The optimization
capacitance, inductance, resistance, glitches, etc. In this SO tool 1312 performs the syntactic manipulation before con-
embodiment, variables can be fed to the optimization tool verting from the intermediate format to the conventional cell
1312 in order to set the priorities among these design factors. library 1324. The optimized structural netlist is uses the
These variables could be set on a scale of one-to-ten to conventional cell library 1324, which is understood by the
indicate relative value along a sliding scale. place & route tool 1320 and the fab or foundry.

With reference to FIG. 15, a block diagram of another
use of alternative cells in the ULG library. Certain cells embodiment of a design flow 1500 is shown that uses the
could be optimized for various design factors such as power ULG ASIC cell library 1404 for the final netlist used by the
consumption, leakage current, fanout, chip area, number of fab or foundry. In this embodiment, the ULG ASIC cell
masks, number of process steps, yield, capacitance, library 1404 has been produced for the target process at the
inductance, resistance, gli tches, etc. During the 60 fab or foundry. The synthesis tool 1308 converts the behav-
optimization, the alternative cells could be used based upon ioral netlist into a synthesized structural netlist that uses the
how the digital designer set the priority variables. ULG ASIC cell library 1404. The optimization tool can

In this embodiment, the optimization tool optimizes the process the netlist without any conversion between cell
structural netlist from the synthesis tool to produce an libraries such that the resulting optimized structural netlist
optimized structural netlist that uses the same conventional 65 also uses the ULG ASIC cell library.
cell library 1324. The synthesized structural netlist is read Referring next to FIG. 16, a block diagram of yet another
and converted into an intermediate netlist that uses an embodiment of a design flow 1600 is shown that combines

Some embodiments could optimize for various factors by ss

US 6,792,589 B2
31

synthesis and syntactic manipulation into a single tool 1604.
The synthesis & optimization tool 1604 takes the behavioral
netlist from the HDL entry tool 1304 and converts it to an
intermediate structural netlist using the ULG ASIC cell
library 1404. The intermediate structural netlist is optimized
using syntactic manipulation with the tool 1604 to produce
an optimized structural netlist that uses the ULG cell library
1404. In this embodiment, the HDL entry tool 1304 uses
CHDL.

In some embodiments, the synthesis & optimization tool
1604 may not have a ULG cell library 1404 for the target
ASIC process. In that case, the synthesis & optimization tool
1604 would convert the intermediate netlist to an optimized
netlist using the conventional cell library 1324.

With reference to FIG. 17, a block diagram of still another
embodiment of a design flow 1700 is shown that uses an
interactive direct verification tool 1704 throughout the
design flow 1700. Verification allows debugging a digital
design throughout the design flow. In this embodiment, the
interactive direct verification tool 1704 tracks the evolution
of the design from a behavioral netlist through to a structural
netlist that has been placed and routed. The HDL entry tool
uses CHDL and the design flow uses the ULG cell library
1504 for the target fabrication process. The various forms of
the design embodied in the evolving netlist are accessible to
the interactive direct verification tool 1704.

Any identified portion of the circuit can be traced through
the various steps of the design flow 1700 using the interac-
tive direct verification tool. For example, a case statement in
the CHDL behavioral code can be followed through to the
various structural netlists to see how that case statement was
implemented. Conversely, a portion of a structural netlist
can be followed back to preceding structural netlists or even
the behavioral netlist.

Referring next to FIG. 18, a block diagram of still another
embodiment of a design flow 1800 is shown that uses an
interactive direct verification tool 1804 throughout the
design flow and after fabrication. This embodiment shows
the fabrication 1808 and final test 1812 in the design flow.
The fabrication 1808 is performed after the design is thor-
oughly tested. After production, the chips can be tested
again. Test vectors are applied to the chip inputs and scan
ports in the dynamic analysis in final test 1812. Where an
error can be isolated to a pin or node in final test 1812, the
interactive direct verification tool 1804 can show the engi-
neer the progression of the design that relates to that failure.

With reference to FIG. 19, a flow diagram of an embodi-
ment of a design process 1900 is shown. In the depicted
portion of the design process 1900, the sequential steps are
show along with the test and rework steps. In step 1904, the
digital design is entered using an entry tool. A HDL such as
Verilog, VHDL or CHDL is used to enter the behavioral
netlist for the circuit being designed. Throughout the design
entry phase, dynamic timing analysis is performed in step
1916 to verify that the behavioral netlist is probably being
prepared correctly. At this stage, the dynamic timing analy-
sis is probably done in a waveform simulation tool. Various
scenarios are designed with the simulation tool to test
various conditions of the digital design. During the timing
analysis of step 1916, problems could be found in step 1906.
Rework of the behavioral code could be performed by
returning to step 1904 where problems are found. Processing
continues from step 1916 to step 1908 where no problems
are found.

Synthesis and optimization is performed in step 1908 to
convert the behavioral netlist to an optimized structural
netlist. Conversion between cell libraries can also be per-

32
formed in this step. Some embodiments may perform the
synthesis and optimization as separate steps. Static and
dynamic timing analysis are performed in steps 1912 and
1916. If problems are found, rework may be done in step

5 1904 or step 1908. Rework in step 1908 could include
changing parameters fed to the synthesis & optimization tool
1604 or correcting problems with libraries.

Once generally satisfied with the optimized structural
netlist, processing continues to step 1920 for place & route

lo of the design. In this step, the trace lengths and drive
requirements are more accurately analyzed to improve the
verification that can be performed on the digital design.
Once again static and dynamic timing analysis is performed
in step 1912 and 1916 to verify the laid-out design still
behaves properly. Where there are problems as detected in
step 1906, rework could be performed in steps 1904, 1908
or 1920. The interactive direct verification tool 1804 can
assist the digital designer find where flaws were likely
introduced into the netlist. Where there are no problems after
layout, the design is fabricated in step 1924.

Having described several embodiments, it will be recog-
nized by those of skill in the art that various modifications,
alternative constructions, and equivalents may be used with-
out departing from the spirit of the invention. Accordingly,
the above description should not be taken as limiting the
scope of the invention, which is defined in the following
claims.

1s

20

2s

What is claimed is:
1. Amethod for designing a digital integrated circuit chip,

the method comprising:

identifying a logical structure to be implemented by the
digital integrated circuit chip;

representing the logical structure in terms of a plurality of
logical operations, wherein the plurality of logical
operations comprises at least 5% selection operations,
each such selection operation passing at least one of a
plurality of inputs as an output;

performing syntactic manipulations of the logical opera-
tions to reduce a number of nodes of the logical
structure; and

determining logic cells that correspond to an implemen-
tation of the syntactically manipulated logical opera-

2. The method recited in claim 1 wherein each such
selection operation passes one of the plurality of inputs as
the output.

3. The method recited in claim 1 wherein at least one of
so the plurality of inputs to one of the selection operations

comprises a base Boolean value.
4. The method recited in claim 1 wherein at least one of

the plurality of inputs to one of the selection operations
comprises a higher-order function of base Boolean values.

5 . The method recited in claim 1 wherein:
at least one of the logic cells corresponds to an imple-

mentation of a selection operation; and
such at least one of the logic cells comprises a multi-

plexor.
6. The method recited in claim 5 wherein the multiplexor

comprises a depletion-mode transistor.
7. The method recited in claim 1 wherein none of the logic

cells comprises a Boolean logic element having more than a
single input.

8. The method recited in claim 1 wherein the plurality of
logical operations comprises at least 10% selection opera-
tions.

30

35

40

4s tions.

ss

60

65

US 6,792,589 B2
33 34

9. The method recited in claim 1 wherein the plurality of
logical operations comprises one of at least 20% selection
operations, at least 30% selection operations, at least 40%
selection operations, at least 50% selection operations, at
least 60% selection operations, at least 70% selection
operations, at least 80% selection operations, at least 90%
selection operations, and at least 95% selection operations.

10. A method for designing a digital integrated circuit
chip, the method comprising:

identifying a logical structure to be implemented by the
digital integrated circuit chip;

gram includes instructions for operating the computer sys-
tem for designing a digital circuit in accordance with the
following:

receiving an expression of a logical structure to be imple-
mented by the digital circuit from the at least one input
device;

representing the logical structure in terms of a plurality of
logical operations with the processor, wherein the plu-
rality of logical operations comprises at least 5% selec-
tion operations, each such selection operation passing
at least one of a plurality of inputs as an output;

5

lo

representing the logical structure in terms of a plurality of performing syntactic manipulations of the logical opera-
logical operations wherein fewer than 50% of the tions with the processor to reduce a number of nodes of
plurality of logical operations comprise a Boolean the logical structure; and
logical operation having more than a single input; determining logic cells that correspond to an implemen-

performing syntactic manipulations of the logical opera- tation of the logical operations with the processor.
tions to reduce a number of nodes of the logical 17. The computer-readable storage medium recited in
structure; and claim 16 wherein each such selection operation passes one

tation of the syntactically manipulated logical opera- 18. The computer-readable storage medium recited in
tions. claim 16 wherein:

11. The method recited in claim 10 wherein fewer than the computer readable program further includes instruc-
25% of the plurality of logical operations comprise a Bool- tions for receiving commands from the at least one
ean logical operation having more than a single input. input device; and

12. The method recited in claim 10 wherein fewer than the syntactic manipulations of the logical operations are
X% of the plurality of logical operations comprise a Boolean performed in accordance with the commands.
logical operation having more than a single input, wherein 19. The computer-readable storage medium recited in
X is selected from the group consisting of 20, 15, 10, and 5. claim 16 wherein the plurality of logical operations com-

plurality of logical operations comprises a Boolean logical 20. The computer-readable storage medium recited in
operation having more than a single input. claim 16 wherein the plurality of logical operations com-

14. The method recited in claim 10 wherein at least one prises one of at least 20% selection operations, at least 30%
of the logic cells comprises a depletion-mode transistor. selection operations, at least 40% selection operations, at

15. The method recited in claim 10 wherein at least one 35 least 50% selection operations, at least 60% selection
of the logic cells comprises a multiplexor. operations, at least 70% selection operations, at least 80%

16. A computer-readable storage medium having a selection operations, at least 90% selection operations, and
computer-readable program embodied therein for directing at least 95% selection operations.
operation of a computer system including a processor and at

determining logic cells that correspond to an implemen- 2o of the Plurality of inputs as the output.

25

13. The method recited in claim 10 wherein none of the 30 prises at least 10% selection operations.

least one input device, wherein the computer-readable pro- * * * * *

