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DIGITAL DESIGN USING SELECTION 
OPERATIONS 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This application is a nonprovisional of and claims priority 
to U.S. Prov. Pat. Appl. No. 601298,832 entitled 
“MULTIPLEXOR-BASED DIGITAL DESIGN,” filed Jun. 
15,2001 by Sterling R. Whitaker et al., the entire disclosure 
of which is herein incorporated by reference for all purposes. 

This application is also related to the following commonly 
assigned, concurrently filed U.S. patent applications, each of 
which is also incorporated herein by reference in its entirety 
for all purposes: U.S. patent application Ser. No. 101172,742 
entitled “PASS-TRANSISTOR VERY LARGE SCALE 
INTEGRATION,” by Gary K. Maki and Prakash R. Bhatia 
U.S. patent application Ser. No. 101172,746, entitled “OPTI- 
MIZATION OF DIGITAL DESIGNS,” by Sterling R. Whi- 
taker and Lowell H. Miles U.S. patent application Ser. No. 
101172,745, entitled “INTEGRATED CIRCUIT CELL 
LIBRARY,” by Sterling R. Whitaker and Lowell H. Miles 
Ser. No. 101172,743, entitled “DIGITAL LOGIC OPTIMI- 
ZATION USING SELECTION OPERATIONS,” by Ster- 
ling R. Whitaker, Lowell H. Miles, Eric G. Cameron, and 
Jody W. Gambles U.S. patent application Ser. No. 101172, 
744, entitled “DIGITAL CIRCUITS USING UNIVERSAL 
LOGIC GATES,” by Sterling R. Whitaker, Lowell H. Miles, 
Eric G. Cameron, Gregory W. Donohoe, and Jody W. 
Gambles. These applications are sometimes referred to 
herein as “the Universal-Logic-Gate applications.” 

STATEMENT AS TO RIGHTS TO INVENTIONS 
MADE UNDER FEDERALLY SPONSORED 

RESEARCH OR DEVELOPMENT 

The U.S. Government has a paid-up license in this inven- 
tion and the right in limited circumstances to require the 
patent owner to license others on reasonable terms as 
provided for by the terms of Grant No. NAGS-9152 awarded 
by NASA. 

BACKGROUND 

This invention relates in general to digital circuits and, 
more specifically, to design of digital circuits that are 
laid-out with cells. 

Mathematics is one attempt for humankind to understand 
the universe around them. As technological advancement 
occurs, mathematical concepts and algorithms grow to 
enable and/or support those advancements. Within the con- 
text of digital design, Boolean logic is the mathematical 
construct used to manipulate and optimize digital circuits. 
Nearly every electronic device today relies upon some type 
of Boolean logic for any embedded digital circuits. Other 
mathematical constructs, however, are possible that allow 
further optimization of digital designs. Changes to the 
processing of digital design are necessary when avoiding 
Boolean logic elements. 

Today application specific integrated circuit (ASIC) are 
specified using netlists of library cells for a particular 
process of a foundry or fabrication facility. These netlists are 
used to fabricate integrated circuits made up of the library 
cells. A few hundred library cells are typically available for 
a particular process that include AND gates, OR gates, 
flip-flops (F/F), and buffers. When a new fabrication process 
is developed, engineers custom layout each of the library 
cells to get the most optimal performance from each cell. 

2 
BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is described in conjunction with the 
appended figures: 

FIG. 1 A  is a block diagram of an embodiment of a basic 
cell composed of kernel cells; 

FIG. 1B is a block diagram of another embodiment of a 
basic cell composed of a memory and a buffer kernel cells; 

FIG. 1C is a block diagram of yet another embodiment of 
a basic cell composed of a selection and memory kernel 
cells; 

FIG. 1D is a block diagram of still another embodiment 
of a basic cell composed of a selection and a buffer kernel 
cells; 

FIG. 2A is a block diagram of an embodiment of a 
memory cell with a synchronous reset; 

FIG. 2B is a block diagram of another embodiment of a 
memory cell with an asynchronous reset; 

FIG. 3 is a block diagram of an embodiment of a universal 
20 logic gate layout; 

FIG. 4 is a block diagram of an embodiment of a memory 
kernel cell layout; 

FIG. 5 is a block diagram of an embodiment of a buffer 
kernel cell layout; 

FIG. 6 is a block diagram of an embodiment of a basic cell 
abutted together from the kernel cells of FIGS. 3-5; 

FIG. 7 is a block diagram of an embodiment of two basic 
cells laid out together; 

3o FIG. SA provides a schematic illustration of an 
enhancement-mode transistor; 

FIG. 8B provides a schematic illustration of a depletion- 
mode transistor; 

FIG. 8C provides a circuit layout for a universal logic gate 
35 according to an embodiment of the invention that uses 

depletion-mode transistors; 
FIG. 9Ais a flow diagram illustrating how inversions may 

be removed in logical expressions implemented in embodi- 
ments of the invention; 

FIG. 9B is a flow diagram illustrating how nodes may be 
reduced in logical expressions implemented in embodiments 
of the invention; 

FIG. 9C is a flow diagram illustrating how nodes may be 
combined in logical expressions implemented in embodi- 

FIG. 9D is a flow diagram illustrating how set and reset 
inputs may be used in performing optimizations according to 
embodiments of the invention; 

FIG. 10 is a flow diagram illustrating an embodiment for 
a ULG netlist optimization; 

FIG. 11 provides a schematic illustration of a computer 
system on which methods of the invention may be embod- 
ied; 

FIG. 12 is a flow diagram of an embodiment of a process 
for preparing a ULG ASIC cell library; 

FIG. 13 is a block diagram of an embodiment of a design 
flow that uses syntactic manipulation after synthesis; 

FIG. 14  is a block diagram of another embodiment of a 
60 design flow that uses syntactic manipulation and the ULG 

ASIC cell library; 
FIG. 15 is a block diagram of another embodiment of a 

design flow that uses the ULG ASIC cell library for the final 
netlist; 

FIG. 16 is a block diagram of yet another embodiment of 
a design flow that combines synthesis and syntactic manipu- 
lation into a single tool; 

5 
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FIG. 17 is a block diagram of still another embodiment of 
a design flow that uses a verification tool throughout the 
design flow; 

FIG, 18 is a block diagram of still another embodiment of 
a design flow that 
design flow and after fabrication; and 

process. 
In the appended figures, similar components and/or fea- 

tures may have the same reference label. Further, various 

following the reference label by a dash and a second label 
that distinguishes among the similar components. If only the 
first reference label is used in the specification, the &scrip- 
tion is applicable to any one of the similar components 
having the Same first reference label irrespective of the 
second reference label. 

ULG, memory element, and buffer are implemented with a 
relatively-small number of kernel cells, which typically have 
layouts that are individually optimized, and often, by hand. 
The kernel cells are arranged into the higher-level basic cells 

and buffer, 
but the basic cells do not have more than one of any type of 
kernel cell in this embodiment. For a given semiconductor 
process, there is a ULG ASIC cell library which is composed 
of the basic cells and specialized cells. These specialized 
cells may differ from the basic cell construct and could 
include, for example, clock dividers, memory arrays, analog 

Referring first to FIG. 1A, an embodiment of a basic cell 
loo is shown in diagram form. This embodiment 
includes all three of a ULG or selection circuit 104, a 
memory cell 108 and a buffer 112. Some of the kernel cell 
components of the basic cell 100 are shown in a generalized 
manner. The ULG 104 is shown having any number of data 
and selection control inputs, however the relationship 
between the maximum data inputs for a number of selection 

20 control inputs follows the following relationship 2y=I. The 
memory kernel cell 108 shown is a resetable D F/F. A buffer 
kernel cell 112 shown has both an inverting and 
inverting output, although, other buffer implementations 
will have either an inverting or non-inverting output, 

The ULG 104 in this embodiment is implemented with a 

Boolean function, but are not Boolean operators, Combina- 
torial logic in conventional designs is not implemented with 
selection functions, but uses Boolean logic gates. Further, 

30 multiplexors in conventional circuits are converted to Bool- 
ean equivalents during synthesis. 

One embodiment: 

a verification tool throughout the 5 having at least One Of the ULG, memory 

l9 is a flow diagram Of an embodiment Of a 

components of the Same type may be distinguished by circuits, phase-locked loops, oscillators, analog circuits, etc. 

DETAILED DESCRIPTION 

The ensuing description Provides Preferred exemplary 
embodiment(s) only, and is not intended to limit the scope, 
applicability or configuration of the invention. Rather, the 
ensuing description of the preferred exemplary embodiment 
(s)  will provide those skilled in the art with an enabling 25 

embodiment of the invention. It is to be understood that 
various changes may be made in the function and arrange- 
ment of elements without departing from the spirit and scope 
of the invention as set forth in the appended claims. 

In certain embodiments, a method is provided for design- 
ing a digital integrated circuit chip. A logical structure to be 

fied. This logical structure is represented in terms of a 
plurality of logical operations in which at least 5% of the 
logical operations comprise selection operations. In various 35 
specific embodiments, the fraction of logical operations that 
comprise selection operations may be higher. A determina- 
tion is made of logic cells that correspond to an implemen- 

description for a preferred multiplexor, Multiplexors can be used to implement any 

implemented by the digital integrated circuit chip is identi- The below Table 1 shows the fourteen kernel Cells used in 

TABLE I 

ULG 
Component Symbol Description 

tation of the logical operations. In some of these ULG U 8 to 1 (US), 4 to 1 (U4) or 2 to 1 
embodiments, the selection operations may function either 40 

Boolean values. In one embodiment, none of the logic cells 
that correspond to the implementation of the logical opera- 
tions comurises a Boolean logic element having more than 

(U2) Multiplexors 

Resetable D FIF - Synchronous (DRl), 
Clock Edge Synchronization (DR2) 
or Asynchronous (DR3) 
Setable D FIF - Synchronous (DSl), Clock Edge 

on base Boolean values or on a higher-order function of base E l r r y  
FIF (D1) 

DR 

DS 
I I 

a single input. 

designing a digital integrated circuit chip in which a logical 
structure. In these embodiments. the logical structure is CB High-drive buffer (CB1) 

Synchronization (DS2) or Asynchronous (DS3)’ 

Inverting and Non-inverting buffer (B2) 
45 Buffers B Non-inverting buffer (Bl) or Hybrid In other embodiments, a method is also provided for 

BN Inverting buffer (BN1) - 
represented in terms of logical operations in which fewer ZB Tristatable buffer (ZB1) 

than 50% comprise a Boolean logical operation having more 50 
than a single output. Logic cells that correspond to an The embodiment of the kernel cells in the above Table I 
implementation of the logical operations are then deter- could be augmented in other embodiments to include other 
mined. cells. The ULGs could include multiplexors of any size, for 

The methods of the present invention may be embodied in example, 16 to 1, 32 to 1, 64 to 1, etc. Larger multiplexors 
a computer-readable storage medium having a computer- ss could be formed with a number of smaller multiplexors if a 
readable program embodied therein for directing operation larger multiplexor is not supported in the kernel cells. 
of a computer system. Such a computer system may include 
a communications system, a processor, and a storage device. 
The computer-readable program includes instructions for 
operating the computer system as part of designing a digital 
circuit in accordance with the embodiments described 
above. 
I. Cells 

In one embodiment, a basic cell is a construct that 
includes one or more of a universal logic gate (ULG), a 
memory element or flip-flop (FIF), and/or a buffer. In this 
embodiment, the ULG is a multiplexor or select circuit. The 

Various other types of memory cells could also be supported 
such as EEPROM, EPROM, PROM, DRAM, SRAM, 
NVRAM, magnetic core memory, J-K F/Fs, setable and 

60 resetable F/Fs, various F/F with scan ATPG capability, etc. 
The J-K, setable, or resetable functionality of a F/F can be 
implemented by a D F/F and logic that can be embedded in 
the mux before or after the D F/F. The F/Fs could also be 
falling edge triggered in some embodiments. Also the buff- 

65 ers could be of various strengths and sizes. Some buffers 
could support input and output pins of the chip with various 
thresholds, voltages, etc. 
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Table I1 lists the various configurations in which kernel Referring next to FIG. lC,  a block diagram of yet another 
cells are used to create basic cells 100-1 that use all of a embodiment of a basic cell 100-3 is shown that is composed 
ULG 104, a memory cell 108 and a buffer cell 112 such as of ULG and memory kernel cells 104,108. This is just one 
the example in FIG. 1A. These basic cells 100-2 are the example of the various similar basic cells 100-3 that might 
variations found in one embodiment of the ULG ASIC cell s form an embodiment of the ULG ASIC cell library. Other 
library. possible configurations are enumerated in Table IV below. 

TABLE I1 

Basic Cell Configuration 
Type Mux - Mem - Buf Various Basic Cell Layout Names 

UDB U - D - B  

UDBN U - D - B N  
UDZB U - D - Z B  
UDRB U - D R - B  

UDRBN U - DR - BN 

UDRZB U - DR - ZB 

UDSB U - D S - B  

UDSBN u - DS - BN 

UDSZB u - DS - ZB 

U2D1B1,U4D1B1,U8D1B1,U2D1B2,U4D1B2, 
U8D1B2, 
U2D1BN1, U4D1BN1, U8D1BN1 
U2D1ZB1, U4D1ZB1, U8D1ZB1 
U2DR1B1, U2DR2B1, U2DR3B1, U2DR1B2, 
U2DR2B2, U2DR3B2, U4DR1B1, U4DR2B1, 
U4DR3B1, U4DR1B2, U4DR2B2, U4DR3B2, 
U8DR1B1, U8DR2B1, U8DR3B1, U8DR1B2, 
U8DR2B2, U8DR3B2 
U2DR1BN1, U2DR2BN1, U2DR3BN1, 
U4DR1BN1, U4DR2BN1, U4DR3BN1, 
U8DRIBN1, U8DR2BN1, U8DR3BN1 
U2DR1ZB1, U2DR2ZB1, U2DR3ZB1, 
U4DR1ZB1, U4DR2ZB1, U4DR3ZB1, 
U8DR1ZB1, U8DR2ZB1, U8DR3ZB1 
U2DS1B1, U2DS2B1, U2DS3B1, U2DS1B2, 
U2DS2B2, U2DS3B2, U4DS1B1, U4DS2B1, 
U4DS3B1, U4DS1B2, U4DS2B2, U4DS3B2, 
U8DS1B1, U8DS2B1, U8DS3B1, U8DS1B2, 
U8DS2B2, U8DS3B2 
U2DS1BN1, U2DS2BN1, U2DS3BN1, 
U4DS1BN1, U4DS2BN1, U4DS3BN1, 
U8DS1BN1, U8DS2BN1, U8DS3BN1 
U2DS1ZB1, U2DS2ZB1, U2DS3ZB1, 
U4DS1ZB1, U4DS2ZB1, U4DS3ZB1, 
U8DS1ZB1, U8DS2ZB1, U8DS3ZB1 

With reference to FIG. lB, a block diagram of another 4o 

embodiment of a basic cell 100-2 composed of memory and 
buffer kernel cells 108, 112 is shown. This is but one 
example of a basic cell 100-2 of this general configuration. 
Other basic cells of this general configuration that could be 
found in an embodiment of a ULG ASIC cell library are 45 

listed in Table 111. 

TABLE I11 

Configura- 

Basic tion Me- 

Cell mory - 
Type Buffer Various Basic Cell Layout Names 

so 

<< 

DB 

DBN 

DZB 

DRB 

DRBN 

DRZB 

DSB 

DSBN 

DSZB 

i d  

D - B D1B1, D1B2 

D -  BN DlBNl  

D -  ZB DlZBl  

DR - B 

DR - BN DR1BN1, DR2BN1, DR3BN1 

DR - ZB DR1ZB1, DR2ZB1, DR3ZB1 

DS - B DS1B1, DS2B1, DS3B1, DS1B2, DS2B2, DS3B2 

DS - BN 

DS - ZB DS1ZB1, DS2ZB1, DS3ZB1 65 

DR1B1, DR2B1, DR3B1, DR1B2, DR2B2, DR3B2 
60 

DS1BN1, DS2BN1, DS3BN1 

TABLE IV 

Basic Cell Configuration 
Type Mux - Mem Various Basic Cell Layout Names 

UD U - D  U2D1, U4D1, U8D1 
UDR U - D R  U2DR1, U4DR1, U8DR1, U2DR1, U4DR2, 

UDS U - D S  U2DS1, U4DS1, U8DS1, U2DS2, U4DS2, 
U8DR2 U2DR3, U4DR3, U8DR3 

U8DS2, U2DS3, U4DS3, U8DS3 

With reference to FIG. lD, a block diagram of still 
another embodiment of a basic cell 100-4 composed of ULG 
and buffer kernel cells 104, 112 is shown. There are other 
possible configurations of this type of basic cell 100-4. The 
variations of this basic cell 100-4 for one embodiment of the 
ASIC library are listed in Table V. From Tables 11-V, around 
80% of the 142 available basic cells include ULG circuits. 
The 142 basic cells are based upon the 14 kernel cells of 
Table I. 

Although the embodiment in Tables 11-V show some 
possible basic cells, other embodiments could include addi- 
tional basic cells. These additional basic cells could be 
optimized for output power, power consumption, layout 
area, response time, leakage, etc. such that there are multiple 
cells with the same logical properties, but that are optimized 
for particular circumstances. For example, there may be 
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three non-inverting buffers of having different drives to 
support larger fanout and/or higher speeds. In various 
embodiments, there could be less than, for example, 100,75, 
50,40,30,20, or 10 kernel cells. At the lower limit, there is 
three kernel cells in one embodiment with just one of each 
of the types of kernel cells. 

TABLE V 

Basic Cell Configuration 
Type Mux - Buf Various Basic Cell Layout Names 

UB U - B  U2B1, U4B1, U8B1, U2B2, U4B2, U8B2 
UBN U - BN U2BN1, U4BN1, U8BN1 

The building blocks of a digital circuit could be abstracted 
beyond the ULG ASIC cell library. In some embodiments, 
the ULG ASIC cell library components could be combined 
in higher-level macro cells such as adders, multipliers, 
registers, barrel shifters, ALUs, comparators, decoders, state 
machines, counters, etc. There could be thousands of pos- 
sible macro cells. Further, designs can be abstracted to a 
level higher than the macro cells by using cores that imple- 
ment higher level functions such as microprocessors, graph- 
ics processors, interface busses or ports, digital signal 
processors, etc. These cores could use macro cells and/or 
components from the ULG ASIC cell library. Often the cores 
are written in a hardware description language (HDL) that 
can be easily synthesized into any ULG ASIC cell library for 
a particular process. 

With reference to FIGS. 2A and 2B, various embodiments 
of a memory kernel cell 108 are shown in block diagram 
form. These embodiments divide the D F/F 208 out from the 
memory cell and implement some functionality with a 
separate buffer cell 204. In various embodiments, the buffer 
cell 204 could be used to customize the D F/F 208 with 
synchronous reset of FIG. 2A or asynchronous reset of FIG. 
2B. In other embodiments, a separate circuit could be used 
to make a D F/F 208 behave as a setable D FIF, a J-K F/F 
or a F/F with scan capability. In other embodiments, the 
separate circuit could be implemented with a selection 
circuit. 

This buffer cell 204 in an ASIC cell library could be used 
for other purposes also. For example, an 8 to 1 mux function 
could be implemented with a buffer cell 204 and a 4 to 1 mux 
104 in some circumstances to reduce the chip area needed to 
implement the functionality. Table VI shows the thirteen 
kernel cells used in this embodiment. Table VI1 shows a 
truth table for the enable buffer 204 where the enable input 
is R, the input is D and the output is Q. 

TABLE VI 

Kernel 
Cell 
Component Symbol Description 

ULGs U 

Memory D 
Cells DS 

Buffers B 

BN 
EBN 
CB 
ZB 

8 to 1 (US), 4 to 1 (U4) or 2 to 1 (U2) 
Multiplexors 
D FIF (Dl) 
Setable D FIF - Synchronous (DSl), Clock Edge 
Synchronization (DS2) or Asynchronous (DS3) 
Non-inverting buffer (Bl) or Hybrid Inverting 
and Non-inverting buffer (B2) 
Inverting buffer (BN1) 
Inverting buffer with an enable input (EBN1) 
High-drive buffer (CB1) 
Tristatable buffer (ZB1) 

S 

10 

1s 

20 

2s 

30 

3 s  

40 

4s  

so 

5s 

60 

65 

8 

TABLE VI1 

R D Q 

0 1 
1 1 
0 1 
1 0 

11. Layout of Cells 
Each fabrication process at a fab or foundry generally has 

a conventional ASIC cell library that is customized for that 
process. Each of the hundreds of cells in the conventional 
ASIC cell library is typically manually laid out to optimize 
its configuration. In this embodiment, however, a small 
number of customized kernel cells are used to automatically 
or manually compile the basic cells 100. For a target 
fabrication process, care is taken to optimize the layout of 
kernel cells 104, 108, 112 for factors such as power 
consumption, chip area, number of masks, number of pro- 
cess steps, yield, capacitance, inductance, resistance, 
glitches, I/O placement, etc. In some cases, the fabrication 
processes are similar enough to other fabrications processes 
that only minor tweaking to kernel cells is done. 

With reference to FIG. 3 a block diagram of an embodi- 
ment of a ULG layout 300 is shown. A cloud graphic is used 
to represent the layout of the circuit to implement the 2 to 1 
ULG 104. Input ports 316, 320 and I/O 324 are detailed 
within the circuit cloud, more specifically, ports for the 
inputs (I, and 11) 316 and the select (Yo) 320 and a trace is 
shown for the Q output 324. For the ULG kernel cell, the 
input and select signals are ports 316, 320 within the ULG 
layout 300. The ULG circuit 304 is attached by traces to 
latitudinal power traces 308, 312. 

Abutment is used to link certain signals by coupling 
adjacent kernel cells. Adjacent placement of the cells may 
join the abutted I/O or a small conductive trace may join the 
abutted I/O. The kernel cells have a uniform height and 
differing depths such that the power traces 308,312 for each 
kernel cell align with the next kernel cell. Also, certain I/O 
signals use a uniform latitude. For example the Q output 324 
of the ULG layout 304 would align latitudinally with an 
input for an adjacent memory or buffer kernel cell. 

Referring next to FIG. 4, a block diagram of an embodi- 
ment of a memory kernel cell layout 400 is shown. This 
memory circuit 404 implements a D F/F with a D input 412, 
a clock input 408 and a Q output 416. Coupled to the 
memory circuit 404 are a VDD and V,, power busses 308, 
312. The height of the memory kernel cell layout 400 is the 
same as the ULG cell layout 300 such that the power busses 
for both kernel cells align latitudinally. 

With reference to FIG. 5, a block diagram of an embodi- 
ment of a buffer kernel cell layout 500 is shown. As with the 
other kernel cell circuits 304, 404, a non-inverting buffer 
kernel cell circuit 504 is coupled to power busses 308, 312 
with a height uniform to the other kernel circuits 304, 404. 
The buffer circuit includes a D input 508 and a Q output 512, 
where the D input 508 is latitudinally aligned with the 
outputs from either a ULG circuit 304 or a memory circuit 
404. In this embodiment, the Q output 512 is offset from the 
latitude of the D input 508. 

Referring next to FIG. 6, a block diagram of an embodi- 
ment of a basic cell 600 abutted together from three kernel 
cells 300, 400, 500 is shown. A U2 ULG, D1 F/F and B1 
non-inverting buffer kernel cells 300, 400, 500 are con- 
nected in serial to form the basic cell 600. The power busses 
308, 312 for each kernel cell 300, 400, 500 align to form a 
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larger whole. The Q output 324 from the U2 ULG circuit 
304 aligns with the D input 412 to the D1 memory circuit 
404, and the Q output 416 from the D1 memory circuit 404 
aligns with the D input 508 to the B1 buffer circuit 504. 
Other embodiments could have additional power busses, for 
example, a substrate bus connection. 

With reference to FIG. 7, a block diagram of an embodi- 
ment of two basic cells 600, 704 laid out together in a row 
700 is shown. During layout of a chip, all the ULG ASIC 
cells are arranged. The basic cells 600, 704 are aligned in 
horizontal rows. In some cases (not depicted), there is 
routing of one or more signals between the basic cells 600, 
704. In the depicted embodiment, an output from a first basic 
cell 704 is coupled with a trace 712 to an input of a second 
basic cell 600. The clock inputs for both basic cells 600,704 
are latitudinally aligned such that a clock bus can pass strait 
across a row 700 of basic cells. 

In some embodiments, additional size reductions are 
realized in the ULGs by having them comprise one or more 
depletion-mode transistors. Schematic diagrams are pro- 
vided in FIGS. SA and 8B that compare enhancement-mode 
and depletion-mode transistors. FIG. SA shows the structure 
of an n-type enhancement-mode transistor 802 that com- 
prises a source 804, a drain 806, and a gate 810. Connections 
are made with the source 804 and drain 806 respectively 
through pads 812 and 814. The gate 810 usually comprises 
a metal formed over an oxide such as SO,. For such an 
n-type transistor 802, both the source 804 and drain 806 
comprise n-doped regions in a p-doped substrate. The tran- 
sistor operates so that when at least a threshold voltage is 
applied to the gate 810, current flows between the source 
804 and drain 806 through an intermediate channel region. 
In circuits, the enhancement-mode transistor 802 is denoted 
with symbol 820. 

The depletion-mode transistor 842 illustrated in FIG. 8B 
also comprises a source 844, a drain 846, and a gate 850 
formed over an oxide 848, with connections to the source 
844 and drain 846 provided respectively by pads 852 and 
854. For the depletion-mode transistor, however, the channel 
region 856 between the source 844 and drain 846 is also 
n-doped, allowing the flow of current even without a gate 
voltage. The current can be stopped by applying at least a 
negative cutoff voltage to the gate 850. In circuits, the 
depletion-mode transistor 842 is denoted with symbol 860. 

FIG. 8C provides an example of a circuit for a ULG 
element that exploits the different properties of 
enhancement- and depletion-mode transistors to allow a 
smaller circuit area than a ULG design that uses only 
enhancement-mode transistors. The illustration is provided 
for the U8 cell, which acts as an 8 : l  multiplexor. The U8 cell 
872 comprises eight inputs 874 labeled I, , , , three 
selection controls 876 labeledY[O . . .2], and one output 878 
labeled Q. The multiplexing functions of the cell are gov- 
erned by the action of 48 transistors, of which half are 
provided as depletion-mode transistors. Each of the controls 
876 and its inversion is provided to a transistor along the 
path of one of the inputs 874, with the inversions being 
effected by inverters 880. To effect the multiplexing 
functions, the depletion-mode transistors are distributed 
according to the level of the control. For the least significant 
control, the depletion-mode transistors are positioned alter- 
nately; for the next significant control, they are positioned 
alternately in pairs; for the next significant control, they are 
positioned alternately in quads; etc. Thus, for the U8 cell 
872, depletion-mode transistors for are provided for inputs 
I,, I,, I,, and I,, and for the inverted control YN[O], 
depletion-mode transistors are provided for inputs I,, I,, I,, 
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and I,. For Y[l], depletion-mode transistors are provided for 
inputs I,, I,, I,, and I,, and for the inverted control YN[1], 
they are provided for inputs I,, I,, I,, and I,. Similarly, 
depletion-mode transistors are provided for Y[2] for inputs 
I,, I,, I,, and I,, and for YN[2] for inputs I,, I,, I,, and I,. 

For certain embodiments of the ULGs that comprise 
depletion-mode transistors, this pattern may be used for a 
cell of any size. For a U2"+' ULG that has 2"+' inputs and 
n+l controls, depletion-mode transistors may be provided 
for each controliinput combination as follows: 

(i) For controlY[i=O . . . n], depletion-mode transistors are 
provided for inputs I, where k c 2  mod 2+'; 

(ii) For control YN[i=O . . . n], depletion-mode transistors 
are provided for inputs I,, where k ' 2 2  mod 2+'. 

In other embodiments, a different distribution of depletion- 
mode transistors may be used to implement the multiplexing 
functions of the ULG. 
111. Logical Structures 

In addition to the structural characteristics described 
above, there are a number logical properties and features that 
may be used both to characterize individual cells and to 
characterize libraries of such cells. An example of a formal- 
ism that may be used in one embodiment to describe the 
functionality of the basic cells and from which at least some 
such logical characterizations may be extracted is now 
described. 

As discussed above, the selection circuits embodied by 
ULGs used for forming basic cells may be implemented 
using 2:1,4:1,8:1, or perhaps even larger, multiplexors. The 
inputs and control of each multiplexor are programmed to 
achieve the desired logical characteristics of the cell. The 
following syntax has been developed to describe the pro- 
gramming of such inputs and selection controls in a general 
fashion: 
Q<QN>.xxxx <E> Y[n-l:O] I , ~ ~ ~ , I , ~ ~ ~ ,  . . . I,<R/S> <CLK> 

In addition to describing the programming of the ULG 
kernel cells, the syntax may be used to describe any of the 
basic cells, including both those that comprise ULG kernel 
cells and those that do not comprise ULG kernel cells. 
Optional parameters in the syntax are denoted with angular 
brackets and the components of the syntax are summarized 
in Table I. 

(Parameter=Option); 

TABLE VI11 

Component Meaning 

Q 
<QN> 

<E> 
Y[n - 1:0] 

.xxxx 

<RIS> 
<CLK> 
(Parameter 
Option) 

Non-inverting output 
Optional inverting output 
Cell name 
Optional tri-state enable 
Control variables 
State variables 
Truth-table state 
Next state 
Optional reset or set input 
Optional clock input 
Selects an option 

Terminator 

There are a number of features of the syntax worthy of 
comment. The first component of the syntax indicates the 
output of the cell, using either Q or QN respectively to 
denote the output Q or 0. This is followed by the name of 
the cell, which is generally constructed by concatenating the 
names of the kernel cells comprised by the cell. The names 
of the kernel cells have been set forth above in Table VIII. 
Thus, for example, a basic cell that comprises a D FIF and 
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a non-inverting buffer would be named .DB (Dk-B); a basic 
cell that comprises a resetable D F/F and an inverting buffer 
would be named .DRBN (DRk-BN); a basic cell that 
comprises a ULG multiplexor and a setable D F/F would be 
named .UDS (Uk-DS); and a basic cell that comprises a 
ULG multiplexor, a D FIF, and a tristatable buffer would be 
named .UDZB (Uk-Dk-ZB). It is noted that some of these 
examples of basic cells include a ULG multiplexor kernel 
cell while others do not, but all of these may be described 
with the syntax. 

In those instances where the syntax is used to describe a 
basic cell comprising a ULG, the number of selection 
control inputs provided to the ULG is n. In a specific 
embodiment, the control inputs are ordered by significance, 
with the most significant control on the left and the least 
significant control on the right. While the syntax is equally 
robust for describing basic cells for any value of n, for 
purposes of explanation the examples provided herein gen- 
erally correspond to cases in which 1153. The states of the 
n control inputs Y dictate which of 2” inputs are passed to 
the output of the ULG. While in some instances, the control 
inputs may be identified individually, in other instances a 
range of control inputs is identified by using a colon in the 
argument of Y. Specifically, “Y[a:b]” is intended to refer to 
the full expression “Y[a] Y[a-1] Y[a-21. . . Y[b+2] Y[b+l] 
Y[b].” The set of parameters 12n-112n-2 . . . I, represents the 
logical function to be applied by the cell, and as discussed 
in greater detail below may comprise a truth table for 
implementing a combinational logic device or may comprise 
an identification of the next state of a sequential circuit. In 
some embodiments, these logical states 12n-112n-2 
be assigned to logical 1’s or 0’s (sometimes referred to 
herein as “base Boolean values”), but may more generally 
include map-entered variables as well. For the basic cell, this 
corresponds to a connection to VDD for a logic 1, to a 
connection to VSS for a logic 0, and to a connection to a 
signal for a mapped entered variable. Parameters such as the 
type of reset, i.e. asynchronous, synchronous, or clock-edge, 
are assigned and enclosed in parentheses at the end of the 
statement. 

This formalism permits the expression of a number of 
manipulations that are possible with embodiments of the 
invention and which are discussed in detail in order to enable 
one of skill in the art to perform such manipulations. The 
nature of such manipulations may be clarified with a simple 
example for the combinational logic function C=A+B. This 
logic function may be expressed in a concise hardware 
description language (“CHDL”) formalism as follows: 

C .UB A B VDD VDD VSS VDD; 
That this is a correct implementation of the logic function in 
which C is equal to “Aor not B” is evident by comparing the 
entries in the expression to the syntax discussed above. The 
name of the cell . UB indicates that the function is imple- 
mented with a cell that comprises a universal logic gate U 
and a non-inverting buffer B. On either side of the name, the 
parameters involved in the function are denoted, with the 
left-most component of the expression C indicating the 
output, and the variables to the right of the name A and B 
indicating the inputs. The following four entries before the 
terminator define the following truth table 12n-l12n-2. . . I, for 
the combinational function, with VDD being equivalent to a 
logic 1 and VSS being equivalent to a logic 0. The individual 
truth-table states I are noted: 
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TABLE IX 

C A B 

I, = 1 0 0 
I, = 1 0 1 
I, = 0 1 0 
I, = 1 1 1 

When logical operations are performed on expressions in 
this formalism, they indicate directly how the resulting 
expression may be implemented with basic blocks in accor- 
dance with an embodiment of the invention. For example, a 
simple logical operation is inversion of the output, which 
may be implemented by using an inverting buffer: 

CN .UBN A B VDD VDD VSS VDD; 
As can be seen, the same truth table as that defined in Table 
IX is used for implementing C, but the implementation is 
with a basic cell comprising a universal logic gate U and an 
inverting buffer BN. An alternative implementation of C 
uses the same .UB basic cell, but instead uses a different 
truth table by inverting all of the input states: 

CN .UB A B VSS VSS VDD VSS; 
In other instances, alternative implementations of the 

same logical function may be achieved by performing 
operations on the control inputs. For example, the control 
inputs A and B may be permuted. Permuting the control for 
the function acts to rearrange the truth table. In an embodi- 
ment that includes this example, the truth-table states I, and 
I, remain in the same position because they represent states 
where both controls are high or both are low. States I2 and 
11, which represent states where one control is high and the 
other is low, are interchanged: 

C .UB B A VDD VSS VDD VDD; 
A permutation of the truth table may also result from 

inversion of one or more of the control inputs. In this 
example, inverting the least significant control B inter- 
changes neighboring states in the truth table: 

This alternative expression for may be viewed as defining an 
implementation for C that uses the general truth table for 
X+Y, but with control inputs defined so that X=A and Y=B. 
If the next significant control A is inverted in the original 
expression instead, neighboring pairs of states in the truth 
table are interchanged: 

C .UB A BN VDD VDD VDD VSS; 

C .UB AN B VSS VDD VDD VDD; 
It is evident that this expression implements the general truth 
table for x+Y, but with control inputs defined so that X = x  
and Y=B. If both control inputs are inverted, 

C .UB AN BN VDD VSS VDD VDD; 
The truth table in this expression implements the general 
function x+Y, but with control inputs defined so that X = x  
and Y=B. 

The CHDL syntax also permits control variables to be 
entered as elements in the truth-table states. For example, 
the syntax makes it easy to recognize that the result C is high 
whenever A is high and that C takes the value of BN when 
A is low. This may be expressed in this CHDL syntax as 

C .UB A VDD BN; 
and corresponding to the truth table shown in Table X: 
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TABLE X 

C A 

1 0 - I, = 

I, = B 1 

Equally, the syntax makes it easy to recognize that the result 
C is high whenever B is low and that C takes the value of 
A when B is low. This may be expressed in this CHDL 
syntax as 

and corresponding to the truth table shown in Table XI: 
C .UB B A VDD; 

TABLE XI 

C B 

I, = A 0 
I, = 1 1 

Not only does the CHDL syntax presented here easily admit 
control variables to be presented as map-entered variables, 
but this same ability is manifested in the implementations 
with the cells described above. In particular, either of the two 
above examples may be as easily implemented using a 
combination of a ULG and buffer (“.UB”) as is any truth 
table that uses the basic Boolean variables 0 and 1 exclu- 
sively. Implementation of all of these logical functions is 
simply a matter of assigning the truth-table states and 
control variables in accordance with the universal logic 
elements as described above. 

The formalism thus makes clear that embodiments of the 
invention permit the implementation of a diverse range of 
logical functions. Specific examples of some of these prop- 
erties are now discussed in greater detail. In discussing 
logical properties that may be exploited in certain embodi- 
ments of the invention, reference is sometimes made to the 
formalism explained above. Such reference is made prima- 
rily for reasons of convenience and is not in any way 
intended to limit the scope of the invention. In particular, it 
will be evident to those of skill in the art that it is possible 
to implement each legitimate syntactical expression in the 
formalism with the cells discussed above. Accordingly, the 
logical properties of the formalism correspond directly to 
logical functions that may be implemented with the cell 
arrangements in different embodiments. 

One property of the formalism, and therefore also of the 
cell arrangements, is that no high-level distinction is made 
between combinational and sequential circuits; both such 
circuits are merely special cases of the more general types of 
logical functions that may be implemented. Acombinational 
circuit is one in which the output(s) are predetermined 
functions of the input(s). As such, the logic implemented by 
a combinational circuit can be represented by a truth table 
setting forth a mapping between all possible Boolean states 
of the input(s) to the Boolean states of the output(s). This 
may be contrasted with a sequential circuit in which the 
logical application of the circuit relies on a history of past 
inputs. The application of such logic may instead be repre- 
sented with a next-state equation that maps the past input(s) 
to the output(s). Embodiments of the invention described 
herein are not restricted either to combinational or sequential 
logic. For example, only slight differences in cells are 
needed to implement the following syntactic CHDL expres- 
sions: 

Q .UB A B VDD VDD C VSS; 
Q .UD A B VDD VDD C VSS CLK, 
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The first of these expressions represents a combinational 
logic function and the second represents a sequential logic 
function. In other embodiments, the formalism and corre- 
sponding cell implementations may include both combina- 
tional and sequential aspects so that a characterization of the 
function is not properly limited to either category. This 
additional flexibility permits certain optimizations, some of 
which are discussed below, that are not available when 
limited to either combinational or sequential logic. 

This additional flexibility also arises in part from the more 
general character of cells made in accordance with embodi- 
ments of the invention to implement selection logic, in 
addition to combinational and selection logic. As used 
herein, a “selection operation” refers to a function in which 
one or more of a plurality of inputs are passed as outputs. In 
certain embodiments, the selection operation passes one of 
a plurality of inputs as an output. Such a selection operation 
differs from a sequential-logic operation because it does not 
depend on a past history of the inputs. It also differs from 
combinational-logic operations, which do not require that 
the output correspond to one of the inputs. This is easily seen 
for an NAND gate, which produces an output 1 in response 
to two 0 inputs; the output does not correspond to either of 
the inputs. It is also true, however, for an OR gate. Although 
in every instance the output of an OR gate is equal to one of 
the inputs, the gate does not act to pass one of the inputs as 
an output; instead, a combinational mapping is performed 
from the inputs to the outputs that happens to include some 
commonality. In addition, selection operations are not lim- 
ited to instances in which the number of inputs is two and/or 
the number of outputs is one. More generally, any plurality 
pin ( 2 2 )  of inputs may be accepted, of which a number pout 
(2  1) are passed. 

Embodiments of the invention also do not limit the inputs 
and/or outputs to the base Boolean values 0 and 1. As noted 
in connection with Tables X and XI and the associated 
syntactic expressions, cells used in embodiments of the 
invention may implement operations in which truth-table 
entries are instead functions of such base Boolean values. In 
this respect, the invention includes embodiments that pro- 
vide for the implementation of Boolean functionals, which 
are defined herein as operations that admit functions of 
Boolean variables among their inputs and/or outputs, in 
addition to admitting base Boolean values among their 
inputs and/or outputs. 

Both the formalism presented herein and the implemen- 
tation with the cells described above permit a further gen- 
eralization that increases the flexibility of digital design and 
its optimization. Such a generalization may be understood 
with reference to what are defined herein as higher-order 
Boolean functions. Conventional digital circuit design uses 
only what are referred to herein as zero-order Boolean 
functions, which admit only base Boolean values among 
their input(s) and/or output. In contrast, some embodiments 
of the invention use a first-order Boolean function, which 
corresponds to a Boolean functional and admits zero-order 
Boolean functions in addition to base Boolean values among 
its inputs and/or output(s). Other embodiments use a second- 
order Boolean function, which admits first-order Boolean 
functions, zero-order Boolean functions, and base Boolean 
values among its inputs and/or output(s). In still other 
embodiments of the invention, even greater orders of Bool- 
ean functions are used, such orders admitting all lower 
orders of Boolean functions among their inputs and/or 
output(s) in addition to admitting the base Boolean values 
used in conventional design. All orders of Boolean functions 
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other than zero-order Boolean functions are sometimes 
referred to herein collectively as “higher-order’’ Boolean 
functions. 

This generalization may be illustrated with an example 
based on the C=A+B example discussed earlier: 

J .UB G H VDD VSS F C 
F .UB D E VSS C VDD C 
C .UB A B VDD VDD VSS VDD 
In this example, the third expression corresponds to the 

zero-order function C=A+B, which admits only base Bool- i o  

result with the previously described cells to achieve the 
optimized function. 

A number of the operations that may be performed with 
logical functions as expressed using the formalism described 

5 herein are summarized in FIGS. 9A-9D, which provide flow 
diagrams to explain how some such operations may be 
performed. In different embodiments, various combinations 
of one or more such operations may be performed and the 
invention is not limited to any particular order or number of 
such operations. Accordingly, each of FIGS. 9A-9D indi- 
cates that it may be entered as part of a greater flow of ean vales 0 and 1 among its arguments. Such a function uses operations from a previous transformation, It is not neces- 

a mapping and may be imp1emented sary that a previous transformation necessarily have been 

note that 

gates, such as with an OR gate and a performed in any case, although the indication is included to 

functional, that admits the zero-order function C as one of its is that previous transformations may have been performed, 
arguments, in addition to admitting the base Boolean values. Also, while the flow diagrams in each of FIGS, 9A-9D 
The first expression corresponds to a second-order function shows an exemplary order in which operations may be 
that admits the first-order function F, the zero-order function performed, such an ordering is not necessary and alternative 

first and second expressions thus each correspond to expres- 20 operations may 
sions for higher-order functions. All three of the expressions be performed simultaneously, such as when different parts of 
may be implemented in embodiments of the invention using a large structure are optimized at the Same time, 

FIG. 9A summarizes a number of operations that may the cells as described above. 

be seen with a comparison to the exclusive use of Boolean zs inversions, Accordingly, the method shown in FIG, 9A 

that represent the base perhaps, but not necessarily, after certain previous logical 

0 or 1 bound to it. Boolean minimization or optimization tification is made whether there are any inversions in the 
techniques are based On decomposing the expressions being 30 syntactic expression for removal, If not, the method pro- 
minimized to consider the meaningful possible combina- ceeds to a potentially subsequent transformation at block 
tions of assignment of 0 or 1 to each Boolean variable (with 906, In the event that it is desirable to an inversion, 
the possible existence Of “don’t care” states for Some the method may proceed along one of at least three branches 
variables under some circumstances reducing the meaning- depending on the type of inversion, Branch 903 corresponds 
ful possible combinations downward from the set of all 35 to inversions in the control or state variables y; branch 905 
possible combinations). Higher-order functions allow one to corresponds to inversions in the truth table; and branch 90, 
optimize, or minimize a circuit, without the requirement to corresponds to inversions in the buffer, 
decompose the function result to each possible value and In one embodiment, inversions of the control or state 

with the algorithms described below, one need not know 40 groups in the truth table, The size of the groups to be 
what the value of the functions or variables are; optimization interchanged depends on the significance of the control or 
is performed regardless. In conventional methods limited to state variable to be inverted, Thus, if a control y[k] is to be 
the use of Boolean operators, each variable and function is inverted, groups of size 2k are inverted, This may be 
decomposed into all possible values for the functions and illustrated by considering a cell comprising a ULG and a 
variables, i.e. to define a complete truth table, before any 45 buffer: 
optimization can be performed; in such conventional meth- 
ods one must exhaustively assign a value to all variables and 
functions. 
IV. Optimization 

by embodiments that use cells based on the ULGs and as .UB y[2] y[l] A E G; 
represented by the formalism described permits increased 
optimization. In many instances, these logical operations 
may be used to determine optimized methods of implement- Q y[21 YN[ll y[O1 A E 
ing a given function. Anumber of such logical operations are ss 
illustrated, and it will be understood by those of skill in the 
art that still other logical operations may derive from the 
formalism in other embodiments of the invention. Moreover, Q .UB YN[2] Y[l] Y[O] A B  C D E F G H; 
while the formalism is used as a matter of convenience to Q .UB Y[2] Y[l] Y[O] E F G H A  B C D; 
illustrate the nature of the optimizations, it will be under- 60 The flow diagram in FIG. 9A provides a loop back to 
stood that all the expressions that follow may be imple- block 904 after a particular control has been inverted by 
mented using the previously described cells in the manner interchanging states. This contemplates the possibility of 
explained. This is true even in instances where the expres- performing inversions on multiple controls, which are there- 
sions correspond to functions not accessible by standard fore effected by performing the relevant interchanges in 
Boolean logic. In some cases, use of the formalism shows 65 succession. The interchanges are commutative so that the 
how multiple manipulations may be performed to achieve an resulting syntactic expression is independent of the order in 
optimization, it being necessary only to implement the final which they are performed: 

gate. The second 
expression corresponds to a first-order function, Or  embodiments of the invention 

and the base among its arguments. The embodiments permit alternative orderings, Moreover, in 
embodiments, it is possible that 

One effect Of the to use higher-order functions may 

Operators Operate Only On the base 

co~~ect ive~y be considered to correspond to the removal of 

begins at block 902 with a syntactic expression for a cell, Operations. Such 
Or 1, Or On 

Or 1, i.e. that have had a Of transformations have been effected, At block 904, an iden- 

considering each In Other words, when a circuit variable may proceed at block 908 by interchanging adjacent 

Q .UB Y[2] Y[l] YN[O] A B  C D E F G H; 
In this instance, the least significant control Y[O], defined by 
k=O, is to be inverted so that adjacent states are inter- 
changed: 

In a similar fashion, when k = l  for the control to be inverted, 
adjacent pairs Of states are to be 

The expanded availability of logical operations provided SO 

Q .UB y[21 y[l1 y[o1 c D A B G H E F; 
When k=2 for the control to be inverted, adjacent quads of 
states are to be interchanged: 
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Q .UB YN[2] YN[1] YN[O] A B  C D E F G H; 
Q .UB Y[2] Y[l] Y[O] H G F E D C B A, 

identical, they are conceptually converse because in one 
instance the goal of inverting the truth table is achieved by 
inverting the buffer and in the other instance the goal of 
inverting the buffer is achieved by inverting the truth table. 

As noted with respect to block 908, this aspect emphasizes 
that multiple of these transformations may be used in 
effecting optimizations and that they may be performed in 

instead of performing interchanges. In such cases, the ability 10 truth table; (2) second, permuting the control so that the 
Of embodiments Of the invention to accommodate non- resulting truth table includes sequences that permit the entry 
Boolean selection operations is exploited to achieve greater of control variables; and (3) finally, performing interchanges 
levels of optimization. Within the syntax used to illustrate 
the principles described herein, the identification of an The entry of a control variable into a truth table as a 
inverted control YN with a sequence VSS VDD permits map-entered variable, such as discussed with respect to 
removal of the inversion by entering the control into the block 910 in FIG. 9A not only has the effect of removing an 
truth table: inversion, but also reduces the number of nodes in the cell. 

There are other truth-table sequences that permit optimiza- 
tion by accepting the entry of control variables and thereby 

As indicated, entry of the control in the truth table will 20 reducing the number of nodes. The flow diagram in FIG. 9B 

be achieved. Essentially, the same procedures are followed priate level. 
In the truth as discussed with respect to block 910 for inversions: a 

table to achieve such vss VDD sequences by permuting the truth-table having elements of certain sequences is identified 
25 and permuted to realize those sequences, which are then control: 

optimized by entering the corresponding control variable. A 
simple example corresponds to the example discussed with 
respect to block 910, but without the inversion: 

The resulting expression, which may be implemented using 
the cells as described above, follows from any order of 

interchanges. 
performing the control inversions and respective truth-table 5 Every ‘peration in the 9A cyc1es back to 904. 

The flow diagram Of 9A notes at 910 that in 
Some instances the 
plished by entering the 

Of inversions may be different orders, For example, for some cells, optimization 
might be achieved by: (1) first, inverting a buffer to invert a as a map-entered 

within the truth table to remove other control inversions, 

Q .UB Y[ 11 YN[O] VSS VDD A A, 
Q .UB Y[l] Y[O] A, 

usually also require a repetition of a state A at the appro- provides a general Of how such sequences may 

cases, it may be desirable to 

Q .UB YN[1] Y[O] VSS A VDD A, 
Q .UB Y[O] YN[ 11 VSS VDD A A, 
Q .UB Y[O] Y[l] A, Q .UB Y[ 11 Y[O] VDD VSS A A, 

Q ,UB y[l] y[o] A, In the above progression, optimization of the cell is achieved 30 

by noting that the sequence vss VDD may be achieved In this example, a repetition of A with the sequence VDD 
through a permutation of the truth table and by noting the vss (instead of the sequence vss VDD) is suficient to 
repetition of state A. Permuting the controls results in a truth enter the least-significant control variable into the truth 
table identical to that of the Preceding example, and there- table. This is done with the control variable directly, instead 
fore the least significant control may become a map-entered 35 of with its inversion as was done in block 910, 
variable. Thus, the general procedure illustrated in FIG. 9B begins 

The Same Principles apply with more significant levels of at block 916 with a syntactic expression for a cell, with the 
control, for which optimization may remove an inversion by figure noting that it is possible (but not 
entering the more significant control as a maP-entered embodiments for certain other transformations to have been 
variable under some circumstances. In one embodiment, for 40 performed previous~y with the syntactic expression, At 
example, this is achieved when the less significant controls block 918, existing redundancies in the control are removed, 
are redundant: Such redundancies are manifested by a repetition in the truth 

Q .UB Y[2] YN[1] Y[O] A A A A  VSS VSS VDD VDD; table at the level of the redundant control, i.e. in group of 
Q .UB Y[2] A Y[ 11; size 2k for control Y[k]. A trivial case occurs for the lowest 

in 

The optimization has been achieved by recognizing the 45 level of control: 
existence of an analogous pattern, namely the repetition of 
A at a higher significance level and the existence of the 
sequence VSS VSS VDD VDD. It will now be evident to 
those of skill in the art that permutation of control may be 
used to restructure the truth table to identify such sequences 
and thereby optimize the function by removing the inver- 
sion. In addition, it will also be evident that these principles 
may be applied to any significance level for the control. For 
example, an eightfold repetition of A coupled with the 55 
sequence VSS VSS VSS VSS VDD VDD VDD VDD will 
Permit r m ~ ~ a l  of a YN[21 inversion, Perhaps after Permut- This result simply uses the fact that the higher control level 
ing the controls to achieve such a sequence in the truth table. has no effect, with the output of the cell depending solely on 

At block 912 of FIG. 9A, it is noted that inversion of the the least significant control, similarly, when k=2, the rep- 
truth-table states may be achieved by inverting the buffer in 6o etition of quads of states may permit the removal of y[2]: 
the cell: 

Q .UB Y[O] A A; 
Q .B A, 

This example is trivial because the cell does nothing other 
than produce the result A for every input; control is unnec- 
essary and may be removed entirely. The same principle 
applies, however, for higher levels of control. For example, 
when k=l, the repetition of pairs of states may permit the 
removal of Y[ 11: 

Q .UB Y[l] Y[O] A B  A B ;  
Q ,UB y[o] A B; 

Q .UB Y[2] Y[l] Y[O] A B  C D A B  C D; 
Q .UB Y[l] Y[O] A B  C D; Q .UBN Y[O] AN BN; 

Q .UB Y[O] A B; This result expresses the fact that the output of the cell is 
By inverting the buffer, all entries in the truth table are dependent only on the two lowest control levels and that the 
inverted. Block 914 notes the converse function in which the 65 highest control has no effect. These principles may be 
buffer is inverted by inverting all elements of the truth table. extended to still larger repeated blocks and the consequent 
While the functional effect of blocks 912 and 914 is removal of still more significant control levels. 
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At block 920, permutations may be performed in the 
control to rearrange the truth table to identify sequences that 
permit the entry of the control variables. For the entry of a 
lowest level control, sequences of VDD VSS, coupled with 
a pair of repeated variables AA,  is sought. For the entry of 
the next level control, sequences of VDD VDD VSS VSS, 
coupled with four repeated variables AAAA,  is sought. For 
the next level control, sequences of VDD VDD VDD VDD 
VSS VSS VSS VSS, coupled with eight repeated variables 
AAAAAAAA, is sought. Similar sequences for still higher 
control levels follow the same pattern. At block 922, the 
control variable(s) are entered into the truth table to account 
for these patterns. 

Thus, one example of applying blocks 920 and 922 is as 
follows: 

Q .UB Y[2] Y[l] Y[O] VDD VDD VSS VSS A B A B; 
Q .UB Y[2] Y[O] Y[l] VDD VSS VDD VSS A A B B; 
Q .UB Y[2] Y[O] Y[l] Y[l] A B ;  

In the initial syntactic expression, the sequence VDD VDD 
VSS VSS appears, but it is not possible to remove the k = l  
control because there is no corresponding sequence of four 
repeated variables. The existence of duplicates of both A and 
B, however, suggests that the controls may be permuted to 
achieve sequences of VDD VSS coupled with pairs of 
repeated variables. This is achieved in the second line by 
permuting Y[l] and Y[O]. Accordingly, it is possible in the 
third line to enter two occurrences of the Y[l], which is now 
the lowest level of control, into the truth table. The corre- 
sponding cell is therefore optimized by reducing the number 
of nodes and entering the original Y[l] control variable into 
the truth table. 

Block 924 notes that the process of identifying and 
removing redundancies and permuting control variables to 
permit their entry into the truth table may be repeated to 
achieve further optimizations. The method is thus looped 
until these procedures have optimized the syntactic expres- 
sion in this way as much as desired. At block 926, the 
method thus proceeds to another type of transformation, if 
desired, to effect further optimizations. 

In addition to reducing nodes for a single cell, it is 
possible in embodiments of the invention to provide opti- 
mizations by combining nodes from multiple cells. The flow 
diagram shown in FIG. 9C provides a method corresponding 
to one embodiment for combining nodes. The method begins 
at block 928 with syntactic expressions for multiple cells. As 
for the other optimization procedures, FIG. 9C notes explic- 
itly that prior transformations may have taken place on these 
syntactic expressions, although this is not required. In con- 
sidering whether nodes can be combined, a check is made at 
block 930 whether any of the syntactic expressions outputs 
a control variable present in another of the expressions. If so, 
the control variables are converted into map-entered vari- 
ables at block 932. Examples of combining nodes in which 
such conversions are used are provided below, but the 
principles of combining nodes are initially illustrated for 
cases where there is no such conversion. One method for 
combining nodes is thus summarized by blocks 934 and 936 
in which the control for the multiple syntactic expressions is 
combined and then states in the merged expression are 
defined. For example, consider the following two syntactic 
CHDL expressions in which the output of the second 
expression, A, is one of the inputs to the first expression: 

Q .UB YQ A B ;  
A .UB YA C D; 

The expressions are merged, and the nodes thereby 
combined, in the following way. First, the control is com- 

20 
bined at block 934 by adding the control for the second 
expression to the first expression-YQ then functions as a 
k = l  level control and YA functions as a k=O level control: 

s As can be seen, increasing the level of the YQ control by a 
single level to k = l  acts to duplicate each of the truth-table 
entries. The order in which the controls were combined was 
determined by the relationship between the inputs and 
outputs of the expressions. Specifically, since the expression 

i o  for Q has the output of the expression for A as an input, YQ 
was made the higher-level control and YA the lower-level 
control. After combining the controls, the states are defined 
in the merged expression in accordance with the expressions 
at block 936: 

In this instance, the sequence A A i s  substituted with C D in 
accordance with the syntactic expression for A. The final 
expression achieves the optimization by permitting imple- 
mentation of the resulting expression with a single cell as 

While this example showed how two expressions could be 
merged, it may be applied more generally to any number of 
expressions. For example, the following three expressions 
may be merged in a similar fashion with a sequential 

Q .UB YQ Y A A A B  B; 

15 Q . U B Y Q Y A C D B B ;  

20 described above. 

25 process: 
Q .UB YQ A B ;  
A .UB YA C D; 
B .UB YB E F; 

The second and third expressions both have outputs that 
30 correspond to inputs of the first expression. Accordingly, in 

combining control pursuant to block 934, the control of the 
first expression is used as the highest level control. First, the 
first and second expressions are merged by combining their 
control and defining the states in the merged expression in 

35 the same way as for the two-expression example: 
Q .UB YQ Y A A A B  B; 
Q . U B Y Q Y A C D B B ;  

Subsequently, the third expression is merged into this com- 
4o bination. First, the additional control causes YQ to become 

a k=2 level control and YA to become a k = l  level control, 
with YB remaining as a k=O level control: 

Q .UBYQYAYB C C D  D B B B B; 
As seen in this expression, the additional level of control 

45 causes a duplication of each of the truth-table elements. The 
states in this expression are now defined according to block 
936 in terms of the original third expression by substituting 
pairs of B’s with the sequence E F: 

Q .UBYQYAYB C C D D E F E F; 
so This result thus corresponds to an expression that combines 

the original three expressions and may be implemented as a 
cell in the manner described above. 

Both of these examples have begun with expressions that 
correspond to ULG cells that may be implemented with 

55 multiplexors of the same size. There is, however, no limi- 
tation on embodiments of the invention that requires that 
they be the same size. It is possible to perform optimizations 
for combining nodes that correspond to merging a smaller 
multiplexor into a larger multiplexor or to merging a larger 

60 multiplexor into a smaller multiplexor. This may be seen in 
the following examples in which each of the initial expres- 
sions corresponds to a different-sized multiplexor when such 
an implementation is used. For example, in the set 

Q .UB YQ[l] YQ[O] A B  C D; 
65 A .UB YAE F; 

the second expression has an output that is used as an input 
in the first expression, and corresponds to a smaller-sized 



US 6,792,589 B2 
21 

multiplexor than does the first expression. The nodes are 
combined in the same fashion already described. First, 
control is combined in accordance with block 934: 

Q .UB YQ[l] YQ[O] Y A A A  B B C C D D; 
Subsequently, states are defined in the merged expression, in 
this instance by substituting pairs of A's with E F: 

Q . U B Y Q [ l ] Y Q [ O ] Y A E F B B C C D D ;  
This final expression may thus be implemented as a cell and 
achieves optimizations resulting from merging the smaller 10 
multiplexor into the larger multiplexor. 

It is similarly possible to combine nodes in a fashion that 
corresponds to merging a larger multiplexor into a smaller 
multiplexor in embodiments that use multiplexors: 

5 

1s 
Q .UB YQ A B ;  
A .UB Y a l ]  YaO]  C D E F; 

In this example the output of the expression corresponding 
to the larger multiplexor is an input to the expression 
corresponding to the smaller multiplexor. The nodes are 20 
combined in the same way, by first combining the control of 
the two expressions in accordance with block 934. Since two 
levels of control from the second expression are to be 
combined with the first expression, YQ becomes a k=2 level 
control: 2s 

Q .UB YQ Y a l ]  YaO]  A A A A B  B B B; 
Subsequently, the states are defined in accordance with 
block 936 by substituting quads of A's with C D E F as 
dictated by the second original expression: 30 

Q .UBYQYA[l]YA[O] C D E F B B B B; 
Each of these examples illustrates how to combine nodes 

in different circumstances where the output of one of the 
expressions is one of the inputs to another of the expres- 
sions. In some cases, however, the output of one of the 35 
expressions may be one of the controls of another 
expression, a condition checked for a block 930. In such 
instances, the control variable is converted into a map- 
entered variable at block 932 before combining control and 
defining states. This may be illustrated with the following 40 
two examples, the first of which corresponds to an AND 
sub-function and the second of which corresponds to an OR 
sub-function. 

Thus, consider merging nodes for the following two 

Q .UB YQ[l] YQ[O] A VDD VSS VSS; 
YQ[l].UB YA B C; 

syntactic expressions: 4s 

The circumstance in this example differs from the previous 
examples because the output of the second expression, so 
YQ[l], is a control of the first expression and not an input 
in the truth table entries. The ability of embodiments to 
accept variables in the truth-table elements is thus exploited 
to re-express the first expression with YQ[l] in the truth 
table. First, the control variables are permuted so that YQ[l] 5s 
is the least significant control: 

Then, it is recognized that with YQ[l] as the least significant 
control, the VDD VSS sequence in the Il-Io position simply 
corresponds to YQ[l]. It is also recognized that in the I, 6o 
position, YQ[l] and A are equivalent. Accordingly, after 
converting control variables to map-entered variables pur- 
suant to block 932, the expression may be written 

Essentially, this conversion recognizes the equivalence of 
truth tables XIIA and XIIB: 

Q .UB YQ[O] YQ[l] A VSS VDD VSS; 

Q .UB YQ[O] AYQ[l] VSS YQ[l] YQ[1]; 65 
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Combining control with the second expression at block 934 
results in 

Q .UBYQ[O]AYAYQ[l]YQ[l] VSS VSSYQ[l]yQ[l]  
YQrll  YQrl1; 

Finally, defining states at block 936 so that pairs of YQ[l] 
are substituted with B C as required by the original second 
expression results in the merged expression 

Q .UB YQ[O] AYA B C VSS VSS B C B C; 
The same procedure may also be used for the following 

two syntactic expressions: 
Q .UB YQ[l] YQ[O] VDD VDD A VSS; 
YQ[l].UB YA B C; 

In this example, the question for YQ[l] is the same as in the 
previous example, but the expression for Q is different. 
Permuting the control variables so that YQ[l] is least 
significant, 

Recognizing that the VDD VSS sequence in the Il-Io posi- 
tion corresponds to YQ[l] and that YQ[l] and A in the I, 
position are equivalent results in 

This conversion effectively recognizes the equivalence of 
truth tables XIIIA and XIIIB: 

Q .UB YQ[O] YQ[l] VDD A VDD VSS; 

Q .UB YQ[O] A VDD YQ[l] YQ[l] YQ [l]; 

c) 

Combining control with the second expression according to 
block 934 results in 

Q .UB YQ[O] AYAVDD VDD YQ[l] YQ[l] YQ[l]YQ 

Finally, defining states at block 938 so that pairs of YQ[l] 
are substituted with B C as required by the original second 
expression results in the merged expression 

[I1 yQ[ l l  YQ[11; 

Q . U D Y Q [ O ] A Y A V D D V D D B C B C B C ;  
It is noted that in certain instances, the method outlined in 

FIG. 9C may be combined with moving flip flops forward to 
facilitate reductions. For example, consider application of 
the method to the following set of expressions 

Q .UB Y[2:1] A B C D; 
A .UD Y[O] E F CLK, 
B .UD Y[O] G H CLK, 
C .UD Y[O] I J CLK, 
D .UD Y[O] K L CLK, 

As previously mentioned, the notation Y[2:1] is equivalent 
to the expression Y[2] Y[l]. This set of expressions could be 
implemented using five cells, one that comprises a ULG and 
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a buffer and four that comprise a ULG and a FIF. The result 
of moving the flip flops forward is 

Q .UD Y[2:1] A B  C D CLK, 
A .UB Y[O] E F; 
B .UB Y[O] G H; 
C .UB Y[O] I J; 
D .UB Y[O] K L; 

Accordingly, applying the method of FIG. 9C to combine 
the nodes results in 

This expression may be implemented with a cell comprising 
a ULG and a D FIF in certain embodiments of the invention. 

Thus, the method outlined in FIG. 9C permits nodes to be 
reduced from multiple syntactic expressions. This includes a 
variety of different circumstances, including cases where 
there are arbitrarily many syntactic expressions, where some 
of the expressions correspond to implementations of differ- 
ent sizes, and cases where some of the expressions have 
outputs that correspond to either inputs or controls of other 
expressions. After nodes have been merged, the method may 
proceed to another transformation at block 938, although 
this is not a requirement. 

Additional optimization functions may be realized by 
using the set and reset facilities that are provided in the 
formalism and which may be implemented by using those 
facilities in cells according to embodiments of the invention. 
The use of set and reset facilities are summarized in FIG. 9D 
and arise primarily when half the truth table states are either 
high or low. Thus, a method for optimizing begins with a 
syntactic expression for a cell at block 940, with FIG. 9D 
noting explicitly that previous transformations may also 
have been performed on the cell expression, although this is 
not a requirement. Acheck is made at block 944 whether half 
the truth table states are low. If so, the control variable may 
be changed to a reset to a F/F in accordance with block 946. 
For example, consider the syntactic function 

In this example, a cell that implements this function com- 
prises a ULG and a D F/F. As previously mentioned, the 
notation Y[2:0] is equivalent to Y[2] Y[l] Y[O]. Half of the 
truth table states in this expression are low, i.e. VSS, so that 
the highest level control may be entered into the map as a 
reset input to the FIF: 

The name of the cell explicitly notes that a resetable D FIF 
(DR) is used and the reset has been noted. This function may 
then be implemented using the cells described above. 

FIG. 9D notes at block 942 that in some instances it may 
be useful to perform permutations of the control variables to 
put the truth table into a form that allows using the reset 
input for optimization. If half the truth table states are low, 
but do not appear as a group, they may be aligned with the 
permutations. For example, the function 

has half of its truth table states low, but they are not aligned. 
Interchanging the control variables aligns them 

so that the most significant control variable may be entered 
into the map at block 946 as a reset input to the FIF: 

Note that in this example, the lack of alignment amon the 
low states has resulted in Y[O] being entered into the map as 
part of the optimization rather than Y[l]. 

Similar optimizations may be achieved if half the truth 
table states are high, as checked at block 948. If so, 

Q .UD Y[2:0] E F G H I J K L CLK, 

Q .UD Y[2:0] VSS VSS VSS VSS A B C D CLK, 

Q .UDR Y[l.O] A B C D Y[2] CLK (RST='C'); 

Q .UD Y[l] Y[O] VSS A VSS B CLK, 

Q .UD Y[O] Y[l] VSS VSS A B CLK, 

Q .UDR Y[l] A B Y[O] CLK (RST='C'); 

24 
permutations of the control variables may be performed at 
block 950 to align the high states and the control variable 
entered into the map as a set input to a F/F at block 952. For 
example, consider the function 

Half of the states in the truth table are high, i.e. VDD, so that 
optimization with a set input may be achieved. Permuting 
the control variables to align the high states in accordance 
with block 950 results in 

Q .UD Y[O] Y[l] VDD VDD A B  C L K  
Entering the most significant control as a map-entered 
variable as a set input to the F/F results in 

This function may then be implemented using the cells 
described above in an embodiment. 

Still other combinations of expansion, inversion, and/or 
permutation may be used to achieve the conditions for using 
set or reset for optimization. An example that illustrates 
several of the optimization manipulations discussed above 

5 Q .UD Y[l:O] VDD A VDD B CLK, 

lo 

Q .UDS [ l ]  A B Y[O] CLK (SET='C'); 

2o begins with the syntactic expression 
Q .UD AN VSS NOTLRESET CLK, 

Optimization of this function may proceed by first expand- 
ing the NOT RESET as a control variable: 

Q .UD AN NOTLRESET VSS VSS VDD VSS CLK, 
Inversion of the two control variables in accordance with 
FIG. 9A results in two interchanges of the truth table, a first 
interchange based on single entries and a second interchange 
based on pairs: 

Interchanging the controls to prepare for entering A as a 
map-entered variable results in 

The presence of the VDD VSS sequence and the repeated 
35 VS S element permits the A control variable to be entered 

into the map in accordance with FIG. 9B: 

It is now apparent that since there are only two states in the 
truth table and one of them is low, that half the states are low 

40 and the control variable may be entered into the map as a 
reset input to the F/F: 

2s 

3o Q .UD A RESET VSS VDD VSS VSS CLK, 

Q .UD RESET A VSS VSS VDD VSS CLK, 

Q .UD RESET VSS A CLK, 

Q .DR A RESET CLK (RST='C'); 
Since all of the control variables have been entered into 

the map, there is no need for a ULG element in implement- 
45 ing this optimized expression. Instead, it may be imple- 

mented in one embodiment using only a resetable D F/F, 
even though the original expression corresponded to an 
implementation comprising both a ULG and a D FIF. 

Each syntactical expression of the formalism may be 
SO viewed as an entry for a ULG netlist that defines a digital 

circuit. The ULG netlist uses basic cells and follows the 
CHDL syntax. Such a ULG netlist may be at least partially 
optimized by successively performing some of the indi- 
vidual  manipulations described above. In some 

ss embodiments, the resulting optimized ULG netlist may be 
implemented directly using the cells described above. In 
other embodiments, however, the manipulation of the ULG 
netlist may be viewed as intermediate step in optimizing a 
digital design that has been expressed in another netlist 

60 format. In such instances, the other netlist format using 
another cell library and/or another syntax (e.g., VHDL or 
Verilog) is initially translated to the ULG netlist format. 
After performing some optimization steps, the optimized 
ULG netlist may be translated back into the original format 

65 for implementation. In this way, an embodiment is provided 
that achieves optimization of digital designs within preex- 
isting netlist formats. 
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There are a variety of ways in which the individual fanout nodes. A check is first performed at block 1036 to 
manipulations of the syntactic expressions comprised by a identify whether the ULG netlist includes any fanout nodes, 
ULG netlist may be performed and the degree to which the in which case they are reduced at block 1040 by performing 
corresponding digital design is optimized may depend on permutations and reductions as described in connection with 
how those manipulations are executed. While in some s FIG. 9C. The loop between blocks 1036 and 1040 is 
instances it is possible for the manipulations to be performed included because the reductions performed at block 1040 
by hand by a digital designer, it is expected that at least some may produce some new fanout nodes that may be identified 
level of automation may be used. In one embodiment, for and merged through additional permutations and reductions. 
example, a computer program may be provided that allows The method thus loops until no fanout nodes are identified 
a digital designer to select the types of manipulations to be i o  at block 1036. 
performed and sections of the ULG netlist on which to After the fanout nodes have thus been merged, a check is 
perform them, with the execution of the manipulations being made at block 1044 to identify syntactic expressions corre- 
performed automatically. In another embodiment, a prede- sponding to synchronous cells in which half the truth-table 
termined algorithm is used in a completely automated way states are low. If such an expression is identified, the 
to perform the manipulations or optimizations. is corresponding control variable is moved to be a reset input 

One example of such a predetermined algorithm is illus- at block 1048. A method for doing so is described in 
trated with the flow diagram provided in FIG. 10, although connection with FIG. 9D and may include performing 
it will be appreciated by those of skill in the art that permutations to align the low truth-table states. A similar 
numerous other algorithms may alternatively be used. In check is made at block 1052 to identify syntactic expressing 
some specific instances, alternative algorithms use the same 20 corresponding to synchronous cells in which half the truth- 
manipulations but perform them in a different order. In some table states are high. If such an expression is identified, the 
other specific instances, alternative algorithms use a differ- corresponding control variable is move to be a set input at 
ent set of manipulations. The algorithm shown in FIG. 10 block 1056. A method for doing so is also described in 
may begin at block 1004 by translating an existing netlist to connection with FIG. 9D and may include performing 
a ULG netlist if the design to be optimized was not initially zs permutations to align the high truth-table states. 
created using the ULG formalism. In one embodiment, At block 1060, the syntactic expressions are grouped by 
translating from the existing netlist to the ULG netlist is common inputs. Such grouping permits identification of 
performed as a one-to-one translation between syntactic subfunctions at block 1064. The common subfunctions have 
expressions. For one embodiment, this translation may be shared characteristics that may be extracted before reducing 
viewed conceptually in terms of the elements used in that 30 other nodes. At block 1068, buffers are made to be inverting 
embodiment to implement the original and ULG netlists- buffers. 
every logic gate, such as NAND, OR, etc. is converted into If the original ULG netlist produced at block 1004 was 
a multiplexor-based implementation amenable to optimiza- nonoptimal, performing the above manipulations may pro- 
tions provided by the syntactic manipulations discussed duce a different ULG netlist that is amenable to implemen- 
above. 3s tation with smaller area, greater speed, and/or lower power 

At block 1008, data and control elements are discerned in requirements. In some embodiments, it is possible that not 
the resulting ULG netlist. The distinction between such data all of the manipulations will be performed, that some may be 
and selection control elements was previously discussed performed multiple times, and that they may be performed 
with respect to Table VIII. In one embodiment, such dis- in a different order than described. Once the method has 
cernment may be performed with a high-level design lan- 40 produced a new ULG netlist, it may be implemented at block 
guage. In certain embodiments, there are additional advan- 1072 by translating the syntactic expressions in the ULG 
tages in the subsequent optimization where the data and netlist with the cells described above. In such embodiments, 
control are identified from the original behavioral netlist. the method functions not only to optimize the digital design 
Once the data and control elements have been identified, the but also to provide a multiplexor-based implementation of it. 
operations identified in blocks 1016-1068 may be per- 4s In some alternative embodiments, the resulting ULG netlist 
formed by using the syntactic manipulations described may be amenable to translation back into the original netlist 
above. Thus, at block 1016, connection cells to base Boolean syntax for implementation using Boolean logic gates. In 
values are removed by incorporating the corresponding these embodiments, the method may be viewed as providing 
functions into the syntactic expressions. Similarly, non- an optimization of a digital design while retaining its under- 
inverting buffers are removed at block 1020 and also incor- SO lying structural characteristics. 
porated directly into the syntactic expressions. At block In some embodiments, it is desirable for the techniques 
1024, inverters are removed by syntactically inverting the used for the syntactic manipulations to be embedded in an 
relevant data elements in individual syntactic expressions. optimization tool or synthesizer. Accordingly, the methods 
The removal of redundant nodes at block 1028 may proceed of the invention for converting a netlist into a ULG netlist 
by reducing, combining, and permuting nodes in the syn- ss and for optimizing the ULG netlist may be performed by a 
tactic expressions. Methods for such reductions, computer, one example of a suitable configuration for which 
combinations, and permutations for certain embodiments 
were described above in connection with FIGS. 9B and 9C. 
At block 1032, inversions are removed. The inversions 
removed may include control/state variable inversions, truth 60 
table inversions and buffer inversions, for which methods of 
removing were described above in connection with FIG. 9A. 

A loop comprising blocks 1036 and 1040 may be 
executed to identify and merge fanout nodes. A “fanout 
node” describes a configuration in which a single output is 65 
directed to multiple parts of truth tables and, in some 

is shown in FIG. 11. This figure broadly illustrates how 
individual system elements may be implemented in a sepa- 
rated or more integrated manner. The computer 1100 is 
shown comprised of hardware elements that are electrically 
coupled via bus 1112, including a processor 1102, an input 
device 1104, an output device 1106, a storage device 1108, 
a computer-readable storage media reader 1110a, a commu- 
nications system 1114, a processing acceleration unit 1116 
such as a DSP or special-purpose processor, and a memory 
1118. The computer-readable storage media reader lllOa is 

instances, optimizations may be realized by merging such further connected to a computer-readable storage medium 
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1110b, the combination comprehensively representing ASIC cell libraries that include ULG circuits. In one 
remote, local, fixed, and/or removable storage devices plus embodiment, the ULG circuits come in various sizes, that 
storage media for temporarily and/or more permanently have between two and eight inputs and between one and 
containing computer-readable information. A communica- three select lines. 
tions system 1114 may comprise a wired, wireless, modem, 5 The extensive use of ULGs or selection circuits in this 
and/or other type of interfacing connection. invention could be characterized in a number of ways in the 
ne computer 1100 also comprises software elements, various embodiments, those characterizations include: 

shown as being currently located within working memory (1) A digital IC design using an ASIC cell library that 
1120, including an operating system 1124 and other code includes a proportion of cells with selection circuits. In 

selection circuits in the ASIC cell library could include, methods of the invention. It will be apparent to those skilled for example, 5% or more, 10% or more, 25% or more, in the art that substantial variations may be used in accor- 50% or more, 75% or more, 80% or more, 90% or 
more. dance with specific requirements. For example, customized 

(2) A digital IC design using an ASIC cell library that hardware might also be used and/or particular elements 

includes a percentage of basic cells that each include might be implemented in hardware, software (including IS 

two or more kernel cells. For example, that percentage portable software, such as applets), or both. Further, con- 
could be more than 5%, lo%, 20%, 30%, 40%, 50%, nection to other computing devices such as network input/ 

output devices may be employed. 60%, 70%, 80%, or 90%. 
EXAMPLE (2) A digital design that includes a proportion of selection 

circuits. Where the proportion is defined in terms of 
The method described with respect to FIG. 10 was used circuit area, power consumption or number of kernel 

to optimize a netlist for a microcontroller. A synthesized cells. In various embodiments, the proportion of a 
netlist of commercial library cells was translated to the ULG digital design that includes selection circuits could 
netlist formalism and optimized by performing the described include 1% or more, 2% or more, 5% or more, 10% or 
syntactic manipulations. The size of implementing the opti- zs more, 20% or more, 30% or more, 40% or more, or 
mized ULG netlist with the cells described herein was then 50% or more. 
compared with the size of the original implementation. The (3) A digital design implemented in a semiconductor 
overall size was reduced by about 37%, a significant reduc- circuit where the digital building blocks include 
tion. memory cells, one input Boolean operators and selec- 
V. Digital Design with Syntactic Manipulation 30 tion circuits. The selection circuits are non-Boolean 

Referring next to FIG. 12, a flow diagram of an embodi- operators and have three or more inputs. In some cases, 
ment of a process for preparing a ULG ASIC cell library is there could be a small proportion of the digital building 
shown. In this embodiment, a new fabrication process is blocks could be Boolean operators, such as 1% or less, 
being adapted to use the kernel cell/basic cell topology. The 2% or less, 5% or less, 10% or less, or 20% or less. 
depicted portion of the process begins in step 1204 where a 35 Those digital designs could be embodied in the form of, 
layout engineer or technician analyzes the layout rules for for example, a structural netlist, a behavioral netlist, a HDL 
the target fabrication process. The fabrication process could netlist, a full-custom ASIC, a semi-custom ASIC, an IP core 
have different amounts of metalization layers, different circuit, an integrated circuit, a hybrid chip, one or more 
semiconductor compositions, different transistor types, and masks, a FPGA, or a circuit card having a number of 
different topologies such as SOI, etc. that are considered 40 integrated circuits. The full-custom and semi-custom ASICs 
during layout. The kernel cells are laid out, at least partially, are defined as custom integrated circuits herein and could 
by hand to optimize the circuitry in step 1208. Some use at least some standard cells. Structural netlists enumer- 
embodiments could start the kernel cell layout with a ate low-level cells to use and how they are interconnected. 
computer routed design that is hand-customized. Care is Behavioral netlists have high-level descriptions of the func- 
taken to have kernel cells of a consistent height and to 45 tionality of a circuit similar to high-level programming 
adhere to abutment guidelines such that clock signals and languages. Case statements, IF-THEN-ELSE statements can 
some of the I/O are latitudinally aligned. Other embodi- be easily translated from behavioral constructs to ULG 
ments could rely upon autorouting entirely to build the circuits. Examples of HDL netlists include RTL, VHDL, 
kernel cells. Verilog and CHDL. The HDL netlists may be high-level 

The kernel cells can be assembled in a number of ways to SO behavioral netlists or low-level structural netlists. ASIC 
potentially create hundreds of basic cells 100 in the ULG designs can be full-custom or semi-custom designs. The 
ASIC cell library. The basic cell configurations are specified full-custom designs have a full set of masks done for each 
in step 1212. This could be done by editing a script fed to the design, whereas the semi-custom designs have some reus- 
tool that combines the kernel cells into basic cells. In step able masks that define an array of gates that are custom 
1216, the kernel cells are automatically assembled into basic ss interconnected with some unique masks. Where a semi- 
cells 100 in this embodiment. Some embodiments could custom ASIC is done, the gates would include ULG circuits. 
assemble the kernel cells manually or in-art manually. Once IP core circuits are netlists or maskwork that define a 
the basic cells are generated, they are verified in step 1220. reusable function such as a microprocessor, bus interface, 
This verification validates the digital and analog perfor- etc. that is typically provided by a third-party vendor. An 
mance of the basic cells. Any problems uncovered in veri- 60 integrated circuit is simply a semiconductor chip. Where 
fication can be fixed in the kernel and/or basic cells. To more than one chip is in a package, that package is referred 
complete the ULG ASIC cell library, any specialized cells to as a hybrid integrated circuit or multi-chip-module. Cir- 
are laid-out in step 1224. cuit cards can couple together a number of integrated 

In one embodiment, selection logic is used in digital circuits soldered thereon, where the integrated circuits use 
circuits to replace some or all combinatorial logic. A sig- 65 ULGs. 
nificant proportion of the basic cells use a ULG 104. In There are several approaches to integrating syntactic 
contrast, conventional semiconductor circuits do not use manipulation into digital design. In some embodiment, the 

1122, such as a program designed to implement optimization 10 various embodiments, the proportion Of the with 

2o 
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designer anticipates using syntactic manipulation at the start 
of the design process. Using HDL constructs, such as case 
statements, allows easy mapping to the HDL ASIC cell 
library. Digital designers often mix-and-match tools from 
several vendors to develop a design flow suited to a par- 
ticular digital designer. With that in mind, the various below 
embodiments integrate the concepts of this invention in 
various ways and to varying degrees. As those skilled in the 
art can appreciate, the processing of the design can be 
somewhat automated by using scripts to run the various 

30 
embodiment of the ULG ASIC cell library. This embodiment 
of the ULG cell library can be somewhat simplified as the 
variation used in an ASIC could be unnecessary when only 
optimizing. Syntactic manipulation is performed upon the 

s intermediate netlist according to the optimization priorities, 
if specified. Some embodiments could perform a default 
optimization that may or may not be modifiable by the 
digital designer. Once the intermediate netlist is optimized, 
it is converted to an optimized structural netlist that uses the 

i o  conventional cell library 1324. 
tools on various design files. Static & dynamic timing analysis is run on the optimized 

With reference to FIG. 13, a block diagram of an embodi- structural netlist. The static timing analysis takes into 
ment of a design flow 1300 that uses syntactic manipulation account timing relationships for the optimized structural 
after synthesis is shown. Included in this design flow are an netlist and identifies portions of the circuit that may fail to 
HDL entry tool 1304, a synthesis tool 1308, a conventional is meet the timing requires of the circuit. Parameters can be 
cell library 1324, an optimization tool, a static & dynamic entered into the synthesis and/or optimization tools 1308, 
timing analysis tool 1316, and a place & route tool 1320. In 1312 to prioritize certain portions of the circuit to make 
this embodiment, the digital designer uses all the tools of meeting static timing requirements easier. 
their normal design flow, but includes the optimization tool Dynamic timing analysis can come in a few forms. Input 
1312 after the synthesis tool 1308. The optimization tool 20 waveforms can be designed to stimulate the design, where- 
1312 performs the syntactic manipulation in this design after the digital designer checks for correct output wave- 
flow. forms. To automate this process, test vectors can be devel- 

The HDL entry tool 1304 is a software edit tool that oped and applied to the inputs of the circuit whereafter 
allows the digital designer to enter HDL as a behavioral output test vectors are tested against the actual output. 
netlist. The HDL could be VHDL, Verilog or Concise zs Discrepancies are noted as errors and fixed by tweaking the 
Hardware Description Language (CHDL). CHDL is a HDL behavioral code and synthesisioptimization tools 1308,1312 
that is tuned for the design constructs beneficial for designs such that errors are not introduced into the process. 
with ULG cells. The HDL entry tool 1304 could receive Once the digital designer is happy with the structural 
feedback from the other tools to identify portions of the code netlist, the place & route tool 1320 performs a physical 
that have problems found by those other tools. Other design 30 layout of the circuit. Alocation for each cell in the optimized 
capture tools could be used instead of a HDL entry tool, for structural netlist is chosen and traces are laid-out to inter- 
example, state machine tools, RTL tools, schematic capture connect those cells according to the netlist. These types of 
tools, etc. Dynamic timing analysis could be performed on tools 1320 are automated or semi-automated. More accurate 
the behavioral netlist to confirm proper functionality. timing values are available after place & route because the 

A behavioral netlist is converted by the synthesis tool 3s trace lengths interconnecting the cells is known. Further 
1308 into a structural netlist using the conventional cell staticidynamic analysis 1316 can be performed to assure that 
library 1324 in this embodiment. The behavioral constructs new errors weren’t introduced during the place and route 
are converted to Boolean constructs and optimized. From process. Once a suitable layout is achieved, masks can be 
the conventional cell library 1324, cells are used for the produced and fabrication can start. Dynamic testing on the 
optimized Boolean constructs. In some cases, typical timing 40 resulting chip may be performed to test functionality after 
values are used by the synthesis tool 1308 to identify fabrication. 
potential problems in the conversion process using static Referring next to FIG. 14, a block diagram of another 
timing analysis. Dynamic timing analysis could also be embodiment of a design flow 1400 is shown that uses 
performed on the structural netlist to confirm functionality syntactic manipulation and the ULG ASIC cell library. In 
wasn’t compromised during the conversion. 4s this embodiment, a ULG cell library 1404 is used during 

The optimization tool 1312 uses syntactic manipulation to synthesis 1308. By targeting the ULG cell library, the 
improve the design in at least one of the following areas: synthesized structural netlist is in a format readily under- 
power consumption, leakage current, fanout, chip area, stood by the optimization tool 1312 such that a conversion 
number of masks, number of process steps, yield, to an intermediate netlist is unnecessary. The optimization 
capacitance, inductance, resistance, glitches, etc. In this SO tool 1312 performs the syntactic manipulation before con- 
embodiment, variables can be fed to the optimization tool verting from the intermediate format to the conventional cell 
1312 in order to set the priorities among these design factors. library 1324. The optimized structural netlist is uses the 
These variables could be set on a scale of one-to-ten to conventional cell library 1324, which is understood by the 
indicate relative value along a sliding scale. place & route tool 1320 and the fab or foundry. 

With reference to FIG. 15, a block diagram of another 
use of alternative cells in the ULG library. Certain cells embodiment of a design flow 1500 is shown that uses the 
could be optimized for various design factors such as power ULG ASIC cell library 1404 for the final netlist used by the 
consumption, leakage current, fanout, chip area, number of fab or foundry. In this embodiment, the ULG ASIC cell 
masks, number of process steps, yield, capacitance, library 1404 has been produced for the target process at the 
inductance,  resistance,  gli tches,  etc.  During the 60 fab or foundry. The synthesis tool 1308 converts the behav- 
optimization, the alternative cells could be used based upon ioral netlist into a synthesized structural netlist that uses the 
how the digital designer set the priority variables. ULG ASIC cell library 1404. The optimization tool can 

In this embodiment, the optimization tool optimizes the process the netlist without any conversion between cell 
structural netlist from the synthesis tool to produce an libraries such that the resulting optimized structural netlist 
optimized structural netlist that uses the same conventional 65 also uses the ULG ASIC cell library. 
cell library 1324. The synthesized structural netlist is read Referring next to FIG. 16, a block diagram of yet another 
and converted into an intermediate netlist that uses an embodiment of a design flow 1600 is shown that combines 

Some embodiments could optimize for various factors by ss 
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synthesis and syntactic manipulation into a single tool 1604. 
The synthesis & optimization tool 1604 takes the behavioral 
netlist from the HDL entry tool 1304 and converts it to an 
intermediate structural netlist using the ULG ASIC cell 
library 1404. The intermediate structural netlist is optimized 
using syntactic manipulation with the tool 1604 to produce 
an optimized structural netlist that uses the ULG cell library 
1404. In this embodiment, the HDL entry tool 1304 uses 
CHDL. 

In some embodiments, the synthesis & optimization tool 
1604 may not have a ULG cell library 1404 for the target 
ASIC process. In that case, the synthesis & optimization tool 
1604 would convert the intermediate netlist to an optimized 
netlist using the conventional cell library 1324. 

With reference to FIG. 17, a block diagram of still another 
embodiment of a design flow 1700 is shown that uses an 
interactive direct verification tool 1704 throughout the 
design flow 1700. Verification allows debugging a digital 
design throughout the design flow. In this embodiment, the 
interactive direct verification tool 1704 tracks the evolution 
of the design from a behavioral netlist through to a structural 
netlist that has been placed and routed. The HDL entry tool 
uses CHDL and the design flow uses the ULG cell library 
1504 for the target fabrication process. The various forms of 
the design embodied in the evolving netlist are accessible to 
the interactive direct verification tool 1704. 

Any identified portion of the circuit can be traced through 
the various steps of the design flow 1700 using the interac- 
tive direct verification tool. For example, a case statement in 
the CHDL behavioral code can be followed through to the 
various structural netlists to see how that case statement was 
implemented. Conversely, a portion of a structural netlist 
can be followed back to preceding structural netlists or even 
the behavioral netlist. 

Referring next to FIG. 18, a block diagram of still another 
embodiment of a design flow 1800 is shown that uses an 
interactive direct verification tool 1804 throughout the 
design flow and after fabrication. This embodiment shows 
the fabrication 1808 and final test 1812 in the design flow. 
The fabrication 1808 is performed after the design is thor- 
oughly tested. After production, the chips can be tested 
again. Test vectors are applied to the chip inputs and scan 
ports in the dynamic analysis in final test 1812. Where an 
error can be isolated to a pin or node in final test 1812, the 
interactive direct verification tool 1804 can show the engi- 
neer the progression of the design that relates to that failure. 

With reference to FIG. 19, a flow diagram of an embodi- 
ment of a design process 1900 is shown. In the depicted 
portion of the design process 1900, the sequential steps are 
show along with the test and rework steps. In step 1904, the 
digital design is entered using an entry tool. A HDL such as 
Verilog, VHDL or CHDL is used to enter the behavioral 
netlist for the circuit being designed. Throughout the design 
entry phase, dynamic timing analysis is performed in step 
1916 to verify that the behavioral netlist is probably being 
prepared correctly. At this stage, the dynamic timing analy- 
sis is probably done in a waveform simulation tool. Various 
scenarios are designed with the simulation tool to test 
various conditions of the digital design. During the timing 
analysis of step 1916, problems could be found in step 1906. 
Rework of the behavioral code could be performed by 
returning to step 1904 where problems are found. Processing 
continues from step 1916 to step 1908 where no problems 
are found. 

Synthesis and optimization is performed in step 1908 to 
convert the behavioral netlist to an optimized structural 
netlist. Conversion between cell libraries can also be per- 

32 
formed in this step. Some embodiments may perform the 
synthesis and optimization as separate steps. Static and 
dynamic timing analysis are performed in steps 1912 and 
1916. If problems are found, rework may be done in step 

5 1904 or step 1908. Rework in step 1908 could include 
changing parameters fed to the synthesis & optimization tool 
1604 or correcting problems with libraries. 

Once generally satisfied with the optimized structural 
netlist, processing continues to step 1920 for place & route 

lo of the design. In this step, the trace lengths and drive 
requirements are more accurately analyzed to improve the 
verification that can be performed on the digital design. 
Once again static and dynamic timing analysis is performed 
in step 1912 and 1916 to verify the laid-out design still 
behaves properly. Where there are problems as detected in 
step 1906, rework could be performed in steps 1904, 1908 
or 1920. The interactive direct verification tool 1804 can 
assist the digital designer find where flaws were likely 
introduced into the netlist. Where there are no problems after 
layout, the design is fabricated in step 1924. 

Having described several embodiments, it will be recog- 
nized by those of skill in the art that various modifications, 
alternative constructions, and equivalents may be used with- 
out departing from the spirit of the invention. Accordingly, 
the above description should not be taken as limiting the 
scope of the invention, which is defined in the following 
claims. 

1s 

20 

2s 

What is claimed is: 
1. Amethod for designing a digital integrated circuit chip, 

the method comprising: 

identifying a logical structure to be implemented by the 
digital integrated circuit chip; 

representing the logical structure in terms of a plurality of 
logical operations, wherein the plurality of logical 
operations comprises at least 5% selection operations, 
each such selection operation passing at least one of a 
plurality of inputs as an output; 

performing syntactic manipulations of the logical opera- 
tions to reduce a number of nodes of the logical 
structure; and 

determining logic cells that correspond to an implemen- 
tation of the syntactically manipulated logical opera- 

2. The method recited in claim 1 wherein each such 
selection operation passes one of the plurality of inputs as 
the output. 

3. The method recited in claim 1 wherein at least one of 
so the plurality of inputs to one of the selection operations 

comprises a base Boolean value. 
4. The method recited in claim 1 wherein at least one of 

the plurality of inputs to one of the selection operations 
comprises a higher-order function of base Boolean values. 

5 .  The method recited in claim 1 wherein: 
at least one of the logic cells corresponds to an imple- 

mentation of a selection operation; and 
such at least one of the logic cells comprises a multi- 

plexor. 
6. The method recited in claim 5 wherein the multiplexor 

comprises a depletion-mode transistor. 
7. The method recited in claim 1 wherein none of the logic 

cells comprises a Boolean logic element having more than a 
single input. 

8. The method recited in claim 1 wherein the plurality of 
logical operations comprises at least 10% selection opera- 
tions. 

30 
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9. The method recited in claim 1 wherein the plurality of 
logical operations comprises one of at least 20% selection 
operations, at least 30% selection operations, at least 40% 
selection operations, at least 50% selection operations, at 
least 60% selection operations, at least 70% selection 
operations, at least 80% selection operations, at least 90% 
selection operations, and at least 95% selection operations. 

10. A method for designing a digital integrated circuit 
chip, the method comprising: 

identifying a logical structure to be implemented by the 
digital integrated circuit chip; 

gram includes instructions for operating the computer sys- 
tem for designing a digital circuit in accordance with the 
following: 

receiving an expression of a logical structure to be imple- 
mented by the digital circuit from the at least one input 
device; 

representing the logical structure in terms of a plurality of 
logical operations with the processor, wherein the plu- 
rality of logical operations comprises at least 5% selec- 
tion operations, each such selection operation passing 
at least one of a plurality of inputs as an output; 
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representing the logical structure in terms of a plurality of performing syntactic manipulations of the logical opera- 
logical operations wherein fewer than 50% of the tions with the processor to reduce a number of nodes of 
plurality of logical operations comprise a Boolean the logical structure; and 
logical operation having more than a single input; determining logic cells that correspond to an implemen- 

performing syntactic manipulations of the logical opera- tation of the logical operations with the processor. 
tions to reduce a number of nodes of the logical 17. The computer-readable storage medium recited in 
structure; and claim 16 wherein each such selection operation passes one 

tation of the syntactically manipulated logical opera- 18. The computer-readable storage medium recited in 
tions. claim 16 wherein: 

11. The method recited in claim 10 wherein fewer than the computer readable program further includes instruc- 
25% of the plurality of logical operations comprise a Bool- tions for receiving commands from the at least one 
ean logical operation having more than a single input. input device; and 

12. The method recited in claim 10 wherein fewer than the syntactic manipulations of the logical operations are 
X% of the plurality of logical operations comprise a Boolean performed in accordance with the commands. 
logical operation having more than a single input, wherein 19. The computer-readable storage medium recited in 
X is selected from the group consisting of 20, 15, 10, and 5. claim 16 wherein the plurality of logical operations com- 

plurality of logical operations comprises a Boolean logical 20. The computer-readable storage medium recited in 
operation having more than a single input. claim 16 wherein the plurality of logical operations com- 

14. The method recited in claim 10 wherein at least one prises one of at least 20% selection operations, at least 30% 
of the logic cells comprises a depletion-mode transistor. selection operations, at least 40% selection operations, at 

15. The method recited in claim 10 wherein at least one 35 least 50% selection operations, at least 60% selection 
of the logic cells comprises a multiplexor. operations, at least 70% selection operations, at least 80% 

16. A computer-readable storage medium having a selection operations, at least 90% selection operations, and 
computer-readable program embodied therein for directing at least 95% selection operations. 
operation of a computer system including a processor and at 

determining logic cells that correspond to an implemen- 2o of the Plurality of inputs as the output. 

25 

13. The method recited in claim 10 wherein none of the 30 prises at least 10% selection operations. 

least one input device, wherein the computer-readable pro- * * * * *  


