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(57) ABSTRACT 

According to the invention, a digital circuit design embodied 
in at least one of a structural netlist, a behavioral netlist, a 
hardware description language netlist, a full-custom ASIC, a 
semi-custom ASIC, an IP core, an integrated circuit, a hybrid 
of chips, one or more masks, a FPGA, and a circuit card 
assembly is disclosed. The digital circuit design includes 
first and second sub-circuits. The first sub-circuits comprise 
a first percentage of the digital circuit design and the second 
sub-circuits comprise a second percentage of the digital 
circuit design. Each of the second sub-circuits is substan- 
tially comprised of one or more kernel circuits. The kernel 
circuits are comprised of selection circuits. The second 
percentage is at least 5%. In various embodiments, the 
second percentage could be at least lo%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, 90%, or 95%. 
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DIGITAL CIRCUITS USING UNIVERSAL 
LOGIC GATES 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This application is a nonprovisional of and claims priority 
to U.S. Prov. Pat. Appl. No. 601298,832, entitled 
“MULTIPLEXOR-BASED DIGITAL DESIGN,” filed Jun. 
15,2001 by Sterling R. Whitaker et al., the entire disclosure 
of which is herein incorporated by reference for all purposes. 

This application is also related to the following commonly 
assigned, concurrently filed U.S. patent applications, each of 
which is also incorporated herein by reference in its entirety 
for all purposes: U.S. patent application Ser. No. 101172,494 
entitled “DIGITAL DESIGN USING SELECTION 
OPERATIONS,” by Sterling R. Whitaker, Lowell H. Miles, 
and Eric G. Cameron; U.S. patent application Ser. No. 
101172,742, entitled “PASS-TRANSISTOR VERY LARGE 
SCALE INTEGRATION,” by Gary K. Maki and Prakish R. 
Bhatia; U.S. patent application Ser. No. 101172,746, entitled 
“OPTIMIZATION OF DIGITAL DESIGNS,” by Sterling R. 
Whitaker and Lowell H. Miles; U.S. patent application Ser. 
No. 101172,745, entitled “INTEGRATED CIRCUIT CELL 
LIBRARY,” by Sterling R. Whitaker and Lowell H. Miles; 
U.S. patent application Ser. No. 101172,743, entitled “DIGI- 
TAL LOGIC OPTIMIZATION USING SELECTION 
OPERATORS,” by Sterling R. Whitaker, Lowell H. Miles, 
Eric G. Cameron, and Jody W. Gambles. These applications 
may be referred to herein as “the Universal-Logic-Gate 
applications.” 

STATEMENT AS TO RIGHTS TO INVENTIONS 
MADE UNDER FEDERALLY SPONSORED 

RESEARCH OR DEVELOPMENT 

The U.S. Government has a paid-up license in this inven- 
tion and the right in limited circumstances to require the 
patent owner to license others on reasonable terms as 
provided for by the terms of Grant No. NAGS-9152 awarded 
by NASA. 

BACKGROUND 

This invention relates in general to digital circuits and, 
more specifically, to design of digital circuits that are 
laid-out with cells. 

Mathematics is one attempt for humankind to understand 
the universe around them. As technological advancement 
occurs, mathematical concepts and algorithms grow to 
enable and/or support those advancements. Within the con- 
text of digital design, Boolean logic is the mathematical 
construct used to manipulate and optimize digital circuits. 
Nearly every electronic device today relies upon some type 
of Boolean logic for any embedded digital circuits. Other 
mathematical constructs, however, are possible that allow 
further optimization of digital designs. Changes to the 
processing of digital design are necessary when avoiding 
Boolean logic elements. 

Today application specific integrated circuit (ASIC) are 
specified using netlists of library cells for a particular 
process of a foundry or fabrication facility. These netlists are 
used to fabricate integrated circuits made up of the library 
cells. A few hundred library cells are typically available for 
a particular process that include AND gates, OR gates, 
flip-flops (F/F), and buffers. When a new fabrication process 
is developed, engineers custom layout each of the library 
cells to get the most optimal performance from each cell. 

2 
BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is described in conjunction with the 
appended figures: 

FIG. 1 A  is a block diagram of an embodiment of a basic 
cell composed of kernel cells; 

FIG. 1B is a block diagram of another embodiment of a 
basic cell composed of a memory and a buffer kernel cells; 

FIG. 1C is a block diagram of yet another embodiment of 
a basic cell composed of a selection and memory kernel 
cells; 

FIG. 1D is a block diagram of still another embodiment 
of a basic cell composed of a selection and a buffer kernel 
cells; 

FIG. 2A is a block diagram of an embodiment of a 
memory cell with a synchronous reset; 

FIG. 2B is a block diagram of another embodiment of a 
memory cell with an asynchronous reset; 

FIG. 3 is a block diagram of an embodiment of a universal 
20 logic gate layout; 

FIG. 4 is a block diagram of an embodiment of a memory 
kernel cell layout; 

FIG. 5 is a block diagram of an embodiment of a buffer 
kernel cell layout; 

FIG. 6 is a block diagram of an embodiment of a basic cell 
abutted together from the kernel cells of FIGS. 3-5; 

FIG. 7 is a block diagram of an embodiment of two basic 
cells laid out together; 

3o FIG. SA provides a schematic illustration of an 
enhancement-mode transistor; 

FIG. 8B provides a schematic illustration of a depletion- 
mode transistor; 

FIG. 8C provides a circuit layout for a universal logic gate 
35 according to an embodiment of the invention that uses 

depletion-mode transistors; 
FIG. 9Ais a flow diagram illustrating how inversions may 

be removed in logical expressions implemented in embodi- 
ments of the invention; 

FIG. 9B is a flow diagram illustrating how nodes may be 
reduced in logical expressions implemented in embodiments 
of the invention; 

FIG. 9C is a flow diagram illustrating how nodes may be 
combined in logical expressions implemented in embodi- 

FIG. 9D is a flow diagram illustrating how set and reset 
inputs may be used in performing optimizations according to 
embodiments of the invention; 

FIG. 10 is a flow diagram illustrating an embodiment for 
a ULG netlist optimization; 

FIG. 11 provides a schematic illustration of a computer 
system on which methods of the invention may be embod- 
ied; 

FIG. 12 is a flow diagram of an embodiment of a process 
for preparing a ULG ASIC cell library; 

FIG. 13 is a block diagram of an embodiment of a design 
flow that uses syntactic manipulation after synthesis; 

FIG. 14  is a block diagram of another embodiment of a 
60 design flow that uses syntactic manipulation and the ULG 

ASIC cell library; 
FIG. 15 is a block diagram of another embodiment of a 

design flow that uses the ULG ASIC cell library for the final 
netlist; 

FIG. 16 is a block diagram of yet another embodiment of 
a design flow that combines synthesis and syntactic manipu- 
lation into a single tool; 

5 

1s 

25 

40 

45 ments of the invention; 
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65 
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FIG. 17 is a block diagram of still another embodiment of 
a design flow that uses a verification tool throughout the 
design flow; 

FIG. 18 is a block diagram of still another embodiment of 
a design flow that uses a verification tool throughout the 
design flow and after fabrication; and 

FIG. 19 is a flow diagram of an embodiment of a design 
process. 

In the appended figures, similar components and/or fea- 
tures may have the same reference label. Further, various 
components of the same type may be distinguished by 
following the reference label by a dash and a second label 
that distinguishes among the similar components. If only the 
first reference label is used in the specification, the descrip- 
tion is applicable to any one of the similar components 
having the same first reference label irrespective of the 
second reference label. 

DETAILED DESCRIPTION 

The ensuing description provides preferred exemplary 
embodiment(s) only, and is not intended to limit the scope, 
applicability or configuration of the invention. Rather, the 
ensuing description of the preferred exemplary embodiment 
(s)  will provide those skilled in the art with an enabling 
description for implementing a preferred exemplary 
embodiment of the invention. It is to be understood that 
various changes may be made in the function and arrange- 
ment of elements without departing from the spirit and scope 
of the invention as set forth in the appended claims. 

In one embodiment, the present invention provides a 
digital circuit design embodied in at least one of a structural 
netlist, a behavioral netlist, a hardware description language 
netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, 
an integrated circuit, a hybrid of chips, one or more masks, 
a FPGA, and a circuit card assembly. The digital circuit 
design includes first and second sub-circuits. The first sub- 
circuits comprise a first percentage of the digital circuit 
design and the second sub-circuits comprise a second per- 
centage of the digital circuit design. Each of the second 
sub-circuits is substantially comprised of one or more kernel 
circuits. The kernel circuits are comprised of selection 
circuits. The second percentage is at least 5%. In various 
embodiments, the second percentage could be at least lo%, 
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%. 

In another embodiment, the present invention provides a 
digital circuit design embodied in physical and/or schematic 
form. The digital circuit design comprises first and second 
sub-circuits. The first sub-circuits comprise a first percent- 
age of the digital circuit design and the second sub-circuits 
comprise a second percentage of the digital circuit design. 
Each of second sub-circuits is substantially comprised of 
one or more kernel circuits. Each the kernel circuits is one 
of a selection circuit type, a memory circuit type, and a 
buffer circuit type. The second percentage is at least 5%. In 
various embodiments, the second percentage could be at 
least lo%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 
95%. 

In yet another embodiment, the present invention pro- 
vides a digital circuit design describing a plurality of cells, 
where the digital circuit design is embodied in a computer 
signal. The digital circuit design comprises a first and second 
code segments. The first code segment comprise a first 
description of a first basic cell and a first interconnection of 
the first basic cell. The second code segment comprises a 
second description of a second basic cell and a second 
interconnection of the second basic cell. The first description 

4 
indicates which of a selection circuit type, a memory circuit 
type, and a buffer circuit type comprise the first basic cell. 
Similarly, the second description indicates which of the 
selection circuit type, the memory circuit type, and the buffer 

5 circuit type comprise the second basic cell. 
I. Cells 

In one embodiment, a basic cell is a construct that 
includes one or more of a universal logic gate (ULG), a 
memory element or flip-flop (F/F), and/or a buffer. In this 
embodiment, the ULG is a multiplex or or select circuit. The 
ULG, memory element, and buffer are implemented with a 
relatively-small number of kernel cells, which typically have 
layouts that are individually optimized, and often, by hand. 
The kernel cells are arranged into the higher-level basic cells 
having at least one of the ULG, memory element, and buffer, 
but the basic cells do not have more than one of any type of 
kernel cell in this embodiment. For a given semiconductor 
process, there is a ULG ASIC cell library which is composed 
of the basic cells and specialized cells. These specialized 
cells may differ from the basic cell construct and could 

20 include, for example, clock dividers, memory arrays, analog 
circuits, phase-locked loops, oscillators, analog circuits, etc. 

Referring first to FIG. lA ,  an embodiment of a basic cell 
100 is shown in block diagram form. This embodiment 
includes all three of a ULG or selection circuit 104, a are 

25 shown in a generalized manner. The ULG 104 is shown 
having any number of data and selection control inputs, 
however the relationship between the maximum data inputs 
for a number of selection control inputs follows the follow- 
ing relationship 2y=I. The memory kernel cell 108 shown is 

30 a resetable D F/F. A buffer kernel cell 112 shown has both 
an inverting and non-inverting output, although, other buffer 
implementations will have either an inverting or non- 
inverting output. 

The ULG 104 in this embodiment is implemented with a 
35 multiplexor. Multiplexors can be used to implement any 

Boolean function, but are not Boolean operators. Combina- 
torial logic in conventional designs is not implemented with 
selection functions, but uses Boolean logic gates. Further, 
multiplexors in conventional circuits are converted to Bool- 

The below Table I shows the fourteen kernel cells used in 

10 

40 ean equivalents during synthesis. 

one embodiment: 

TABLE I 
4s  

ULG 
Component Symbol Description 

ULG U 

50 Memory D 
Cells 

DR 

DS 

55 Buffers B 

BN 
CB 
ZB 

8 to 1 (US), 4 to 1 (U4) or 2 to 1 (U2) 
Multiplexors 
D FIF (Dl) 

Resetable D FIF - Synchronous (DRl), Clock 
Edge Synchronization (DR2) or Asynchronous 

Setable D FIF - Synchronous (DSl), Clock Edge 
Synchronization (DS2) or Asynchronous (DS3) 
Non-inverting buffer (Bl) or Hybrid Inverting 
and Non-inverting buffer (B2) 
Inverting buffer (BN1) 
High-drive buffer (CB1) 
Tristatable buffer (ZB1) 

(DR3) 

60 
The embodiment of the kernel cells in the above Table I 

could be augmented in other embodiments to include other 
cells. The ULGs could include multiplexors of any size, for 
example, 16 to 1, 32 to 1, 64 to 1, etc. Larger multiplexors 

65 could be formed with a number of smaller multiplexors if a 
larger multiplexor is not supported in the kernel cells. 
Various other types of memory cells could also be supported 
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such as EEPROM, EPROM, PROM, DRAM, SRAM, 
NVRAM, magnetic core memory, J-K F/Fs, setable and 
resetable F/Fs, various F/F with scan ATPG capability, etc. 
The J-K, setable, or resetable functionality of a F/F can be 
implemented by a D F/F and logic that can be embedded in s Type 
the mux before or after the D F/F. The F/Fs could also be 

ers could be of various strengths and sizes. Some buffers 
could support input and output pins of the chip with various 
thresholds, voltages, etc. 

Table 11 lists the various configurations in which kernel 
cells are used to create basic cells 100-1 that use all of a 
ULG 104, a memory cell 108 and a buffer cell 112 such as 
the in FIG, 1 ~ .  These basic cells 100-2 are the 
variations found in one embodiment of the ULG ASIC cell 
library. 

TABLE 111-continued 

~~~~ Configuration 
Memory - Buffer Various Basic Cell Layout Names 

falling edge triggered in some embodiments. Also the buff- DSBN DS - BN DS1BN1, DS2BN1, DS3BN1 
DS1ZB1, DS2ZB1, DS3ZB1 DSZB DS - zB 

10 Referring next to FIG. lC,  a block diagram of yet another 
embodiment of a basic cell 100-3 is shown that is composed 
of ULG and memory kernel cells 104, 108. This is just one 
example of the various similar basic cells 100-3 that might 
form an embodiment of the ULG ASIC cell library. Other 
possible configurations are enumerated in Table IV below. 

TABLE IV 

TABLE I1 Basic Cell Configuration 
Type Mux - Mem Various Basic Cell Layout Names 

20 Basic Configuration 

Type Mem - Buf Various Basic Cell Layout Names UDR U - D R  U2DR1, U4DR1, U8DR1, U2DR1, U4DR2, 
Cell Mur - UD U - D  U2D1, U4D1, U8D1 

U8DR2 U2DR3, U4DR3, U8DR3 

U8DS2, U2DS3, U4DS3, U8DS3 
UDS U - D S  U2DS1, U4DS1, U8DS1, U2DS2, U4DS2, U2D1B1, U4D1B1, U8D1B1, U2D1B2, 

U2D1BN1, U4D1BN1, U8D1BN1 
U2D1ZB1. U4D1ZB1. U8D1ZB1 2s  

U4D1B2, U8D1B2, 
UDB U - D - B  

UDBN U - D - B N  
UDZB U - D - Z B  
UDRB U - D R - B  

UDR- U - D R -  
BN BN 

UDRZB U - DR - 
ZB 

UDSB U - D S - B  

UDSBN u - DS - 
BN 

UDSZB U - D S -  
ZB 

U2DR1B1, U2DR2B1, U2DR3B1, U2DR1B2, 
U2DR2B2, U2DR3B2, 
U4DR1B1, U4DR2B1, U4DR3B1, U4DR1B2, 
U4DR2B2, U4DR3B2, 
U8DR1B1, U8DR2B1, U8DR3B1, U8DR1B2, 
U8DR2B2, U8DR3B2 
U2DR1BN1, U2DR2BN1, U2DR3BN1, 
U4DR1BN1, U4DR2BN1, U4DR3BN1, 
U8DRIBN1, U8DR2BN1, U8DR3BN1 
U2DR1ZB1, U2DR2ZB1, U2DR3ZB1, 
U4DR1ZB1, U4DR2ZB1, U4DR3ZB1, 
U8DR1ZB1, U8DR2ZB1, U8DR3ZB1 
U2DS1B1, U2DS2B1, U2DS3B1, U2DS1B2, 
U2DS2B2, U2DS3B2, 
U4DS1B1, U4DS2B1, U4DS3B1, U4DS1B2, 
U4DS2B2, U4DS3B2, 

U8DS2B2, U8DS3B2 
U2DS1BN1, U2DS2BN1, U2DS3BN1, 
U4DS1BN1, U4DS2BN1, U4DS3BN1, 

U8DS1B1, U8DS2B1, U8DS3B1, U8DS1B2, 

U8DS1BN1, U8DS2BN1, U8DS3BN1 
U2DS1ZB1, U2DS2ZB1, U2DS3ZB1, 

With reference to FIG. lD,  a block diagram of still 
another embodiment of a basic cell 100-4 composed of ULG 
and buffer kernel cells 104, 112 is shown. There are other 
possible configurations of this type of basic cell 100-4. The 

30 variations of this basic cell 100-4 for one embodiment of the 
ASIC library are listed in Table V. From Tables 11-V, around 
80% of the 142 available basic cells include ULG circuits. 
The 142 basic cells are based upon the 14 kernel cells of 
Table I. 

Although the embodiment in Tables 11-V show some 
possible basic cells, other embodiments could include addi- 
tional basic cells. These additional basic cells could be 
optimized for output power, power consumption, layout 
area, response time, leakage, etc. such that there are multiple 

40 cells with the same logical properties, but that are optimized 
for particular circumstances. For example, there may be 
three non-inverting buffers of having different drives to 
support larger fanout and/or higher speeds. In various 

35 

U4DS1ZB1, U4DS2ZB1, U4DS3ZB1, em6odimen&, there could be less than, fo; example, 100,75, 
45 50,40,30,20, or 10 kernel cells. At the lower limit, there is 

three kernel cells in one embodiment with just one of each 

U8DS1ZB1, U8DS2ZB1, U8DS3ZB1 

With reference to FIG. lB,  a block diagram of another 
embodiment of a basic cell 100-2 composed of memory and 
buffer kernel cells 108, 112 is shown. This is but one 
example of a basic cell 100-2 of this general configuration. 
Other basic cells of this general configuration that could be 
found in an embodiment of a ULG ASIC cell library are 
listed in Table 111. 

TABLE I11 

of the types of kernel cells. 

TABLE V 
so 

Basic Cell Configuration 
T w e  Mux - Buf Various Basic Cell Layout Names 

UB U - B  U2B1, U4B1, U8B1, U2B2, U4B2, U8B2 
UBN U - B N  U2BN1, U4BN1, U8BN1 

5s 
The building blocks of a digital circuit could be abstracted 

beyond the ULG ASIC cell library. In some embodiments, 
the ULG ASIC cell library components could be combined 
in higher-level macro cells such as adders, multipliers, 

60 registers, barrel shifters, ALUs, comparators, decoders, state 
DZB D -  ZB DlZBl  machines, counters, etc. There could be thousands of pos- 
DRB D R - B  DR1B1, DR2B1, DR3B1, DR1B2, sible macro cells. Further, designs can be abstracted to a 

level higher than the macro cells by using cores that imple- 
ment higher level functions such as microprocessors, graph- 

65 ics processors, interface busses or ports, digital signal 
processors, etc. These cores could use macro cells and/or 
components from the ULGASIC cell library. Often the cores 

Basic 
Cell Configuration 
Type Memory - Buffer Various Basic Cell Layout Names 

DB D - B  D1B1, D1B2 
DBN D - B N  DlBNl  

DR2B2, DR3B2 
DRBN D R - B N  DR1BN1, DR2BN1, DR3BN1 
DRZB D R - Z B  DR1ZB1, DR2ZB1, DR3ZB1 
DSB D S - B  DS1B1, DS2B1, DS3B1, DS1B2, DS2B2, 

DS3B2 
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are written in a hardware description language (HDL) that 
can be easily synthesized into any ULG ASIC cell library for 
a particular process. 

With reference to FIGS. 2A and 2B, various embodiments 
of a memory kernel cell 108 are shown in block diagram 
form. These embodiments divide the D F/F 208 out from the 
memory cell and implement some functionality with a 
separate buffer cell 204. In various embodiments, the buffer 
cell 204 could be used to customize the D F/F 208 with 
synchronous reset of FIG. 2A or asynchronous reset of FIG. 
2B. In other embodiments, a separate circuit could be used 
to make a D FIF 208 behave as a setable D FIF, a J-K F/F 
or a FIF with scan capability. In other embodiments, the 
separate circuit could be implemented with a selection 
circuit. 

This buffer cell 204 in an ASIC cell library could be used 
for other purposes also. For example, an 8 to 1 mux function 
could be implemented with a buffer cell 204 and a 4 to 1 mux 
104 in some circumstances to reduce the chip area needed to 
implement the functionality. Table VI shows the thirteen 
kernel cells used in this embodiment. Table VI1 shows a 
truth table for the enable buffer 204 where the enable input 
is R, the input is D and the output is Q. 

TABLE VI 

Kernel Cell 
Component Symbol Description 

ULGs U 

Memory Cells D 
DS 

Buffers B 

BN 
EBN 
CB 
ZB 

8 to 1 (US), 4 to 1 (U4) or 2 to 1 (UZ) 
Multiplexors 
D FIF (Dl) 
Setable D FIF - Synchronous (DSl), Clock 
Edge Synchronization (DSZ) or Asynchronous 

Non-inverting buffer (Bl) or Hybrid Inverting 
and Non-inverting buffer (BZ) 
Inverting buffer (BN1) 
Inverting buffer with an enable input (EBN1) 
High-drive buffer (CB1) 
Tristatable buffer (ZB1) 

(DS3) 

TABLE VI1 

R D Q 

11. Layout of Cells 
Each fabrication process at a fab or foundry generally has 

a conventional ASIC cell library that is customized for that 
process. Each of the hundreds of cells in the conventional 
ASIC cell library is typically manually laid out to optimize 
its configuration. In this embodiment, however, a small 
number of customized kernel cells are used to automatically 
or manually compile the basic cells 100. For a target 
fabrication process, care is taken to optimize the layout of 
kernel cells 104, 108, 112 for factors such as power 
consumption, chip area, number of masks, number of pro- 
cess steps, yield, capacitance, inductance, resistance, 
glitches, IIO placement, etc. In some cases, the fabrication 
processes are similar enough to other fabrications processes 
that only minor tweaking to kernel cells is done. 

With reference to FIG. 3 a block diagram of an embodi- 
ment of a ULG layout 300 is shown. A cloud graphic is used 
to represent the layout of the circuit to implement the 2 to 1 
ULG 104. Input ports 316, 320 and IIO 324 are detailed 

8 
within the circuit cloud, more specifically, ports for the 
inputs (I, and 11) 316 and the select (Yo) 320 and a trace is 
shown for the Q output 324. For the ULG kernel cell, the 
input and select signals are ports 316, 320 within the ULG 

s layout 300. The ULG circuit 304 is attached by traces to 
latitudinal power traces 308, 312. 

Abutment is used to link certain signals by coupling 
adjacent kernel cells. Adjacent placement of the cells may 
join the abutted IIO or a small conductive trace may join the 

i o  abutted IIO. The kernel cells have a uniform height and 
differing depths such that the power traces 308,312 for each 
kernel cell align with the next kernel cell. Also, certain IIO 
signals use a uniform latitude. For example the Q output 324 
of the ULG layout 304 would align latitudinally with an 

Referring next to FIG. 4, a block diagram of an embodi- 
ment of a memory kernel cell layout 400 is shown. This 
memory circuit 404 implements a D FIF with a D input 412, 
a clock input 408 and a Q output 416. Coupled to the 

20 memory circuit 404 are a VDD and V,, power busses 308, 
312. The height of the memory kernel cell layout 400 is the 
same as the ULG cell layout 300 such that the power busses 
for both kernel cells align latitudinally. 

With reference to FIG. 5, a block diagram of an embodi- 
zs ment of a buffer kernel cell layout 500 is shown. As with the 

other kernel cell circuits 304, 404, a non-inverting buffer 
kernel cell circuit 504 is coupled to power busses 308, 312 
with a height uniform to the other kernel circuits 304, 404. 
The buffer circuit includes a D input 508 and a Q output 512, 

30 where the D input 508 is latitudinally aligned with the 
outputs from either a ULG circuit 304 or a memory circuit 
404. In this embodiment, the Q output 512 is offset from the 
latitude of the D input 508. 

Referring next to FIG. 6, a block diagram of an embodi- 
3 s  ment of a basic cell 600 abutted together from three kernel 

cells 300, 400, 500 is shown. A U2 ULG, D1  FIF and B1 
non-inverting buffer kernel cells 300, 400, 500 are con- 
nected in serial to form the basic cell 600. The power busses 
308, 312 for each kernel cell 300, 400, 500 align to form a 

40 larger whole. The Q output 324 from the U2 ULG circuit 
304 aligns with the D input 412 to the D1  memory circuit 
404, and the Q output 416 from the D1  memory circuit 404 
aligns with the D input 508 to the B1 buffer circuit 504. 
Other embodiments could have additional power busses, for 

With reference to FIG. 7, a block diagram of an embodi- 
ment of two basic cells 600, 704 laid out together in a row 
700 is shown. During layout of a chip, all the ULG ASIC 
cells are arranged. The basic cells 600, 704 are aligned in 

SO horizontal rows. In some cases (not depicted), there is 
routing of one or more signals between the basic cells 600, 
704. In the depicted embodiment, an output from a first basic 
cell 704 is coupled with a trace 712 to an input of a second 
basic cell 600. The clock inputs for both basic cells 600,704 

ss are latitudinally aligned such that a clock bus can pass strait 
across a row 700 of basic cells. 

In some embodiments, additional size reductions are 
realized in the ULGs by having them comprise one or more 
depletion-mode transistors. Schematic diagrams are pro- 

60 vided in FIGS. SA and 8B that compare enhancement-mode 
and depletion-mode transistors. FIG. SA shows the structure 
of an n-type enhancement-mode transistor 802 that com- 
prises a source 804, a drain 806, and a gate 810. Connections 
are made with the source 804 and drain 806 respectively 

65 through pads 812 and 814. The gate 810 usually comprises 
a metal formed over an oxide such as SiO,. For such an 
n-type transistor 802, both the source 804 and drain 806 

IS input for an adjacent memory or buffer kernel cell. 

4s  example, a substrate bus connection. 
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comprise n-doped regions in a p-doped substrate. The tran- 
sistor operates so that when at least a threshold voltage is 
applied to the gate 810, current flows between the source 
804 and drain 806 through an intermediate channel region. 
In circuits, the enhancement-mode transistor 802 is denoted 
with symbol 820. 

The depletion-mode transistor 842 illustrated in FIG. 8B 
also comprises a source 844, a drain 846, and a gate 850 
formed over an oxide 848, with connections to the source 
844 and drain 846 provided respectively by pads 852 and 
854. For the depletion-mode transistor, however, the channel 
region 856 between the source 844 and drain 846 is also 
n-doped, allowing the flow of current even without a gate 
voltage. The current can be stopped by applying at least a 
negative cutoff voltage to the gate 850. In circuits, the 
depletion-mode transistor 842 is denoted with symbol 860. 

FIG. 8C provides an example of a circuit for a ULG 
element that exploits the different properties of 
enhancement- and depletion-mode transistors to allow a 
smaller circuit area than a ULG design that uses only 
enhancement-mode transistors. The illustration is provided 
for the US cell, which acts as an 8: l  multiplexor. The US cell 
872 comprises eight inputs 874 labeled I, , , , three 
selection controls 876 labeledY[O . . .2], and one output 878 
labeled Q. The multiplexing functions of the cell are gov- 
erned by the action of 48 transistors, of which half are 
provided as depletion-mode transistors. Each of the controls 
876 and its inversion is provided to a transistor along the 
path of one of the inputs 874, with the inversions being 
effected by inverters 880. To effect the multiplexing 
functions, the depletion-mode transistors are distributed 
according to the level of the control. For the least significant 
control, the depletion-mode transistors are positioned alter- 
nately; for the next significant control, they are positioned 
alternately in pairs; for the next significant control, they are 
positioned alternately in quads; etc. Thus, for the US cell 
872, depletion-mode transistors for Y[O] are provided for 
inputs I,, I,, I,, and I,, and for the inverted control YN[O], 
depletion-mode transistors are provided for inputs I,, I,, I,, 
and I,. For Y[l], depletion-mode transistors are provided for 
inputs I,, I,, I,, and I,, and for the inverted control YN[1], 
they are provided for inputs I,, I,, I,, and I,. Similarly, 
depletion-mode transistors are provided for Y[2] for inputs 
I,, I,, I,, and I,, and for YN[2] for inputs I,, I,, I,, and I,. 

For certain embodiments of the ULGs that comprise 
depletion-mode transistors, this pattern may be used for a 
cell of any size. For a U2"+' ULG that has 2"+' inputs and 
n+l  controls, depletion-mode transistors may be provided 
for each control/input combination as follows: 

(i) For controlY[i=O . . . n], depletion-mode transistors are 
provided for inputs I, where k c 2  mod 2+'; 

(ii) For control YN[i=O . . . n], depletion-mode transistors 
are provided for inputs I, where k ' 2 2  mod 2+'. 

In other embodiments, a different distribution of 
depletion-mode transistors may be used to implement the 
multiplexing functions of the ULG. 
111. Logical Structures 

In addition to the structural characteristics described 
above, there are a number logical properties and features that 
may be used both to characterize individual cells and to 
characterize libraries of such cells. An example of a formal- 
ism that may be used in one embodiment to describe the 
functionality of the basic cells and from which at least some 
such logical characterizations may be extracted is now 
described. 

As discussed above, the selection circuits embodied by 
ULGs used for forming basic cells may be implemented 
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10 
using 2:1,4:1,8:1, or perhaps even larger, multiplexors. The 
inputs and control of each multiplexor are programmed to 
achieve the desired logical characteristics of the cell. The 
following syntax has been developed to describe the pro- 
gramming of such inputs and selection controls in a general 
fashion: 

Q <QN> .xxxx <E> Y[n-l:O] Izn~lIzn31 . . . I, <RIS> <CLK> 
(Parameter=Option); 

In addition to describing the programming of the ULG 
kernel cells, the syntax may be used to describe any of the 
basic cells, including both those that comprise ULG kernel 
cells and those that do not comprise ULG kernel cells. 
Optional parameters in the syntax are denoted with angular 
brackets and the components of the syntax are summarized 
in Table I. 

TABLE VI11 

Component Meaning 

Q 
<QN> 

<E> 
Y[n - 1:0] 

I, 

.xxxx 

<RIS> 
<CLK> 
(Parameter = Option) 

Non-inverting output 
Optional inverting output 
Cell name 
Optional tri-state enable 
Control variables 
State variables 
Truth-table state 
Next state 
Optional reset or set input 
Optional clock input 
Selects an option 
Terminator 

There are a number of features of the syntax worthy of 
comment. The first component of the syntax indicates the 
output of the cell, using either Q or QN respectively to 
denote the output Q or Q. This is followed by the name of 
the cell, which is generally constructed by concatenating the 
names of the kernel cells comprised by the cell. The names 
of the kernel cells have been set forth above in Table VII. 
Thus, for example, a basic cell that comprises a D F/F and 
a non-inverting buffer would be named .DB (Dk-B); a basic 
cell that comprises a resetable D F/F and an inverting buffer 
would be named .DRBN (DRk-BN); a basic cell that 
comprises a ULG multiplexor and a setable D F/F would be 
named .UDS (Uk-DS); and a basic cell that comprises a 
ULG multiplexor, a D F/F, and a tristatable buffer would be 
named .UDZB (Uk-Dk-ZB). It is noted that some of these 
examples of basic cells include a ULG multiplexor kernel 
cell while others do not, but all of these may be described 
with the syntax. 

In those instances where the syntax is used to describe a 
basic cell comprising a ULTG, the number of selection 
control inputs provided to the ULG is n. In a specific 
embodiment, the control inputs are ordered by significance, 
with the most significant control on the left and the least 
significant control on the right. While the syntax is equally 
robust for describing basic cells for any value of n, for 
purposes of explanation the examples provided herein gen- 
erally correspond to cases in which 1153. The states of the 
n control inputs Y dictate which of 2" inputs are passed to 
the output of the ULG. While in some instances, the control 
inputs may be identified individually, in other instances a 
range of control inputs is identified by using a colon in the 
argument of Y. Specifically, "Y[a:b]" is intended to refer to 
the full expression "Y[a] Y[a-1] Y[a-21 . . . Y[b+2] Y[b+l] 
Y[b]." The set of parameters I,n-,I,n-, . . . I, represents the 
logical function to be applied by the cell, and as discussed 
in greater detail below may comprise a truth table for 
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implementing a combinational logic device or may comprise 
an identification of the next state of a sequential circuit. In 
some embodiments, these logical states 12n-112n-2 . . . I, may 
be assigned to logical 1’s or 0’s (sometimes referred to 
herein as “base Boolean values”), but may more generally 
include map-entered variables as well. For the basic cell, this 
corresponds to a connection to VDD for a logic 1, to a 
connection to VSS for a logic 0, and to a connection to a 
signal for a mapped entered variable. Parameters such as the 
type of reset, i.e. asynchronous, synchronous, or clock-edge, 
are assigned and enclosed in parentheses at the end of the 
statement. 

This formalism permits the expression of a number of 
manipulations that are possible with embodiments of the 
invention and which are discussed in detail in order to enable 
one of skill in the art to perform such manipulations. The 
nature of such manipulations may be clarified with a simple 
example for the combinational logic function C=A+B. This 
logic function may be expressed in a concise hardware 
description language (“CHDL”) formalism as follows: 

C .UB A B VDD VDD VSS VDD; 

That this is a correct implementation of the logic function in 
which C is equal to “Aor not B” is evident by comparing the 
entries in the expression to the syntax discussed above. The 
name of the cell .UB indicates that the function is imple- 
mented with a cell that comprises a universal logic gate U 
and a non-inverting buffer B. On either side of the name, the 
parameters involved in the function are denoted, with the 
left-most component of the expression C indicating the 
output, and the variables to the right of the name A and B 
indicating the inputs. The following four entries before the 
terminator define the following truth table 12n-l12n-2. . . I, for 
the combinational function, with VDD being equivalent to a 
logic 1 and VSS being equivalent to a logic 0. The individual 
truth-table states I are noted: 

TABLE IX 

C A B 

I, = 1 0 0 
I, = 1 0 1 
I, = 0 1 0 
I, = 1 1 1 

When logical operations are performed on expressions in 
this formalism, they indicate directly how the resulting 
expression may be implemented with basic blocks in accor- 
dance with an embodiment of the invention. For example, a 
simple logical operation is inversion of the output, which 
may be implemented by using an inverting buffer: 

CN .UBN A B VDD VDD V S S  VDD; 

As can be seen, the same truth table as that defined in Table 
IX is used for implementing c, but the implementation is 
with a basic cell comprising a universal logic gate U and an 
inverting buffer BN. An alternative implementation of 
uses the same .UB basic cell, but instead uses a different 
truth table by inverting all of the input states: 

CN .UB A B V S S  V S S  VDD V S S ;  

In other instances, alternative implementations of the 
same logical function may be achieved by performing 
operations on the control inputs. For example, the control 
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12 
inputs A and B may be permuted. Permuting the control for 
the function acts to rearrange the truth table. In an embodi- 
ment that includes this example, the truth-table states I, and 
I, remain in the same position because they represent states 
where both controls are high or both are low. States I2 and 
11, which represent states where one control is high and the 
other is low, are interchanged: 

C .UB B A VDD V S S  VDD VDD; 

A permutation of the truth table may also result from 
inversion of one or more of the control inputs. In this 
example, inverting the least significant control B inter- 
changes neighboring states in the truth table: 

C .UB A BN VDD VDD VDD V S S ;  

This alternative expression for may be viewed as defining an 
implementation for C that uses the general truth table for 
X+Y, but with control inputs defined so that X=A and Y=B. 
If the next significant control A is inverted in the original 
expression instead, neighboring pairs of states in the truth 
table are interchanged: 

C .UB AN B V S S  VDD VDD VDD; 

It is evident that this expression implements the general truth 
table for X+Y, but with control inputs defined so that X = x  
and Y=B. If both control inputs are inverted, 

C .UB AN BN VDD V S S  VDD VDD; 

The truth table in this expression implements the general 
function X+Y, but with control inputs defined so that X=A 
and Y=B. 

The CHDL syntax also permits control variables to be 
entered as elements in the truth-table states. For example, 
the syntax makes it easy to recognize that the result C is high 
whenever A is high and that C takes the value of BN when 
A is low. This may be expressed in this CHDL syntax as 

C . UB A VDD BN; 

and corresponding to the truth table shown in Table X: 

TABLE X 

C A 

I, = 

I, = 

1 0 
B 1 
- 

Equally, the syntax makes it easy to recognize that the result 
C is high whenever B is low and that C takes the value of 
A when B is low. This may be expressed in this CHDL 
syntax as 

C .UB B A VDD; 
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and corresponding to the truth table shown in Table XI: This additional flexibility also arises in part from the more 
general character of cells made in accordance with embodi- 
ments of the invention to implement selection logic, in 
addition to combinational and selection logic. As used 

C B s herein, a “selection operation” refers to a function in which 
I, = A 0 one or more of a plurality of inputs are passed as outputs. In 
I, = 1 1 certain embodiments, the selection operation passes one of 

a plurality of inputs as an output. Such a selection operation 
Not only does the CHDL syntax presented here easily admit differs from a sequential-logic operation because it does not 

but this Same ability is manifested in the implementations combinational-logic operations, which do not require that 
with the cells described above. In particular, either of the two the output correspond to one ofthe inputs. This is easily Seen 
above examples may be as easily implemented using a for an NAND gate, which Produces an output 1 in response 
combination of a ULG and buffer (“.UB”) as is any truth to two 0 inputs; the output does not correspond to either of 
table that uses the basic Boolean variables 0 and 1 exclu- IS the inputs. It is also true, however, for an OR gate. Although 
sively. Implementation of all of these logical functions is in every instance the output of an OR gate is equal to one of 
simply a matter of assigning the truth-table states and the inputs, the gate does not act to pass one of the inputs as 
control variables in accordance with the universal logic an output; instead, a combinational mapping is performed 
elements as described above. from the inputs to the outputs that happens to include some 

The formalism thus makes clear that embodiments of the 20 commonalty. In addition, selection operations are not limited 
invention permit the implementation of a diverse range of to instances in which the number of inputs is two and/or the 
logical functions. Specific examples of some of these prop- number of outputs is one. More generally, any plurality pin 
erties are now discussed in greater detail. In discussing (22) of inputs may be accepted, of which a number pout 
logical properties that may be exploited in certain embodi- (2 1) are passed. 
ments of the invention, reference is sometimes made to the zs Embodiments of the invention also do not limit the inputs 
formalism explained above. Such reference is made prima- and/or outputs to the base Boolean values 0 and 1. As noted 
rily for reasons of convenience and is not in any way in connection with Tables X and XI and the associated 
intended to limit the scope of the invention. In particular, it syntactic expressions, cells used in embodiments of the 
will be evident to those of skill in the art that it is possible invention may implement operations in which truth-table 
to implement each legitimate syntactical expression in the 30 entries are instead functions of such base Boolean values. In 
formalism with the cells discussed above. Accordingly, the this respect, the invention includes embodiments that pro- 
logical properties of the formalism correspond directly to vide for the implementation of Boolean functionals, which 
logical functions that may be implemented with the cell are defined herein as operations that admit functions of 
arrangements in different embodiments. Boolean variables among their inputs and/or outputs, in 

One property of the formalism, and therefore also of the 3s addition to admitting base Boolean values among their 
cell arrangements, is that no high-level distinction is made inputs and/or outputs. 
between combinational and sequential circuits; both such Both the formalism presented herein and the implemen- 
circuits are merely special cases of the more general types of tation with the cells described above permit a further gen- 
logical functions that may be implemented. Acombinational eralization that increases the flexibility of digital design and 
circuit is one in which the output(s) are predetermined 40 its optimization. Such a generalization may be understood 
functions of the input(s). As such, the logic implemented by with reference to what are defined herein as higher-order 
a combinational circuit can be represented by a truth table Boolean functions. Conventional digital circuit design uses 
setting forth a mapping between all possible Boolean states only what are referred to herein as zero-order Boolean 
of the input(s) to the Boolean states of the output(s). This functions, which admit only base Boolean values among 
may be contrasted with a sequential circuit in which the 4s their input(s) and/or output. In contrast, some embodiments 
logical application of the circuit relies on a history of past of the invention use a first-order Boolean function, which 
inputs. The application of such logic may instead be repre- corresponds to a Boolean functional and admits zero-order 
sented with a next-state equation that maps the past input(s) Boolean functions in addition to base Boolean values among 
to the output(s). Embodiments of the invention described its inputs and/or output(s). Other embodiments use a second- 
herein are not restricted either to combinational or sequential SO order Boolean function, which admits first-order Boolean 
logic. For example, only slight differences in cells are functions, zero-order Boolean functions, and base Boolean 
needed to implement the following syntactic CHDL expres- values among its inputs and/or output(s). In still other 
sions: embodiments of the invention, even greater orders of Bool- 

ean functions are used, such orders admitting all lower 
ss orders of Boolean functions among their inputs and/or 

Q .UB A B VDD VDD C V S S ;  output(s) in addition to admitting the base Boolean values 
used in conventional design. All orders of Boolean functions 
other than zero-order Boolean functions are sometimes 
referred to herein collectively as “higher-order’’ Boolean 

This generalization may be illustrated with an example 

TABLE XI 

control variables to be presented as map-entered variables, 10 depend on a Past history of the inputs. It also differs from 

Q .UD A B VDD VDD C V S S  CLK; 

The first of these expressions represents a combinational 
logic function and the second represents a sequential logic 60 functions. 
function. In other embodiments, the formalism and corre- 
sponding cell implementations may include both combina- 
tional and sequential aspects so that a characterization of the 

additional flexibility permits certain optimizations, some of 65 
which are discussed below, that are not available when 

based on the C=A+B example discussed earlier: 

function is not properly limited to either category. This J .UB G HVDD VSS F C 

F .UB D E VSS CVDD C 

C .UB A B VDD VDD VSS VDD limited to either combinational or sequential logic. 
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In this example, the third expression corresponds to the 
zero-order function C=A+B, which admits only base Bool- 
ean vales 0 and 1 among its arguments. Such a function uses 
a combinational mapping and may be implemented using 
gates, such as with an OR gate and a NOT gate. The second 
expression corresponds to a first-order function, or 
functional, that admits the zero-order function C as one of its 
arguments, in addition to admitting the base Boolean values. 
The first expression corresponds to a second-order function 
that admits the first-order function F, the zero-order function 
C, and the base Boolean values among its arguments. The 
first and second expressions thus each correspond to expres- 
sions for higher-order functions. All three of the expressions 
may be implemented in embodiments of the invention using 
the cells as described above. 

One effect of the ability to use higher-order functions may 
be seen with a comparison to the exclusive use of Boolean 
operations. Such Boolean operators operate only on the base 
Boolean values 0 or 1, or on variables that represent the base 
Boolean values 0 or 1, i.e. that have already had a value of 
0 or 1 bound to it. Boolean minimization or optimization 
techniques are based on decomposing the expressions being 
minimized to consider the meaningful possible combina- 
tions of assignment of 0 or 1 to each Boolean variable (with 
the possible existence of “don’t care” states for some 
variables under some circumstances reducing the meaning- 
ful possible combinations downward from the set of all 
possible combinations). Higher-order functions allow one to 
optimize, or minimize a circuit, without the requirement to 
decompose the function result to each possible value and 
considering each separately. In other words, when a circuit 
with the algorithms described below, one need not know 
what the value of the functions or variables are; optimization 
is performed regardless. In conventional methods limited to 
the use of Boolean operators, each variable and function is 
decomposed into all possible values for the functions and 
variables, i.e. to define a complete truth table, before any 
optimization can be performed; in such conventional meth- 
ods one must exhaustively assign a value to all variables and 
functions. 
IV. Optimization 

The expanded availability of logical operations provided 
by embodiments that use cells based on the ULGs and as 
represented by the formalism described permits increased 
optimization. In many instances, these logical operations 
may be used to determine optimized methods of implement- 
ing a given function. Anumber of such logical operations are 
illustrated, and it will be understood by those of skill in the 
art that still other logical operations may derive from the 
formalism in other embodiments of the invention. Moreover, 
while the formalism is used as a matter of convenience to 
illustrate the nature of the optimizations, it will be under- 
stood that all the expressions that follow may be imple- 
mented using the previously described cells in the manner 
explained. This is true even in instances where the expres- 
sions correspond to functions not accessible by standard 
Boolean logic. In some cases, use of the formalism shows 
how multiple manipulations may be performed to achieve an 
optimization, it being necessary only to implement the final 
result with the previously described cells to achieve the 
optimized function. 

A number of the operations that may be performed with 
logical functions as expressed using the formalism described 
herein are summarized in FIGS. 9A-9D, which provide flow 
diagrams to explain how some such operations may be 
performed. In different embodiments, various combinations 
of one or more such operations may be performed and the 
invention is not limited to any particular order or number of 
such operations. Accordingly, each of FIGS. 9A-9D indi- 
cates that it may be entered as part of a greater flow of 
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operations from a previous transformation. It is not neces- 
sary that a previous transformation necessarily have been 
performed in any case, although the indication is included to 
note that some embodiments of the invention contemplate 
that previous transformations may have been performed. 
Also, while the flow diagrams in each of FIGS. 9A-9D 
shows an exemplary order in which operations may be 
performed, such an ordering is not necessary and alternative 
embodiments permit alternative orderings. Moreover, in 
some embodiments, it is possible that some operations may 
be performed simultaneously, such as when different parts of 
a large structure are optimized at the same time. 

FIG. 9A summarizes a number of operations that may 
collectively be considered to correspond to the removal of 
inversions. Accordingly, the method shown in FIG. 9A 
begins at block 902 with a syntactic expression for a cell, 
perhaps, but not necessarily, after certain previous logical 
transformations have been effected. At block 904, an iden- 
tification is made whether there are any inversions in the 
syntactic expression for removal. If not, the method pro- 
ceeds to a potentially subsequent transformation at block 
906. In the event that it is desirable to remove an inversion, 
the method may proceed along one of at least three branches 
depending on the type of inversion. Branch 903 corresponds 
to inversions in the control or state variables Y, branch 905 
corresponds to inversions in the truth table; and branch 907 
corresponds to inversions in the buffer. 

In one embodiment, inversions of the control or state 
variable may proceed at block 908 by interchanging adjacent 
groups in the truth table. The size of the groups to be 
interchanged depends on the significance of the control or 
state variable to be inverted. Thus, if a control Y[k] is to be 
inverted, groups of size 2k are inverted. This may be 
illustrated by considering a cell comprising a ULG and a 
buffer: 

Q .UB Y[Z] Y[1] YN[O] A B C D E F G H, 

In this instance, the least significant control Y[O], defined by 
k=O, is to be inverted so that adjacent states are inter- 
changed: 

Q .UB Y[Z] Y[1] Y[O] B A D  C F E H G, 

In a similar fashion, when k = l  for the control to be inverted, 
adjacent pairs of states are to be interchanged: 

Q .UB Y[Z] YN[1] Y[O] A B C D E F G H, 

Q .UB Y[Z] Y[1] Y[O] C D A B  G H E F; 

When k=2 for the control to be inverted, adjacent quads of 
states are to be interchanged: 

Q .UB YN[Z] Y[1] Y[O] A B C D E F G H, 

Q .UB Y[Z] Y[1] Y[O] E F G H A  B C D; 

The flow diagram in FIG. 9A provides a loop back to block 
904 after a particular control has been inverted by inter- 
changing states. This contemplates the possibility of per- 
forming inversions on multiple controls, which are therefore 
effected by performing the relevant interchanges in succes- 
sion. The interchanges are commutative so that the resulting 
syntactic expression is independent of the order in which 
they are performed: 

Q .UB YN[Z] YN[1] YN[O] A B C D E F G H 

Q .UB Y[Z] Y[1] Y[O] H G F E D C B A; 

The resulting expression, which may be implemented using 
the cells as described above, follows from any order of 
performing the control inversions and respective truth-table 
interchanges. 
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The flow diagram of FIG. 9A notes at block 910 that in While the functional effect of blocks 912 and 914 is 
some instances the removal of inversions may be accom- identical, they are conceptually converse because in one 
plished by entering the control as a map-entered variable instance the goal of inverting the truth table is achieved by 
instead of performing interchanges. In such cases, the ability inverting the buffer and in the other instance the goal of 
of embodiments of the invention to accommodate non- s inverting the buffer is achieved by inverting the truth table. 
Boolean selection operations is exploited to achieve greater Every operation in the FIG. 9A cycles back to block 904. 
levels of optimization. Within the syntax used to illustrate As noted with respect to block 908, this aspect emphasizes 
the principles described herein, the identification of an that multiple of these transformations may be used in 
inverted control YN with a sequence VSS VDD permits effecting optimizations and that they may be performed in 
removal of the inversion by entering the control into the IO different orders. For example, for some cells, optimization 
truth table: might be achieved by: (1) first, inverting a buffer to invert a 

truth table; (2) second, permuting the control so that the 
resulting truth table includes sequences that permit the entry 
of control variables; and (3) finally, performing interchanges 

15 within the truth table to remove other control inversions. 
As indicated, entry of the control in the truth table will The entry of a control variable into a truth table as a 
usually also require a repetition of a state A at the appro- map-entered variable, such as discussed with respect to 
priate level. block 910 in FIG. 9A not only has the effect of removing an 

In some cases, it may be desirable to permute the truth inversion, but also reduces the number of nodes in the cell. 
table to achieve such VSS VDD sequences by permuting the 20 There are other truth-table sequences that permit optimiza- 
control: tion by accepting the entry of control variables and thereby 

reducing the number of nodes. The flow diagram in FIG. 9B 
provides a general explanation of how such sequences may 
be achieved. Essentially, the same procedures are followed 

25 as discussed with respect to block 910 for inversions: a 
truth-table having elements of certain sequences is identified 
and permuted to realize those sequences, which are then 

simple example corresponds to the example discussed with 

Q .UB Y[1] YN[O] VSS VDD A A, 

Q .UB Y[1] Y[O] A, 

Q .UB YN[1] Y[O] VSS A VDD A, 

Q .UB Y[O] YN[1] VSS VDD A A, 

Q .UB Y[O] Y[1] A, 

In the above progression, optimization of the cell is achieved 
by noting that the sequence vss VDD may be achieved 
through a permutation of the truth table and by noting the 30 respect to block 910, but without the inversion: 
repetition of state A. Permuting the controls results in a truth 
table identical to that of the preceding example, and there- 
fore the least significant control may become a map-entered 
variable. 

control, for which optimization may remove an inversion by In this example, a repetition of A with the sequence VDD 
entering the more significant control as a map-entered vss (instead of the sequence vss VDD) is suf€icient to 
variable under circumstances, one embodiment, for enter the least-significant control variable into the truth 

this is achieved when the less significant controls table. This is done with the control variable directly, instead 
are redundant: 

Thus, the general procedure illustrated in FIG. 9B begins 
at block 916 with a syntactic expression for a cell, with the 
figure noting that it is possible (but not required) in some 
embodiments for certain other transformations to have been 

The optimization has been achieved by recognizing the 45 Performed Previously with the syntactic expression. At 
existence of an analogous pattern, namely the repetition of block 918, existing redundancies in the control are removed. 
A at a higher significance level and the existence of the Such redundancies are manifested by a repetition in the truth 
sequence vss vss VDD VDD, It will now be evident to table at the level of the redundant control, i.e. in groups of 
those of skill in the art that permutation of control may be size 2k for control Y[k]. A trivial case occurs for the lowest 
used to restructure the truth table to identify such sequences SO level of control: 
and thereby optimize the function by removing the inver- 

may be applied to any significance level for the control. For 
example, an eightfold repetition of A coupled with the 
sequence vss vss vss vss VDD VDD VDD VDD 

ing the controls to achieve such a sequence in the truth table. 
At 9A2 it is noted that inversion Of the 

truth-table states may be achieved by inverting the buffer in 
the cell: 

optimized by entering the corresponding control variable, A 

Q .UB Y[1] Y[O] VDD VSS A A ,  

Q .UB Y[1] Y[O] A, 

The same principles apply with more significant levels of 3s 

4o of with its inversion as was done in block 910. 

Q .UBY[Z]YN[l]Y[O]AAAAVSS VSSVDDVDD; 

Q .UB Y[Z] A Y[1]; 

sion. In addition, it will also be evident that these principles Q .UB Y[O] A A ,  

Q . B A ,  

55 This example is trivial because the cell does nothing other 

essary and may be removed entirely, The Same principle 
applies, however, for higher levels of control. For example, 
when k=l, the repetition of pairs of states may permit the 

permit Of a YN[21 inversion, perhaps after permut- than produce the result A for every input; control is unnec- 

912 Of 

6o removal of ~ ~ 1 1 :  
Q .UBN Y[O] AN BN, 

Q .UB Y[O] A B; 
Q .UB Y[1] Y[O] A B A B; 

Q .UB Y[O] A B; 
By inverting the buffer, all entries in the truth table are 65 
inverted. Block 914 notes the converse function in which the 
buffer is inverted by inverting all elements of the truth table. 

This result simply uses the fact that the higher control level 
has no effect, with the output of the cell depending solely on 
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the least significant control. Similarly, when k=2, the rep- 
etition of quads of states may permit the removal of Y[2]: 

Q .UB Y[Z] Y[1] Y[O] A B C D A B C D; 

Q .UB Y[1] Y[O] A B C D; 

This result expresses the fact that the output of the cell is 
dependent only on the two lowest control levels and that the 
highest control has no effect. These principles may be 
extended to still larger repeated blocks and the consequent 
removal of stillmore significant control levels. 

At block 920, permutations may be performed in the 
control to rearrange the truth table to identify sequences that 
permit the entry of the control variables. For the entry of a 
lowest level control, sequences of VDD VSS, coupled with 
a pair of repeated variables A A ,  is sought. For the entry of 
the next level control, sequences of VDD VDD VSS VSS, 
coupled with four repeated variables A A A A ,  is sought. For 
the next level control, sequences of VDD VDD VDD VDD 
VSS VSS VSS VSS, coupled with eight repeated variables 
AAAAAAAA, is sought. Similar sequences for still higher 
control levels follow the same pattern. At block 922, the 
control variable(s) are entered into the truth table to account 
for these patterns. 

Thus, one example of applying blocks 920 and 922 is as 
follows: 

Q .UB Y[Z] Y[1] Y[O] VDD VDD VSS VSS A B  A B ;  

Q .UB Y[Z] Y[O] Y[1] VDD VSS VDD VSS A A  B B; 

Q .UB Y[Z] Y[O] Y[1] Y[1] A B; 

In the initial syntactic expression, the sequence VDD VDD 
VSS VSS appears, but it is not possible to remove the k = l  
control because there is no corresponding sequence of four 
repeated variables. The existence of duplicates of both A and 
B, however, suggests that the controls may be permuted to 
achieve sequences of VDD VSS coupled with pairs of 
repeated variables. This is achieved in the second line by 
permuting Y[l] and Y[O] . Accordingly, it is possible in the 
third line to enter two occurrences of the Y[1], which is now 
the lowest level of control, into the truth table. The corre- 
sponding cell is therefore optimized by reducing the number 
of nodes and entering the original Y[l ]control variable into 
the truth table. 

Block 924 notes that the process of identifying and 
removing redundancies and permuting control variables to 
permit their entry into the truth table may be repeated to 
achieve further optimizations. The method is thus looped 
until these procedures have optimized the syntactic expres- 
sion in this way as much as desired. At block 926, the 
method thus proceeds to another type of transformation, if 
desired, to effect further optimizations. 

In addition to reducing nodes for a single cell, it is 
possible in embodiments of the invention to provide opti- 
mizations by combining nodes from multiple cells. The flow 
diagram shown in FIG. 9C provides a method corresponding 
to one embodiment for combining nodes. The method begins 
at block 928 with syntactic expressions for multiple cells. As 
for the other optimization procedures, FIG. 9C notes explic- 
itly that prior transformations may have taken place on these 
syntactic expressions, although this is not required. In con- 
sidering whether nodes can be combined, a check is made at 
block 930 whether any of the syntactic expressions outputs 
a control variable present in another of the expressions. If so, 
the control variables are converted into map-entered vari- 
ables at block 932. Examples of combining nodes in which 

20 
such conversions are used are provided below, but the 
principles of combining nodes are initially illustrated for 
cases where there is no such conversion. 

One method for combining nodes is thus summarized by 
s blocks 934 and 936 in which the control for the multiple 

syntactic expressions is combined and then states in the 
merged expression are defined. For example, consider the 
following two syntactic CHDL expressions in which the 
output of the second expression, A, is one of the inputs to the 

i o  first expression: 

Q .UB YQ A B; 

A .UB YA C D; 

The expressions are merged, and the nodes thereby 
combined, in the following way. First, the control is com- 
bined at block 934 by adding the control for the second 
expression to the first expression-YQ then functions as a 
k = l  level control and YA functions as a k=O level control: 

20 

Q .UB YQ YA A A  B B; 

As can be seen, increasing the level of the YQ control by a 
single level to k = l  acts to duplicate each of the truth-table 

2s entries. The order in which the controls were combined was 
determined by the relationship between the inputs and 
outputs of the expressions. Specifically, since the expression 
for Q has the output of the expression for A as an input, YQ 
was made the higher-level control and YA the lower-level 

30 control. After combining the controls, the states are defined 
in the merged expression in accordance with the expressions 
at block 936: 

Q .UB YQ YA C D B B; 

3s In this instance, the sequence A A i s  substituted with C D in 
accordance with the syntactic expression for A. The final 
expression achieves the optimization by permitting imple- 
mentation of the resulting expression with a single cell as 
described above. 

While this example showed how two expressions could be 
merged, it may be applied more generally to any number of 
expressions. For example, the following three expressions 
may be merged in a similar fashion with a sequential 
process: 

40 

4s 
Q .UB YQ A B; 

A .UB YA C D: 

B .UBYB E F; so 
The second and third expressions both have outputs that 
correspond to inputs of the first expression. Accordingly, in 
combining control pursuant to block 934, the control of the 
first expression is used as the highest level control. First, the 

5s first and second expressions are merged by combining their 
control and defining the states in the merged expression in 
the same way as for the two-expression example: 

Q .UB YQ YA A A  B B; 

Q .UB YQ YA C D B B; 
60 

Subsequently, the third expression is merged into this com- 
bination. First, the additional control causes YQ to become 
a k=2 level control and YA to become a k = l  level control, 

6s with YB remaining as a k=O level control: 

Q .UBYQYAYB C C D D B B B B; 
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As seen in this expression, the additional level of control 
causes a duplication of each of the truth-table elements. The 
states in this expression are now defined according to block 
936 in terms of the original third expression by substituting 
pairs of B's with the sequence E F: 

Q .UBYQYAYB C C D D E F E F; 

This result thus corresponds to an expression that combines 
the original three expressions and may be implemented as a 
cell in the manner described above. 

Both of these examples have begun with expressions that 
correspond to ULG cells that may be implemented with 
multiplexors of the same size. There is, however, no limi- 
tation on embodiments of the invention that requires that 
they be the same size. It is possible to perform optimizations 
for combining nodes that correspond to merging a smaller 
multiplexor into a larger multiplexor or to merging a larger 
multiplexor into a smaller multiplexor. This may be seen in 
the following examples in which each of the initial expres- 
sions corresponds to a different-sized multiplexor when such 
an implementation is used. For example, in the set 

Q .UB YQ[1] YQ[O] A B C D; 

A .UB YA E F 

the second expression has an output that is used as an input 
in the first expression, and corresponds to a smaller-sized 
multiplexor than does the first expression. The nodes are 
combined in the same fashion already described. First, 
control is combined in accordance with block 934: 

Q .UB YQ[1] YQ[O] Y A A A  B B C C D D; 

Subsequently, states are defined in the merged expression, in 
this instance by substituting pairs of A's with E F: 

Q .UB YQ[1] YQ[O] YA E F B B C C D D; 

This final expression may thus be implemented as a cell and 
achieves optimizations resulting from merging the smaller 
multiplexor into the larger multiplexor. 

It is similarly possible to combine nodes in a fashion that 
corresponds to merging a larger multiplexor into a smaller 
multiplexor in embodiments that use multiplexors: 

Q .UB YQ A B; 

A .UB YA[1] YA[O] C D E F 

In this example the output of the expression corresponding 
to the larger multiplexor is an input to the expression 
corresponding to the smaller multiplexor. The nodes are 
combined in the same way, by first combining the control of 
the two expressions in accordance with block 934. Since two 
levels of control from the second expression are to be 
combined with the first expression. YQ becomes a k=2 level 
control: 

Q .UB YQ YA[1] YA[O] A A  A A  B B B B; 

Subsequently, the states are defined in accordance with 
block 936 by substituting quads of A's with C D E F as 
dictated by the second original expression: 

Q .UB YQ YA[1] YA[O] C D E F B B B B; 

Each of these examples illustrates how to combine nodes 
in different circumstances where the output of one of the 
expressions is one of the inputs to another of the expres- 

22 
sions. In some cases, however, the output of one of the 
expressions may be one of the controls of another 
expression, a condition checked for a block 930. In such 
instances, the control variable is converted into a map- 

s entered variable at block 932 before combining control and 
defining states. This may be illustrated with the following 
two examples, the first of which corresponds to an AND 
sub-function and the second of which corresponds to an OR 
sub-function. 

Thus, consider merging nodes for the following two 
syntactic expressions: 

i o  

Q .UB YQ[1] YQ[O] A VDD VSS VSS; 

YQ[1] .UB YA B C,  1s 
The circumstance in this example differs from the previous 
examples because the output of the second expression, 
YQ[l], is a control of the first expression and not an input 
in the truth table entries. The ability of embodiments to 

2o accept variables in the truth-table elements is thus exploited 
to re-express the first expression with YQ[l] in the truth 
table. First, the control variables are permuted so that YQ[l] 
is the least significant control: 

2s Q .UB YQ[O] YQ[1] A VSS VDD VSS; 

Then, it is recognized that with YQ[l] as the least 
significant control, the VDD VSS sequence in the Il-Io 
positions simply corresponds to YQ[l]. It is also recognized 

30 that in the I, position, YQ[l] and A are equivalent. 
Accordingly, after converting control variables to map- 
entered variables pursuant to block 932, the expression may 
be written 

3s Q .UB YQ[O] AYQ[l] VSS YQ[1] YQ[1]; 

Essentially, this conversion recognizes the equivalence of 
truth tables XIIA and XIIB: 

40 TABLE XIIA 

4s 

0 
1 
0 
A 

TABLE XIIB 
so 

Q YQlOl A 

0 
0 

0 
1 

0 1 0 
YQ[11 1 1 

Combining control with the second expression at block 934 
results in 

5s 

Q .UB YQ[O] AYAYQ[l] YQ[1] VSS VSS YQ[1] YQ[1] YQ[1] 60 
YQ[11; 

Finally, defining states at block 936 so that pairs of YQ[l] 
are substituted with B C as required by the original second 
expression results in the merged expression 

65 

Q U . B Y Q [ O ] A Y A B C V S S V S S B C B C ;  
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The same procedure may also be used for the following 
two syntactic expressions: 

Q .UB YQ[1] YQ[O] VDD VDD A VSS; 

YQ[1] .UB YA B C,  
5 

In this example, the expression for YQ[l] is the same as in 
the previous example, but the expression for Q is different. 
Permuting the control variables so that YQ[l] is least 
significant, 10 

Q .UB YQ[O] YQ[1] VDD A VDD VSS; 

Recognizing that the VDD VSS sequence in the Il-Io posi- 
tions corresponds to YQ[l] and that YQ[l] and A in the I, 15 
position are equivalent results in 

Q .UB YQ[O] A VDD YQ[1] YQ[1] YQ[1]; 

This conversion effectively recognizes the equivalence of 20 
truth tables XIIIA and XIIIB: 

TABLE XIIIA 

2s Q YQ[Ol YQ[11 

0 0 0 
1 0 1 
A 1 0 
1 1 1 

30 

TABLE XIIIB 

Q YQlOl A 

0 3s 
1 
0 
1 

Combining control with the second expression according to 40 
block 934 results in 

Q .UB YQ[O] AYA VDD VDD YQ[1] YQ[1] YQ[1] YQ[1] 
YQ[1] YQ[1]; 

Finally, defining states at block 938 so that pairs of YQ[l] 4s 
are substituted with B C as required by the original second 
expression results in the merged expression 

Q .UD YQ[O] AYA VDD VDD B C B C B C; 
so 

It is noted that in certain instances, the method outlined in 
FIG. 9C may be combined with moving flip flops forward to 
facilitate reductions. For example, consider application of 
the method to the following set of expressions 

5s 
Q .UB Y[2:1] A B C D; 

A .UD Y[O] E F CLK, 

B .UD Y[O] G H CLK, 

C .UD Y[O] I J CLK, 

D .UD Y[O] K L CLK, 

60 

As previously mentioned, the notation Y[2:1] is equivalent 65 
to the expression Y[2] Y[l]. This set of expressions could be 
implemented using five cells, one that comprises a ULG and 
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a buffer and four that comprise a ULG and a F/F. The result 
of moving the flip flops forward is 

Q .UD Y[2:1] A B C D CLK, 

A .UB Y[O] E F; 

B .UB Y[O] G H, 

C .UB Y[O] I J; 

D .UB Y[O] K L; 

Accordingly, applying the method of FIG. 9C to combine 
the nodes results in 

Q .UD Y[Z:O] E F G H I J K L CLK, 

This expression may be implemented with a cell comprising 
a ULG and a D F/F in certain embodiments of the invention. 

Thus, the method outlined in FIG. 9C permits nodes to be 
reduced from multiple syntactic expressions. This includes a 
variety of different circumstances, including cases where 
there are arbitrarily many syntactic expressions, where some 
of the expressions correspond to implementations of differ- 
ent sizes, and cases where some of the expressions have 
outputs that correspond to either inputs or controls of other 
expressions. After nodes have been merged, the method may 
proceed to another transformation at block 938, although 
this is not a requirement. 

Additional optimization functions may be realized by 
using the set and reset facilities that are provided in the 
formalism and which may be implemented by using those 
facilities in cells according to embodiments of the invention. 
The use of set and reset facilities are summarized in FIG. 9D 
and arise primarily when half the truth table states are either 
high or low. Thus, a method for optimizing begins with a 
syntactic expression for a cell at block 940, with FIG. 9D 
noting explicitly that previous transformations may also 
have been performed on the cell expression, although this is 
not a requirement. Acheck is made at block 944 whether half 
the truth table states are low. If so, the control variable may 
be changed to a reset to a F/F in accordance with block 946. 
For example, consider the syntactic function 

Q .UD Y[Z:O] VSS VSS VSS VSS A B C D CLK, 

In this example, a cell that implements this function com- 
prises a ULG and a D F/F. As previously mentioned, the 
notation Y[2:0] is equivalent to Y[2] Y[l] Y[O]. Half of the 
truth table states in this expression are low, i.e. VSS, so that 
the highest level control may be entered into the map as a 
reset input to the F/F: 

Q .UDR Y[l:O] A B C D Y[Z] CLK (RST='C'); 

The name of the cell explicitly notes that a resetable D F/F 
(DR) is used and the reset has been noted. This function may 
then be implemented using the cells described above 

FIG. 9D notes at block 942 that in some instances it may 
be useful to perform permutations of the control variables to 
put the truth table into a form that allows using the reset 
input for optimization. If half the truth table states are low, 
but do not appear as a group, they may be aligned with the 
permutations. For example, the function 

Q .UD Y[1] Y[O] VSS A VSS B CLK, 

has half of its truth table states low, but they are not aligned. 
Interchanging the control variables aligns them 

Q .UD Y[1] Y[1] VSS VSS A B CLK, 
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so that the most significant control variable may be entered 
into the map at block 946 as a reset input to the F/F: 

Q .UDR Y[1] A B Y[O] CLK (RST='C'): 

5 
Note that in this example, the lack of alignment among the 
low states has resulted in Y[O] being entered into the map as 
part of the optimization rather than Y[l]. 

Similar optimizations may be achieved if half the truth 
table states are high, as checked at block 948. If so, 
permutations of the control variables may be performed at 
block 950 to align the high states and the control variable 
entered into the map as a set input to a F/F at block 952. For 
example, consider the function 

1s Q .UD Y[l:O] VDD A VDD B CLK, 

Half of the states in the truth table are high, i.e. VDD, so that 
optimization with a set input may be achieved. Permuting 
the control variables to align the high states in accordance 
with block 950 results in 20 

Q .UD Y[O] Y[1] VDD VDD A B CLK, 

Entering the most significant control as a map-entered 
variable as a set input to the F/F results in 2s 

Q .UDS Y[1] A B Y[O] CLK (SET='C'); 

This function may then be implemented using the cells 
described above in an embodiment. 

permutation may be used to achieve the conditions for using 
set or reset for optimization. An example that illustrates 
several of the optimization manipulations discussed above 
begins with the syntactic expression 

Still other combinations of expansion, inversion, and/or 30 

3s 

Q .UD AN VSS NOT-RESET CLK, 

Optimization of this function may proceed by first expand- 
ing the NOTLRESET as a control variable: 

40 
Q .UD AN NOT-RESET VSS VSS VDD VSS CLK, 

Inversion of the two control variables in accordance with 
FIG. 9A results in two interchanges of the truth table, a first 
interchange based on single entries and a second interchange 4s 
based on pairs: 

Q .UD A RESET VSS VDD VSS VSS CLK, 

Interchanging the controls to prepare for entering A as a 
map-entered variable results in so 

Q .UD RESET A VSS VSS VDD VSS CLK, 

The presence of the VDD VSS sequence and the repeated 
VSS element permits the A control variable to be entered 5s 
into the map in accordance with FIG. 9B: 

Q .UD RESET VSS A CLK 

It is now apparent that since there are only two states in the 
truth table and one of them is low, that half the states are low 6o 
and the control variable may be entered into the map as a 
reset input to the F/F: 

Q .DR A RESET CLK (RST='C'); 
65 

Since all of the control variables have been entered into 
the map, there is no need for a ULG element in implement- 
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ing this optimized expression. Instead, it may be imple- 
mented in one embodiment using only a resetable D F/F, 
even though the original expression corresponded to an 
implementation comprising both a ULG and a D F/F. 

Each syntactical expression of the formalism may be 
viewed as an entry for a ULG netlist that defines a digital 
circuit. The ULG netlist uses basic cells and follows the 
CHDL syntax. Such a ULG netlist may be at least partially 
optimized by successively performing some of the indi- 
vidual  manipulations described above. In some 
embodiments, the resulting optimized ULG netlist may be 
implemented directly using the cells described above. In 
other embodiments, however, the manipulation of the ULG 
netlist may be viewed as intermediate step in optimizing a 
digital design that has been expressed in another netlist 
format. In such instances, the other netlist format using 
another cell library and/or another syntax (e.g., VHDL or 
Verilog) is initially translated to the ULG netlist format. 
After performing some optimization steps, the optimized 
ULG netlist may be translated back into the original format 
for implementation. In this way, an embodiment is provided 
that achieves optimization of digital designs within preex- 
isting netlist formats. 

There are a variety of ways in which the individual 
manipulations of the syntactic expressions comprised by a 
ULG netlist may be performed and the degree to which the 
corresponding digital design is optimized may depend on 
how those manipulations are executed. While in some 
instances it is possible for the manipulations to be performed 
by hand by a digital designer, it is expected that at least some 
level of automation may be used. In one embodiment, for 
example, a computer program may be provided that allows 
a digital designer to select the types of manipulations to be 
performed and sections of the ULG netlist on which to 
perform them, with the execution of the manipulations being 
performed automatically. In another embodiment, a prede- 
termined algorithm is used in a completely automated way 
to perform the manipulations or optimizations. 

One example of such a predetermined algorithm is illus- 
trated with the flow diagram provided in FIG. 10, although 
it will be appreciated by those of skill in the art that 
numerous other algorithms may alternatively be used. In 
some specific instances, alternative algorithms use the same 
manipulations but perform them in a different order. In some 
other specific instances, alternative algorithms use a differ- 
ent set of manipulations. The algorithm shown in FIG. 10 
may begin at block 1004 by translating an existing netlist to 
a ULG netlist if the design to be optimized was not initially 
created using the ULG formalism. In one embodiment, 
translating from the existing netlist to the ULG netlist is 
performed as a one-to-one translation between syntactic 
expressions. For one embodiment, this translation may be 
viewed conceptually in terms of the elements used in that 
embodiment to implement the original and ULG netlists- 
every logic gate, such as NAND, OR, etc. is converted into 
a multiplexor-based implementation amenable to optimiza- 
tions provided by the syntactic manipulations discussed 
above. 

At block 1008, data and control elements are discerned in 
the resulting ULG netlist. The distinction between such data 
and selection control elements was previously discussed 
with respect to Table VIII. In one embodiment, such dis- 
cernment may be performed with a high-level design lan- 
guage. In certain embodiments, there are additional advan- 
tages in the subsequent optimization where the data and 
control are identified from the original behavioral netlist. 
Once the data and control elements have been identified, the 
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operations identified in blocks 1016-1068 may be per- In some alternative embodiments, the resulting ULG netlist 
formed by using the syntactic manipulations described may be amenable to translation back into the original netlist 
above. Thus, at block 1016, connection cells to base Boolean syntax for implementation using Boolean logic gates. In 
values are removed by incorporating the corresponding these embodiments, the method may be viewed as providing 
functions into the syntactic expressions. Similarly, non- s an optimization of a digital design while retaining its under- 
inverting buffers are removed at block 1020 and also incor- lying structural characteristics. 
porated directly into the syntactic expressions. At block In some embodiments, it is desirable for the techniques 
1024, inverters are removed by syntactically inverting the used for the syntactic manipulations to be embedded in an 
relevant data elements in individual syntactic expressions. optimization tool or synthesizer. Accordingly, the methods 
The removal of redundant nodes at block 1028 may proceed i o  of the invention for converting a netlist into a UJLG netlist 
by reducing, combining, and permuting nodes in the syn- and for optimizing the ULG netlist may be performed by a 
tactic expressions. Methods for such reductions, computer, one example of a suitable configuration for which 
combinations, and permutations for certain embodiments is shown in FIG. 1. This figure broadly illustrates how 
were described above in connection with FIGS. 9B and 9C. individual system elements may be implemented in a sepa- 
At block 1032, inversions are removed. The inversions is rated or more integrated manner. The computer 1100 is 
removed may include control/state variable inversions, truth shown comprised of hardware elements that are electrically 
table inversions and buffer inversions, for which methods of coupled via bus 1112, including a processor 1102, an input 
removing were described above in connection with FIG. 9A. device 1104, an output device 1106, a storage device 1108, 

A loop comprising blocks 1036 and 1040 may be a computer-readable storage media reader 1110a, a commu- 
executed to identify and merge fanout nodes. A “fanout 20 nications system 1114, a processing acceleration unit 1116 
node” describes a configuration in which a single output is such as a DSP or special-purpose processor, and a memory 
directed to multiple parts of truth tables and, in some 1118. The computer-readable storage media reader lllOa is 
instances, optimizations may be realized by merging such further connected to a computer-readable storage medium 
fanout nodes. A check is first performed at block 1036 to 1110b, the combination comprehensively representing 
identify whether the ULG netlist includes any fanout nodes, zs remote, local, fixed, and/or removable storage devices plus 
in which case they are reduced at block 1040 by performing storage media for temporarily and/or more permanently 
permutations and reductions as described in connection with containing computer-readable information. A communica- 
FIG. 9C. The loop between blocks 1036 and 1040 is tions system 1114 may comprise a wired, wireless, modem, 
included because the reductions performed at block 1040 and/or other type of interfacing connection. 
may produce some new fanout nodes that may be identified 30 The computer 1100 also comprises software elements, 
and merged through additional permutations and reductions. shown as being currently located within working memory 
The method thus loops until no fanout nodes are identified 1120, including an operating system 1124 and other code 
at block 1036. 1122, such as a program designed to implement optimization 

After the fanout nodes have thus been merged, a check is methods of the invention. It will be apparent to those skilled 
made at block 1044 to identify syntactic expressions corre- 3s in the art that substantial variations may be used in accor- 
sponding to synchronous cells in which half the truth-table dance with specific requirements. For example, customized 
states are low. If such an expression is identified, the hardware might also be used and/or particular elements 
corresponding control variable is moved to be a reset input might be implemented in hardware, software (including 
at block 1048. A method for doing so is described in portable software, such as applets), or both. Further, con- 
connection with FIG. 9D and may include performing 40 nection to other computing devices such as network input/ 
permutations to align the low truth-table states. A similar output devices may be employed. 
check is made at block 1052 to identify syntactic expressing Example: 
corresponding to synchronous cells in which half the truth- The method described with respect to FIG. 10 was used 
table states are high. If such an expression is identified, the to optimize a netlist for a microcontroller. A synthesized 
corresponding control variable is move to be a set input at 4s netlist of commercial library cells was translated to the ULG 
block 1056. A method for doing so is also described in netlist formalism and optimized by performing the described 
connection with FIG. 9D and may include performing syntactic manipulations. The size of implementing the opti- 
permutations to align the high truth-table states. mized ULG netlist with the cells described herein was then 

At block 1060, the syntactic expressions are grouped by compared with the size of the original implementation. The 
common inputs. Such grouping permits identification of SO overall size was reduced by about 37%, a significant reduc- 
subfunctions at block 1064. The common subfunctions have tion. 
shared characteristics that may be extracted before reducing V. Digital Design with Syntactic Manipulation 
other nodes. At block 1068, buffers are made to be inverting Referring next to FIG. 12, a flow diagram of an embodi- 
buffers. ment of a process for preparing a ULG ASIC cell library is 

If the original ULG netlist produced at block 1004 was ss shown. In this embodiment, a new fabrication process is 
nonoptimal, performing the above manipulations may pro- being adapted to use the kernel cellibasic cell topology. The 
duce a different ULG netlist that is amenable to implemen- depicted portion of the process begins in step 1204 where a 
tation with smaller area, greater speed, and/or lower power layout engineer or technician analyzes the layout rules for 
requirements. In some embodiments, it is possible that not the target fabrication process. The fabrication process could 
all of the manipulations will be performed, that some may be 60 have different amounts of metalization layers, different 
performed multiple times, and that they may be performed semiconductor compositions, different transistor types, and 
in a different order than described. Once the method has different topologies such as SOI, etc. that are considered 
produced a new ULG netlist, it may be implemented at block during layout. The kernel cells are laid out, at least partially, 
1072 by translating the syntactic expressions in the ULG by hand to optimize the circuitry in step 1208. Some 
netlist with the cells described above. In such embodiments, 65 embodiments could start the kernel cell layout with a 
the method functions not only to optimize the digital design computer routed design that is hand-customized. Care is 
but also to provide a multiplexor-based implementation of it. taken to have kernel cells of a consistent height and to 
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adhere to abutment guidelines such that clock signals and 
some of the I/O are latitudinally aligned. Other embodi- 
ments could rely upon autorouting entirely to build the 
kernel cells. 

The kernel cells can be assembled in a number of ways to 
potentially create hundreds of basic cells 100 in the ULG 
ASIC cell library. The basic cell configurations are specified 
in step 1212. This could be done by editing a script fed to the 
tool that combines the kernel cells into basic cells. In step 
1216, the kernel cells are automatically assembled into basic 
cells 100 in this embodiment. Some embodiments could 
assemble the kernel cells manually or in-art manually. Once 
the basic cells are generated, they are verified in step 1220. 
This verification validates the digital and analog perfor- 
mance of the basic cells. Any problems uncovered in veri- 
fication can be fixed in the kernel and/or basic cells. To 
complete the ULG ASIC cell library, any specialized cells 
are laid-out in step 1224. 

In one embodiment, selection logic is used in digital 
circuits to replace some or all combinatorial logic. A sig- 
nificant proportion of the basic cells use a ULG 104. In 
contrast, conventional semiconductor circuits do not use 
ASIC cell libraries that include ULG circuits. In one 
embodiment, the ULG circuits come in various sizes, that 
have between two and eight inputs and between one and 
three select lines. 

The extensive use of ULGs or selection circuits in this 
invention could be characterized in a number of ways in the 
various embodiments, those characterizations include: 

(1) A digital IC design using an ASIC cell library that 
includes a proportion of cells with selection circuits. In 
various embodiments, the proportion of the cells with 
selection circuits in the ASIC cell library could include, 
for example, 5% or more, 10% or more, 25% or more, 
50% or more, 75% or more, 80% or more, 90% or 
more. 

(2) A digital IC design using an ASIC cell library that 
includes a percentage of basic cells that each include 
two or more kernel cells. For example, that percentage 
could be more than 5%, lo%, 20%, 30%, 40%, 50%, 
60%, 70%, 80%, or 90%. 

(2) A digital design that includes a proportion of selection 
circuits. Where the proportion is defined in terms of 
circuit area, power consumption or number of kernel 
cells. In various embodiments, the proportion of a 
digital design that includes selection circuits could 
include 1% or more, 2% or more, 5% or more, 10% or 
more, 20% or more, 30% or more, 40% or more, or 
50% or more. 

(3) A digital design implemented in a semiconductor 
circuit where the digital building blocks include 
memory cells, one input Boolean operators and selec- 
tion circuits. The selection circuits are non-Boolean 
operators and have three or more inputs. In some cases, 
there could be a small proportion of the digital building 
blocks could be Boolean operators, such as 1% or less, 
2% or less, 5% or less, 10% or less, or 20% or less. 

Those digital designs could be embodied in the form of, 
for example, a structural netlist, a behavioral netlist, a HDL 
netlist, a full-custom ASIC, a semi-custom ASIC, an IP core 
circuit, an integrated circuit, a hybrid chip, one or more 
masks, a FPGA, or a circuit card having a number of 
integrated circuits. The full-custom and semi-custom ASICs 
are defined as custom integrated circuits herein and could 
use at least some standard cells. Structural netlists enumer- 
ate low-level cells to use and how they are interconnected. 
Behavioral netlists have high-level descriptions of the func- 

30 
tionality of a circuit similar to high-level programming 
languages. Case statements, IF-THEN-ELSE statements can 
be easily translated from behavioral constructs to ULG 
circuits. Examples of HDL netlists include RTL, VHDL, 

5 Verilog and CHDL. The HDL netlists may be high-level 
behavioral netlists or low-level structural netlists. ASIC 
designs can be full-custom or semi-custom designs. The 
full-custom designs have a full set of masks done for each 
design, whereas the semi-custom designs have some reus- 
able masks that define an array of gates that are custom 
interconnected with some unique masks. Where a semi- 
custom ASIC is done, the gates would include ULG circuits. 
IP core circuits are netlists or maskwork that define a 
reusable function such as a microprocessor, bus interface, 
etc. that is typically provided by a third-party vendor. An 
integrated circuit is simply a semiconductor chip. Where 
more than one chip is in a package, that package is referred 
to as a hybrid integrated circuit or multi-chip-module. Cir- 
cuit cards can couple together a number of integrated 
circuits soldered thereon, where the integrated circuits use 

There are several approaches to integrating syntactic 
manipulation into digital design. In some embodiment, the 
designer anticipates using syntactic manipulation at the start 
of the design process. Using HDL constructs, such as case 

zs statements, allows easy mapping to the HDL ASIC cell 
library. Digital designers often mix-and-match tools from 
several vendors to develop a design flow suited to a par- 
ticular digital designer. With that in mind, the various below 
embodiments integrate the concepts of this invention in 

30 various ways and to varying degrees. As those skilled in the 
art can appreciate, the processing of the design can be 
somewhat automated by using scripts to run the various 
tools on various design files. 

With reference to FIG. 13, a block diagram of an embodi- 
35 ment of a design flow 1300 that uses syntactic manipulation 

after synthesis is shown. Included in this design flow are an 
HDL entry tool 1304, a synthesis tool 1308, a conventional 
cell library 1324, an optimization tool, a static & dynamic 
timing analysis tool 1316, and a place & route tool 1320. In 

40 this embodiment, the digital designer uses all the tools of 
their normal design flow, but includes the optimization tool 
1312 after the synthesis tool 1308. The optimization tool 
1312 performs the syntactic manipulation in this design 
flow. 

The HDL entry tool 1304 is a software edit tool that 
allows the digital designer to enter HDL as a behavioral 
netlist. The HDL could be VHDL, Verilog or Concise 
Hardware Description Language (CHDL). CHDL is a HDL 
that is tuned for the design constructs beneficial for designs 

SO with ULG cells. The HDL entry tool 1304 could receive 
feedback from the other tools to identify portions of the code 
that have problems found by those other tools. Other design 
capture tools could be used instead of a HDL entry tool, for 
example, state machine tools, RTL tools, schematic capture 

ss tools, etc. Dynamic timing analysis could be performed on 
the behavioral netlist to confirm proper functionality. 

A behavioral netlist is converted by the synthesis tool 
1308 into a structural netlist using the conventional cell 
library 1324 in this embodiment. The behavioral constructs 

60 are converted to Boolean constructs and optimized. From 
the conventional cell library 1324, cells are used for the 
optimized Boolean constructs. In some cases, typical timing 
values are used by the synthesis tool 1308 to identify 
potential problems in the conversion process using static 

65 timing analysis. Dynamic timing analysis could also be 
performed on the structural netlist to confirm functionality 
wasn’t compromised during the conversion. 

10 . 

20 ULGs. 

45 
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The optimization tool 1312 uses syntactic manipulation to synthesis 1308. By targeting the ULG cell library, the 
improve the design in at least one of the following areas: synthesized structural netlist is in a format readily under- 
power consumption, leakage current, fanout, chip area, stood by the optimization tool 1312 such that a conversion 
number of masks, number of process steps, yield, to an intermediate netlist is unnecessary. The optimization 
capacitance, inductance, resistance, glitches, etc. In this s tool 1312 Performs the syntactic manipulation before con- 
embodiment, variables can be fed to the optimization tool verting from the intermediate format to the conventional cell 
1312 in order to set the priorities among these design factors, library 1324. The optimized structural netlist is uses the 
These variables could be set on a scale of one-to-ten to conventional cell library 1324, which is understood by the 

place & route tool 1320 and the fab or foundry. indicate relative value along a sliding scale. With reference to FIG. 15, a block diagram of another 
embodiment of a design flow 1500 is shown that uses the use of alternative cells in the ULG library. Certain cells ULG cell library 1404 for the final netlist used by the 

could be optimized for various design factors such as power fab or foundry, In this embodiment, the ULG cell 

masks, number Of process steps, yield, capacitance, fab or foundry. The synthesis tool 1308 converts the behav- 
inductance,  resistance, glitches, etc.  During the ioral netlist into a synthesized structural netlist that uses the 
optimization, the alternative cells could be used based upon ULG ASIC cell library 1404, The optimization tool can 
how the digital designer set the priority variables. process the netlist without any conversion between cell 

In this embodiment, the optimization tool optimizes the libraries such that the resulting optimized structural netlist 
structural netlist from the synthesis tool to produce an also uses the ULG ASIC cell library. 
optimized structural netlist that uses the same conventional 20 Referring next to FIG. 16, a block diagram of yet another 
cell library 1324. The synthesized structural netlist is read embodiment of a design flow 1600 is shown that combines 
and converted into an intermediate netlist that uses an synthesis and syntactic manipulation into a single tool 1604. 
embodiment of the ULGASIC cell library. This embodiment The synthesis & optimization tool 1604 takes the behavioral 
of the ULG cell library can be somewhat simplified as the netlist from the HDL entry tool 1304 and converts it to an 
variation used in an ASIC could be unnecessary when only zs intermediate structural netlist using the ULG ASIC cell 
optimizing. Syntactic manipulation is performed upon the library 1404. The intermediate structural netlist is optimized 
intermediate netlist according to the optimization priorities, using syntactic manipulation with the tool 1604 to produce 
if specified. Some embodiments could perform a default an optimized structural netlist that uses the ULG cell library 
optimization that may or may not be modifiable by the 1404. In this embodiment, the HDL entry tool 1304 uses 
digital designer. Once the intermediate netlist is oatimized. 30 CHDL. 

Some embodiments could optimize for various factors by i o  

consumption, leakage current, fanout, chip area, number Of library 1404 has been produced for the target process at the 

v v 

it is converted to an optimized structural netlist that uses the 
conventional cell library 1324. 

Static & dynamic timing analysis is run on the optimized 
structural netlist. The static timing analysis takes into 
account timing relationships for the optimized structural 
netlist and identifies portions of the circuit that may fail to 
meet the timing requires of the circuit. Parameters can be 
entered into the synthesis and/or optimization tools 1308, 
1312 to prioritize certain portions of the circuit to make 
meeting static timing requirements easier. 

Dynamic timing analysis can come in a few forms. Input 
waveforms can be designed to stimulate the design, where- 
after the digital designer checks for correct output wave- 
forms. To automate this process, test vectors can be devel- 
oped and applied to the inputs of the circuit whereafter 
output test vectors are tested against the actual output. 
Discrepancies are noted as errors and fixed by tweaking the 
behavioral code and synthesisioptimization tools 1308,1312 
such that errors are not introduced into the process. 

Once the digital designer is happy with the structural 
netlist, the place & route tool 1320 performs a physical 
layout of the circuit. Alocation for each cell in the optimized 
structural netlist is chosen and traces are laid-out to inter- 
connect those cells according to the netlist. These types of 
tools 1320 are automated or semi-automated. More accurate 
timing values are available after place & route because the 

In some embodiments, the synthesis & optimization tool 
1604 may not have a ULG cell library 1404 for the target 
ASIC process. In that case, the synthesis & optimization tool 
1604 would convert the intermediate netlist to an optimized 

With reference to FIG. 17, a block diagram of still another 
embodiment of a design flow 1700 is shown that uses an 
interactive direct verification tool 1704 throughout the 
design flow 1700. Verification allows debugging a digital 

40 design throughout the design flow. In this embodiment, the 
interactive direct verification tool 1704 tracks the evolution 
of the design from a behavioral netlist through to a structural 
netlist that has been placed and routed. The HDL entry tool 
uses CHDL and the design flow uses the ULG cell library 

45 1504 for the target fabrication process. The various forms of 
the design embodied in the evolving netlist are accessible to 
the interactive direct verification tool 1704. 

Any identified portion of the circuit can be traced through 
the various steps of the design flow 1700 using the interac- 

SO tive direct verification tool. For example, a case statement in 
the CHDL behavioral code can be followed through to the 
various structural netlists to see how that case statement was 
implemented. Conversely, a portion of a structural netlist 
can be followed back to preceding structural netlists or even 

Referring next to FIG. 18, a block diagram of still another 

35 netlist using the conventional cell library 1324. 

ss the behavioral netlist. 

trace lengths interconnecting the cells is known. Further embodiment of a design flow 1800 is shown that uses an 
staticidynamic analysis 1316 can be performed to assure that interactive direct verification tool 1804 throughout the 
new errors weren’t introduced during the place and route design flow and after fabrication. This embodiment shows 
process. Once a suitable layout is achieved, masks can be 60 the fabrication 1808 and final test 1812 in the design flow. 
produced and fabrication can start. Dynamic testing on the The fabrication 1808 is performed after the design is thor- 
resulting chip may be performed to test functionality after oughly tested. After production, the chips can be tested 
fabrication. again. Test vectors are applied to the chip inputs and scan 

Referring next to FIG. 14, a block diagram of another ports in the dynamic analysis in final test 1812. Where an 
embodiment of a design flow 1400 is shown that uses 65 error can be isolated to a pin or node in final test 1812, the 
syntactic manipulation and the ULG ASIC cell library. In interactive direct verification tool 1804 can show the engi- 
this embodiment, a ULG cell library 1404 is used during neer the progression of the design that relates to that failure. 
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With reference to FIG. 19, a flow diagram of an embodi- tion language netlist, the full-custom ASIC, the semi-custom 
ment of a design process 1900 is shown. In the depicted ASIC, the 1P core, the integrated circuit, the hybrid of chips, 
portion of the design process 1900, the sequential steps are one or more masks, the FPGA, and the circuit card assembly 
show along with the test and rework steps. In step 1904, the as recited in claim 1, wherein each of the plurality of second 
digital design is entered using an entry tool. A HDL such as 5 subcircuits is a basic cell. 
Verilog, VHDL or CHDL is used to enter the behavioral 3. The digital circuit designs embodied in at least one of 
netlist for the circuit being designed. Throughout the design the structural netlist, the behavioral netlist, the hardware 
entry phase, dynamic timing analysis is performed in step description language netlist, the full-custom ASIC, the semi- 
1916 to verify that the behavioral netlist is probably being custom ASIC, the Ip core, the integrated circuit the hybrid 
prepared correctly. At this stage, the dynamic timing analy- of chips, one or more masks, the FPGA, and the circuit card 
sis is probably done in a waveform tool, various assembly as recited in claim 1, wheein the second percent- 
scenarios are designed with the simulation tool to test age is chosen from a group consisting of 10% or more, 20% 
various conditions of the digital design. During the timing Or more, 30% Or more, 40% or more, 50% or more, 60% or 
analysis of step 1916, problems could be found in step 1906. more, ”% Or more, 80% Or more, 90% Or more, and 95% 
Rework of the behavioral code could be performed by 15 Or more. 
returning to step 1904 where problems are found, processing 4. The digital circuit design embodied in at least one of the 
continues from step 1916 to step 1908 where no problems structural netlist, the behavioral netlist, the hardware 
are found. description language netlist, the full-custom ASIC, the semi- 

Synthesis and optimization is performed in step 1908 to custom ASIC, the IP core, the integrated circuit, the hybrid 
convert the behavioral netlist to an optimized structural 2o of chips, one or more masks, the FPGA, and the circuit card 
netlist. Conversion between cell libraries can also be per- assembly as recited in claim 1, wherein each of the kernel 
formed in this step, some embodiments may perform the circuits is selected from a group consisting of a selection 
synthesis and optimization as separate steps, static and circuit, a memory circuit and an one-input Boolean circuit. 
dynamic timing analysis are performed in steps 1912 and 5. The digital circuit design embodied in at least one of the 
1916, If problems are found, rework may be done in step 25 Structural netlist, the behavioral netlist, the hardware 
1904 or step 1908, ~~~~~k in step 1908 could include description language netlist, the full-custom ASIC, the semi- 
changing parameters fed to the synthesis & optimization tool custom ASIC, the IP core, the integrated circuit, the hybrid 
1604 or correcting problems with libraries. of chips, one or more masks, the FPGA, and the circuit card 

once generally satisfied with the optimized structural assembly as recited in claim 1, wherein each of the kernel 
netlist, processing continues to step 1920 for place & route 3o circuits is selected from a group consisting of a selection 
of the design. In this step, the trace lengths and drive circuit, a 
requirements are accurately analyzed to improve the 6. The digital circuit design embodied in at least one of the 
verification that can be performed on the digital design, structural netlist, the behavioral netlist, the hardware 
once again static and dynamic timing analysis is performed description language netlist, the full-custom ASIC, the semi- 
in step 1912 and 1916 to verify the laid-out design still 35 Custom ASIC, the Ip core, the integrated circuit, the hybrid 
behaves properly. Where there are problems as detected in of chips, one or more masks, the FPGA, and the circuit card 
step 1906, rework could be performed in steps 1904, 1908 assembly as recited in claim 1, wherein each of the selection 
or 1920. The interactive direct verification tool 1804 can circuits 
assist the digital designer find where flaws were likely 7. The digital circuit design embodied in at least one of the 
introduced into the netlist. Where there are no problems after 4o structural netlist, the behavioral netlist, the hardware 
layout, the design is fabricated in step 1924. description language netlist, the full-custom ASIC, the semi- 

~~~i~~ described several embodiments, it will be recog- custom ASIC, the IP core, the integrated circuit, the hybrid 
nized by those of skill in the art that various modifications, of chips, one or more masks, the FPGA, and the circuit card 
alternative constructions, and equivalents may be used with- assembly as recited in claim 1, wherein a total number of 
out departing from the spirit of the invention, Accordingly, 45 kernel circuits in the digital circuit design is less than one of 
the above description should not be taken as limiting the lo, 20, 303 403 503 753 and loo. 
scope of the invention, which is defined in the following 8. The digital circuit design embodied in at least one of the 
claims. structural netlist, the behavioral netlist, the hardware 

description language netlist, the full-custom ASIC, the semi- 
custom ASIC, the IP core, the integrated circuit, the hybrid 
Of One Or more masks, the FPGA, and the circuit card 
assembly as recited in claim 1, wherein the plurality of first 

9. A digital circuit design embodied in physical and/or 

a Plurality of first sub-circuits comprising a first percent- 
age of the digital circuit design; and 

a plurality of second sub-circuits comprising a second 
percentage of the digital circuit design, wherein: 

each of second sub-circuits is substantially comprised of 
one or more kernel circuits, 

each the kernel circuits are chosen from a group consist- 
ing of a selection circuit type, a memory circuit type, 
and a buffer circuit type, and 

circuit and a buffer circuit. 

a 

What is claimed is: 
1, A digital circuit design embodied in at least one of a 

structural netlist, a behavioral netlist, a hardware description 
language netlist, a full-custom ASIC, a semi-custom ASIC, 
an IP core, an integrated circuit, a hybrid of chips, one or sub-circuits no circuits. 
more masks, a FPGA, and a circuit card assembly, the digital 

a plurality of first sub-circuits comprising a first percent- 
age of the digital circuit design; and 

a plurality of second sub-circuits comprising a second 
percentage of the digital circuit design, wherein: 
each of second sub-circuits is comprised of one or more 60 

kernel circuits, 
the kernel circuits are chosen from the group consisting 

of a buffer or memory cell, a second circuit type and 
a selection circuits, and 

schematic form, the digital circuit design comprising: circuit design comprising: 55 

the second percentage is at least 5%. 65 the second percentage is at least 5%. 
10. The digital circuit design embodied in physical and/or 

schematic form as recited in claim 9, wherein the digital 
2. The digital circuit design embodied in at least one of the 

structural netlist, the behavioral list, the hardware descrip- 
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circuit design is embodied in at least one of a structural a second code segment comprising a second description 
netlist, a behavioral netlist, a hardware description language of a second basic cell and a second interconnection of 
netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, the second basic cell, wherein: 
an integrated circuit, a hybrid of chips, one or more masks, the first description indicates which of a selection circuit 

type, a memory circuit type, and a buffer circuit type 11. The digital circuit design embodied in physical and/or 
comprise the first basic cell, and schematic form as recited in claim 9, wherein the second 

percentage is chosen from the group consisting of 10% or the second description indicates which of the selection 
more, 20% or more, 30% or more, 40% or more, 50% or circuit type, the memory circuit type, and the buffer 
more, 60% or more, 70% or more, 80% or more, 90% or i o  circuit type comprise the second basic cell wherein a 
more, and 95% or more. total number of circuits of the selection circuit type, the 

12. The digital circuit design embodied in physical and/or memory circuit type, and the buffer circuit type is less 
schematic form as recited in claim 9, wherein each of the than one of 10, 20, 30,40, 50, 75, and 100. 
kernel circuits is selected from the group consisting of a 18, The digital circuit design describing the plurality of 
selection circuit, a memory circuit and an one-input Boolean is cells, wherein the digital circuit design is embodied in the 
circuit. computer signal as recited in claim 17, wherein the digital 

circuit design is embodied in at least one of a structural 

netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, 
an integrated circuit, a hybrid of chips, one or more masks, 
a FPGA, and a circuit card assembly. 

describing the plurality Of 

cells, wherein the digital circuit design is embodied in the 
17, wherein the first 

interconnection is coupled to the second interconnection. 
20. The digital circuit design describing the plurality of 

cells, wherein the digital circuit design is embodied in the 
computer signal as recited in claim 17, wherein each circuit 

21. The digital circuit design describing the plurality of 
cells, wherein the digital circuit design is embodied in the 
computer signal as recited in claim 17, wherein the plurality 
of first sub-circuits includes no kernel circuits. 

a FPGA, and a circuit card assembly. 5 

13. The digital circuit design embodied in physical and/or 

kernel circuits is selected from the group consisting of a 
selection circuit, a memory circuit and a buffer circuit. 

14. The digital circuit design embodied in physical and/or 
schematic form as recited in claim 9, wherein each selection 
circuit of the selection circuit types includes a multiplexor, 

15, The digital circuit design embodied in physical and/or 
schematic form as recited in claim 9, wherein a total number 25 computer 
of kernel circuits is less than one of 10, 20, 30, 40, 50, 75, 
and 100. 

16. The digital circuit design embodied in physical and/or 
schematic form as recited in claim 9, wherein the plurality 
of first sub-circuits includes no kernel circuits. 

17. A digital circuit design describing a plurality of cells, 
wherein the digital circuit design is embodied in a computer 
signal, the digital circuit design comprising: 

a first code segment comprising a first description of a first 
basic cell and a first interconnection of the first basic 35 
cell; * * * * *  

schematic form as recited in 9, wherein each Of the netlist, a behavioral netlist, a hardware description language 

20 

19. The digita1 circuit 

as recited in 

30 of the selection circuit type includes a multiplexor. 


