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Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the 
Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites 
into hot section components of future gas turbine engines.  Due to recent NASA 
advancements in SiC-based fibers and matrices, these composites are lighter and capable 
of much higher service temperatures than current metallic superalloys, which in turn will 
allow the engines to operate at higher efficiencies and reduced emissions.  This presentation 
briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-
based concepts, tools, and process/property models for micro- and macro-structural design, 
fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular.  
Particular emphasis is currently being placed on understanding and modeling (1) creep 
effects on residual stress development within the component, (2) fiber architecture effects on 
key composite properties such as design strength, and (3) preform formation processes so 
that the optimum architectures can be implemented into complex-shaped components, such 
as turbine vanes and blades.
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Background

A major thrust under a variety of recent NASA and 
DoD aero-propulsion programs has been to develop 
and demonstrate advanced Ceramic Matrix 
Composite (CMC) turbine components with
optimized structural and environmental durability at 
service temperatures significantly higher than current 
metallic alloys
Potential Benefits for Supersonic Engines:
• Higher engine efficiency and thrust
• Reduced weight, cooling, and emissions 
• Longer and more reliable component life
• Enabling of other aerospace applications not 

attainable with metals
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SiC Fiber/SiC Matrix (SiC/SiC) CMC Out-Perform 
Competing High-Temperature Structural Materials 

versus Superalloys:
- Lower density  (~30% metal density)
- Higher temperature capability  (>1100oC)
- Lower thermal expansion

versus Monolithic Ceramics:
- Non-catastrophic failure
- Higher toughness, better damage tolerance
- Capability for larger and more complex shapes

versus Carbon Fiber Composites (C/SiC, C/C):
- Higher oxidative durability, longer and more predictable life
- Lower permeability

versus Oxide/Oxide Ceramic Composites:
- Higher strength, temperature capability, creep-

rupture resistance, thermal conductivity, emissivity
- Lower permeability
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NASA Advancements in Constituent Materials and 
Processes that address Key Property Needs

for SiC/SiC Turbine Components

• Sylramic-iBN fiber (creep resistant stoichiometric SiC 
with protective in-situ grown BN coating and thermal 
stability >1600oC)

• Improved 2D and 3D Fiber Architectures (stress-
free and high thermal conductivity)

• Improved CVI SiC Matrices (higher thermal 
conductivity and creep-resistance)

• Hybrid CVI + PIP SiC Matrices (silicon-free for 
thermal stability >1500oC)

• Advanced Environmental Barrier Coatings (EBC)
(thermal stability >1500oC in combustion 
environments)
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Thermostructural capability for NASA Type 2 SiC/SiC system is state-
of-the art.  FA program is attempting to improve temperature 

capability to 3000oF under the Hypersonics project.
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Task 06.03.03 – Advanced Physics-Based Tool 
Development for CMC Components

Objectives:
• Understand the key challenges currently limiting the 

implementation of SiC/SiC CMC into turbine section 
components of supersonic engines

• Address these challenges in a generic manner by the 
development of physics-based concepts, tools, and 
process/property models for micro- and macro-
structural component design and lifing 

• Verify property and lifing predictions by development 
of specialized sub-element testing facilities

• Work with DOD and CMC industry for optimization of 
efforts and demonstration of advanced concepts

SUP.06 Lightweight Durable Engines
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Key SiC/SiC Property Requirements
for Turbine Components

• High PL Strength/Strain

• High Ultimate Strength/Strain

• UTS > PLS in all directions

• Intrinsic Time/Temperature Structural Capability
• Constituent microstructural stability
• Creep and rupture resistance

• Thermal Conductivity (minimize thermal stress)
• Environmental Durability (oxygen, water vapor)

• Multi-Directional Tensile Strength and Damage Tolerance
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Physics-Based Mechanistic Effects
Controlling Key SiC/SiC Structural Properties
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• Lifing Methodologies:
• Creep effects on component life

• Higher matrix cracking strength:
• Architecture effects on in-plane and thru-

thickness strength
• Complex Shape Producibility:

• Fiber architecture processes for high-
performance turbine airfoils

• Prime Reliant EBC:
• Durable and compatible with SiC/SiC

Current Challenges for
Viable SiC/SiC Turbine Components and

Physics-based Tool Development



11

National Aeronautics and Space Administration

www.nasa.gov

Challenge: Lifing Concerns for SiC/SiC Creep

• Dimensional changes: Not important because 
creep strains for SiC/SiC rupture are currently < 1%

• Constituent Rupture: As with monolithic ceramics, 
creep implies flaw growth and time-dependent 
weakening of the fiber and matrix (~0.5% creep)

• Residual Stress Development: Can put matrix in 
more internal tension with time, resulting in reduction 
of matrix cracking stress.  A particular concern for 
components with stress and thermal gradients, such 
as turbine airfoils.  Adverse effects can occur as low 
as 0.05% creep strain.



12

National Aeronautics and Space Administration

www.nasa.gov

Advantages
• Allows a best-case evaluation of SiC/SiC leading edge  

temperature and thermal stress capability by elimination of 
mechanical stresses that depend on specific airfoil designs

• Allows generic examination of effects due to thermal stresses, 
curvature, wall thickness, creep, stress relaxation, and other 
properties of different SiC/SiC systems

• Allows both analytical and Finite Element (FE) analyses
• Useful also for analyzing SiC/SiC tubular heat exchangers
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FE Modeling of Time-Dependent Thermal Stress in 
SiC/SiC Tube with ΔT that Avoids Initial Cracking

Conditions: ΔT = 300oF, a = 6 mm, H = 2 mm,  H/a = 0.33
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wall
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FE Modeling of Time-Dependent Thermal Stress in 
SiC/SiC Tube with ΔT that Avoids Initial Cracking

Conditions: ΔT = 300oF, a = 6 mm, H = 2 mm,  H/a = 0.33
(Animation)
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Hoop Stress Relaxation Near Max Thermal
Conditions for Type 2 SiC/SiC Tube Model

Conditions: ΔT = 300oF, H/a = 0.33, Linear Creep, A1 = 0.08

at 2650oF < T*
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• Inner wall tensile stress relaxes with time, thereby  increasing
material reliability at temperature.  Outer wall compression 
decreases faster due to higher temperature.
• Residual stress build-up during cool down indicate ΔT* should 
be kept below ~300oF at all times to avoid cracking of outer wall.
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Challenge: Higher Matrix Cracking Strength

• Understand the sources of SiC/SiC matrix 
cracking  both in-plane (~150 MPa) and thru-
thickness (2D: ~15 MPa) and then develop 
approaches to minimize their influence and 
improve composite design strength.

• For highly dense matrices, such as those formed 
by melt infiltration, the fiber architecture plays a 
strong role in the initiation of matrix cracks.

• NASA is currently studying and modeling this 
effect using Acoustic Emission and SiC/SiC 
tensile specimens reinforced by a wide variety of 
different Sylramic-iBN fiber architectures.
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Architecture Effects on SiC/SiC In-Plane Matrix Cracking
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Architecture Design Model for SiC/SiC 
In-Plane Matrix Cracking (Onset) Stress
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Fiber Architecture also Strongly Affects SiC/SiC 
In-Plane Rupture Strength
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Fiber Type and Architecture also Strongly Affect
Key SiC/SiC Thru-thickness Properties

3D Architectures and Sylramic-iBN Fibers significantly 
Improve SiC/SiC Thru-thickness Conductivity and

Thru-Thickness Tensile Strength (TTTS)
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Maximum Temperature Predictions from Tube 
Model of SiC/SiC Airfoil Leading Edges
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Challenge: Fiber Architecture Design and
Processes for Complex-Shaped CMC Turbine Airfoils
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Current Task Approaches to
3D Airfoil Architectures

• Collaborate with AFML and Goodrich under VAATE contract for
the development of advanced technologies for SiC/SiC blades:
• Transfer NASA advancements to Goodrich for materials, 

processes, property modeling, architecture design
• Support efforts with high-temperature testing

• Initiate new NRA awards for airfoil-shaped preforms using
• 3D forming methods and high-stiffness SiC fibers 

• Conduct in-house studies on forming airfoil preforms using
• 3D filament winding

• Conduct in-house studies on feasibility of creep-forming airfoil 
preforms using NASA-developed heat treatment methods
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NASA-Developed  Method For Creep-forming
SiC Fiber Architectures Into High-strength

Complex-shaped Airfoil Preforms
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Summary
• NASA SiC/SiC systems are capable of outperforming the best 

superalloys and Ox/Ox CMC systems in weight-savings, structural 
capability, use temperature, and thermal conductivity.

• However, these systems currently face key technical challenges that 
need to be overcome before they can be widely implemented in hot-
section turbine components; for example,
– Advanced lifing design methodologies that can account for 

environmental effects, and also residual stress effects due to creep.
– 3D fiber architectures that not only yield high matrix cracking 

strengths both in-plane and thru-thickness, but also are conducive 
for the fabrication of complex-shaped components.  If the proper 
SiC fibers are selected, such as Sylramic-iBN, 3D systems should 
also provide improved thru-thickness thermal conductivity and 
impact resistance.

• For the more complex-shaped and higher performing components, 
such as turbine vanes and blades, many of these key challenges are 
currently being addressed under the FA Supersonics project.


