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Abstract 
This presentation highlights the experimental work to date to obtain validation data using a 9-point 
lean direct injector (LDI) in support of the National Combustion Code. The LDI is designed to 
supply fuel lean, Jet-A and air directly into the combustor such that the liquid fuel atomizes and 
mixes rapidly to produce short flame zones and produce low levels of oxides of nitrogen and CO. 
We present NOx and CO emission results from gas sample data that support that aspect of the design 
concept. We describe this injector and show high speed movies of selected operating points. We 
present image-based species maps of OH, fuel, CH and NO obtained using planar laser induced 
fluorescence and chemiluminescence. We also present preliminary 2-component—axial and 
vertical—velocity vectors of the air flow obtained using particle image velocimetry and of the fuel 
drops in a combusting case. For the same combusting case, we show preliminary 3-component 
velocity vectors obtained using a phase Doppler anemometer. For the fueled, combusting cases 
especially, we found optical density is a technical concern that must be addressed, but that in 
general, these preliminary results are promising. All optical-based results confirm that this injector 
produces short flames, typically on the order of 5- to-7-mm long at typical cruise and high power 
engine cycle conditions. 
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MotivationMotivation
NASA GRC has initiated efforts to develop a broad measurement 
database to characterize an LDI injector to facilitate understanding of 
the fuel vaporization, turbulent mixing and combustion processes. 
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MotivationMotivation

The 9-point LDI injector will serve as a realistic test bed for 
validation of the NASA National Combustion Code (NCC). 
Advanced optical and laser diagnostic methods will be used to 
measure an assortment of parameters.
LDI has over a 10-year history of use at NASA GRC, in several configurations. The LDI 
concept has been demonstrated to reduce NOx emissions (meeting 1996 Int’l Civil Aviation 
Organization standards) while maintaining CO and UHC’s at current levels
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Lean Direct Injection (LDI) BasicsLean Direct Injection (LDI) Basics
• Our LDI design is a multiplex fuel injector module containing 

multiple fuel injection tips and multi-burning zones and is 
designed to replace one conventional fuel injector

• The LDI rapidly mixes jet fuel and air thereby shortening 
distance to complete combustion process

• Each LDI element consist of an air passage with an upstream 
air swirler and a converging diverging venturi section. The 
simplex fuel injector is inserted through the center of the 
swirler and the fuel tip is at the throat of the venturi.

• Axial swirlers, helical vanes generate air swirl for quick 
mixing and to anchor the flame near the injector exits

• LDI allows for a variety a fuel staging possibilities

Individual LDI Injector Element
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T3 = 617 K T3 = 728 K T3 = 828 K

Frames from high speed movies show a turbulent, unsteady system from which 
flamelets can be seen. Flow is left to right. 
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The Hardware

9 pt LDI “top hat”

Optically-accessible flame tube
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Experimental ConditionsExperimental Conditions

• Inlet Pressure:  1.03 MPa (150 psia) – 1.72 MPa 
(250 psia)

• Inlet Temperature: 505 K (450 °F) – 827 K (1030 
°F)

• ΔP/P: 3-5 %
• Wair : 0.40 kg/s – 0.78 kg/s (0.89 – 1.71 lbm/s)
• Φ : 0.33 – 0.55
• Fuel staging of primary (four injection elements   ) 

and secondary (five elements G) fuel circuits
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Optical Diagnostics Measurement Suite
Species, temp using PLIF, light scatter or Raman scatter
• 2D, 3D mapping of: OH, NO, fuel liquid and vapor

CH, C2, profile and pattern factor
• 1D mapping of major combustion species:

CO2, O2, N2, hydrocarbons, H2O
Species via chemiluminescence Imaging of C2, CH, OH, NO

Velocity
• 2 component mapping via images—PIV
• 3 component pointwise—LDV

Drop Sizing
• 3 component pointwise—PDI
• shadowgraph-based, long range microscope

Flow/flame visualizations
movies: video, high speed photography, schlieren, 
compilations of single-shot species, or of averaged data
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Data acquisition and analysis

• PLIF, PLS: 10 Hz repetition rate, 100 or 200-gate on-chip avg
Traverse in 1-mm increments from -23 to +23

• Chemiluminescence images: on-chip 200 or 600 gates
• Laser-based images subtract the appropriate background 

signal. Chemiluminescence images subtract minimum signal
• High Speed video photography, 16 - 19 kHz frame rate
• Air velocity: Axial-vertical maps via PIV
• Fuel drop velocity: Axial-vertical maps via PIV and 3D maps 

via Laser Doppler Anemometry
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Imaging SetupImaging Setup
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CameraCamera

Field of view and camera arrangement for PLIF, PLS, and PIVField of view and camera arrangement for PLIF, PLS, and PIV
Laser Sheet

76mm x 76 mm
flow path

46 mm

+23 mm-23 mm

46 mm

Data obtained in vertical-axial plane: side views
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Side View Images End View Images
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End View Composites 7.5 mm from the Injector Exit 

Inlet conditions: T = 617K, P = 1030 kPa, φ = 0.38, equal fuel split. “low” power

Total Fuel                                       OH             Liquid Fuel

Inlet conditions: T = 822K, P = 1723 kPa, φ = 0.41, equal fuel split. “high” power

Total Fuel OH Liquid Fuel

Scaled per species for entire set of inlet conditions tested
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End view
3.6 mm downstream

Side view in center position
White bar denotes position of end on view

φpry  = 0.38
φ 2ndry = 0.38

Fuel Split differences observed using fuel (via naphthalenes) PLIF
Preliminary results-uncorrected data

Tin= 650 F, Pin=150 psia

φpry  = 0.65
φ 2ndry = 0.22
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OH*             NO*                                        CH*
T3

Chemiluminescence images: P3 = 150 psia, φ = 0.45, even split, fuel flow normalized
Useful for assessing overall symmetry
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Velocity Example 1. Air only preliminary results

• Served to test of our powder seeder for elevated pressure
• Air seeded with 0.3-μm alumina particles to scatter laser
• Air velocity for axial and vertical components
• Average velocity field resultant from 200 instantaneous  

velocity fields
• Traverse in ~ 3-mm increments
• Experiment inlet: Tin = 617 K, Pin = 1030 kPa
• Note: Flow and model conditions are different. Physical

model is slightly different than actual hardware.
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Iso-surface of zero axial velocity showing the recirculation zones

From NCC, using Reynolds-Averaged Navier Stokes Simulation
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Comparison of Experimental and Computational Axial Air
Velocities 6 mm Downstream of the Injector Exit Plane

Experimental inlet conditions
Tin = 617K, Pin = 1030 kPa

Computational inlet conditions
Tin = 822K, Pin = 2740 kPa
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End view axial velocity contours from 3mm End view axial velocity contours from 3mm -- 25 mm downstream from25 mm downstream from
the injector exit plane. Inlet conditions: Tthe injector exit plane. Inlet conditions: Tinin = 617K, P= 617K, Pinin = 1030 = 1030 kPakPa. . 
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Velocity Examples 2. Fuel drops only
(highly preliminary results)

• Unseeded system, combusting environment

• P3 = 150 psia, T3 = 650°F, φ = 0.45, even fuel split

• Our first PIV measurements in a combusting system
allowed us to assess shutter and timing

• Implementation issues must be resolved for PIV and 
LDV measurement techniques



23

National Aeronautics and Space Administration

www.nasa.gov
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Fuel Fuel axialaxial velocity contours from 0 velocity contours from 0 -- 16 mm downstream from16 mm downstream from
the injector exit plane. Inlet conditions: Tthe injector exit plane. Inlet conditions: Tinin = 617K, P= 617K, Pinin = 1030 = 1030 kPakPa, , φφ = = 0.45 0.45 

0 mm                           0.5 mm                       0.7 mm                         1mm

2 mm                           5 mm                        8 mm                           10 mm

12 mm                         13 mm                        16 mm

Camera

Results are preliminary
Planes nearest the injector exhibit symptoms of an opticaly thick field
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Because the optical implementation is different, the PDA system accesses
A somewhat different volume than the imaging work

From transceiver:
Beams are 15° relative
to horizontal

Approximate
PDA probe volume
(Note the shift wrt
imaging probe volume)

PIV small region

LDA region

PLIF/PLS/PIV 
large region

Window full aperture =
1.5” (axial) x 2”
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As with the PIV 
result above, the 
velocity distribution 
shown here is 
uncorrected for 
optical thickness. 

Axial V:
contour
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SummarySummary

We performed the first of a series experiments to obtain baseline data for 
validating the NASA National Combustor Code using a 9-point LDI.

Species measurements
• PLIF images of fuel and OH were acquired and compared to similar PLS images 

from liquid fuel. Optical thickness/absorption are the primary issues to address.
• Image results show that this LDI atomizes and vaporizes fuel quickly. 

Chemiluminescence images are useful for determining the overall symmetry of the 
system.

Velocity meas—promising preliminary results despite tech issues 
• Our first velocity/sizing measurements provide allow us to assess technique 

implementation determine how to improve. In general, we were successful
• PIV results show the presence of recirculation zones immediately downstream of 

the injector as predicted.
• A qualitative comparison of the axial air velocity from experiment and NCC code 

indicates a strong general agreement. 
• Future velocity/turbulence/drop sizing, etc. measurements will need to address 

probable optical density/optical access issues, particularly for Phase Doppler


	Motivation
	Motivation
	Lean Direct Injection (LDI) Basics
	The Hardware
	Experimental Conditions
	Summary

