ABSORPTION COMPOUNDS AFFECTING CHOLESTEROL ABSORPTION

Inventors: Duy H. Hua, Manhattan, KS (US); Sung I. Koo, Storrs, CT (US); Sang K. Noh, Willimantic, CT (US)

Assignee: Kansas State University Research Foundation, Manhattan, KS (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 10/292,720
Filed: Nov. 12, 2002

Int. Cl. A61K 31/35; C07C 43/20

U.S. Cl. 514/453; 549/214; 549/384; 568/633

Field of Search 514/453; 549/214; 549/384; 568/633

References Cited

U.S. PATENT DOCUMENTS
5,017,380 A 5/1991 Hamashima et al.
5,017,708 A 5/1991 Ogata et al.
5,041,635 A 8/1991 Narisada et al.
5,047,574 A 9/1991 Ohtani et al.
5,091,569 A 2/1992 Matsumoto et al.
5,117,039 A 5/1992 Ohtani et al.
5,120,865 A 6/1992 Narisada et al.
5,137,914 A 8/1992 Ohtani et al.
5,175,186 A 12/1992 Barbier et al.
5,175,341 A 12/1992 Ohtani et al.
5,200,533 A 4/1993 Narisada et al.
5,202,345 A 4/1993 Matsumura et al.
5,214,202 A 5/1993 Hamada et al.
5,246,960 A 9/1993 Barbier et al.
5,250,705 A 10/1993 Okada et al.
5,268,386 A 12/1993 Harada et al.
5,414,122 A 5/1995 Murabayashi et al.
5,420,145 A 5/1995 Shado
5,459,064 A 10/1995 Teraoka et al.
5,459,264 A 10/1995 Imuta et al.
5,495,048 A 2/1996 Aebi et al.
5,534,654 A 7/1996 Ohtani et al.

A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I:

or a pharmaceutically acceptable salt thereof.

51 Claims, 4 Drawing Sheets
OTHER PUBLICATIONS

FIG. 1

- Control
- Compound I

14C-CH absorption (% dose/h)

Time (h)
FIG. 2

Oleic acid output (μmol/h)

Control
Compound I

Time (h)
FIG. 4

Concentration (μM)

Inhibition (%)
The invention features a compound of Formula I:

\[
\text{R}_1, \text{R}_2, \text{R}_3, \text{R}_4, \text{R}_5 \text{ can be independently hydrido, halo, alkyl, alkenyl, alkyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, aryl, heterocyclic, heteroararyl, alkylsulfonyl, arylsulfonyl, N-alkylsulfonylamyl, N,N-dialkylsulfonylamyl, N-arylsulfonylamyl, N-alkyl-N-arylsulfonylamyl, carboxy, carboxyalkyl, alkylicarbonyl, alkylcyanocarbonylalkyl, alkoxyalkyl, alkoxyalkylcarbonylaalkyl, amido, N-alkylamido, N,N-dialkylamido, N-monoarlamido, N-alkyl-N-arylamido, N-alkyl-N-hydroxyamido, N-alkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylicarbonylalkyl, amidino, cyanoamidino, heterocyeloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkyllithio, alkylsulfenyl, N-alkylaminino, N,N-dialkylaminino, acyl, acetyloxy, aryloxy, acylamin, amino, cyano, nitro, sulfonate, alkylsilyl, phenylselenenyl, thiold, arylsulfenyl, arylsulfenyl, arylsilyl, or arylsilyloxy,}
\]

\[
\text{R}_1, \text{R}_2, \text{R}_3, \text{R}_4, \text{R}_5 \text{ can be independently hydrido, halo, alkyl, alkenyl, alkyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, aryl, heterocyclic, heteroararyl, alkylsulfonyl, arylsulfonyl, N-alkylsulfonylamyl, N,N-dialkylsulfonylamyl, N-arylsulfonylamyl, N-alkyl-N-arylsulfonylamyl, carboxy, carboxyalkyl, alkylicarbonyl, alkylicyanocarbonylalkyl, alkoxyalkyl, alkoxyalkylcarbonylaalkyl, amido, N-alkylamido, N,N-dialkylamido, N-monoarlamido, N-alkyl-N-arylamido, N-alkyl-N-hydroxyamido, N-alkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylicarbonylalkyl, amidino, cyanoamidino, heterocyeloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkyllithio, alkylsulfenyl, N-alkylaminino, N,N-dialkylaminino, acyl, acetyloxy, aryloxy, acylamin, amino, cyano, nitro, sulfonate, alkylsilyl, phenylselenenyl, thiold, arylsulfenyl, arylsulfenyl, arylsilyl, or arylsilyloxy,}
\]

\[
\text{R}_1, \text{R}_2, \text{R}_3, \text{R}_4, \text{R}_5 \text{ can be independently hydrido, halo, alkyl, alkenyl, alkyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, aryl, heterocyclic, heteroararyl, alkylsulfonyl, arylsulfonyl, N-alkylsulfonylamyl, N,N-dialkylsulfonylamyl, N-arylsulfonylamyl, N-alkyl-N-arylsulfonylamyl, carboxy, carboxyalkyl, alkylicarbonyl, alkylicyanocarbonylalkyl, alkoxyalkyl, alkoxyalkylcarbonylaalkyl, amido, N-alkylamido, N,N-dialkylamido, N-monoarlamido, N-alkyl-N-arylamido, N-alkyl-N-hydroxyamido, N-alkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylicarbonylalkyl, amidino, cyanoamidino, heterocyeloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkyllithio, alkylsulfenyl, N-alkylaminino, N,N-dialkylaminino, acyl, acetyloxy, aryloxy, acylamin, amino, cyano, nitro, sulfonate, alkylsilyl, phenylselenenyl, thiold, arylsulfenyl, arylsulfenyl, arylsilyl, or arylsilyloxy,}
\]
In some embodiments, R_1 is halo, R_2 and R_3 are selected from hydroxy and alkylsilyloxy, and R_4 and R_5 are alkyl, e.g., R_1 is chloro, R_2 and R_3 are hydroxy, and R_4 and R_5 are methyl. In some embodiments, R_1 is halo, R_2 and R_3 are alkylsilyloxy, and R_4 and R_5 are methyl, e.g., R_1 is chloro, R_2 and R_3 are OSi-t-BuMe$_2$, and R_4 and R_5 are methyl. In some embodiments the compound has Formula (23):

![Formula 23](image)

In some embodiments, R_1 is halo, R_2 and R_3 are hydroxy, and R_4 and R_5 are alkyl, e.g., R_1 is chloro, R_2 and R_3 are OSi-t-BuMe$_2$, and R_4 and R_5 are methyl.

The invention also features a compound of Formula IV:

![Formula IV](image)

In some embodiments, R_1 is halo, R_2 and R_3 are hydroxy, and R_4 and R_5 are alkyl, e.g., R_1 is chloro, R_2 and R_3 are OSi-t-BuMe$_2$, and R_4 and R_5 are methyl.

The invention also features a compound of Formula III:

![Formula III](image)

In these compounds, R_1 can be independently any of the groups described above for R_1 of Formula I. R_2 can be independently any of the groups described above for R_2 of Formula I. R_3 can be independently any of the groups described above for R_3 of Formula I. R_4 can be independently hydrido, alkyl, or hydroxyalkyl. R_5 and R_6 can be independently hydrido, alkyl, or hydroxyalkyl. R_6 and R_7 can be independently hydrido, alkyl, or arylselenylalkyl. In some embodiments, R_1 is chloro, R_2 and R_3 are methyl, R_4 and R_5 are alkyl, and R_6 and R_7 are arylselenylalkyl.
The invention also features a compound of Formula V:

\[
\begin{align*}
\text{R}_1 & \text{ can be independently any of the groups described above for R}_1 \text{ of Formula I. R}_2 & \text{ can be independently any of the groups described above for R}_2 \text{ of Formula I. R}_3 & \text{ can be independently any of the groups described above for R}_3 \text{ of Formula I. R}_4 & \text{ can be independently hydrido, alkyl, or hydroxyalkyl. R}_5 & \text{ is independently hydrido, alkyl, or hydroxyalkyl. R}_6 & \text{ can be hydroxy. R}_6 & \text{ can be independently hydrido, alkyl, or hydroxyalkyl.}
\end{align*}
\]

In some embodiments, R_1 is halo; R_2 and R_3 are arylalkyloxy; R_4 and R_5 are alkyl; R_6 is hydroxy; and R_6 is selected from hydroxy and alkylsilyloxy, e.g., R_1 is chloro; R_2 and R_3 are OMe; and R_4 and R_5 are methyl; R_6 is hydroxy; and R_6 is OMe. In some embodiments, R_1 is chloro; R_2 and R_3 are OMe; R_4 and R_5 are alkyl; R_6 is hydroxy; and R_6 is hydroxy.

The invention also features a method of synthesizing a compound of Formula I:

\[
\begin{align*}
\text{R}_1 & \text{ is chloro, R}_2 & \text{ and R}_3 & \text{ are OSi-tBuMe}_2. \text{ The method further comprises isolating compound (18) and deprotecting compound (18). The result is a compound of Formula I.}
\end{align*}
\]

The invention also features a method of synthesizing (+) chloropupeeone. The method comprises hydrogenating compound (19) to form compound (25).

Desilylation of compound (25) forms compound (26).

wherein R_1 is chloro, R_2 and R_3 are OSi-tBuMe_2, X_1 is chloro, X_2 is bromo;
Oxidation of compound (26) forms (+) chloropupehenone (27).

The invention also features a pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a compound of Formula I:

\[
\text{R}_1 \text{R}_2 \text{R}_3 \text{R}_4 \text{R}_5
\]

The composition can be in the form of a capsule or a liquid emulsion. The composition can be in a controlled release formulation, e.g., a dispersion in hydroxypropylmethyl cellulose, or in a formulation suitable for parenteral administration, e.g., a lipid emulsion. The composition can comprise a diluent such as polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, or benzyl alcohol. The pharmaceutically-acceptable carrier material can be lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, t alc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfamic acids, gelatin, acacia gum, sodium alginate, microcrystalline cellulose, sodium starch glycolate, sodium lauryl sulfate, povidone, polyvinylpyrrolidone, or polyvinyl alcohol.

The invention also features a method for identifying a compound that inhibits lymphatic absorption of cholesterol. The method comprises administering a known amount of cholesterol and a compound of claim 1 to a non-human mammal, and determining the amount of administered cholesterol that is absorbed by the lymph. A statistically significant decrease in lymphatic cholesterol absorption relative to the lymphatic cholesterol absorption of a corresponding control mammal indicates that the compound is effective for inhibiting lymphatic absorption of cholesterol. A statistically insignificant change or a statistically significant increase in lymphatic cholesterol absorption relative to the lymphatic cholesterol absorption of a corresponding control mammal indicates the compound does not inhibit lymphatic absorption of cholesterol. The cholesterol and the compound can be administered in a lipid emulsion.

The invention also features a method of treating a cholesterol-related condition. The method comprises administering an effective amount of a compound of Formula I to a mammal. The cholesterol-related condition can be, for example, atherosclerosis, hypercholesterolemia, heart attack, gangrene, and stroke. The compound can be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly, or topically, and in an amount from about 4 mg/kg to about 4 g/kg of body weight per day. The compound can be administered in a composition as described above. The method can be part of a treatment regimen comprising a diet low in cholesterol, or as part of a treatment regimen that includes administering an HMG-CoA reductase inhibitors. The method can be used to treat humans. The method can include administering the compound for 7 days or more, e.g., for one year or more.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a graph showing hourly rates of lymphatic absorption of cholesterol in lymph-cannulated rats. Values are expressed as means±SD, n=5. *Indicates a significant difference between treatments at p<0.05.

FIG. 2 is a graph showing hourly rates of lymphatic absorption of oleic acid in lymph-cannulated rats. Values are expressed as means±SD, n=5. *Indicates a significant difference between treatments at p<0.05.

FIG. 3 is a graph showing percent inhibition of cholesterol ester transfer protein (CETP) activity in the presence of various concentrations of compound 24. The results from two replicates of the assay are shown.

FIG. 4 is a graph showing percent inhibition of CETP activity in the presence of various concentrations of Feroverdin A.

DETAILED DESCRIPTION

Compounds of Formula I

A class of compounds useful for inhibiting lymphatic absorption of cholesterol is defined by Formula I:

\[
R_1, R_2, R_3, R_4, R_5
\]

wherein R₁ is selected from hydrido, halo, alkyl, alkenyl, alkyllyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy,
Compounds of Formula II

A second class of compounds is defined by Formula II:

\[
\text{An exemplary class of compounds includes those compounds of Formula II wherein } R_2 \text{ is halogen, } R_3 \text{ is selected from } \text{hydroxy and alkylsilyloxy; } R_4 \text{ is selected from } \text{hydroxy and alkylsilyloxy; and } R_5 \text{ is selected from hydroxy and alkylsilyloxy.}
\]

A family of specific compounds of particular interest within Formula II consists of compounds and their pharmaceutically acceptable salts as follows:

\[
\text{(4aS,6aS,12bS)-2H-11-Chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4a,6a,12b-tetramethyl-benzo[a]xanthene (19).}
\]

Compounds of Formula III

A third class of compounds is defined by Formula III:

\[
\text{An exemplary class of compounds includes those compounds of Formula III wherein } R_1 \text{ is halogen, } R_2 \text{ is selected from hydroxy and alkylsilyloxy; } R_3 \text{ is selected from hydroxy and alkylsilyloxy; and } R_4 \text{ is selected from hydroxy and alkylsilyloxy.}
\]
Compounds of Formula IV

A fourth class of compounds is defined by Formula IV:

wherein R₂ is selected from the moieties described above for R₂ groups of Formula I, R₂ is selected from the moieties described above for R₂ groups of Formula I, R₂ is selected from hydroxy, alkoxylyxy, and aryloxy; and R₂ is selected from hydroxy, alkoxylyxy, and aryloxy.

A family of specific compounds of particular interest within Formula IV includes the following compounds and their pharmaceutically acceptable salts as follows:

((4aS,6aR,12aR,12bS)-2H-9,10-Bis-(1-butylimethylsiloxyl)-11-chloro-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-4,4,6a,12b-tetramethyl-benz[a]xanthene (21); and
(4aS,6aR,12aR,12bS)-2H-11-Chloro-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-4,4,6a,12b-tetramethyl-benz[a]xanthene-9,10-diol (22)).

A second family of specific compounds of particular interest within Formula III includes oxidation products and their pharmaceutically acceptable salts as follows:

(4aS,6aR,12aR,12bS)-2H-9,10-Bis-(1-butylimethylsiloxyl)-11-chloro-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-4,4,6a,12b-tetramethyl-benz[a]xanthene (21); and
(4aS,6aR,12aR,12bS)-2H-11-Chloro-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-4,4,6a,12b-tetramethyl-benz[a]xanthene-9,10-diol (22).

A family of specific compounds of particular interest within Formula III includes compounds and their pharmaceutically acceptable salts as follows:

((4aS,6aR,12aR,12bS)-2H-9,10-Bis-(1-butylimethylsiloxyl)-11-chloro-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-4,4,6a,12b-tetramethyl-benz[a]xanthene (21); and
(4aS,6aR,12aR,12bS)-2H-11-Chloro-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-4,4,6a,12b-tetramethyl-benz[a]xanthene-9,10-diol (22)).

Compounds of Formula V

A fifth class of compounds is defined by Formula V:

wherein R₁ is selected from the moieties described above for R₁ groups of Formula I, R₁ is selected from the moieties described above for R₁ groups of Formula I, R₁ is selected from the moieties described above for R₁ groups of Formula I, R₁ is selected from hydroxy, alkoxylyxy, and aryloxy; and R₁ is selected from hydroxy, alkoxylyxy, and aryloxy.

A family of specific compounds of particular interest within Formula V includes the following compounds and their pharmaceutically acceptable salts as follows:

(4aS,8aS)-1-[[2-chloro-3,4-dibenzyloxy-6-(1-butylimethylsiloxyl)phenylhydroxymethyl]-2-methyl-5,5,8a-trimethyldecahydrofuran-3-ylmethyl](8aS,4aS)-1-[2-chloro-3,4-dibenzyloxy-6-hydroxyphenylhydroxymethyl]-2-methyl-5,5,8a-trimethyldecahydrofuran-3-ylmethyl] (37); and
(4aS,8aS)-1-[[2-chloro-3,4-dibenzyloxy-6-hydroxyphenylhydroxymethyl]-2-methyl-5,5,8a-trimethyldecahydrofuran-3-ylmethyl] (38).

The term “alkyl” embraces linear or branched saturated aliphatic radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are “lower alkyl” radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about four carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups.
The term alkyl includes both “unsubstituted alkyls” and “substituted alkyls”, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkylenyl, alkynyl, halogen, hydroxy, alkylicarboxyloxy, arylicarboxyloxy, alkoxy, aryloxy, carboxylate, alkylcarboxyl, arylcarboxyl, aroylcarboxyl, amino, aminocarboxyl, alkylaminocarboxyl, dialkylaminocarboxyl, alkylthiocarboxyl, alkyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, diarylamino, and alkylarylamino), acylaminino (including alkylcarboxyloxycarbonylaminino, arylicarboxyloxycarbonylaminino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, thiocarboxylate, sulfates, alkylsulfanyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclic, alkyaryl, or an aromatic or heteroaromatic moiety. Cycloalkyls can be further substituted, e.g., with the substituents described above. An “aryalkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)). The term “n-alkyl” means a straight chain (i.e., unbranched) unsubstituted alkyl group. The term “alkenyl” includes both “unsubstituted alkenyls” and “substituted alkenyls”, the latter of which refers to alkenyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkenyl groups, haloens, hydroxy, alkylicarboxyloxy, arylicarboxyloxy, alkoxy, aryloxy, carboxylate, alkylcarboxyl, arylcarboxyl, aroylcarboxyl, amino, aminocarboxyl, alkylaminocarboxyl, dialkylaminocarboxyl, alkylthiocarboxyl, alkyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, diarylamino, and alkylarylamino), acylaminino (including alkylcarboxyloxyaminino, arylicarboxyloxyaminino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, thiocarboxylate, sulfates, alkylsulfanyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclic, alkyaryl, or an aromatic or heteroaromatic moiety. The term “alkynyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond and must contain at least two carbon atoms. For example, the term “alkynyl” includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, cycloalkynyl (acyclic) groups (cyclopropenyl, cyclopropynyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups.

The term alkyl includes both “unsubstituted alkylens” and “substituted alkylens”, the latter of which refers to alkyl en moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkenyl groups, haloens, hydroxy, alkylicarboxyloxy, arylicarboxyloxy, alkoxy, aryloxy, carboxylate, alkylcarboxyl, arylcarboxyl, aroylcarboxyl, amino, aminocarboxyl, alkylaminocarboxyl, dialkylaminocarboxyl, alkylthiocarboxyl, alkyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, diarylamino, and alkylarylamino), acylaminino (including alkylcarboxyloxyaminino, arylicarboxyloxyaminino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, thiocarboxylate, sulfates, alkylsulfanyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclic, alkyaryl, or an aromatic or heteroaromatic moiety. The term “alkynyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond and two carbon atoms. For example, the term “alkynyl” includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkynyl substituted alkynyl groups.

The term “hydrido” denotes a single hydrogen atom (H). This hydrido radical may be attached, for example, to an oxygen atom to form a hydroxyl radical or two hydrido radicals may be attached to a carbon atom to form a methylene (—CH2—) radical. The term “halo” means halogens such as fluorine, chlorine, bromine or iodine atoms. The term “haloalkyl” embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have either a bromo, chloro or a fluoro atom within the radical. Dihalo radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkyl radicals may have more than two of the same halo atoms or a combination of different halo radicals. The term “hydroxyalkyl” embraces linear or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted with one or more hydroxyl radicals. The terms “alkoxy” and “alkoxy-alkyl” embrace linear or branched oxy-containing radicals. Each having alkyl portions of one to about ten carbon atoms, such as methoxy radical. The term “alkoxyalkyl” also embraces alkyl radicals having two or more alkoxyl radicals attached to the alkyl radical, that is, to form monooalkoxy-alkyl and dialkoxyalkyl radicals. The “alkoxy” or “alkoxyalkyl” radicals may be further substituted with one or more halo atoms, such as fluoro chloro or bromo to provide “haloalkoxy” or “haloalkoxyalkyl” radicals. Examples of “alkoxy” radicals include methoxy butoxy and trifluoromethoxy. The term “aryl” alone or in combination, means a carbocyclic aromatic system containing rings wherein such rings may be attached together in a pendant manner or may be fused. The term “aryl” embraces aromatic radicals such as phenyl, naphthyl, tetrahydroanaphyl, indane and biphenyl. The term “heterocyclic” embraces saturated, partially saturated and unsaturated heteroatom-containing ring-shaped radicals, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Examples of saturated heterocyclic radicals include pyrrolidyl and morpholinyl. The term “heteroaryl” embraces unsaturated heterocyclic radicals. Examples of unsaturated heterocyclic radicals, also termed “heteroaryls”, also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuran, benzotheophene, and the like. The term “sulfon” or “sulfonyl”, whether used alone or linked to other terms such as alkylsulfon, denotes respectively divalent radicals (—SO2—)

“Alkysulfonyl”, embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. The term “arylsulfonyl” embraces sulfonyl radicals substituted with an aryl radical. The terms “sulfamoyl” or “sulfonamido”, whether alone or used with terms such as “N-alkylsulfamyl”, “N-arylsulfamyl”, “N,N-dialkylsulfamyl” and “N-alkyl-N-arylsulfamyl”, denotes a sulfonaryl radical substituted with an amine radical, forming a sulfonyamide (—SO2-NH2). The terms “N-alkylsulfamyl” and “N,N-dialklysulfamyl” denote sulfamyl radicals substituted, respectively, with one alkyl radical, a cycloalkyl, or two alkyl radicals. The terms “N-arylsulfamyl” and “N-alkyl-N-arylsulfamyl” denote sulfamyl radicals substituted, respectively, with one aryl radical, and one alkyl and one aryl radical. The terms “carboxy” or “carboxyl”, whether used alone or with other terms, such as “carboxyalkyl”, denotes —CO2H. The term “carboxyalkyl” embraces radicals having a carboxy radical as defined above, attached to an alkyl radical. The term “carbonyl”, whether used alone or with other terms, such as “alkylcarbonyl”, denotes (—C=O)—. The term “alkylcarbonyl” embraces radicals having a carbonyl radical substituted with one or more alkyl radicals. An example of an “alkylcarbonyl” radical is CH3—(—C=O)—. The term “alkylcarbonylalkyl”, denotes an alkyl radical substituted with an “alkylcarbonyl” radical. The term...
“alkoxyhydroxymethyl” means a radical containing an alkoxy group, as defined above, attached via an oxygen atom to a carbon (C=O) radical. Examples of such “alkoxyhydroxymethyl” radicals include (CH₃)₂CO—C(==O)— and —O(=O)C—OCH₃. The term “alkoxyhydroxymethyl” embraces radicals having “alkoxyhydroxymethyl”, as defined above, substituted to an alkyl radical. Examples of such “alkoxyhydroxymethyl” radicals include (CH₃)₂CO—C(==O)— and —(CH₃)₂—(=O)COCH₃. The term “amido” when used by itself or with other terms such as “amidalkyl”, “N-monoamidalkylamido”, “N, N-diarylmandamido”, “N-aryl-N-arylamido”, “N-alkyl-N-arylhydroxamidalkyl”, embraces a carboxyl radical substituted with an amino radical. The terms “N-alkylamido” and “N,N-dialkylamido” denote amido groups which have been substituted with one alkyl radical and with two alkyl radicals, respectively. The terms “N-monoamidalkylamido” and “N-arylamidoalkyl” denote amido radicals substituted, respectively, with one aryl radical, and one alkyl and one aryl radical. The term “N-alkyl-N-hydroxamidalkyl” embraces amido radicals substituted with a hydroxyl radical and with an alkyl radical. The term “N-alkyl-N-hydroxyamidalkyl” embraces amido radicals substituted with a hydroxyl radical and with an alkyl radical. The term “amidino” denotes an -C(=N-CN)-NH, radical. The term “hetocycloalkyl” embraces heterocyclic-substituted alkyl radicals. The term “aminoalkyl” embraces alkyl radicals substituted with an amino radical. The term “acyl” embraces radicals with the nitrogen atom substituted with a particular amount of the active ingredient may also be administered by injection as a pharmaceutically-acceptable base addition salts of compounds of Formula I include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium, and zinc or organic salts made from N,N'-dibenzylthiocarbamidine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared by conventional means from the corresponding acid. Appropriate organic acids may be selected from hydrochloric, cycloaliphatic, aromatic, arialiphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, example of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, gluconic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesyl, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanol sulfonic, benzenesulfonic, pantonic, 2-hydroxyethanesulfonic, toluenesulfonic, sulfuric, fumaric, cyclohexylamino sulfonic, hydroxybutyric, salicylic, galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of Formula I include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium, and zinc or organic salts made from N,N'-dibenzylthiocarbamidine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared by conventional means from the corresponding acid or base with the compound of Formula I and/or compositions of this invention may be prepared by conventional means from the corresponding acid or base with the compound of Formula I, II, III, IV or V. Pharmaceutical Compositions

The present invention includes a pharmaceutical composition for inhibiting lymphatic absorption of cholesterol, comprising a therapeutically-effective amount of a compound of Formula I in association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent. A pharmaceutical composition comprises one or more compounds of Formula I in association with one or more non-toxic, pharmaceutically acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as “carrier” materials) and, if desired, other active ingredients. A compound of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. A compound may, for example, be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

For oral administration, a pharmaceutical composition may be in the form of, for example, a tablet, capsule, emulsion, suspension or solution. A pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.

The amount of therapeutically active compound that is administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the sever-
ity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely.

If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanolic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, microcrystalline cellulose, sodium starch glycolate, sodium lauryl sulfate, povidone, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated, for convenient administration. Capsules or tablet shells can contain, e.g., gelatin, titanium dioxide, and dyes. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

Methods

Compounds of Formula I and related compounds can be utilized in the treatment of cholesterol-related conditions in mammals, including humans, dogs and cats. Cholesterol-related conditions include, for example, atherosclerosis, hypercholesterolemia, heart attack, stroke, and gangrene of the extremities. A method of treatment includes administering an effective amount of a compound of Formula I. The compound can be administered as a pharmaceutical composition, as described above. A compound of the present invention may be administered by any suitable route, typically in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. A compound may, for example, be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

The amount of compound that is administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors and can be determined by an attending physician. These factors include the age, body weight, sex and medical condition of the subject, the severity of the disease, the route and frequency of administration, the particular compound employed, health status, diet, other medications, and other relevant clinical factors. The amount of compound administered can range from about 4 mg/kg body weight per day to about 4 g/kg of body weight per day. For example, a compound can be administered at a daily dosage of 5 mg/kg, 10 mg/kg, 100 mg/kg, 250 mg/kg, 1000 mg/kg, 1500 mg/kg, 2000 mg/kg, or 3000 mg/kg. The daily dosage can be administered once per day, twice per day, three times per day, or four or more times per day. Variations in these dosage levels can be adjusted using standard empirical routines for optimization.

The concentration of a compound of the present invention effective to treat a cholesterol-related condition in a mammal may vary, depending on a number of factors, including the preferred dosage of the compound to be administered, the chemical characteristics of the compounds employed, the formulation of the compound excipients and the route of administration. The optimal dosage of a pharmaceutical composition to be administered may also depend on such variables as the overall health status of the particular patient and the relative biological efficacy of the compound selected. The amount and dosage regimen effective for treating a cholesterol-related condition in a mammal can be determined by, e.g., measuring cholesterol levels prior to the start of treatment and at various times after treatment has commenced. Assays for the quantitation of cholesterol are known, including assays for the level of cholesterol in blood or in lymph. Administration of an effective amount results in a decrease in lymphatic absorption of cholesterol that is statistically significant at a p<0.05 with an appropriate parametric or non-parametric statistic, e.g., Chi-square test, Student’s t-test, Mann-Whitney test, or F-test. In some embodiments, a difference in cholesterol level is statistically significant at p<0.01, p<0.005, or p<0.001.

A compound of the present invention can be administered as a single dose or can be administered for a period of from one day to many years, e.g., for 3 days or more, for 7 days or more, for 14 days or more, for 30 days or more, for one year or more, or for 3 years or more. The duration of the administration period depends upon, e.g., the daily dosage, the type of cholesterol-related condition and the patient’s response to the compound.

A compound of the present invention can be administered in conjunction with a diet low in cholesterol as part of a cholesterol lowering treatment regime. A compound of the present invention also can be administered in conjunction with drugs such as Lovastatin (sold as Mevacor from Merck Co.), Mevalon (from Sankyo Co., Japan), and analogs thereof (e.g., compounds sold under the trade names Sivastatin, Meva, and gauguen of the extremities). A suitable in vivo method is described in Loest, et al., J. Nutr. 132: 1282-1288 (2002).

Typically, a method of measuring inhibition of cholesterol absorption in vivo involves administering a predetermined amount of cholesterol and a test compound of Formula I-V to the intestine of a mammal. Typically, the animal is a fasted mammal. The cholesterol and test compound can be administered in a lipid emulsion into the duodenum of the mammal over a period of a few hours. Suitable non-human mammals include rats, mice, guinea pigs, and hamsters. The amount of administered cholesterol that appears in the mesenteric lymph of the mammal is determined at various times during and after administration, typically at hourly intervals. The amount of cholesterol present in the lymph is compared to the amount present in a control animal that has had cholesterol but no test compound administered. If the amount of cholesterol appearing in the lymph of the test animal is statistically significantly less than the amount of cholesterol in the lymph of the control animal, it is concluded that the compound can inhibit intestinal absorption of cholesterol.

General Synthetic Procedures

The compounds of the invention can be synthesized according to the procedures of Schemes 1–6, wherein the R$_1$–R$_n$ substituents are as defined for Formulae I-V, above, except where further noted.
Scheme 1 shows the synthesis of enantiopure A-B fragment 3 from commercially available 3oR-(+)-sclareolide 5 (purchased from Aldrich Chemical Company). Deprotonation of optically pure lactone 5 with LDA (lithium diisopropylamide) in THF at -78° C., followed by treatment with MoO₃(pyr.) HMPA complex gave two diastereomers, 6 (65.6% yield) and 7 (12.4% yield) (which were separated by silica gel chromatography), along with 20% recovery of starting sclareolide 5. Treatment of a mixture of 6 and 7 with lithium aluminum hydride in THF at room temperature gave triol 8 (70% yield) and lactol 9 (30% yield). Oxidative cleavage of 8 with lead tetraacetate in benzene at 25° C. provided an 85% yield of 10, and oxidative cleavage of 9 under similar conditions gave an 87% yield of 11. Dehydration of alcohol 10 with p-toluenesulfonic acid in refluxing toluene for 2 h gave a 78% yield of enal 3. Basic hydrolysis of the formyl ester group of 11 with potassium carbonate in methanol at 0° C. provided a 92% yield of 10, which was converted into 3, as described above. The preparation of compound 3 from (+)-sclareol using a different synthetic method has been reported previously (Reeves, P. G. (1996).

Scheme 2 shows the preparation of D-ring fragment 4 starting from 3-chlorovanillin 12, derived from the chlorination of vanillin with chlorine in acetic acid (85% yield), according to the procedure of Harn et al. (J. Am. Chem. Soc., 1927, 49, 535-7). Demethylation of 12 with BBr₃ in CH₂Cl₂ (94% yield) followed by protection of the diol with t-butyldimethylsilyl chloride, triethylamine, 4-dimethylaminopyridine (DMAP) gave aldehyde 13 (93% yield) (Jong, T. T.; Williard, P. G.; Porwoll, J. P., J. Org. Chem., 1984, 49, 735-6). Baeyer-Villiger oxidation of 13 with m-chloroperbenzoic acid (MCPBA) in methylene chloride (70% yield) followed by basic hydrolysis with potassium carbonate (90% yield) and silylation of the resulting phenol with t-butyldimethylsilyl chloride (83% yield) provided trisilyl ether 14. Selective C4 (less hindered site compared with C6) bromination of 14 with N-bromosuccinimide (NBS) in N,N-dimethylformamide (DMF) at 25° C. gave an 67% yield of 4 as the sole product; no C6 isomer 15 was isolated. Interestingly, when the bromination was carried out at 50° C., a 2:1 ratio of 15 and 4 was obtained.

Alternatively, compound 4 was also obtained from the bromination of phenol 16 (obtained from 13 with MCPBA and potassium carbonate) with N-bromosuccinimide (NBS) in DMF to give a 70% yield of bromide 17. Silylation of 17 with t-butyldimethylsilyl chloride afforded a 99% yield of 4.
When the NBS reaction was carried out at 50°C, a 2:1 ratio of 15 and 16 was obtained.

Scheme 3 shows a procedure for preparing compounds embraced by Formulae I and II from enantiopure A-B fragment 3 and D-ring fragment 4. Treatment of 4 with 2 equiv of t-BuLi in diethyl ether at -78°C followed by aldehyde 3 afforded a mixture of two stereoisomers at C6a, 18 (45% yield) and 19 (9.1% yield). Removal of the silyl ether protecting groups of 18 and 19 separately gave compound 1 (82% yield) and compound 2 (81.4% yield), respectively. Spectral data of compound 2 was identical with those reported (Nasu, S. S.; Yeung, B. K. S.; Hamann, M. T.; Scheuer, P. J.; Kelly-Borges, M.; Goins, K., J. Org. Chem. 1995, 60, 7290–7292).
Scheme 4 shows the preparation of compounds embraced by Formulae III, IV, and VI. Selective hydrogenation of 18 with 1 atmosphere of hydrogen in the presence of palladium/carbon in ethanol gave a 99% yield of tetracyclic pyran 21 as a single diastereomer (Scheme 4a). Removal of the silyloxy protecting group of 21 with tetra-n-butylammonium fluoride in THF afforded an 83% yield of diol 22.

Oxidation of diol 22 with pyridinium dichromate (PDC) in dichloromethane gave a mixture of quinones 23 and 24 in a ratio of 6:1. Quinone structures 23 and 24 were assigned based on 1H NMR spectrum.

Similarly, hydrogenation of 19 with 1 atmosphere of hydrogen and palladium/carbon (90% yield) followed by desilylation with tetra-n-butylammonium fluoride in THF (31% yield) and oxidation with pyridinium dichromate afforded (+)-chloropuupehenone (27) in 50% yield.
Schemes 5 and 6 show a procedure for preparation of C6a-S tetracyclic pyran compounds embraced by Formulae IV and V. Scheme 5 shows the preparation of (1R,4aS,6aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxaldehyde (33) and (1R,4aS,6aS)-2-Methylene-5,5,8a-trimethyl-1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene-1-carboxaldehyde (35). Reduction of aldehyde 10 with lithium aluminum hydride in diethyl ether at 0°C produced a 97% yield of diol 28. Silylation of the less hindered primary alcohol of 28 with t-butyldimethylsilyl chloride and imidazole in DMF gave alcohol 29 (98% yield). Elimination of 29 with methane-sulfonfyl chloride (MsCl) and triethylamine in dichloromethane afforded a mixture of alkenes 30 and 31 (1:1; 90% yield), which were separated by silica gel column chromatography. Desilylation of 30 with tetra-n-butylammonium fluoride in THF (88% yield) followed by oxidation with Dess-Martin Periodinane in dichloromethane provided aldehyde 33 (67% yield). Similarly, silyl ether 31 was converted to aldehyde 35 under similar reaction conditions.
Referring to synthetic Scheme 6, Bromide 36 was synthesized from the dibenzylation of 3,4-di-hydroxy-5-chlorobenzaldehyde (see Scheme 2) with NaH and benzyl chloride in THF followed by a similar reaction sequence described for the synthesis of 4 from 13. Treatment of bromide 36 with 1.1 equivalent of t-butyllithium in diethyl ether at -78°C, followed by 1 equivalent of aldehyde 35 gave alcohol 37 (62% yield), which was desilylated with n-Bu₄NF in THF to give alcohol 38 (63% yield). Ring closure of 38 with phenylselenylphthalimide and tin tetrachloride in dichloromethane afforded tetracyclic pyran 40 (50% yield) with the C6a-S configuration. The phenylselenyl reagent approaches C6a exo double bond from the opposite face of C12a alkyl group and C7 oxygen attacks the carbocation from the opposite side of the selenium ion to give 40 as the major product. Acetylation of 40 with acetic anhydride and pyridine in dichloromethane (89% yield) followed by removal of the selenyl function with AIBN (2,2'-azobisisobutyronitrile) and tri-n-butyltin hydride in refluxing toluene gave pyran 42 (90% yield). Removal of the hydrogen and palladium-carbon in methanol provided diol 26, which has identical proton NMR spectrum as that obtained in Scheme 4.
using a mixture of hexane:ether (9:1) as an eluent to give purification.

Benzene were distilled over LiAlH₄. Chemicals and reagents were distilled over sodium and benzophenone before use. The mixture was diluted with saturated aqueous Na₂SO₄, 1.03 (s, 3H, Me), 0.88 (s, 3H, Me), 0.84 (s, 3H, Me); ¹³C NMR (CDCl₃) δ 179.0 (s, C=O), 83.5, 68.7, 64.2, 56.4, 42.3, 39.4, 39.3, 36.9, 33.4, 33.2, 23.5, 21.1, 20.7, 18.1, 15.9. Compound 7: [α]D²° = -19.1° (c 0.01, CHCl₃); ¹H NMR (CDCl₃) δ 4.37 (dd, J=5, 3Hz, 1H, CHO, equatorial), 2.32 (s, J=3Hz, 1H, OH), 2.06 (d, J=12Hz, 1H), 1.89–0.98 (m, 10H), 1.69 (s, 3H, Me), 1.21 (s, 3H, Me), 0.87 (s, 3H, Me), 0.85 (s, 3H, Me); ¹³C NMR (CDCl₃) δ 177.6 (s, C=O), 88.8, 70.2, 62.6, 57.8, 42.4, 39.8, 38.7, 37.3, 27.1, 25.2, 21.1, 20.8, 18.3, 17.3.

Step 2: Preparation of 1-(1S,1,2-Dihydroxymethyl)-(1R,2R,4aS,8aS)-decahydro-2,5,5,8a-tetramethylnaphthalen-2-ol (8S) and (1S,3aR,5aS,9aS,9bR)-Dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]fur-1,2-diol (9S)

The following representative method describes the reduction of 6 and 7 to triol 8 and lactol 9. A solution of 0.90 g (3.4 mmol) of 6 in 20 mL of THF under argon, was added 0.66 g (17.3 mmol) of LiAlH₄, and the mixture was stirred for 4 h at 25°C. To it, 60 mL of water and 16 mL of 1 N HCl were added, and the solution was extracted with diethyl ether three times (50 mL each). The combined ether extracts were washed with water, and brine, dried (MgSO₄), and concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as an eluent. The triol 8 was obtained as a colorless oil (71% yield) of triol 8 and 0.273 g (30% yield) of lactol 9S. Compound 8S: [α]D²° = +7.2° (c 0.008, CH₂OH); ¹H NMR (CDCl₃) δ 4.53 (m, 1H, CHO), 4.06 (dd, J=10Hz, 1H, CHO₂), 3.64 (dd, J=10Hz, 1H, CHO₂), 1.95 (d, J=4Hz, 1H), 1.70–1.01 (m, 11H), 1.43 (s, 3H, Me), 1.10 (s, 3H, Me), 0.90 (s, 3H, Me), 0.82 (s, 3H, Me); ¹³C NMR (CDCl₃) δ 82.9, 75.2, 71.8, 68.8, 48.7, 42.4, 38.4, 36.3, 34.9, 33.7, 33.2, 28.3, 23.0, 21.9, 20.0, 18.5. Compound 9S (as a mixture of diastereomers at C2): ¹H NMR (CDCl₃) δ 5.38 (broad s, 1H), 5.33 (s, 1H), 4.35 (s, J=5Hz, 1H), 2.5 (broad s, 1H, OH), 1.9–0.9 (m, 12H), 1.49 (s, 3H, Me), 1.19 (s, 3H, Me), 0.86 (s, 3H, Me), 0.84 (s, 3H, Me).

For the 8R isomer, (1R,1,2-Dihydroxymethyl)-(1R,2S,4aS,8aS)-decahydro-2,5,5,8a-tetramethylnaphthalen-2-ol (8R). ¹H NMR (CDCl₃) δ 3.87 (m, 1H, CHO), 3.68 (dd, J=10Hz, 1H, CHO₂), 3.45 (dd, J=10Hz, 1H, CHO₂), 1.96 (d, J=4Hz, 1H), 1.70–1.01 (m, 11H), 1.43 (s, 3H, Me), 1.10 (s, 3H, Me), 0.90 (s, 3H, Me), 0.82 (s, 3H, Me), 1.19 (s, 3H, Me), 0.86 (s, 3H, Me), 0.84 (s, 3H, Me).

For the 9R isomer, (1R,3aR,5aS,9aS,9bR)-Dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]fur-1,2-diol (9S): (as a mixture of 2 diastereomers at C2): ¹H NMR (CDCl₃) δ 5.32 (broad s, 1H, 5.33 (s, 1H), 4.35 (s, J=5Hz, 1H), 2.5 (broad s, 1H, OH), 1.9–0.9 (m, 12H), 1.49 (s, 3H, Me), 1.19 (s, 3H, Me), 0.86 (s, 3H, Me), 0.84 (s, 3H, Me).

To a cold (~78°C) solution of 1.02 mL (7.79 mmol) of diisopropylamine in 40 mL of THF under argon, was added 6.36 mL (7.19 mmol) of n-BuLi (1.6 M in hexane). The solution was stirred at ~78°C for 1 h, and a solution of 1.50 g (5.99 mmol) of (4S,8aS)-3a,4a,5,6,7,8,8a-Octahydro-2,5,5,8a-tetramethylnaphthalene-1-carboxaldehyde (6) to a cold (78°C) solution of 1.02 mL (7.79 mmol) of diisopropylamine in 40 mL of THF under argon, was added 6.36 mL (7.19 mmol) of n-BuLi (1.6 M in hexane). The solution was stirred at ~78°C for 1 h, and a solution of 1.50 g (5.99 mmol) of (4S,8aS)-3a,4a,5,6,7,8,8a-Octahydro-2,5,5,8a-tetramethylnaphthalene-1-carboxaldehyde. The mixture was diluted with saturated aqueous Na₂SO₄, extracted three times with ethyl acetate, and the organic layer was washed with water, and brine, dried (Na₂SO₄), concentrated, and column chromatographed on silica gel using a mixture of hexane and ethyl ether as an eluent to give 1.045 g (65.6% yield) of compound 6 and 0.195 g (12% yield) of compound 9 along with 0.296 g (20% recovery) of one (7).
eluent to give 0.516 g (90% yield) of aldehyde 10. [δF2, 31P 31.9° (δ 0.0075, CHCl3); 1H NMR (CDCl3) δ 10.06 (d, J = 3 Hz, 1H, CHO), 2.93 (broad s, 1H, OH), 2.15 (d, J = 3 Hz, 1H, CHO), 1.80–0.9 (a series of m, 11H), 1.20 (s, 3H, Me), 1.17 (s, 3H, Me), 0.90 (s, 3H, Me), 0.86 (s, 3H, Me); 13C NMR (CDCl3) δ 208.3, 72.9, 71.4, 55.3, 42.9, 41.9, 39.9, 37.5, 33.5, 30.5, 25.4, 21.5, 20.0, 18.3, 17.7. Over 30 minutes (with a slow gas flow) at 25°C. White solid was cooled to 25°C., diluted with saturated aqueous sodium bicarbonate, and extracted three times with ethyl acetate. The combined extracts were washed with brine, dried (MgSO4), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give 1.722 g (94% yield) of pure aldehyde 10.

Example 2

Preparation of (1R,2R,4aS,8aS)-Decahydro-2-hydroxy-2,5,5,8a-tetramethylnapthalene-1-carboxaldehyde

Step 1: Preparation of (1R,2R,4aS,8aS)-Decahydro-2-formyloxy-2,5,5,8a-tetramethylnapthalene-1-carboxaldehyde (11)

To a solution of 0.30 g (1.1 mmol) of lactols 9S and 9R were removed by evaporation on a rotary evaporator, and 0.350 g (1.10 mmol) of potassium carbonate. After the solution was stirred at 0°C for 1 h and 25°C for 3 h, 100 mL of saturated aqueous sodium bicarbonate, and extracted three times with diethyl ether. The combined extract was washed with brine, dried (MgSO4), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give 7.2 mg (78% yield) of aldehyde 3,14. In a larger-scale synthesis of 3, the product was distilled under reduced pressure to give colorless oil; bp. 60°C (0.25, CHCl3); 1H NMR (CDCl3) δ 9.98 (d, J = 4 Hz, 1H, CHO), 7.56 (d, J = 1.6 Hz, 1H, Ar), 4.85 (s, 3H, Me), 3.67, 3.64, 3.36, 3.35, 3.32, 2.18, 20.4, 19.1, 18.5.

Example 3

Preparation of (4aS,8aS)-3,4,4a,5,6,7,8,8a-Octahydro-2,5,5,8a-tetramethylnapthalene-1-carboxaldehyde (10)

To a flask equipped with a Dean-Stark apparatus under argon, 10 mg (0.042 mmol) of aldehyde 10, 10 mL of toluene, and 3 mg (0.017 mmol) of p-toluenesulfonic acid in 20 mL of methanol under argon at 0°C were added 9.80 mL (68.0 mmol) of distilled triethylamine and 4.40 g (59.2 mmol) of t-butyldimethylsilyl chloride. The reaction mixture was stirred at 0°C for 0.3 h and 25°C for 4 h, diluted with 40 mL of methanol, and the solvents were removed by evaporation (the trimethylborate was removed). To it was added 40 mL of methanol and methanolic trimethyl borate were removed by evaporation on a rotary evaporator, and this process was repeated three times. The residue was diluted with dichloromethane and filtered with a small amount of dichloromethane to give 1.722 g (94% yield) of pure 5-chloro-3,4-dihydroxybenzaldehyde. This material was used in next step without purification. 1H NMR (CDCl3) δ 10.43 (s, 2H, OH), 9.70 (s, 1H, CHO), 7.56 (d, J = 1.6 Hz, 1H, Ar), 3.91 (s, 3H, OMe); 13C NMR (CDCl3) δ 190.5 (C = O), 149.0 (s, 2C), 128.2 (s), 125.6 (d), 120.1 (s), 109.2 (d), 56.3 (q).

Step 2: Preparation of 5-Chloro-3,4-dihydroxybenzaldehyde (12)

To a solution 2.00 g (10.7 mmol) of benzaldehyde 12 in 20 mL of dichloromethane under argon at 0°C was added 1.20 mL (11.8 mmol) of boron tribromide. The solution was stirred at 0°C for 0.3 h and 25°C for 4 h, diluted with 40 mL of methanol, and the solvents were removed by evaporation (the trimethylborate was removed). To it was added 40 mL of methanol and methanolic trimethyl borate were removed by evaporation on a rotary evaporator, and this process was repeated three times. The residue was diluted with dichloromethane and filtered with a small amount of dichloromethane to give 1.722 g (94% yield) of pure 5-chloro-3,4-dihydroxybenzaldehyde. This material was used in next step without purification. 1H NMR (CDCl3) δ 10.43 (s, 2H, OH), 9.70 (s, 1H, CHO), 7.56 (d, J = 1.6 Hz, 1H, Ar), 3.91 (s, 3H, OMe); 13C NMR (CDCl3) δ 190.5 (C = O), 149.0 (s, 2C), 128.2 (s), 125.6 (d), 120.1 (s), 109.2 (d), 56.3 (q).

Step 3: Preparation of 3,4-bis(t-Butyldimethylsilyloxy)-5-chlorobenzaldehyde (13)

To a solution of 1.68 g (9.70 mmol) of distilled triethylamine and 4.40 g (59.2 mmol) of t-butyldimethylsilyl chloride. The reaction mixture was stirred at 0°C for 1 h and 25°C for 3 h, 100 mL of saturated aqueous NH4Cl was added, and extracted three times with

Example 4

Preparation of (4aS,8aS)-3,4,4a,5,6,7,8,8a-Octahydro-2,5,5,8a-tetramethylnapthalene-1-carboxaldehyde (10)
diethyl ether (80 mL each). The combined extracts were washed with 60 mL of brine, dried (MgSO₄), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluent to give 3.64 g (93% yield). ¹H NMR (CDCl₃) δ 6.97 (s, 1H, CHO), 7.50 (d, J=2.8 Hz, 1H, C6-H), 7.27 (d, J=2.8 Hz, 1H, C2-H), 1.04 (s, 9H, t-Bu), 0.98 (s, 9H, t-Bu), 0.26 (s, 6H, Me), 0.23 (s, 6H, Me); ¹³C NMR (CDCl₃) δ 189.3 (C=O), 149.5 (s), 149.2 (s), 130.3 (s), 127.8 (s), 125.7 (d), 118.8 (d), 26.1 (q, 3C, t-Bu), 26.0 (q, 3C, t-Bu), 18.7 (s, 2C, t-Bu), -3.4 (q, 2C, Me), -3.6 (q, 2C, Me). Anal. Calcd for C₁₇H₁₃BrClO₃Si₃: C, 49.51; H, 7.96. Found: C, 49.78; H, 8.11.

Example 4

5-Bromo-6-chloro-1,2,4-tris-(t-butyldimethylsilyloxy)benzene

Step 1: Preparation of 3,4-bis-(t-butyldimethylsilyloxy)-5-chlorophenol (16)

To a solution of 1.236 g (2.97 mmol) of 3,4-bis-(t-butyldimethylsilyloxy)-5-chlorophenol formate in 10 mL of methanol was added 2.05 g (15.0 mmol) of potassium carbonate at 25°C. The solution was stirred for 30 min., diluted with 35 mL of water, and extracted three times with diethyl ether (50 mL each). The combined extracts were washed with brine, dried (MgSO₄), and concentrated to give 1.028 g (90% yield) of 3,4-bis-(t-butyldimethylsilyloxy)-5-chlorophenol. ¹H NMR (CDCl₃) δ 6.45 (d, J=2.8 Hz, 1H), 6.31 (d, J=2.8 Hz, 1H), 1.00 (s, 9H, t-Bu), 0.93 (s, 9H, t-Bu), 0.18 (s, 6H, Me), 0.15 (s, 6H, Me), 13C NMR (CDCl₃) δ 149.7 (s), 148.9 (s), 137.7 (s), 126.9 (s), 109.8 (d), 107.8 (d), 26.3 (q, 3C), 26.2 (q, 3C), -3.6 (q, 2C, Me), -3.4 (q, 2C, Me). Anal. Calcd for C₁₇H₁₃ClO₃Si₃: C, 55.77; H, 8.55. Found: C, 55.39; H, 8.87.

Step 2: Preparation of 2-Bromo-3-chloro-4,5-bis-(t-butyldimethylsilyloxy)phenol (17)

A solution of 0.050 g (0.12 mmol) of 16 and 0.023 g (0.12 mmol) of NBS in 2 mL of DMF under argon was stirred at 25°C for 1 day. The reaction mixture was diluted with 30 mL of water, extracted three times with diethyl ether (40 mL each), and the combined extracts were washed with brine (30 mL), dried (MgSO₄), and concentrated to give 0.042 g (70% yield). This material was used in next step without purification. ¹H NMR (CDCl₃) δ 6.53 (s, 1H, Ar), 130.3 (s, 9H, t-Bu), 0.96 (s, 9H, t-Bu), 0.22 (s, 6H, Me), 0.17 (s, 6H, Me); ¹³C NMR (CDCl₃) δ 148.3 (s), 147.4 (s), 138.8 (s), 127.0 (s), 106.9 (d), 102.9 (s), 26.2 (q, t-Bu), 18.8 (s), -3.5 (q, Me), -3.5 (q, Me).

Step 3: Preparation of 5-Bromo-6-chloro-1,2,4-tris-(t-butyldimethylsilyloxy)benzene

To a mixture of 0.650 g (1.30 mmol) of 14 and 0.276 g (1.60 mmol) of N-bromosuccinimide (NBS) in 10 mL of DMF under argon was stirred at 25°C for 5 days. The reaction mixture was diluted with 30 mL of water, extracted three times with diethyl ether (50 mL each), and the combined extracts were washed with 30 mL of water, and 30 mL of brine, dried (MgSO₄), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluent to give 0.506 g (67% yield) of bromide 4. ¹H NMR (CDCl₃) δ 6.61 (s, 1H, Ar, C3-H), 1.03 (s, 9H, t-Bu), 1.02 (s, 9H, t-Bu), 0.97 (s, 9H, t-Bu), 0.23 (s, 6H, Me), 0.22 (s, 6H, Me), 0.18 (s, 6H, Me); ¹³C NMR (CDCl₃) δ 147.3 (s), 147.2 (s), 139.4 (s), 128.3 (s), 111.1 (d), 108.4 (s), 29.9 (q, t-Bu), 26.3 (q, t-Bu), 26.2 (q), 26, 18.9 (s), 18.6 (s), -3.3 (q, Me), -3.4 (q, Me), -3.5 (q, Me), -4.0 (q). Anal. Calcd for C₁₇H₁₃BrClO₃Si₃: C, 49.51; H, 7.96. Found: C, 49.78; H, 8.11.

33

34

Example 4
A solution of 0.100 g (0.20 mol) of 14 and 0.0354 g (0.20 mmol) of NBS in 2 mL of DMF under argon was stirred at 50 °C for 2 days. The solution was diluted with 30 mL of water, extracted three times with diethyl ether (30 mL each), and the combined extracts were washed with water, dried (MgSO₄), concentrated, and column chromatographed on silica gel using a mixture of hexane and diethyl ether as eluent to give 0.980 g (45% yield) of 1. [α]D = +0.11° (c 0.018, CHCl₃); 1H NMR (CDCl₃) δ 6.39 (s, 1H, C₈-H), 2.18 (d, J=12 Hz, 1H), 2.02 (d, J=12 Hz, 1H), 1.90–1.00 (a series of methylene groups) 173, 161.1, 138.1, 123.6, 115.7, 110.7, 73.0, 52.4, 41.7, 39.4, 38.4, 38.2, 33.8, 33.6, 26.4 (3C, CH-Bu), 26.3 (3C, t-Bu), 26.1, 25.2, 23.7, 21.4, 19.6, 18.7, 17.6, 16.3, 13.7, 13.5, 11.9. Anal. Calcd for C₃₃H₅₃Cl: C, 67.02; H, 9.37. Found: C, 67.11; H, 9.16.

Step 1: Preparation of (4aS,6aR,12bS)-2H-9,10-bis-(t-Butyldimethylsiloxy)-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene (18) and (4aS,6aS,12bS)-2H-9,10-bis-(t-Butyldimethylsiloxy)-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene (19)

In a dried flask, 2.600 g (4.50 mmol) of bromide 4 was placed, it was dried by adding 1 mL of freshly distilled toluene (distilled under vacuum) this addition-evaporation of toluene process was repeated, and maintained under argon. To it, 25 mL of diethyl ether (-78 °C.) was added via cannula, and the resulting solution was stirred at -78 °C. for 0.5 h, a solution of 0.820 g (3.70 mmol) of aldehyde 3 (distilled under reduced pressure) in 10 mL of diethyl ether (-78 °C) was added via cannula, and the resulting solution was stirred at -78 °C. for 10 min., 25 °C. for 1 h (the reaction was monitored by TLC). The reaction solution was diluted with 10 mL of saturated aqueous NH₄Cl, extracted three times with diethyl ether, and the combined extracts were washed with water, and then hexane and ether as eluents to give 0.980 g (45% yield) of 18 and 0.200 g (9.1% yield) of 19. Compound 18: [α]D = +56° (c 0.033, CHCl₃); 1H NMR (CDCl₃) δ 6.43 (s, 1H, C₈-H), 6.28 (s, 1H, C₁₂-H), 2.18 (d, J=12 Hz, 1H), 2.02 (d, J=12 Hz, 1H), 1.90–1.00 (a series of methylene groups) 173, 161.1, 138.1, 123.6, 115.7, 110.7, 73.0, 52.4, 41.7, 39.4, 38.4, 38.2, 33.8, 33.6, 26.4 (3C, CH-Bu), 26.3 (3C, t-Bu), 26.1, 25.2, 23.7, 21.4, 19.6, 18.7, 17.6, 16.3, 13.7, 13.5, 11.9. Anal. Calcd for C₃₃H₅₃Cl: C, 67.02; H, 9.37. Found: C, 67.11; H, 9.16.

2D NOESY spectra were obtained and in compound 18, C₆a methyl and C₁₂b methyl have NOE connectivity, however, in compound 19, C₆a methyl and C₁₂b methyl have no NOE connectivity.

Step 2: Preparation of (4aS,6aR,12bS)-2H-11-Chloro-1,3,4,4a,5,6,6a,12b-tetramethyl-benzo[a]xanthene-9,10-diol (1)

To a solution of 60 mg (0.270 mmol) of 18 in 2 mL of THF under argon at 25 °C. was added 0.58 mL (0.600 mmol) of tetra-n-butylammonium fluoride (1.0 M in THF). After stirring at 25 °C. for 5 min., 0.30 mL of acetic acid was added, the resulting solution was concentrated on a rotary evaporator, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give a mixture of hexane and ethyl acetate as eluent to give 0.080 g (82% yield) of 1. [α]D = +56° (c 0.033, CHCl₃); 1H NMR (CDCl₃) δ 6.43 (s, 1H, C₈-H), 6.28 (s, 1H, C₁₂-H), 2.18 (d, J=12 Hz, 1H), 2.02 (d, J=12 Hz, 1H), 1.90–1.00 (a series of methylene groups) 173, 161.1, 138.1, 123.6, 115.7, 110.7, 73.0, 52.4, 41.7, 39.4, 38.4, 38.2, 33.8, 33.6, 26.4 (3C, CH-Bu), 26.3 (3C, t-Bu), 26.1, 25.2, 23.7, 21.4, 19.6, 18.7, 17.6, 16.3, 13.7, 13.5, 11.9. Anal. Calcd for C₃₃H₅₃Cl: C, 67.02; H, 9.37. Found: C, 67.11; H, 9.16.

Example 6

Example 7
tetra-n-butylammonium fluoride (1.0 M in THF). After stirring at 25°C for 10 min., 0.10 mL of acetic acid was added, the solution was concentrated on a rotary evaporator, and the residue was column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give 30 mg (81.4% yield) of 2, \(\Delta^2 \)D = +1,1. Step 2: Preparation of 60 using a gradient mixture of hexane and ethyl acetate as eluent.

Step 3: Preparation of 0.194 MeSi, 0.15 (dd, \(J = 17, 12 \) Hz, 1H, C12H), 2.02 (dt, \(J = 12, 3 \) Hz, 1H, C12H), 0.87 (s, 3H, Me); \(^{13} \)C NMR (CDCl3) \(\delta \) 151.3, 148.5, 146.1, 133.6, 123.6, 116.5, 110.6, 83.7, 76.8, 56.4, 52.2, 42.1, 0.400 g of 10% palladiumicarbon in 7 mL of distilled ethanol was charged with 1 atmosphere of hydrogen gas (by stirring at 25°C for 10 min., 0.10 mL of acetic acid was added, the resulting red solution was concentrated to dryness, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate to give 0.180 g (99% yield) of 60.

Step 1: Preparation of 10 mg (0.027 mmol) of diol 22. \(^{1} \)H NMR (CDCl3) \(\delta \) 6.35 (s, 3H, C8H), 5.36 (s, 1H, OH), 5.06 (s, 1H, OH), 2.61 (dd, \(J = 17 \) Hz, 1H, C12H), 2.34 (m, 1H, C12H), 2.15 (d, \(J = 17 \) Hz, 1H, C12H), 2.02 (dt, \(J = 12, 3 \) Hz, 1H, C12H), 1.80-0.90 (a series of m, 11H), 1.14 (s, 3H, Me). When the proton NMR spectrum was measured in benzene-d6 solvent, all methyl groups are separated, \(\delta \) 0.99 (3S, Me), 0.77 (3H, Me), 0.71 (3S, Me), 0.61 (3S, Me). \(^{13} \)C NMR (CDCl3) \(\delta \) the aromatic carbons are not well defined and are not described here) 76.6, 55.9, 51.9, 41.9, 41.0, 39.0, 36.8, 33.4, 33.1, 30.0, 21.6, 19.8, 17.1, 14.7.

Step 3: \((4aS,6aR,12aR,12bS)-2H-11-Chloro-1,3,4,4a,5,6,6a,9,10,12,12a,12b-decahydro-4,4,6a,12b-tetramethyl-benzox[a]xanthene-9,10-dione (24) \)

To a solution of 10 mg (0.027 mmol) of diol 22 in 1 mL of dichloromethane under argon at 25°C was added 3 mg of pyridinium dichromate (PDC). After stirring for 2 h, the mixture was diluted with a small amount of dichloromethane, filtered through Celite, and concentrated to dryness to give 9.0 mg of a mixture of 23 and 24 in a ratio of 6:1 (obtained from NMR spectrum). \(^{1} \)H NMR (CDCl3) \(\delta \) 6.74 (s, 1H, C8H), 5.80 (s, 1H, C8H of 23), 2.84 (ddd, \(J = 20, 5 \) Hz, 1H, C12H of 23), 2.50 (ddd, \(J = 20, 13 \) Hz, C12H of 23), 2.11 (dt, \(J = 13, 3 \) Hz, 1H, C23), 2.22-0.90 (a series of m, 11H of 23 and 11H of 24), 1.33 (s, 3H, Me of 23), 0.93 (s, 3H, Me of 23), 0.92 (3S, Me of 23), 0.85 (3S, Me of 23).

A mixture of 0.180 g (0.300 mmol) of compound 18 and 0.400 g of 10% palladiumicarbon in 7 mL of distilled ethanol was charged with 1 atmosphere of hydrogen gas (by the use of a hydrogen balloon), and the mixture was stirred at 25°C for 2 h. The reaction mixture was filtered through a short Celite column, washed the column with ethanol, and the combined filtrate was concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and toluene to give 0.20 mL of distilled 6:l (obtained from NMR spectrum). \(^{1} \)H NMR (CDCl3) \(\delta \) 6.74 (s, 1H, C8H), 5.80 (s, 1H, C8H of 23), 2.84 (ddd, \(J = 20, 5 \) Hz, 1H, C12H of 23), 2.50 (ddd, \(J = 20, 13 \) Hz, C12H of 23), 2.11 (dt, \(J = 13, 3 \) Hz, 1H, C23), 2.22-0.90 (a series of m, 11H of 23 and 11H of 24), 1.33 (s, 3H, Me of 23), 0.93 (s, 3H, Me of 23), 0.92 (3S, Me of 23), 0.85 (3S, Me of 23).
ethanol was charged with 1 atmosphere of hydrogen gas (by the use of a hydrogen balloon), and the mixture was stirred at 25°C for 2 h. The reaction mixture was filtered through Celite, washed with dichloromethane, and the combined filtrate was concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and toluene as eluent to give 0.54 g (90% yield) of compound 25. [1°C] 37-35 (c 0.007, CHCl₃). ¹H NMR (CDCl₃) δ 6.61 (s, 1H, C8H), 6.07 (d, J= 7 Hz, 1H, C12H), 2.72 (d, J= 7 Hz, 1H, C17H), 2.50 (dd, J= 17, 7 Hz, 1H, C12H), 2.10 (d, J= 7 Hz, 1H, C17H). Step 2: Preparation of (+)-Chloropuupehenone (27) To a solution of 6.0 mg (0.016 mmol) of 26 in 1 mL of THF under argon at 25°C was added 0.25 mL (0.25 mmol) of tetrabutylammonium fluoride (1 M in THF). The solution was stirred for 15 min., 1 drop of acetic acid was added, the resulting red solution was concentrated to dryness, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate to give 0.54 g (90% yield) of diol 25. ¹H NMR (CDCl₃) δ 3.00 (3H, Me), 1.12-0.90 (a series of m, 11H), 0.82 (3H, Me). Step 3: Preparation of (+)-Chloropuupehenone (27) To a solution of 1.5 mg (0.004 mmol) of 26 in 1 mL of dichloromethane under argon at 25°C was added 12 mg (0.032 mmol) of PDC. After stirring for 15 min., the solution was filtered through Celite, washed with dichloromethane, and the combined filtrate was concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate to give 0.54 g (90% yield) of compound 25.

TABLE 1

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg white</td>
<td>200.0</td>
</tr>
<tr>
<td>Cornstarch</td>
<td>396.5</td>
</tr>
<tr>
<td>Dextrinized cornstarch</td>
<td>132.0</td>
</tr>
<tr>
<td>Dextrose</td>
<td>100.0</td>
</tr>
<tr>
<td>Cellulose</td>
<td>50.0</td>
</tr>
<tr>
<td>Soybean oil°</td>
<td>70.0</td>
</tr>
<tr>
<td>Mineral mix</td>
<td>35.0</td>
</tr>
<tr>
<td>Vitamin mix</td>
<td>10.0</td>
</tr>
<tr>
<td>Biotin (1 mg/kg biotin succose mix)</td>
<td>4.0</td>
</tr>
<tr>
<td>Choline bisulfate</td>
<td>2.5</td>
</tr>
</tbody>
</table>

°Formulated and supplied from Dyets, Bethlehem, PA, according to the recommendations of NCTA 1.148.

At 6 wk, rats were starved overnight for 17 h but allowed water ad libitum prior to the surgical placement of a lymph cannula and duodenal infusion catheter. The mesenteric lymph duct was cannulated as described in Koo et al., J. Nutr. 131: 717-722 (2001). Briefly, while rats were under anesthesia (2.0% halothane in 2.0 L O₂/min delivered via a halothane vaporizer), a midline abdominal incision was made. The superior mesenteric lymph duct was cannulated with polyethylene tubing (SV-3 1 tubing, i.d. 0.50 mm, o.d. 0.80 mm; Dow Coming, Midland, Mich.) was introduced via the gastric fundus into the upper duodenum and secured in place with a purse-string suture (4-0 Silk, Ethicon, Somerville, N.J.) around the fundic incision. The infusion catheter was exteriorized alongside the right flank. An indwelling infusion catheter (Silastic® laboratory tubing, i.d. 1.0 mm, o.d. 2.2 mm; Dow Coming, Midland, Mich.) was introduced via the gastric fundus into the upper duodenum and secured in place with a purse-string suture (4-0 Silk, Ethicon, Somerville, N.J.) around the fundic incision. The infusion catheter was exteriorized alongside the lymph cannula. After the abdominal incision was closed, the rats were placed in restraining cages and housed in a recovery chamber at 30°C for postoperative recovery for 22-24 h. During the recovery period, rats were infused continuously with glucose in phosphate buffered saline (PBS) (in mmol/L: 277 glucose, 6.75 Na₂HPO₄, 16.5 NaH₂PO₄, 115 NaCl, and 5 KCl; pH 6.7) via infusion catheter at 3.0 mL/h by a syringe pump (Harvard Apparatus, Model 935, South Natick, Mass.) to ensure adequate hydration and nutritional status of the animals.

After postoperative recovery, each rat was infused with a lipid emulsion at 3 mL/h for 8 h via the duodenal catheter in subdued light. The lipid emulsion consisted of 1451.8 µmol triolein (95%, Sigma Chemical, St. Louis, Mo.), 33.5 kBq [¹⁴C]-cholesterol ([¹⁴C]-CH; specific activity, 1.85 GBq/mmol, American Radiolabeled Chemicals, St. Louis, Mo.),
20.7 μmol cholesterol, 3.1 μmol α-tocopherol (all-rac-dl-α-tocopherol, 97%, Aldrich Chemical, Milwaukee, Wis.) as an antioxidant, and 396.0 μmol sodium taurocholate (Sigma Chemical, St. Louis, Mo.) in 24 mL of PBS buffer, pH 6.5. For half of the rats, the lipid emulsion contained 114.9 μmol compound 1 (41.9 mg). Lipid emulsion was prepared under a gentle N₂ stream and subdued light for 55 min using a microprocessor-controlled ultrasonicator equipped with a microtip (XL-2020 Ultrasonic Liquid Processor, Misonix, Farmingdale, N.Y.). During the duodenal infusion of lipid emulsion, lymph samples were collected hourly in preweighed ice-chilled centrifuge tubes containing 4 mg Na₂-EDTA and 30 μg n-propyl gallate (Sigma Chemical, St. Louis, Mo.) as antioxidants. A portion of each lymph sample (100 μL) was mixed with scintillation liquid (ScintiVerse; Fisher Scientific, Fair Lawn, N.J.) and counted by scintillation spectrometry (Beckman LS-6500; Beckman Instruments, Fullerton, Calif.). The total 14C-radioactivity appearing in hourly lymph volume (the hourly rates of 14C-CH₂O absorption) was expressed as a percentage of the total radioactivity infused (% dose). All samples were ice chilled and handled in subdued light.

Fatty Acid Analysis

Total lipids were extracted from each lymph sample with a chloroform/methanol mixture. Lipid extracts were then hydrolyzed with methanolic NaOH, and fatty acids were saponified and methylated simultaneously with BF₃-methanol. Fatty acid methyl esters (FAME) were analyzed by capillary gas chromatography (Hewlett-Packard, Model 6890, Palo Alto, Calif.) using a HP-INNOWax cross-linked polyethylene glycol phase capillary column (15 m, i.d. 0.53 mm; Restek Corp., Bellefonte, Pa.). Statistical analysis

All statistical analyses were performed using PC SAS (SAS Institute, Cary, N.C.). Repeated measures ANOVA and the least significance difference that were used to compare group means. The level of significance was determined at P < 0.05.

Results

Table 2 shows the lymphatic absorption of 14C—cholesterol and triolein, as well as lymph flow in rats infused for eight hours with lipid emulsion only (control) or containing compound 1. The lymph volume was not significantly different between the two treatments. However, total cholesterol absorption was significantly less in rats infused with compound 1, compared to control rats. In addition, absorption of triolein was significantly less in rats infused with compound 1 compared to control rats. Table 3 and FIG. 1 show the percent dose of 14C-cholesterol absorbed at hourly intervals. FIG. 2 shows the amount of oleic acid absorbed in the lymph at hourly intervals.

\[
\text{TABLE 2}
\]

<table>
<thead>
<tr>
<th>Time</th>
<th>Control</th>
<th>Compound 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 h</td>
<td>0.16 ± 0.07</td>
<td>0.12 ± 0.04</td>
</tr>
<tr>
<td>3 h</td>
<td>1.84 ± 0.37</td>
<td>1.22 ± 0.25*</td>
</tr>
<tr>
<td>4 h</td>
<td>5.31 ± 0.74</td>
<td>2.70 ± 0.42*</td>
</tr>
<tr>
<td>5 h</td>
<td>10.16 ± 1.31</td>
<td>4.18 ± 0.92*</td>
</tr>
<tr>
<td>6 h</td>
<td>15.66 ± 1.75</td>
<td>5.68 ± 1.37*</td>
</tr>
<tr>
<td>7 h</td>
<td>22.14 ± 1.81</td>
<td>7.32 ± 1.78*</td>
</tr>
<tr>
<td>8 h</td>
<td>28.79 ± 1.65</td>
<td>9.13 ± 2.41*</td>
</tr>
<tr>
<td>9 h</td>
<td>37.69 ± 1.76</td>
<td>10.95 ± 3.20*</td>
</tr>
</tbody>
</table>

*Values are means ± SD and cumulative at hourly intervals, n = 5. *Significantly different from control rats (P < 0.05).

After 8 hours of treatment, the control rats (without drug) had a percent cholesterol absorption of 37.69%, while the treated rats (treated with compound 1) had a percent cholesterol absorption of 10.95%. Under similar test conditions, rats infused with 120.5 mg of green tea catechins per rat per 8 hours had a percent cholesterol absorption of about 10%.

Thus, compound 1 is a more potent inhibitor than green tea catechins, since an inhibitory effect was observed with only 41.9 mg of compound 1. Rats exhibited no gross motor or behavioral abnormalities.

Rats were sacrificed at the day end of the infusion, and the intestine and other organs were dissected and visually examined. No abnormalities were found in any of the organs of either control or treated rats.

Example 11

The inhibitory effect of compound 1 on the activity of cholesterol ester transfer protein (CETP) was measured, using a crude CETP preparation derived from hamster plasma. The results suggested that when the dose of compound 1 exceeded 250 μM, there was an increase in HDL total cholesterol, HDL free cholesterol, and HDL cholesterol ester. These increased HDL levels suggest that compound 1 is an inhibitor of CETP activity in vitro.

The effect of compound 24 on inhibition of CETP was tested using a purified CETP preparation. CETP was purified and assayed according to procedures described in Tomada, H.; Tabata, N.; Shinose, M.; Takahashi Y.; Woodnuff, H. B.; Omura, S. J. Antibiotics, 52: 1101–1107 (1999). As shown in FIG. 3, there was 50% inhibition (IC50) of CETP activity at 31 μM of compound 24. In comparison, Ferroverdin A, a known CETP inhibitor, resulted in an IC50 of about 22 μM (FIG. 4). The data for compound 24 suggest that compound 24 can inhibit CETP activity in vitro.

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

What is claimed is:

1. A compound of Formula I:

\[
\text{R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, } \text{S, H}
\]

wherein R₁ is independently hydrido, halo, alkyl, alkenyl, alkylxy, haloalkyl, hydroxalkyl, hydroxy, alkoxy,
alkoxyalkyl, haloalkoxy, haloalkoxyalkyl, aryl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfamyl, N,N-dialkylsulfamyl, N-aryl sulfonamyl, N-alkyl-N-aryl sulfonamyl, carboxy, carboxyalkyl, alkylcarbonyl, alkylcarbonylalkyl, alkoxycarbonyl, alkylcarbonylalkyl, alkoxycarbonylalkyl, amido, N-alkylamido, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkylthio, alkylsulfinyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkylthio, alkylsulfinyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkylthio, alkylsulfinyl, N-alkylamino, N,N-dialkylamino, acyl, acyloxy, arylamino, amino, cyano, nitro, sulfonate, alkylsilyl, phenylselenyl, thiol, arylsulfenyl, alkylsulfenyl, arylsulfenyl, or alkylsilyloxy;

R₁ is independently hydrido, halo, alkyl, alkenyl, alkylyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, aryl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfamyl, N,N-dialkylsulfamyl, N-aryl sulfonamyl, N-alkyl-N-aryl sulfonamyl, carboxy, carboxyalkyl, alkylcarbonyl, alkylcarbonylalkyl, alkoxycarbonyl, alkylcarbonylalkyl, alkoxycarbonylalkyl, amido, N-alkylamido, N,N-dialkylamido, N-aryl sulfonamido, N-alkyl-N-aryl sulfonamido, N-alkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkylthio, alkylsulfinyl, N-alkylamino, N,N-dialkylamino, acyl, acyloxy, arylamino, amino, cyano, nitro, sulfonate, alkylsilyl, phenylselenyl, thiol, arylsulfenyl, alkylsulfenyl, arylsulfenyl, or alkylsilyloxy;

R₂ is independently hydrido, halo, alkyl, alkenyl, alkyllyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, aryl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfamyl, N,N-dialkylsulfamyl, N-aryl sulfonamyl, N-alkyl-N-aryl sulfonamyl, carboxy, carboxyalkyl, alkylcarbonyl, alkylcarbonylalkyl, alkoxycarbonyl, alkylcarbonylalkyl, alkoxycarbonylalkyl, amido, N-alkylamido, N,N-dialkylamido, N-aryl sulfonamido, N-alkyl-N-aryl sulfonamido, N-alkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkylthio, alkylsulfinyl, N-alkylamino, N,N-dialkylamino, acyl, acyloxy, arylamino, amino, cyano, nitro, sulfonate, thiol, arylsulfonyl, alkylsulfonyl, arylsulfonyl, or alkylsilyloxy;
wherein R₁ is independently hydrido, halo, alkyl, alkenyl, alkylidene, alkoxy, alkenyloxy, alkenylyl, alkenyloxyalkyl, hydroxy, alkoxy, alkenyloxyalkyl, haloalkoxy, haloalkoxyalkyl, aryl, heterocyclic, heteroaryl, alkoxyalkyl, alkoxyalkyloxy, aryl, heterocyclic, heteroaryl, alkoxy, alkenyloxy, alkenyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy,

R₂ is independently hydrido, halo, alkyl, alkenyl, alkylidene, alkoxy, alkenyloxy, alkenylyl, alkenyloxyalkyl, hydroxy, alkoxy, alkenyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkenyl, haloal
17. A compound of Formula IV:

R₁ is independently hydrido, halo, alky, alkenyl, alkyl, halooalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, ary, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfanyl, N,N-dialkylsulfanyl, N-arylsufonyl, N-alkyl-N-arylsulfamyl, carboxy, carboxyalkyl, alkylicarbononyl, alkylicarbononylalkyl, alkoxy, carboxyalkyl, alcohol, carboxyalkyl, amido, N-alkylamido, N,N-dialkylamido, N-monoarylamido, N,N-alkyl-N-arylamido, N-alkyl-N-hydroxyamido, N,N-dialkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, carboxyalkyl, alkylcarbonyl, alkylcarbonylalkyl, N-arylsulfomyl, N-alkyl-N-arylsulfamyl, carboxy, N-alkylsulfamyl, N,N-dialkylsulfamyl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, alkylsilyloxy, alkylsulfenyl, arylsulfinyl, alkylsilyl, phenylselenyl, or alkylisilyloxy; and

R₂ is independently hydrido, halo, alky, alkenyl, alkyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, ary, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfanyl, N,N-dialkylsulfanyl, N-arylsulfonyl, N-alkyl-N-arylsulfamyl, carboxy, carboxyalkyl, alkylicarbononyl, alkylicarbononylalkyl, alkoxy, carboxyalkyl, alcohol, carboxyalkyl, amido, N-alkylamido, N,N-dialkylamido, N-monoarylamido, N,N-alkyl-N-arylamido, N-alkyl-N-hydroxyamido, N,N-dialkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, carboxyalkyl, alkylcarbonyl, alkylcarbonylalkyl, N-arylsulfomyl, N-alkyl-N-arylsulfamyl, carboxy, N-alkylsulfamyl, N,N-dialkylsulfamyl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, alkylsilyloxy, alkylsulfenyl, arylsulfinyl, alkylsilyl, phenylselenyl, or alkylisilyloxy;

wherein R₁ is independently hydrido, halo, alky, alkenyl, alkyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, ary, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfanyl, N,N-dialkylsulfanyl, N-arylsulfonyl, N-alkyl-N-arylsulfamyl, carboxy, carboxyalkyl, alkylicarbononyl, alkylicarbononylalkyl, alkoxy, carboxyalkyl, alcohol, carboxyalkyl, amido, N-alkylamido, N,N-dialkylamido, N-monoarylamido, N,N-alkyl-N-arylamido, N-alkyl-N-hydroxyamido, N,N-dialkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, carboxyalkyl, alkylcarbonyl, alkylcarbonylalkyl, N-arylsulfomyl, N-alkyl-N-arylsulfamyl, carboxy, N-alkylsulfamyl, N,N-dialkylsulfamyl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, alkylsilyloxy, alkylsulfenyl, arylsulfinyl, alkylsilyl, phenylselenyl, or alkylisilyloxy;

R₂ is independently hydrido, halo, alky, alkenyl, alkyl, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, ary, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfanyl, N,N-dialkylsulfanyl, N-arylsulfonyl, N-alkyl-N-arylsulfamyl, carboxy, carboxyalkyl, alkylicarbononyl, alkylicarbononylalkyl, alkoxy, carboxyalkyl, alcohol, carboxyalkyl, amido, N-alkylamido, N,N-dialkylamido, N-monoarylamido, N,N-alkyl-N-arylamido, N-alkyl-N-hydroxyamido, N,N-dialkyl-N-hydroxyamidoalkyl, amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, carboxyalkyl, alkylcarbonyl, alkylcarbonylalkyl, N-arylsulfomyl, N-alkyl-N-arylsulfamyl, carboxy, N-alkylsulfamyl, N,N-dialkylsulfamyl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, alkylsilyloxy, alkylsulfenyl, arylsulfinyl, alkylsilyl, phenylselenyl, or alkylisilyloxy;
amidoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkylthio, alkylsulfinyl, N-alkylamino, N,N-dialkylamino, acyl, acyloxy, arylamino, amino, cyano, nitro, sulfonate, thiol, arylsulfenyl, alkylsulfenyl, arylsulfinyl, alkylsilyl, phenylelenyl, or alkylsilyloxy;

R₃ is independently hydrido, halo, alkyl, alkenyl, alkylid, haloalkyl, hydroxyalkyl, hydroxy, alkoxy, alkoxyalkyl, haloalkoxyalkyl, aryl, heterocyclic, heteroaryl, alkylsulfonyl, arylsulfonyl, N-alkylsulfamido, N,N-dialkylsulfamido, N-aryl-N-arylsulfonyl, carboxy, carboxyalkyl, alkylcarbonyl, alkoxyalkylcarbonyl, amido, N-alkylamido, N-alkyl-N-arylamido, N,N-dialkylamido, N,N-dialkyl-N-arylamido, N-aryl-N-hydroxyamido, N-alkyl-N-hydroxyamidoalkyl, aminoalkyl, aminoalkyl, alkylaminoalkyl, amidino, cyanoamidino, heterocycloalkyl, aralkyl, cycloalkyl, cycloalkenyl, alkylthio, alkylsulfinyl, N-alkylamino, N,N-dialkylamino, acyl, acyloxy, arylamino, amino, cyano, nitro, sulfonate, thiol, arylsulfenyl, alkylsulfenyl, arylsulfinyl, alkylsilyl, phenylelenyl, or alkylsilyloxy;

R₄ is independently hydrido, alkyl, or hydroxyalkyl;

R₅ is independently hydrido, alkyl, or hydroxyalkyl;

R₆ is hydroxy; and

R₇ is independently hydroxy, or alkylsilyloxy;

or a pharmaceutically-acceptable salt thereof.

25. The compound of claim 24, wherein R₁ is halo; R₂ and R₃ are alkyl; R₄ is hydroxy; and R₅ is selected from hydroxy and alkoxyalkyl.

26. The compound of claim 25, wherein R₁ is chloro; R₂ and R₃ are OBn; and R₄ and R₅ are methyl; R₆ is hydroxy; and R₇ is OSi-t-BuMe₂.

27. The compound of claim 25, wherein R₁ is chloro; R₂ and R₃ are OBn; R₄ and R₅ are methyl; R₆ is hydroxy; and R₇ is hydroxy.

28. A method of synthesizing a compound of Formula I:

\[
R₃ \overset{R₁}{\underset{R₂}{\bigotimes}} R₄ \overset{R₅}{\underset{R₆}{\bigotimes}} X₁ X₂
\]

wherein, R₁ is OSi-t-BuMe₂, X₁ is chloro, X₂ is bromo, with compound (3);

to form an intermediate compound (18):

\[
R₁ \overset{R₂}{\underset{R₃}{\bigotimes}} R₄ \overset{R₅}{\underset{R₆}{\bigotimes}} R₇
\]

wherein, R₁ is chloro, R₂ and R₃ are OSi-t-BuMe₂;

b) isolating said intermediate compound (18); and
c) deprotecting said intermediate compound.

29. A method of synthesizing (+) chloropuuphenone comprising:

a) hydrogenating compound (19) to form compound (25);

b) disilylating compound (25) to form compound (26);

and

wherein, R₁ is chloro, R₂ and R₃ are OSi-tBuMe₂, and
R₁, R₂, and R₃ are methyl, comprising:

a) reacting compound (4),

b) reacting compound (4),

and
30. A method for identifying a compound that inhibits lymphatic absorption of cholesterol, comprising:
 a) administering a known amount of cholesterol and a compound of claim 1 to a non-human mammal; and
 b) measuring lymphatic absorption of said known amount of cholesterol, wherein a statistically significant decrease in said cholesterol absorption relative to the lymphatic cholesterol absorption of a corresponding control non-human mammal indicates said compound inhibits lymphatic absorption of cholesterol, and wherein a statistically insignificant change or a statistically significant increase in said cholesterol absorption relative to the lymphatic cholesterol absorption of a corresponding control non-human mammal indicates said compound does not inhibit lymphatic absorption of cholesterol.

31. The method of claim 30, wherein said known amount of cholesterol and said compound are administered in a lipid emulsion.

32. The method of claim 30, wherein said non-human mammal is a rat.

33. The method of claim 32, wherein said non-human mammal is fasted prior to said administering step.

34. A composition comprising a compound of Formula 1:

 \[(\text{Formula 1})\]

 at least one pharmaceutically-acceptable carrier material.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page.
Item [75], Inventors, please delete “Wrillimantic” and insert -- Willimantic -- therefor; and please delete “US” and insert -- Korea -- therefor;
Item [56], References Cited, OTHER PUBLICATIONS, “Hamann and Scheuer” reference, please delete “Sesquitepene” and insert -- Sesquiterpene -- therefor.

Signed and Sealed this
Fourth Day of January, 2005

JON W. DUDAS
Director of the United States Patent and Trademark Office