3-D SPRAG RATCHETING TOOL

Inventors: Michael O. Wade, Sykesville, MD (US); James W. Poland, Jr., Laurel, MD (US)

Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, DC (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Filed: Jul. 2, 1996

Int. Cl.? .. B25B 13/46
U.S. Cl. ... 81/60
Field of Search 81/60, 59.1; 192145.1, 192141 A

References Cited

U.S. PATENT DOCUMENTS
2,139,650 A * 12/1938 Anderson et al. 81/59.1
3,164,234 A * 1/1965 Tamarin 192/45.1
3,326,342 A * 6/1967 Hack 192/41 A
4,004,666 A * 1/1977 Hinojosa 81/59.1
4,099,430 A * 7/1978 Stodola 81/59.1
4,130,191 A * 12/1978 Judd et al. 192/41 A
4,297,934 A * 11/1981 Stephens 81/59.1
4,360,093 A * 11/1982 Wakabayashi et al. 192/41 A
5,469,949 A * 11/1995 Leitz 192/41 A
5,482,144 A * 1/1996 Vranish 192/45.1

ABSTRACT

A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.

10 Claims, 7 Drawing Sheets
FIG. 9A

FIG. 9B
3-D SPRAG RATCHETING TOOL

STATEMENT OF THE INVENTION

The above and other objects of the present invention are achieved by providing a ratcheting tool comprising a driver head which includes at least two 3-D sprag elements positioned within a first groove within the driver head such that one of the sprag elements may lockingly engage the first groove of the drive head when the driver head is rotated. The ratcheting tool also includes a neck which is integrally formed with the driver head. The ratcheting tool further includes a handle which is integrally formed with the neck such that the handle may cause the driver head to rotate in a clockwise or counterclockwise direction.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIGS. 1 and 2 wherein like reference numerals refer to like elements throughout. Referring now to FIG. 1, a ratchet tool generally shown as 10 includes a driver head 12 a neck 30 and a handle 40. Referring now to FIG. 2, a sectional view of FIG. 1 of the present invention taken along lines A—A, shows a ratchet tool 10 of the present invention wherein the ratchet tool 10 includes driver head 12 which further includes a first groove 16 within bore 14 and a second groove 36a which is located within second bore 36b of driver head 12. First groove 16 is machined such that it receives beveled surfaces 20a of sprag element 20 in a locking engagement. Second bore 36b is machined such that it may receive cover 32. Beveled surfaces 20b are received by groove 24 of hub assembly 22. Hub assembly 22 is concentrically positioned within driver head 12 and sprag elements 20 are radially positioned with respect to hub assembly 22 within groove 24. Ratchet tool 10 further includes dowel pins 29 which terminate in bore 29a (not shown) of cover 32 (see FIG. 6). Dowel pins 29 are secured (by conventional means) within bore 29a (not shown) of cover 32. When cover 32 is made to rotate with respect to driver head 12, dowel pins 29 cause sprag elements 20 which are spaced 180 degrees apart to pivot about their respective dowel pins 28. Dowel pins 28 pass freely through bores 28a of sprag elements 20 and terminate in driver head 12 of ratchet tool 10 so as to allow the pivoting motion of sprag elements 20. If ratchet tool 10 were to only include
two (2) sprag elements 20 then only one dowel pin 29 would be necessary to facilitate the relative rotation of hub assembly 22 in the clockwise and counterclockwise direction. Snap ring 34 is received by groove 34a of hub assembly 22 to rotatably hold hub assembly 22 within bore 14 of driver head 12. Snap ring 36 is received by second groove 36a of driver head 12 to rotatably hold cover 32 within bore 36b. Dowel pins 28 are securely positioned (by conventional means) within driver head 12 of ratchet tool 10. This arrangement allows sprag elements 20 to be slightly rotated within groove 16. A slight rotation in the clockwise direction will prevent rotation of hub assembly 22 in the clockwise direction with respect to driver head 12. A slight rotation in the counterclockwise direction will prevent rotation of hub assembly 22 in the counterclockwise direction. When the dowel pins 28 do not cause a slight rotation in either direction then hub assembly 22 will not rotate in either direction with respect to driver head 12. This is the neutral position. While in the neutral position, driver head 12 may impart torque on a fastening element (not shown) in either the clockwise or counterclockwise directions. (see FIG. 2) which pivot sprag means 20 to achieve the desired setting (clockwise, counterclockwise or neutral settings). The roller bearing fits within bore 39 (see FIGS. 3 and 7) of driver head 12. This arrangement is common among socket wrenches for setting and locking the wrench at a desired setting. Cover 32 further includes dowel pins 29 (see FIG. 2) which are located such that a rotation of the cover causes the pins to push against a pair of similarly oriented sprags, compressing preload spring elements 38 thereby disengaging that pair of spray thus allowing for rotation in one direction and locking in the opposite direction.

Referring now to FIGS. 2 and 7, driver head 12 includes groove 16 for receiving sprag element 20 and groove 36a for receiving snap ring 36. Driver head 12 further includes bore 39 for receiving ball bearing (not shown) for locking and setting ratchet tool 10 in either the clockwise, counterclockwise or neutral positions.

Referring now to FIGS. 8A and 8B, a two-way ratchet tool with free running neutral position consists of essentially the same components as the two-way ratchet with a locking neutral position. For the free-running neutral position, a pair of springs 380a and 380b is used on each sprag means 200. Spring 380a provides a preload to sprag means 200 while spring 380b, the positioning spring, is attached to the cover and serves the same purpose as dowel pins 29 of the preferred embodiment. In the neutral position, the force of positioning spring 380b overpowers the force of preload spring 380a thereby disengages sprag means 200. Rotating the cover so that the positioning spring further compresses it to continue to hold the sprag in the disengaged position. Rotating the cover in the opposite direction such that positioning spring 380b extends allows the force of preload spring 380a to overpower the force of positioning sprag 380b and thus engages the sprag. Therefore, this arrangement allows for rotation only in one direction and locking only in one direction.

Referring now to FIGS. 9A and 9B, in a linear ratchet device, the mechanism would consist of two rails 120 and 220 sprag element 200, preload spring 380a and positioning spring 380b. This arrangement is analogous to that shown in FIGS. 8A and 8B in that the device allows for movement in one direction only and locking in one direction only.

We claim:

1. A ratcheting device comprising:
 a driver head that includes at least two 3-D sprag means positioned within a first groove within said driver head wherein one of said at least two 3-D sprag means may lockingly engage said first groove when said driver head is rotated in a first direction;
a hub assembly positioned within said driver head including a second groove;
a preload spring means passing through a bore of said one of at least two 3-D sprag means so as to facilitate rotation of said hub assembly in said first direction while preventing rotation of said hub assembly in a second direction;
a neck integrally formed with said driver head; and
a handle means integrally formed with said neck wherein said handle may cause the driver head to rotate in said first and second directions.

2. The device of claim 1 wherein said preload spring means biases said one of at least two 3-D sprag means in a direction opposite rotation of said driver head.

3. The device of claim 1 wherein each of said 3-D sprag means includes at least two bores so as to allow for seating and biasing said 3-D sprag means.

4. The device of claim 3 wherein said preload spring means passes through a bore of each said 3-D sprag means.

5. The device of claim 4 wherein said preload spring means biases said two 3-D sprag means into engagement with said hub assembly.

6. A ratcheting device comprising:
a driver head that includes at least two 3-D sprag means positioned within a first groove within said driver head wherein one of said at least two 3-D sprag means may lockingly engage said first groove when said driver head is rotated in a first direction;
a hub assembly positioned within said driver head including a second groove;
a preload spring means passing through a first bore of each of said two 3-D sprag means so as to bias said two 3-D sprag means into engagement with said hub assembly;
a dowel pin passing through a second bore of each of said 3-D sprag means so as to facilitate a pivoting of each of said sprag means;
a neck integrally formed with said driver head; and
a handle means integrally formed with said neck wherein said handle may cause the driver head to rotate in a first and a second directions.

7. The device of claim 6 wherein said hub assembly may rotate in said first and said second direction with respect to said driver head.

8. The device of claim 6 wherein said hub assembly may rotate only in said first direction with respect to said driver head.

9. The device of claim 6 wherein said hub assembly may rotate only in said second direction with respect to said driver head.

10. The device of claim 6 wherein said hub assembly can not rotate with respect to said driver head in said first direction or said second direction.