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ABSTRACT 
 

Advanced ceramic thermal and environmental barrier coatings will play an increasingly 
important role in future gas turbine engines because of their ability to protect the engine 
components and further raise engine temperatures. For the supersonic vehicles currently 
envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines 
will be used to provide high power density thrust during the extended supersonic flight of 
the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating 
systems are critical to the performance, life and durability of the hot-section components of 
the engine systems. In this work, the laser and burner rig based high-heat-flux testing 
approaches were developed to investigate the coating cyclic response and failure 
mechanisms under simulated supersonic long-duration cruise mission. The accelerated 
coating cracking and delamination mechanism under the engine high-heat-flux, and 
extended supersonic cruise time conditions will be addressed. A coating life prediction 
framework may be realized by examining the crack initiation and propagation in conjunction 
with environmental degradation under high-heat-flux test conditions. 
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— Ceramic barrier coatings can significantly increase gas temperatures, 
reduce cooling requirements, improve engine fuel efficiency and reliability
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Objective

─ The coating delamination behavior under thermal gradient 
testing 

─ The effect of coating stability on cracking and delaminations

─ Finite element analysis of the coating delamination driving 
forces

─ Coatings design issues

─ Summary and Conclusions
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High-Heat-Flux Tests Critical to Turbine TBC Development

─ High-heat-flux laser test approach for thermal barrier coating cyclic 
durability
• Temperature gradient requirements: up to 200 °C/100 microns
• Heat flux requirements up tp 200-300 W/cm2 NASA CO2 Laser Rig

Current capability up to 315 W/cm2 

T

Distance from surface

Heat flux cooling 
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Laser Heat Flux Testing of Thermal Barrier Coatings
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— Approximate constant heat flux
— Sintering induced conductivity increase during the steady-state testing
— Sintered coatings tend to have accelerated delamination under subsequent 

cyclic testing
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High Heat-Flux Sintering Induced Cracking and 
Delamination in EB-PVD ZrO2-7wt%Y2O3 Coating

— High-heat-flux surface sintering cracking and resulting coating 
delaminations

Tsurface=1280°C
Tinterface=1095°C
Thickness=130 µm

Zhu et al, Surf. Coat. Tech., Vol. 138, 2001

surface vertical cracks

Delamination cracks

50 µm
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Burner Rig Heat Flux Characterization

— Burner rig heat fluxes characterized using an 
embedded thermocouple (TC) sensor approach

— Initial heat flux 100-200 W/cm2 observed
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The Cyclic Life of ZrO2-(7-8)wt%Y2O3 Thermal Barrier 
Coatings
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Thermal Gradient Tested TBC Delamination and Modeled 
TBC Delamination Induced Conductivity Reduction 

— Laser tested at Tsurface=~1316°C and Tinterface=~1100°C under the combined 
steady state (22 hrs) and 20 min heating/3 min cooling cycles (256 cycles)
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Temperature, oC1467 oC 1315 oC

1066 oC
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1 mm 0.5 mm 0.5 mm

Coating Failure Modes under High Heat Fluxes 
and High Thermal Gradients
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Summary of Coating Failure Modes under 
Thermal Gradients

(c) High Heat Flux and Low 
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Delamination Driving Forces Correlated to Temperature 
Gradients and Modulus
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Delamination Driving Force Due to Transient Surface 
Cooling

Crack Extension Force G as a function of time
for 2.0mm half delamination length and crack depth of 0.08mm
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Sintering Induced Cracking in an EB-PVD ZrO2-7wt%Y2O3 
Coating

Tsurface=1482°C
Tinterface=1250°C

— Conductivity initially increased due to sintering
— Conductivity later decreased due to coating delamination cracking 

resulting from the large sintering shrinkage
* Coating delaminates at temperature during the steady-state testing due to 

sintering
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Durability Issues of Ceramic Thermal and Environmental 
Barrier Coating (TEBC) Systems

— Sintering and CTE mismatch induces surface wedge-shape crack 
propagation

— Surface cracking accelerates coating delamination under mixed mode 
loading (KI and KII )

— Interfacial pore formation due to the chemical reactions further
accelerated coating spallation under thermal gradient conditions
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Accelerated Coating Degradation under Thermal 
Gradients
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— Significant interfacial pore and eutectic phase formation due to water 
vapor attack and Si diffusion at the interface temperature of 1300°C under 
the thermal gradient cycling conditions 
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TEBC Delamination Driving Force and Design Issues
— Surface cracking and delamination are facilitated by a thicker TBC
— Low conductivity, sintering resistant, low expansion, and compliant TBCs

will lower cracking driving force
— Thermal gradient imposes more damage due to increased thermal stress 

and sintering
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Conclusions

• The coating failure involved both time-temperature dependent 
sintering and cycle dependent fatigue processes

• Coating high temperature stability is critical durability issue

• Increased delamination driving force and degradation under heat 
flux and thermal gradient

• A thin, low conductivity, sintering resistant, and compliant coating 
will help improve coating durability




