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The unsteady flow over a hump model with zero efflux oscillatory flow control is mod-

eled computationally using the unsteady Reynolds-averaged Navier-Stokes equations.

Three different turbulence models produce similar results, and do a reasonably good

job predicting the general character of the unsteady surface pressure coefficients during

the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude

inside the separation bubble, and the computed results predict too large a (mean) sepa-

ration bubble compared with experiment. These missed predictions are consistent with

earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD

validation workshop for synthetic jets.
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I. Introduction

Synthetic (or zero efflux) jets are known to be an effective method for controlling separation.1

It is believed that large unsteady spanwise structures induce momentum transfer across the bound-

ary layer, which in turn reduces separation in the mean. As a practical tool, synthetic jets are

generally more attractive than control systems using steady blowing or suction because complex

ducting systems are not required for synthetic jets. Often, unsteady jet actuation can be achieved

via relatively small piezo-electric plates or electro-mechanical piston arrangements in a cavity or

cavities located just beneath the body surface.

Computational methods will play an important role in the design of effective synthetic jet

systems. However, separated turbulent flows are often difficult to predict with Reynolds-averaged

Navier-Stokes (RANS) CFD codes, and the complex physics of unsteady flow only serves to make

the problems even more difficult to model. It is therefore important to perform detailed analyses

of the current capabilities of state-of-the-art CFD methods applied to synthetic jet problems, and

to attempt identify specific deficiencies in the modeling.

To this end, well-documented experiments on relatively simple configurations (or “unit prob-

lems”) are particularly useful. A CFD validation workshop for synthetic jets and turbulent sepa-

ration control (CFDVAL2004) was held in 2004, and included three such unit problems.2,3 One

of the cases was the flow over a two-dimensional wall-mounted hump-shaped body, termed the

”hump model.” The hump model flow control experiment was introduced earlier by Seifert and

Pack.4 During the CFDVAL2004 workshop, the effort was focused primarily on steady-state hump

model results using no-flow-control and steady suction flow control. There was only limited com-

parison with oscillatory synthetic jet data because the unsteady experiment was not completed at

the time of the workshop. The steady experimental results were documented in Greenblatt et al.,5

with wall shear stress measurements for the no-flow-control case documented in Naughton et al.6

After the CFDVAL2004 workshop, extensive time-accurate data became available for the oscil-

latory flow-control case.7 Measurement uncertainties were also documented (±0.001 for surface

pressure coefficients, less than 3% for velocities, and±10% for turbulence quantities). Overall,

the hump model case has generated a great deal of interest and has spawned many CFD studies.8–15

Rumsey et al.2 provided a summary of the hump model CFDVAL2004 workshop results com-

pared with experiment. There were two key points made concerning this case. First, the side plates

used in the experiment to improve two-dimensionality were found to cause blockage that, if not

modeled in CFD, resulted in noticeable overprediction of pressures over most of the hump surface.

Second, RANS CFD results consistently predicted too long a separation bubble for both the no-
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flow-control and the steady-suction cases. This overprediction was surmised to be due to the fact

that the modeled turbulent shear stresses in the separated region were too low in magnitude (by as

much as a factor of 2 – 3), compared with experimental results. More computationally intensive

methods that involved large eddy simulation (LES) (such as blended RANS-LES techniques) or

direct numerical simulation (DNS) appeared to hold promise for predicting improved separation

lengths, but results were inconclusive at the time of the workshop.

The current study is an application of unsteady Reynolds-averaged Navier-Stokes (URANS) to

the oscillatory case using the CFL3D code16 with three different turbulence models: the Spalart-

Allmaras (SA) model,17 Menter’sk-ω SST model,18 and the explicit algebraic stress model ink-ω

form (EASM-ko).19 The jet slot and cavity are included in the computations. In a related effort,

Balakumar13 performed URANS computations with higher order spatial accuracy using the SST

model, and found that the computations did not predict the correct mean separation length (predic-

tions were more than 20% too long). Capizzano et al.15 also used URANS with the SST model, and

their mean separation length was similarly overpredicted, by roughly 15%. Computed turbulent

shear stress levels were significantly underpredicted in magnitude in the separated region. Both

Balakumar and Capizzano et al.employed an unsteady wall-surface boundary condition rather than

including the jet slot and cavity in their computations. Morgan et al.14 used LES (computed at

a lower Reynolds number than experiment), including the jet slot and cavity, to achieve turbulent

shear stress levels in the separated region in generally good agreement with the synthetic jet ex-

periment. Mean predicted reattachment length was improved, but was still somewhat longer than

experiment (by 10%).

II. Solution Methodology

The computer code CFL3D16 solves the three-dimensional, time-dependent, Reynolds-averaged

compressible Navier-Stokes equations with an upwind finite-volume formulation (it can also be ex-

ercised in two-dimensional mode of operation for 2-D cases). Because the code is compressible,

the Navier-Stokes equations are averaged using Favre averaged variables; e.g.,ρui/ρ. CFL3D

can solve flows over multiple-zone grids that are connected in a one-to-one, patched, or overset

manner, and can employ grid sequencing, multigrid, and local time stepping when accelerating

convergence to steady state. Upwind-biased spatial differencing is used for the inviscid terms,

and flux limiting is used to obtain smooth solutions in the vicinity of shock waves, when present.

Viscous terms are centrally differenced, and cross-diffusion terms are neglected.

The CFL3D code is advanced in time with an implicit approximate factorization method. The

implicit derivatives are written as spatially first-order accurate, which results in block tridiagonal

inversions for each sweep. However, for solutions that utilize Roe flux-difference splitting,20 the

block tridiagonal inversions are further simplified using a diagonal algorithm with a spectral radius
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scaling of the viscous terms.

In time-accurate mode, CFL3D uses pseudo-time stepping with multigrid and achieves second

order temporal accuracy. With pseudo-time stepping, subiterations are used to reduce the lineariza-

tion and factorization errors, and advance the solution in pseudo-time to the next physical time. For

a non-deforming mesh, the time dependent compressible Navier-Stokes equations can be written

as

1

J

∂Q

∂t
= R(Q) (1)

whereQ is the vector of conserved variables[ρ, ρu, ρv, ρw, e]T , J is the Jacobian of the generalized

coordinate transformation, andR is the right-hand-side:

R(Q) = −
[
∂(F̂− F̂v)

∂ξ
+

∂(Ĝ− Ĝv)

∂η
+

∂(Ĥ− Ĥv)

∂ζ

]
(2)

made up of gradients of the inviscid and viscous flux terms. Eq. (1) can be discretized with back-

ward differencing:

(1 + φ)(Qn+1 −Qn)− φ(Qn −Qn−1)

J∆t
= R(Qn+1). (3)

The superscriptsn, n + 1, andn − 1 indicate the time level. Whenφ = 0 the method is first-

order temporally accurate, and whenφ = 1/2 the method is second-order temporally accurate. To

employ pseudo-time stepping, a pseudo time term is added to Eq. (3), and the equation is iterated

in m, wherem is the subiteration counter. After linearizingR and performing some additional

manipulation, one obtains:

[(
1 + φ′

J∆τ
+

1 + φ

J∆t

)
I + ∂ξA + ∂ηB + ∂ζC

]
∆Qm =

φ′∆Qm−1

J∆τ
+

φ∆Qn−1

J∆t
− (1 + φ)(Qm −Qn)

J∆t
+ R(Qm) (4)

whereτ is the pseudo time parameter,∆Qm = Qm+1 −Qm, and

A =
∂(F̂− F̂v)

∂Q
B =

∂(Ĝ− Ĝv)

∂Q
C =

∂(Ĥ− Ĥv)

∂Q
. (5)

Eq. (4) is approximately factored and written in primitive variable form; it is solved as a series of

sweeps in each coordinate direction. Additional details are given in Krist et al.16

In CFL3D, turbulence models are implemented uncoupled from the mean-flow equations. They

are solved using a three-factor implicit approximate factorization approach. The advection terms

are discretized with first-order upwind differencing. The production source term is solved explic-
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itly, while the advection, destruction, and diffusion terms are treated implicitly.

For time-accurate URANS computations, it can be shown21 that the decomposition for forced

periodic cases can be written as

f (x, t) = 〈f (x, t)〉+ f ′ (x, t) , (6)

wheref(x, t) is the total signal, the〈 〉 term is the phase average, andf ′(x, t) is the turbulence.

This form resembles standard Reynolds splitting, except that the flow is split into a slowly varying

mean (phase average) and a random fluctuating part. As a result, the final conservation equations

in terms of phase-averaged variables〈 〉 are identical in form to the standard Reynolds-averaged

equations. In other words, when URANS is used for a forced periodic flow field such as that

produced by a synthetic jet, the computation (depending on the turbulence model and the case)

often eventually settles down to a nearly exactly repeatable periodic variation. If and when this

repeatability is attained, any single point during the cycle corresponds to a phase-averaged result

from the experiment.

A schematic diagram showing the hump and the boundary conditions applied is shown in Fig. 1.

The flow control slot was located nearx/c = 0.65 on the back side of the hump, near where the

flow separated in the uncontrolled state. A close-up of the region near the slot is shown in Fig. 2.

The chord of the hump model wasc = 420 mm. The freestream Mach number wasM = 0.1

(Uref = 34.6 m/s), and the Reynolds number was Re = 936,000 per hump chordlength. For the

oscillatory case, the oscillation frequency was 138.5 Hz, and the peak velocity out of the slot was

approximately 26 – 27 m/s.

All computations performed for this case were 2-D. The grid used was a 2-D structured grid

with upper wall contouring to approximately account for tunnel blockage. This grid contained

4-zones connected in a 1-to-1 fashion, and approximately 210,000 total grid points. The internal

slot and cavity were included in the grid. Also, a medium-level grid was made from the fine grid

by extracting every-other point in each coordinate direction.

Two time steps were investigated: one with 360 time steps per period of the forcing frequency

and one with 180 time steps per period. A total of 20 subiterations were employed per time step.

For this case, this number of subiterations was enough to reduce theL2-norm of the subitera-

tion density residual by more than 3 orders of magnitude. See Fig. 3, which shows subiteration

residual (as well as lift coefficient) history over the course of approximately 7 time steps (with 20

subiterations per time step) during part of the unsteady cycle.

The boundary conditions were as follows. At the floor and hump surfaces, as well as at the

side walls inside the cavity, solid wall adiabatic boundary conditions were applied. At the front

of the grid, which extended tox/c = −6.39, far-field Riemann-type boundary conditions were

applied. This boundary condition is essentially a non-reflective freestream condition; the location
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x/c = −6.39 was chosen so that the naturally-developing fully-turbulent boundary layer in the

computation reached the same thickness as the experimentally measured value of approximately

δ/c = 0.073 at the locationx/c = −2.14. At the downstream boundary (atx/c = 4.0) the pressure

was set atp/pref = 0.99962, and all other quantities were extrapolated from the interior of the

domain. This back pressure was chosen to achieve approximately the correct inflow conditions for

steady flow. The top tunnel wall was treated as an inviscid wall for all of the computations shown

here. Early investigations also explored the effect of modeling the top wall as a viscous surface,

but this choice made only very small differences in the results. At the bottom of the cavity, the

boundary condition for the oscillatory case set the velocity components as follows:

U = 0 V = [(ρV )max/ρ]cos(2πFt) (7)

whereF is the frequency andt is the time, and(ρV )max was chosen in order to achieve a maximum

velocity magnitude near to the target of approximately 26 – 27 m/s out of the slot during the

cycle. Figure 4 shows the velocity components along the slot exit at four different times during the

cycle. Maximum blowing occurred at phase= 170◦, and maximum suction at phase= 350◦. The

value of(ρV )max used to achieve this condition was(ρV )max = 0.001ρrefaref , wherearef is the

reference speed of sound. Along with the above boundary condition given by Eq. (7), the density

and pressure at the bottom of the cavity were extrapolated from the interior of the domain. Figure

4 also shows the effect of time step on the solution at the slot exit location. There were differences,

but these were very small. Although not shown, other aspect of the solutions elsewhere in the field

using the two different time steps also exhibited only very minor differences. This insensitivity to

time step at these levels is consistent with results from a different synthetic jet study.21 For all the

remaining unsteady results presented herein, the smaller time step corresponding to 360 steps per

cycle was employed.

As mentioned earlier, it was discovered during the CFDVAL2004 workshop2 that the side plates

used in the experiment to improve the flow quality caused blockage that, if not accounted for in the

CFD, resulted in computed Cp levels that were noticeably different over the hump. This difference

was later verified experimentally by obtaining Cp data for the no-flow-control case without side

plates. One way to approximately account for this blockage in a 2-D computation is to modify the

upper wall shape to reflect the tunnel area change due to the presence of the plates. This was done

for the current computations. The differences with and without modified top wall are shown in

Fig. 5 for the (steady-state) no-flow-control and steady suction cases. In the suction case, note that

the large spike in Cp at the slot is due to flow acceleration around the upstream edge of the slot lip.

The effect of grid was investigated for the oscillatory case, and sample results are shown in

Fig. 6. Almost no differences were visible between long-time-average surface pressures, phase-

averaged surface pressures, or velocity profiles using the two grids. There were only small dif-

ferences (generally less than 5% maximum difference) in computed turbulent shear stress profiles.
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Based on this grid study, the medium grid (approximately 53,000 grid points) is believed to be fine

enough to adequately resolve the numerics of the hump model flow using URANS. Nevertheless,

for the oscillatory condition the fine grid (approximately 210,000 grid points) was employed to

insure that these computations possessed more than sufficient grid resolution.

III. Results

Final long-time-average mean Cp results for the oscillatory case are shown in Fig. 7. The

pressures were predicted reasonably well prior to separation, although the computed levels were

still as much as 3 – 6% in error over the center portion of the hump, despite the use of the modified

top wall to account for blockage. Some of this error is likely due to the fact that the oscillatory

case used a different experimental test configuration underneath the splitter plate, which had the

overall effect of increasing the suction over the hump model slightly compared to the original

configuration.3 The use of a lower back pressure in the CFD would improve the correlation.

The pressure levels in the separated region were missed by a substantially larger amount, and

indicated too large of a (mean) separation bubble compared with experiment. There were small

differences between results from the three turbulence models. Table 1 shows measured and pre-

dicted separation and reattachment locations (note that only the experimental reattachment location

for the no-flow-control and steady suction cases were measured accurately with oil flow; other ex-

perimental values were approximately obtained from particle image velocimetry (PIV) data). As

shown in the table, CFD predicted separation location fairly accurately (less than 2% error), but

overpredicted the reattachment location by between 10 – 25%. In fact, the computations predicted

only a relatively small change between the reattachment location for the no-flow-control condition

and the oscillatory condition, whereas the experiment indicated that oscillatory control had a fairly

significant impact on this aspect of the flowfield.

The unsteady phase-averaged pressures at four different phases are given in Fig. 8. CFD did an

excellent job predicting the general character of the unsteady surface pressure coefficients during

the forced cycle, including the relative effects due to strength and location of the shed vortices that

convected downstream. However, the actual Cp levels tended to be somewhat low in magnitude

(by between 0.1 – 0.2) for0.65 < x/c < 0.8, similar to the differences seen in the time-averaged

results in Fig. 7. The SA model results tended to smear out the vortex more than SST or EASM-ko

after it passed beyondx/c = 1, in better agreement with the experimental data.

Phase-averagedu-velocity profiles and turbulent shear stress profiles at three different stations

are shown in Figs. 9 – 14. Atx/c = 0.66, which was just downstream of the slot, the flow was still

attached in the mean (with small separation during part of the cycle). During the part of the cycle

near phase= 170◦, the velocity profiles showed the influence of the fluid expulsion from the slot

in the form of an inflection in the profile. Velocities near the knee were underpredicted at phases
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80◦ and350◦. EASM-ko did the best job overall capturing the peak magnitudes of turbulent shear

stress at this location.

At x/c = 0.8, which was in the middle of the separation region, the computations predicted

the velocity profiles very well in general, including their variation with phase, although there were

some specific differences between the turbulence models. For example, SST and EASM-ko tended

to produce more rounded profiles near the wall than SA. All three turbulence models dramatically

underpredicted the turbulent shear stress magnitudes at this location within the separated region.

Probably as a result of this poor prediction of the turbulence, the computed flow field possessed

too little mixing and it reattached much later than the experiment. This late reattachment can be

seen in Figs. 13 and 14 atx/c = 1.0. At this location, the experiment has just reattached (in the

mean), but the computations remained separated over all phases of the cycle.

Plots showing phase-averagedu-velocity contours at phase =170◦ (maximum blowing part of

the cycle) are given in Fig. 15. At this phase, the experiment exhibited a large area of negativeu-

velocity over the entire back of the hump, with two concentrated regions of higher-velocity fluid:

one centered nearx/c = 0.72 and a larger one centered nearx/c = 0.9. These negative velocity

regions were a result of convecting vortices (positioned above the regions) with clockwise rotation.

The computations exhibited qualitatively similar streamwise positioning of the reverse-flow con-

centrated regions, but the negativeu-velocity extended further downstream, and the concentrated

region atx/c = 0.9 was predicted to be larger than the one in the experiment. The SST and EASM-

ko results exhibited a third concentrated reverse-flow region further downstream nearx/c = 1.16

(shed from an earlier cycle), whereas SA smeared this feature out. Links to movie files are in-

cluded here, showingu-velocity contour comparisons with two of the turbulence models (SA and

SST): <a href=”uvelSA.avi”>uvelSA.avi</a> and <a href=”uvelSST.avi”>uvelSST.avi</a>.

Contours of turbulent shear stress at the same phase are shown in Fig. 16. The magnitude of

the computed levels in the separated region were too low compared to experiment by a factor of

at least 2 – 3. This figure also shows how SST and EASM-ko tended to maintain more compact

regions of turbulence, whereas SA diffused the regions more. A link to a movie file showing turbu-

lent shear stress comparisons for SA is given here:<a href=”turbSA.avi”>turbSA.avi</a>. The

long-time-average streamlines are shown in Fig. 17. All three turbulence models yielded similar

results, predicting larger mean separated regions than experiment.

Details near the slot are shown for four different phases in Figs. 18 – 21. The computed

velocities were qualitatively similar to the experimental results. The separation point oscillated

between the slot corner andx/c = 0.665 – 0.666. The PIV data was not reliable near the wall,

so the precise location of separation in the experiment could not be ascertained. However, it

appears that CFD may have yielded separation somewhat upstream of experiment in general.

The three turbulence models predicted similar results for separation location, except at phase

= 350◦ where SST and EASM-ko predicted separation slightly downstream of SA. Links to
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movie files are included here, showingu-velocity contour comparisons with two of the turbulence

models (SA and SST) near the slot:<a href=”uvelSAclose.avi”>uvelSAclose.avi</a> and<a

href=”uvelSSTclose.avi”>uvelSSTclose.avi</a>. In contrast to the velocity contours, the con-

tours of−u′v′ indicated dramatic differences between the peak levels given by CFD and experi-

ment. This is consistent with the results shown in Fig. 16, and indicates that the turbulence models

did not capture the physics correctly even immediately downstream of separation. A link to a

movie file showing turbulent shear stress comparisons for SA near the slot is given here:<a

href=”turbSAclose.avi”>turbSAclose.avi</a>.

In order to determine whether low computed turbulence levels in the separated region can cause

delayed reattachment, a crudely modified SA model was applied to the no-flow-control case. The

turbulence model was (arbitrarily) modified to producedoublethe eddy viscosity in an area near

the separation bubble, but away from the wall. Resulting streamlines from the converged steady

state solution are shown in Fig. 22, compared to the standard SA result. (In the figure, dashed lines

indicate the approximate region in which the eddy viscosity was doubled in the modified case.)

This ad hocprocedure resulted in a significantly smaller separation bubble, lending support to the

conjecture that deficiencies in the standard turbulence models are likely to blame for the overpre-

dicted bubble lengths for the hump model cases in general. If the turbulence models produced

higher magnitude of turbulent shear stress levels in the separated region (in better agreement with

experiment), then predicted separation extents would decrease, as indicated by this simple numer-

ical test.

IV. Conclusions

This oscillatory hump case represents a high-quality, nominally two-dimensional experimen-

tal dataset that appears to expose an inherent flaw in current state-of-the-art RANS and URANS

methodologies: the magnitude of the turbulent shear stress in the separated region of this config-

uration is underpredicted, and consequently the separation length is overpredicted. As was seen

in the CFDVAL2004 workshop, this same flaw was also evident for the hump model in steady

flow (no-flow-control and steady suction) using a wide variety of codes and turbulence models.

The question now is whether current turbulence models can be corrected to account for the missed

physics, or whether it will be necessary to use more computationally expensive, sophisticated

methods such as 3-D LES or blended RANS-LES to predict these types of synthetic jet flowfields

more accurately.

Overall, 2-D time-accurate URANS showed itself capable of predicting some of the general

mean-flow character of this complex unsteady flow, including the relative strength and location of

convected vortical flow structures as manifested in their effects on time-dependent surface pres-

sures. Three different turbulence models made only relatively minor differences in the overall
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results. However, because of its limitations regarding underprediction of turbulent shear stress

magnitudes and overprediction of the separation bubble extent, the adequacy of state-of-the-art

URANS as a design tool for synthetic jets involving separated flow is questionable. Its suitability

will likely depend on particulars of the flowfield in question, as well as on the level of accuracy

required.
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Figure Legends:

Fig 1. Diagram of hump model showing boundary conditions employed.

Fig 2. Close-up of slot exit region; medium-level grid (every other grid point in each coordinate

direction) shown.

Fig 3. Convergence of subiteration residual during time-accurate oscillatory computation, fine

grid, SA.

Fig 4. Velocity components at the slot exit for oscillatory case at 4 different phases in the cycle,

fine grid, SA.

Fig 5. Surface pressure coefficients for no-flow-control and steady suction cases, showing

effect of side plate blockage in the experiment (no-flow-control case only) and effect of using

upper wall contouring to account for blockage in 2-D CFD computations, fine grid, SA.

Fig 6. Effect of grid on results for oscillatory case, SA.

Fig 7. Long-time-average surface pressure coefficients for oscillatory case.

Fig 8. Phase-averaged surface pressure coefficients behind the hump for oscillatory case.

Fig 9. Phase-averagedu-velocity profiles atx/c = 0.66 for oscillatory case.

Fig 10. Phase-averaged−u′v′ profiles atx/c = 0.66 for oscillatory case.

Fig 11. Phase-averagedu-velocity profiles atx/c = 0.8 for oscillatory case.

Fig 12. Phase-averaged−u′v′ profiles atx/c = 0.8 for oscillatory case.

Fig 13. Phase-averagedu-velocity profiles atx/c = 1.0 for oscillatory case.

Fig 14. Phase-averaged−u′v′ profiles atx/c = 1.0 for oscillatory case.

Fig 15. Phase-averagedu-velocity contours at phase =170◦ for oscillatory case; dashed lines

indicate regions of zero or negativeu-velocity (experimental contours under the hump surface

should be ignored).

Fig 16. Phase-averaged−u′v′ contours at phase =170◦ for oscillatory case (experimental

contours under the hump surface should be ignored).

Fig 17. Long-time-average streamlines for oscillatory case.

Fig 18. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 80◦ (separation

location for the CFD results are indicated by arrows, and white line locatedy/c = 0.0012 above

surface indicates region below which experimental PIV data is considered potentially unreliable

due to wall reflection).

Fig 19. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 170◦, the peak

blowing part of the cycle (separation location for the CFD results are indicated by arrows, and

white line locatedy/c = 0.0012 above surface indicates region below which experimental PIV

data is considered potentially unreliable due to wall reflection).

Fig 20. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 260◦ (separation

location for the CFD results are indicated by arrows, and white line locatedy/c = 0.0012 above
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surface indicates region below which experimental PIV data is considered potentially unreliable

due to wall reflection).

Fig 21. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 350◦, the peak

suction part of the cycle (separation location for the CFD results are indicated by arrows, and white

line locatedy/c = 0.0012 above surface indicates region below which experimental PIV data is

considered potentially unreliable due to wall reflection).

Fig 22. Numerical experiment showing streamlines for no-flow-control case, comparing results

from standard SA model and SA with eddy viscosity arbitrarily doubled in region indicated by

dashed lines (starting approximately 0.006 above the wall); this test demonstrates how increasing

the modeled eddy viscosity in the separated region would decrease the computed bubble size.
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Figure 1. Diagram of hump model showing boundary conditions employed.
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Figure 2. Close-up of slot exit region; medium-level grid (every other grid point in each coordinate direction)
shown.

Figure 3. Convergence of subiteration residual during time-accurate oscillatory computation, fine grid, SA.
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Figure 4. Velocity components at the slot exit for oscillatory case at 4 different phases in the cycle, fine grid,
SA.
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Figure 5. Surface pressure coefficients for no-flow-control and steady suction cases, showing effect of side plate
blockage in the experiment (no-flow-control case only) and effect of using upper wall contouring to account for
blockage in 2-D CFD computations, fine grid, SA.
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Figure 6. Effect of grid on results for oscillatory case, SA.
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Figure 7. Long-time-average surface pressure coefficients for oscillatory case.
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Figure 8. Phase-averaged surface pressure coefficients behind the hump for oscillatory case.
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Figure 9. Phase-averagedu-velocity profiles atx/c = 0.66 for oscillatory case.
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Figure 10. Phase-averaged−u′v′ profiles at x/c = 0.66 for oscillatory case.
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Figure 11. Phase-averagedu-velocity profiles atx/c = 0.8 for oscillatory case.
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Figure 12. Phase-averaged−u′v′ profiles at x/c = 0.8 for oscillatory case.
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Figure 13. Phase-averagedu-velocity profiles atx/c = 1.0 for oscillatory case.
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Figure 14. Phase-averaged−u′v′ profiles at x/c = 1.0 for oscillatory case.
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Figure 15. Phase-averagedu-velocity contours at phase =170◦ for oscillatory case; dashed lines indicate regions
of zero or negativeu-velocity (experimental contours under the hump surface should be ignored).
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Figure 16. Phase-averaged−u′v′ contours at phase =170◦ for oscillatory case (experimental contours under
the hump surface should be ignored).
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Figure 17. Long-time-average streamlines for oscillatory case.
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Figure 18. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 80◦ (separation location for
the CFD results are indicated by arrows, and white line locatedy/c = 0.0012 above surface indicates region
below which experimental PIV data is considered potentially unreliable due to wall reflection).

30 of 34



Figure 19. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 170◦, the peak blowing part of
the cycle (separation location for the CFD results are indicated by arrows, and white line locatedy/c = 0.0012
above surface indicates region below which experimental PIV data is considered potentially unreliable due to
wall reflection).

31 of 34



Figure 20. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 260◦ (separation location for
the CFD results are indicated by arrows, and white line locatedy/c = 0.0012 above surface indicates region
below which experimental PIV data is considered potentially unreliable due to wall reflection).
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Figure 21. Phase-averagedu-velocity and−u′v′ contours near the slot at phase= 350◦, the peak suction part of
the cycle (separation location for the CFD results are indicated by arrows, and white line locatedy/c = 0.0012
above surface indicates region below which experimental PIV data is considered potentially unreliable due to
wall reflection).
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Figure 22. Numerical experiment showing streamlines for no-flow-control case, comparing results from stan-
dard SA model and SA with eddy viscosity arbitrarily doubled in region indicated by dashed lines (starting
approximately 0.006 above the wall); this test demonstrates how increasing the modeled eddy viscosity in the
separated region would decrease the computed bubble size.
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