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      Abstract 

A fast infrared radiative transfer model (FIRTM2) appropriate for application to both 

single-layered and overlapping cloud situations is developed for simulating the outgoing infrared 

spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of 

cloud reflectance and transmittance values is employed to account for one or two cloud layers, 

whereas the background atmospheric optical thickness due to gaseous absorption can be 

computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric 

conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud 

layers in a column (e.g., ice cloud overlying water cloud).  Moreover, FIRTM2 outputs the 

derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical 

thickness and effective particle size.  Sensitivity analyses have been carried out to assess the 

performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 – 

1179.5 cm-1) and the short-to-medium wave (SMW) band (1180.1 – 2228.9 cm-1).  The 

assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 

and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to 

as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K.  

For the case of two cloud layers (specifically ice cloud over water cloud), the  BTD(F-D) values  

are also generally less than 0.8 K except for the SMW band for the case of a very high altitude 

(>15 km) cloud comprised of small ice particles.  Note that for clear-sky atmospheres, FIRTM2 

reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors 

in this case are essentially those of the clear-sky radiative transfer model. 

Keywords: Infrared radiative transfer; Fast code; Cloud; Single scattering properties of cloud. 
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1. Introduction 

Remote sensing techniques based on hyperspectral measurements provide powerful 

approaches for retrieving a variety of atmospheric parameters  [1] [2]. A forward radiative 

transfer (RT) model is normally required in combination with measurements to infer cloud 

microphysical and optical properties.  The computational efficiency of a retrieval algorithm 

based on hyperspectral measurements is, in practice, critical to the usefulness of the retrieval 

algorithm.  Several fast RT models for clear-sky conditions have been developed such as the fast 

monochromatic model developed by Strow et al. [3]. For cloudy atmospheres, Moncet and 

Clough [4] developed a fast RT model using the adding/doubling principle.  Rathke and Fischer  

[5] developed a fast RT model based on the two-stream source function technique to compute the 

upward radiance.  Additionally, Rathke and Fischer  [6] also assessed several approximate 

solutions to the infrared (IR) RT equation through comparison with the more rigorous discrete 

ordinate radiative transfer (DISORT [7] model.  Fu et al. [8] discussed various two-stream and 

four-stream approximations applied to the simulation of thermal infrared radiative transfer  and 

accounted for the effect of multiple scattering.  

More recently, Wei et al.  [9] presented a fast infrared RT model (hereafter, FIRTM1) for 

single-layered clouds.  In FIRTM1 the background clear-sky optical thickness associated with 

gaseous absorption is determined from application of the fast clear-sky RT model developed by 

Strow et al.  [3]. The cloud effects are obtained from a pre-computed look-up table of cloud 

transmittance and reflectance properties.  For liquid water clouds in FIRTM1, Lorenz-Mie theory 

is employed to derive the optical properties for gamma size distributions of water droplets.  For 

ice clouds, a population of droxtals, pristine hexagonal ice columns and aggregates is assumed in 

the particle size distributions. There are many approaches available to compute the single-
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scattering properties of non-spherical particles, as reviewed by Mishenchenko et al.  [10].  In 

FIRTM1 the single-scattering properties of individual non-spherical ice particles are derived 

from the composite method (Fu et al.  [11]), which combines the single-scattering properties 

from the finite-difference time domain method [12-16],  improved geometric optics method [17], 

and Lorenz-Mie theory.   

The root mean square (RMS) errors of FIRTM1, measured in terms of brightness 

temperature differences (BTD) when compared with the more rigorous DISORT model, are 

typically less than 0.5 K.  In terms of computational efficiency, the CPU time required by 

FIRTM1 is approximately three orders of magnitude less than that required by DISORT for the 

same atmospheric optical profile.  

The FIRTM1 is limited to single-layered clouds, but in reality multilayered clouds are 

commonly observed.  In particular, ice clouds are often seen overlying low-level water clouds.  

This study accounts for this cloud configuration by presenting a fast infrared radiative transfer 

model for two cloud layers (hereafter denoted FIRTM2).  In terms of methodology, FIRTM2 is a 

generalization of FIRTM1, as the radiative transfer approach in both models accounts for 

multiple scattering using pre-calculated look-up tables of cloud reflectance and transmittance 

properties.  The output of FIRTM2 also includes the derivatives (Jacobians) of the brightness 

temperature corresponding to the TOA radiance with respect to cloud optical thickness and 

effective particle size. The analytical Jacobians are used to investigate the sensitivity of the IR 

spectrum to changes in cloud optical and microphysical properties. 

This paper is organized as follows. Section 2 presents the theoretical basis for FIRTM2, 

including the development of the look-up tables of cloud reflectance and transmittance 

properties.  Section 3 presents the differences between FIRTM2 and the DISORT model, which 
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serves as a sort of validation exercise for the FIRTM2 accuracy.  In Sec. 4, the analytical 

Jacobians are formulated and used subsequently to investigate the sensitivity to cloud optical 

properties of the IR spectrum computed from FIRTM2 . Section 5 concludes the study. 

 

2. Approximate radiative transfer solution for two cloud layers  

Similar to FIRTM1, FIRTM2 is a plane-parallel approximate radiative transfer model for 

estimating the upward TOA infrared radiance.  It can be applied to three atmospheric conditions: 

1) clear-sky, 2) one cloud layer (either ice or liquid water), and 3) two cloud layers (e.g., ice 

cloud overlying a liquid water cloud).  In FIRTM2, the atmosphere is divided into 100 layers. 

The background optical thickness of each layer due to atmospheric gaseous absorption can be 

computed from an efficient clear-sky RT model. Examples include the model developed by 

Strow et al. [3], or a line-by-line RT model (LBLRTM). The computational expense of 

employing a LBLRTM may be prohibitive for some remote sensing problems.  For a clear-sky 

atmosphere, FIRTM2 essentially reduces to the clear-sky RT model incorporated into FIRTM2.   

A cloud layer in FIRTM2 can be defined by specifying the cloud optical thickness, which 

is referenced to a visible wavelength, and the effective particle size. The effective particle size is 

defined as the ratio of the volume to projected area for a given particle size distribution and is 

discussed further in the next section. These properties are used to determine the cloud layer 

transmittance and reflectance characteristics that are provided in a pre-computed look-up table, 

as will be discussed below.  The infrared optical thickness of a cloud, !" , can be specified as 

follows:  

    

! 

"# =
Q

e
(#)

2
"
vis

,      (1) 
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where τvis is the value of optical thickness at a visible wavelength of 0.55 µm, and 

! 

Q
e
(")  is the 

mean extinction efficiency at the specified IR wavelength, ! .  In Eq. (1) the mean extinction 

efficiency for cloud particles at visible wavelengths assumes the value 2 (i.e., the asymptotic 

value from geometric optics).  This assumption is usually valid, particularly for ice clouds since 

ice particles are typically much larger than a visible wavelength.  

As shown in Fig.1, a two-layered cloud system can be regarded as consisting of five 

regions: the atmosphere between the surface and the lower-level cloud, the layer comprising the 

lower-level cloud, the atmosphere between the lower- and higher-level clouds, the layer 

comprising the higher-level cloud, and the atmosphere above the higher-level cloud.  The 

quantities 

! 

I
i
"

 and  I
i
#

 (i =1$5)  represent the contributions to the downward and upward thermal 

radiances from various components of the atmosphere. Specifically, 

! 

I
i
"

 and  I
i
#

 (i =1,3,5)  are 

associated with three atmospheric regions that are separated by the two cloud layers, whereas 

! 

I
i
"

 and  I
i
#

 (i = 2,4)  are associated with the contributions from the cloud layers themselves.  In the 

following discussion, the upward TOA radiance is formulated for a nadir-viewing space-borne 

instrument. The radiance for an off-nadir viewing configuration is a simple extension.  Relatively 

strong absorption by clouds and the atmosphere in the IR ensures that the second and higher 

orders of reflections between the surface and the low-level cloud, and between the two cloud 

layers, are much smaller than their first-order counterparts and may be omitted without 

significant impact.  In the following analysis, radiances are denoted as 

! 

I and transmittances are 

denoted as ! ; both are spectral quantities but for clarity their spectral dependence is not made 

explicit.   

The upward radiance at the top of the atmosphere is given by: 

                        

! 

Itop = Ia + Ib + Ic + Id ,              (2) 
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! 
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#

+ I
2
#
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4
#
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! 

Ic ="3"4"5rL (I3
#

+ I
4
#
"3 + I

5
#
"3"4 ) , (5) 

                        !
"=

55
IrI

Hd
, (6) 

where 

! 

"1, "3  and  "5 indicate transmittances of clear-sky atmospheric regions separated by the 

two cloud layers (as shown in Fig.1), while 

! 

"2  and  "4  are the transmittances associated with the 

low-level cloud, and high-level cloud, respectively. The quantities 

! 

rs,  rL  and  rH  represent the 

reflectance of the surface, low-level cloud, and high-level cloud, respectively, and εs and B(Ts) 

are the surface emissivity and the value of the Planck function at the surface temperature Ts, 

respectively. In Eqs. (3)-(6),  

! 

Ia  represents the direct transmission of the thermal emission from 

the surface and the five atmospheric regions shown in Fig.1; 

! 

Ib represents the contribution from 

the reflection of the downward radiance at the surface; 

! 

Ic  represents the reflection of downward 

radiance at the top of the low-level cloud; and 

! 

Id  represents the contribution from the reflection 

of the downward radiance at the top of the high-level cloud.  The radiances in Eqs. (3)-(6) are 

given by: 
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! 

I5
"

= I5
#

= B(Tz )
d$(z)

dzz j+1

z%

& dz ,        (11) 

where the low and high clouds are defined between 

! 

zi  and  zi+1, and 

! 

zj  and  z j+1 (see Fig.1). ε2 

and ε4 represent cloud emissivities of two cloud layers at their effective heights of z2 and z4, 

respectively.  The radiances in Eqs. (7)–(11) are computed from a clear-sky RT model that is 

incorporated into FIRTM2.  An important point to note is that in FIRTM2 the treatment of the 

reflection of radiation by clouds and the surface is highly simplified.  Isotropic downward 

radiation fields at the cloud top and at the surface are implicitly assumed in the derivation of 

! 

Ib, 

! 

Ic , and 

! 

Id  in Eqs. (4)-(6).  For example, the reflected radiance at the top of the high-level cloud 

is given by: 

 

! 

I(µ) =
1

"
R
H

0

1

#0

2"

# (µ,$,µ',$')I(%µ',$')µ'dµ'd$' ,   (12) 

where 

! 

I("µ' ,#' )  is the downward radiance at the cloud top and 

! 

RH(µ,",µ',"')  is cloud bi-

directional reflection function [18-20]. With the assumption of the isotropy of radiation field, the 

reflected radiance at the top of the high cloud is given by   

! 

I(µ) = I5
"
r
H
(µ),       (13) 

where  

                                    

! 

r
H
(µ) =

1

"
R
H

0

" / 2

#0

2"

# (µ,$,µ',$')µ'dµ'd$' .               (14) 

The use of a pre-computed table of cloud reflectance and transmittance values, i.e. 

! 

rL, rH, "2,  and  "4  in Eqs. (3)-(6), substantially increases the computational efficiency of 

FIRTM2.  The look-up table for water clouds involved in FIRTM2 is the same as that used in 

FIRTM1.  For ice clouds, we use a mixture of several ice particle habits, following Baum et al.  
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[21] and King et al. [23].  Specifically, it is assumed that for those ice clouds where the maximum 

dimension of an ice particle is smaller than 70 µm, the cloud comprises 50% bullet rosettes, 25% 

hollow columns, and 25% plates.  For clouds comprised of particles larger than 70 µm, the 

assumption is that bullet rosettes and aggregates dominate the particle size distribution, specifically 

30% aggregates, 30% bullet rosettes, 20% hollow columns, and 20% plates. The single-scattering 

properties of non-spherical ice crystals used in this study are those computed by Yang et al. [24]. 

Following Foot [25], Baum et al. [22] and King et al. [23]), we define the effective particle size for a 

given size distribution as follows:    

 

 

! 

De =

3 fi(L)Vi(L)
i=1

N

"
# 

$ 
% 

& 

' 
( n(L)dL

Lmin

Lmax)

2 f i(L)Ai(L)
i=1

N

"
# 

$ 
% 

& 

' 
( 

Lmin

Lmax) n(L)dL

,    (15) 

where L is the maximum dimension of an individual ice particle; Lmin and Lmax are the minimum 

and maximum particle sizes, respectively; Ai(L) and Vi(L) are the projected area and volume of 

the particle where index i denotes ice particle habit; and n(L)  and fi(L) are the given particle size 

and habit distributions,  The effective particle size defined in Eq. (1) reduces to that defined by 

Hansen and Travis [26] for water droplets.  

Given a radiance, the brightness temperature can be computed from an inversion of the 

Planck function as follows: 

  

! 

TB =
1.4385"

ln 1+
1.1911#10$8" 3

Itop

% 

& 
' 

( 

) 
* 

,       (16) 

where ν is the channel spectral wavenumber. Figure 2 shows the FIRTM2 calculated upward 

brightness temperatures for three different cloudy conditions. Fig.2a shows results of a single-

layered ice cloud located at the height of 12 km with an optical thickness of 1 and an effective 
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particle size of 40 µm.  Fig.2b shows results of a single-layered water cloud located at a height of 

2 km with an optical thickness of 5 and an effective size of 10 µm.  Fig.2c shows results for a 

multilayered cloud case where an ice cloud layer overlies a water cloud layer, in which the ice 

cloud is at a height of 12 km with an optical thickness of 1 and an effective size of 50 µm, and 

the water cloud located at 2 km with an optical thickness of 5 and an effective size of 10 µm. 

 

3. Accuracy Estimation of FIRTM2  

To estimate the accuracy of FIRTM2, we compare the top-of-atmosphere (TOA) 

brightness temperatures computed from FIRTM2 to those from DISORT for various atmospheric 

conditions.  Figure 3 shows the brightness temperature (BT) differences (BTD) in terms of the 

differences between the BT from FIRTM2 minus the BT from DISORT, henceforth referred to 

simply as BTD (F-D).  It is evident from Fig.3 that FIRTM2 is quite accurate, as the BTD (F-D) 

values are generally less than 0.5K.  The overall feature shown in Fig. 3 is that FIRTM2 slightly 

overestimates the TOA brightness temperatures.  

Figure 4 shows the BTD(F-D) values for ice clouds in the LW band (panels, a, b, and c) 

and in the SMW band (panels d, e, and f) for various effective particle sizes.  The uppermost two 

panels in Fig. 4 are for a case when an ice cloud is located at 15 km above the surface; the 

middle two panels are for a case when the height of an ice cloud is 10 km; and the bottom panels 

are for a case when the cloud height is 5 km.  For the LW band, the BTD(F-D) values 

monotonically increase with the ice cloud optical thickness.  The effect of the particle size on the 

BTD(F-D) values is not significant as evidenced by panels (a), (b) and (c).  For the SMW band, 

the BTD(F-D) values depend strongly on the particle size and cloud height.  In particular, the 

BTD(F-D) distribution is quite different for small and large particle sizes when cloud is located 
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high (>10km) in the atmosphere.  In general, the BTD(F-D) values for the LW band are less than 

0.5 K if the ice cloud optical thickness is less than 5, whereas the BTD(F-D) values for SMW are 

less than 1K.  For cases with large particle sizes or low cloud heights, the BTD(F-D) values are 

substantially smaller. 

Figure 5 shows the BTD(F-D) values for water cloud optical thicknesses up to 100 and 

cloud heights of 1, 2, and 3 km.  Asymptotic values are reached when the optical thickness is 

larger than 50 for both the LW and the SMW band.  It is evident from Fig. 5 that the accuracy of 

FIRTM2 increases with decreasing cloud height.  The BTD(F-D) values at both bands are less 

than 0.8 K except at LW band when cloud is at a height of 3 km. 

Figure 6 shows BTD(F-D) values for cases involving two cloud layers.  As a canonical 

simulation by FIRTM2, a water cloud layer is fixed with an optical thickness of 50 and an 

effective size of 10 µm is defined at 2km; whereas ice cloud properties vary. The BTD(F-D) 

values depend on the optical thickness of the ice cloud. For the LW band, the BTD(F-D) values 

are not sensitive to the effective size of ice crystals. For the SMW band, BTD(F-D) values 

increase for high (> 10 µm) ice clouds with small ice crystals (De=10 and 20 µm).  In general, 

the BTD(F-D) values are less than 1K. 

 

 

 

4. Sensitivity study with Jacobians 

The Jacobians are the partial derivatives of the brightness temperature (corresponding to 

the TOA radiance) with respect to cloud optical thickness and with respect to cloud effective 

particle size.  The FIRTM2 provides an efficient way to compute Jacobians based upon their 
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analytical formulation.  From Eq. (16), the partial derivative of the brightness temperature with 

respect to the τvis and De can be written as: 

 

! 
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"# vis
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,   (17) 
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where the partial derivative of Itop with respect to τvis and De can be derived from Eq. (2) as 

follows: 

! 

"Itop
"# vis

= $sB(Ts)%1 + I&( )%3%5 %4
"%2
"# vis

+ %2
"%4
"# vis

' 

( 
) 

* 

+ 
, + I2

&%3 + I3
&( )%5

"%4
"# vis

+r0%1%3%5 I1
- + I2

-%2( ) %4
"%2
"# vis

+ %2
"%4
"# vis

' 

( 
) 

* 

+ 
, + I3

- + I4
-%3( )%1%2 2%4

"%2
"# vis

+ %2
"%4
"# vis

' 

( 
) 

* 

+ 
, 

. 

/ 
0 

1 

2 
3 

+2I5
- %1%2%3%4 %4

"%2
"# vis

+ %2
"%4
"# vis

' 

( 
) 

* 

+ 
, + I3

- + I4
-%3( )%3%5 %4

"%2
"# vis

+ %2
"%4
"# vis

' 

( 
) 

* 

+ 
, ! 

 

! 

+ I
5

"#
3
#
4
#
4

$#
2

$%
vis

+ 2#
2

$#
4

$%
vis

& 

' 
( 

) 

* 
+ + I5

"#
5

$#
4

$%
vis

,      (19) 



 13  

! 

"Itop
"De

= #sB(Ts)$1 + I%( )$3$5 $4
"$2
"De

+ $2
"$4
"De

& 
' 

( 
) 

+ I2
*$3 + I3

*( )$5
"$4
"De

+r0$1$3$5 I1
* + I2

*$2( ) $4
"$2
"De

+ $2
"$4
"De

& 
' 

( 
) 

+ I3
* + I4

*$3( )$1$2 2$4
"$2
"De

+ $2
"$4
"De

& 
' 

( 
) 

+ 

, 
- 

. 

/ 
0 

+2I5
* $1$2$3$4

"$2
"De

+ I3
* + I4

*$3( )$3$5 $4
"$2
"De

+ $2
"$4
"De

& 
' 

( 
) 

   

! 

+ I
5

"#
3
#
4
#
4

$#
2

$%
vis

+ 2#
2

$#
4

$%
vis

& 

' 
( 

) 

* 
+ + I5

"#
5

$#
4

$De
.      (20) 

To solve (19) and (20), a total of eight sets of partial derivatives of cloud reflectance and 

transmittance (r & Γ) with respect to τvis and De are derived in FIRTM2 by differentiating the r 

& Γ lookup-tables with small perturbations to τvis and De at their specific values.  As an example, 

Fig. 7 shows the Jacobian (∂TB/∂τvis) for a single-layered ice cloud for various effective particle 

sizes where a 1% perturbation is applied to unit visible optical thickness cloud at an altitude of 

12 km. 

 Figure 8 shows the sensitivity of the derivative of the TOA-radiance-equivalent 

brightness temperature to the effective particle sizes for three values of ice cloud optical 

thickness: 

! 

"
vis

=1 (panel a), 6 (panel b), and 10 (panel c). For a large optical thickness (i.e., the 

case shown in panel c), the derivative of the brightness temperature with respect to the optical 

thickness 

! 

"T
b
/"#

vis
 as a function of the wavelength is not sensitive to the effective particle size, 

as the variations of 

! 

"T
b
/"#

vis
 are quite small in this case. The sensitivity of 

! 

"T
b
/"#

vis
 to the 

effective particle size increases with the decrease of the optical thickness. An interesting point to 

note is that the sensitivity is minimal at wavenumbers near 890 cm-1. This can be a useful feature 

for retrieving cloud properties.  For example, the cloud optical thickness can be estimated from 
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minimizing the difference between the simulated and observed radiances. Given an estimate for 

the optical thickness, the effective particle size can be estimated from the slope of the spectrum 

between 800 to 900 cm-1 (e.g., the studies reported by Huang et al. [27]; Wei et al. [9]).  The 

estimates of both effective particle size and optical thickness can be improved further through 

iteration until a convergent solution is found.  

 

 6. Summary 

A fast infrared radiative transfer model (FIRTM2) is developed to compute the TOA 

radiance for overlapping clouds, and can be applied to three atmospheric conditions: a single-

layered ice cloud, a single-layered liquid water cloud, and a multilayered cloud (e.g., an ice cloud 

layer over a liquid water cloud).  In FIRTM2, the cloud properties are based upon a set of pre-

computed look-up tables of cloud reflectance and transmittance values.  The background 

atmospheric optical thickness due to gaseous absorption are computed from a clear-sky RT 

model that can be either a fast clear-sky RT model or a line-by-line model, depending on the 

desired application.  In FIRTM2, Jacobians (i.e., the derivatives of the TOA brightness 

temperature with respect to the optical thickness and effective particle size) are also computed.  

Extensive comparisons of FIRTM2 with DISORT have been carried out to assess the 

numerical accuracy of FIRTM2.  For a single-layered ice cloud, the brightness temperature 

differences between FIRTM2 and DISORT [BTD(F-D)] in the LW band is better than 0.5K 

when the optical thickness is less than 5.  In the SMW band, the BTD(F-D) values are less than 

0.8 K except for very high clouds comprised primarily of small particles.  For a single-layered 

water cloud, the BTD(F-D) values for both the LW and SMW bands are better than 0.8 K except 

for the case of the LW band with a cloud located at 3 km.  For a multilayered cloud case 
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consisting of an ice cloud over a water cloud, the BTD(F-D) values in both bands are typically 

less than 0.8K, except again for the case of small particles at high altitude (>10 km).  
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Fig. 1 Schematic configuration for a two-layer cloudy atmosphere and the decomposition of the 
atmosphere/cloud contributions to the upward radiance at the top of the atmosphere.  
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Fig. 2  The brightness temperatures corresponding to the TOA radiances computed from 

FIRTM2 for three atmospheric conditions: (a) a single-layered ice cloud at a height of  12 

km (τvis=1, De = 40 µm), (b) a single-layered water cloud at a height of 2 km (τvis=5, De = 

10 µm), and (c) a cloud system with an ice cloud layer (τvis=1, De = 50 µm) at 12 km 

overlying a water cloud layer (τvis=5, De = 10 µm) at 2 km. 
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Fig 3.  The brightness temperature differences between the FIRTM2 and DISORT solutions 

[BTD(F-D)] for the same  atmospheric conditions as in Fig. 2. The brightness temperature 

differences shown here are defined as BTD=BTFIRTM2 – BTDISORT.  
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Fig. 4. The BTD(F-D) values for a single-layered ice cloud with respect to optical thickness, 

effective size, and cloud height. Panels  (a),  (b), and (c) are for the LW band; and panels (d), (e), 

and (f) are for the SMW band. Panels (a) and (d) are for clouds at 15 km. Panels (b) and (e) are 

for clouds at 10 km. Panels (c ) and (f )are for clouds at 5 km.  
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Fig. 5 Same as Fig.4 except for water clouds located at 3, 2, and 1 km. 
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Fig. 6. Range of BTD(F-D) values for a case involving two cloud layers, with ice cloud 

overlying a water cloud. Panels (a), (b), and (c) are for the LW band; whereas panels (d), (e), and 

(f) are for the SMW band. An ice cloud is defined at 15 km for panels (a) and (d), 10 km for 

panels (b) and (e), and 5 km for panels (c) and (f).  
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Fig. 7.  The derivative of brightness temperature with respect to optical thickness for a single-

layered ice cloud located at a height of 12 km with an optical thickness τvis=1. 
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Fig. 8  The effect of ice cloud effective particle size on Jacobians (∂TB/∂τvis). Panel  (a) τvis =1, (b) 

τvis =6, (c) τvis =10. In this simulation the ice cloud is located at 12 km. 

 
 
 
 

 


