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Abstract 
 
Light scattering and transmission by rough surfaces are of considerable interest in a 

variety of applications including remote sensing and characterization of surfaces. In this 

work, the finite-difference time domain technique is applied to calculate the scattered and 

transmitted electromagnetic fields of an infinite periodic rough surface. The elements of 

Mueller matrix for scattered light are calculated by an integral of the near fields over a 

significant number of periods of the surface. The normalized Mueller matrix elements of 

the scattered light and the spatial distribution of the transmitted flux for a monolayer of 

micron-sized dielectric spheres on a silicon substrate are presented. The numerical results 

show that the nonzero Mueller matrix elements of the system of the monolayer of 

dielectric spheres on a silicon substrate have specific maxima at some scattering angles. 

These maxima may be used in characterization of the feature of the system. For light 

transmitted through the monolayer of spheres, our results show that the transmitted 

energy focuses around the ray passing through centers of the spheres. At other locations, 

the transmitted flux is very small. The technique also may be used to calculate the 

perturbance of the electromagnetic field due to the presence of an isolated structure on 

the substrate. 

 

Key words: Light scattering, transmission, finite-difference time domain, microstructure, 

rough surface. 
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1. Introduction 

Understanding of electromagnetic scattering from surfaces is essential to interpretation of 

radar observation of solid bodies, radio wave surface sounding, and many terrestrial or 

extraterrestrial remote sensing problems1. The scattering of electromagnetic waves from, 

and their transmission through, rough surfaces has also been of considerable interest in 

applications such as detection of surface defects or contamination2, characterization of 

nanometer-sized particles in crystalline structures3, and telecommunications4. The 

frequently used algorithms on wave scattering from rough surfaces can be divided into 

two categories. The first one is analytical approximate approaches, such as the small 

perturbation model (SPM) 5-8, the Kirchhoff approximation (KA) 9-11, the integral 

equation method (IEM) 12-15, and other methods16. The second category of the light 

scattering solutions is based on sparse-matrix grid numerical solutions such as the finite 

element method (FEM) 17, 18 and the finite-difference time domain (FDTD) technique19-21. 

The approximate approaches for light scattering and transmission by rough surfaces have 

limitations in their applicability. For example, the computed scattering field of the SPM 

is only valid for the contribution from surfaces with roughness scale much smaller than 

the incident wavelength, whereas the KA is only valid when surface roughness level is 

much greater than the wavelength. When the surface roughness scale is similar to the 

wavelength such as the sea surface capillary waves under millimeter wave radar 

incidence or a micron-sized particle layer in a visible laser illumination, neither the SPM 

nor the KA can be applied to calculate the scattering or transmission of the light by the 

surface. Although the IEM model was developed to bridge the gap between the SPM and 

the KA models, as an approximate method which is essentially a second iteration of the 
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iterative KA, its accuracy is still in progress22-25. Therefore, when the surface roughness 

scale is similar to the wavelength, accurate approaches based on numerical solutions of 

the Maxwell’s equations such as the FDTD technique are usually used although these 

methods require large computational resources26-31. In this study, a FDTD method is 

applied to calculate the scattered and transmitted electromagnetic fields of an infinite 

three-dimensional periodic rough surface. In Section 2, the FDTD algorithm with 

periodic boundary conditions 26 and uniaxial perfectly matched layer (UPML) absorbing 

boundary conditions (ABC) 32, 33 are introduced. The Section 3 develops an approach to 

calculate the scattering properties for the surface. Features of light scattered from and 

transmitted through a monolayer of dielectric spheres on a silicon substrate are presented 

in Section 4. Summary and conclusions are given at the end of this report. 

 

2. The finite-difference time domain method 

The FDTD technique calculates electromagnetic scattering and transmission by a material 

interface in the time domain by directly solving the finite-differenced Maxwell’s 

equations. In this technique, the continuous space and time (x, y, z, t) is replaced by 

discrete spatial and temporal points, and the field components are calculated only at these 

discrete points. The magnetic and electric field components are on different spatial points 

and are evaluated at alternating half-time steps. A time-stepping iteration is used to 

simulate the field variation with time. The time series at each data collection grid point 

are transformed into the fields in frequency domain using the discrete Fourier transform 

(DFT).  The scattering and absorption quantities are calculated using the fields in 

frequency domain. For example, in a Cartesian grid system the x components of magnetic 

and electric fields are in the forms 
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where xE , yE , zE  and xH , yH , zH  denote electric and magnetic components, 

respectively; the time step is denoted by integer n; ω  is the angular frequency of the 

light; sΔ and tΔ  denote the cubic cell size and time increment, respectively; iε and rε  are 

the local imaginary and real permittivity, respectively; and μ  is the local permeability. 

The material surface is generated by assigning different permittivity (and permeability for 

ferromagnetic material) at different grid points.  To guarantee the numerical stability of 

the FDTD scheme, we use a time step )2/( cst Δ=Δ , where c is the light speed in free 

space. Therefore, the light propagates half grid cell in the time step. This is a more strict 

stability criterion than the Courant-Friedrichs-Levy condition 34. In the FDTD algorithm, 

a cubic grid cell is a unit computational domain. In this study, the positions of the 

magnetic and electric field components on a cubic grid cell are identical to those 

illustrated in Sun et al.35. 

Figure 1 illustrates an example of light scattering by a rough surface: A flat silicon 

substrate with micron-scale particles on it under visible light illumination. Also shown in 

this figure are coordinate systems used in derivation of the light scattering formulae. We 

assume the surface z = f(x,y) stretches infinitely in x and y directions. The roughness 

features (z) of the surface are repetitive in both x and y directions. The physical modeling 

for the FDTD algorithm is illustrated in Fig. 2. We assume the incident electromagnetic 

waves propagate along z-direction. In the incidence direction, the computational domain 
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is truncated by the UPML ABC32, 33. At sides i = ia and ib and j = ja and jb, periodic 

boundary conditions can be applied, e.g. for Ex and Hx components 
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where the arrow “ ←” denotes the assignment of the value of the field component at its 

right side to the field component at its left side. 

In this study, we use the total- and scattered-field formulation 36, 37 to excite the magnetic 

and electric fields to simulate a linearly polarized plane wave propagating to the target 

surface. In this formulation, the electric field is excited on an inner surface k = ka 

between the material surface and the UPML as shown in Fig. 2. The magnetic field is 

excited at k = ka-1/2.  Due to the periodic boundary conditions at sides i = ia and ib and j 

= ja and jb and because the magnetic wave is excited half-cell-size behind the electric 

wave, the excited electromagnetic waves can only propagate in the positive z direction. 

Note that for non-normal incidence cases at discrete incident angles, if the incident angle 

θ0 and the length of the repeating period of the surface D satisfy 00 sinθλ Dm = , where m 

denotes an integer and λ0 is the incident wavelength, the periodic boundary conditions 

exemplified by Eqs.(2a)-(2d) will still be valid. However, the excitation of non-normal 

plane incident wave for an infinite periodic surface will be relatively complicated if not 

impossible. For simplicity, in this study only normal incidence is considered. Therefore, 

the whole computational domain is divided by the inner surface into two zones: the 

scattered-field zone and the total field zone as shown in Fig. 2. For example, the x 

components of the magnetic and electric fields are implemented as follows38, 39: 
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where 2/1,...,2/1;,..., −+== baba jjjiii  and                
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where 2/1,...,2/1 −+= ba iii ; .,..., ba jjj =  

In Eqs. (3a) and (3b), )1(
2/1 )},,({ a

n
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1 )},,({ b
n
x kjiE +  denote the magnetic and 

electric fields directly from Eqs.(1a) and (1b), respectively. The incident field n
incyE , , n

inczE ,  

and 2/1
,
+n
incyH , 2/1

,
+n
inczH  in Eqs.(3a) and (3b) are from the linear interpolation of the fields 

produced by an auxiliary one-dimensional FDTD scheme38, 39 
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This scheme simulates the incident plane wave’s propagation on the one-dimensional 

grid stretching from grid m = 0 to m = maxm . Because the light propagates half grid cell in 

a time step, maxm is given as half of the total number of the simulation time steps. In this 

way, no reflection occurs at the forward end of the one-dimensional computational 

domain before the simulation ends39. A Gaussian-pulse hard wave source is positioned at 

the one-dimensional grid point m = 2 in the form 

 

])5
30

(exp[)2( 2−
Δ

−==
t

t
mE n

inc .                                                                     (5) 

 

Using the hard wave source rather than a soft one at m = 2, the field at the grid points m 

= 0 and 1 will not affect the field at the grid points 2≥m , therefore no boundary 

condition need to be considered at this grid end39.            
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3. Formulation of the scattering properties 

In this study, we follow the convention in Bohren and Huffman41 for the relation between 

incident and scattered Stokes parameters by Mueller matrix as 
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where k is the wave number and ||R=R  where R denotes the position vector of the 

observation point. The Mueller matrix contains all the information on light scattered from 

a rough surface. For a full formulation of the scattering properties of a surface, the 

Mueller matrix is derived from the fields calculated by the FDTD method on a virtual 

surface in the scattered-field zone as shown in Fig. 2. For an infinite surface scattering 

problem, this virtual surface must also be infinite. However, the near-field to far-field 

transformation by an integral of the fields on an infinite surface is computationally 

impractical. In this study, we derive the Mueller matrix using the magnetic and electric 

fields in frequency domain on the virtual surface corresponding to the period of the 

material surface. 

On the virtual surface, the tangential components of the scattered near fields in frequency 

domain Es and Hs are first calculated using the FDTD method. The scattered far fields 

can be computed in terms of the equivalent surface electric current J and magnetic 

current M on the virtual surface. The equivalent surface currents are computed by 

 

s
HnJ ×= ,                                                                                                                       (7a) 

s
EnM ×−= ,                                                                                                                    (7b) 

 

where n is the outward unit normal vector on the virtual surface. In a spherical coordinate 

as shown in Fig. 1, the scattered electric far field components forθ andφ  polarizations are 

given as follows21: 



 9 

)(
4

)exp(
0 θφθ η

π
NL

R

ikRik
E +−−≈ ,                                                                                  (8a) 

)(
4

)exp(
0 φθφ η

π
NL

R

ikRik
E −−+≈ ,                                                                                  (8b) 

 

 where
0

0
0 ε

μη = is the intrinsic impedance of free space and θL , φL and θN , φN  are the 

θ andφ  components of the following vectors  
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where x, y, and z denote the unit vector in x, y and z directions, respectively; r denotes 

the unit vector in the scattering direction; r/ is the vector for the currents’ position on the 

virtual surface s; Mx, My, Mz and Jx, Jy, Jz are the components of magnetic current M and 

electric current J, respectively. For a reasonable accuracy in calculations of the scattering 

properties from an infinite surface, the integral area s in Eqs.(9a) and (9b) must be many 

periods of the virtual surface (See Section 4). Although the FDTD only computes the 

magnetic and electric fields on one period of the virtual surface, the fields on this single 

period of virtual surface can be repeatedly used in Eqs.(9a) and (9b) for other periods of 

the virtual surface s. However, when many periods are involved in the calculation Eqs. 

(9a) and (9b) in their original forms are very time-consuming. Due to the periodic nature 

of the studied surface and the scattered light, Eqs.9(a) and 9(b) can be simplified to the 

following computationally efficient forms: 

 

s)d)exp(ikMMM(δ z

s

yx

0

′⋅′++= ∫∫ rrzyxL ,                                                             (10a) 

s)d)exp(ikJJJ(δ z

s

yx

0

′⋅′++= ∫∫ rrzyxN ,                                                              (10b) 



 10

where s0 denotes the area of single period of the virtual surface s;δ  is a factor accounting 

for the contributions from all periods of the infinite surface in a form  
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where px and py are the period lengths in x and y directions, respectively. Related to 

scattering intensity, δ  is a two-dimensional delta function of scattering angle, which 

gives infinitely large value at backscattering direction. In practice, the summation of Eq. 

(11) cannot be done for infinite m and n. The cut-off for m and n will cause errors in 

δ values and result in errors in the calculated Mueller matrix elements. However, the 

ratios of Mueller matrix elements to S11 will not be affected by |δ |2 since this factor 

exists in all of the elements. 

Given the Cartesian geometry of the basic FDTD grid and its near-to-far-field 

transformation virtual surface s, vectors L and N are first calculated in rectangular 

coordinates and then transformed to spherical coordinates to get θL , φL and θN , φN needed 

in Eqs.(8a) and (8b)21. We then derive the scattering intensity using the magnetic and 

electric currents on the virtual surface area s as a function of scattering angles θ andφ  as 

follows21 
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Therefore the scattered power from the material surface corresponding to the virtual 

surface area s is an integral of the scattering intensity in a half-sphere space over s: 
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The exact scattering efficiency is
sI

W
Q sca

s
sca

0

lim
∞→

= , where 0I is the incident intensity.  

The Mueller matrix is derived from the amplitude scattering matrix elements. To 

calculate the amplitude scattering matrix elements, similar to the treatment of Yang and 

Liou40 the scattered field is decomposed into the components parallel and perpendicular 

to the scattering plane as shown in Fig. 3. So we have 
 

)(E)(E)( βα RβRαRE += ,                                                                                             (14) 

 

where α  and β  denote the unit vectors parallel and perpendicular to the scattering plane 

as shown in Fig. 3, respectively, and rβ =×α . 

Based on the definition of amplitude scattering matrix, we have the transformation 

equation for light scattering by surface as 
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where α,0E and β,0E  are the parallel and perpendicular incident field components with respect 

to the scattering plane. α,0E and β,0E  are related to the x-polarized and y-polarized incident 

fields used in the FDTD simulation with  
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Therefore, using Eqs.(8a), (8b), (15), and (16), along with αθ EE = and βφ EE −= , we 

have the amplitude scattering matrix 
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where the quantities xF ,α , xF ,β  and yF ,α , yF ,β are calculated for x-polarized and y-

polarized incident light, respectively, in forms: 

 

(1) For x-polarized incidence,  
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(2) For y-polarized incidence, 
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Based on these elements of the amplitude scattering matrix, all of the elements of Mueller 

matrix41 can be calculated. Since the calculation accuracy of this Mueller matrix is also a 

function of the virtual surface area s, when s is infinitely large, the Mueller matrix 

approaches exact. To approximate the infinite-surface Mueller matrix with a limited 

number of surface periods, we rewrite the relation between incident and scattered Stokes 

parameters in a new form 
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where sI s / , sQs / , ,/ sU s  and sVs /  denote the scattered Stokes parameters per unit 

area of the surface. In Eq.(20), )/( 2
11 skS  is a normalized phase function, which accounts 

for the reflectance at each scattering angle. Therefore the integration of )/( 2
11 skS over 

the half-space above the scattering surface equals the scattering efficiency (albedo), i.e. 
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The normalized phase function needs integral over large s to approach its exact 

correspondence because of the errors in obtaining theδ factor from limited number of 

surface periods. However, as previously discussed, the ratios of Mueller matrix elements 

to S11 are not affected by theδ factor and their accuracies are determined simply by the 

FDTD calculation for single period of the surface.  

 

4. Numerical results 

Optical probes for microelectronics manufacturing are gaining increasing importance. 

Many applications require the characterization of materials and devices such as arrays of 

nanometer- or micron-sized particles to make crystalline structures, as shown in Fig. 1. 

Bidirectional reflectance distribution function (BRDF) and bidirectional transmittance 

distribution function (BTDF) are usually measured to characterize crystalline structures. 

Numerical calculation of the BRDF or BTDF of crystalline structures can directly link 

their optical characteristics with their geometric and physical properties. Therefore, 

numerical simulation of the BRDF or BTDF of material interfaces could be the basis for 

accurate characterization of crystalline structures. As an example, in this work we 

calculate the light scattered from and transmitted through a monolayer of micron-sized 

dielectric spheres on a silicon substrate (See Fig. 1). The spheres on the substrate are 

touching and in a hexagonal configuration. Although the simplest base for this crystalline 

structure is hexagonal, as shown in Fig. 4, we can use a periodic rectangular grid with a 

sphere in the center and the rectangular box passing through the centers of the adjacent 

spheres for the FDTD calculation to simulate the light scattering and transmission by the 

surface structure. In this simulation, the incident wavelength is =0λ 308 nm, and the 
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refractive indices of the spheres and the silicon substrate are m = 1.64 and m = 4.90 + 

3.84i, respectively. The radii of the spheres are 510 nm. We are interested in both the 

near-fields transmitted in the silicon substrate and the far-fields scattered by the sphere-

substrate system in free space. In the FDTD calculations, we use a 6-cell UPML to 

truncate the free space and a 6-cell UPML on the other end to truncate the material space. 

The cubic spatial cell size for the FDTD is set to be 60/0λ=Δs . For comparison with the 

light scattering features of the system of the silicon substrate and the micron-sized 

spheres, the normalized phase function and the Mueller matrix elements of the simple flat 

substrate are also calculated. 

Figure 5 shows the azimuthally averaged normalized light scattering phase function of 

the flat silicon substrate under normal incidence. For this flat surface scattering 

calculation, the FDTD simulation is run on a 308 nm by 308 nm substrate period. The 

transformation of near-field to far-field is done with integration of the near fields over 

2001-by-2001 periods of the surface. We can see that most of the scattered energy 

concentrates in a very small solid angle around the backscattering direction (i.e., at a 

scattering angle of 180o). However, due to limited periods of surface are used to 

approximate the normalized phase function, small amount of scattered energy can still be 

found at other scattering angles, although that intensity is several orders lower than the 

backscattered peak. The small scattered intensity at other scattering angles demonstrates 

strong variations, but their envelopes form a smooth slope which can be measured. For 

light scattering by the system of the monolayer of spheres and the silicon substrate (Fig. 

6), the azimuthally averaged normalized light scattering phase function has two specific 

maxima (numbered 2 and 3) at the scattering angles of ~115o and ~145o, respectively. 
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These maxima are because of the side-scattering by the spheres on the substrate and may 

be used in characterization of the feature of the system. However, for characterization of 

this kind of system the polarization features of scattered light might contain the most 

useful information. Figs. 7(a)-(c) show the nonzero azimuthally averaged normalized 

Mueller matrix elements of the system of the monolayer of spheres and the silicon 

substrate. Also shown in these figures are the results for light scattered simply by the flat 

substrate. We can see that the polarization degrees of the scattered light from simply the 

flat substrate and from the substrate with the spherical particles are significantly different. 

At the scattering angle of ~115o, S12 (S21) / S11, S33 (S44) / S11, and S34 (-S43) / S11 all show 

a strong peak corresponding to maxima 3 as shown in Fig. 6.  Because these quantities 

are independent on the number of periods in the near-field to far-field transformation 

integration, their accuracies in the numerical calculation are high and solely determined 

by the FDTD technique. Furthermore, corresponding to maxima 2 in Fig. 6, S12 (S21) / 

S11, S33 (S44) / S11, and S34 (-S43) / S11 all have maxima, especially in the linear 

polarization degree S12 (S21) / S11. This polarization feature of scattered light could easily 

be detected by polarimetry. 

For light transmitted through the monolayer of spheres, we calculate the energy flux 

30/0λ deep inside the substrate for a period of the surface system. Figure 8 shows the 

spatial distribution of the transmitted flux normalized by the incident flux. We can see 

that the transmitted energy focuses around the ray passing through centers of the spheres. 

At other locations, the transmitted flux is very small. Therefore, a transmitted laser light 

distributed by the micron-sphere structures can make nanometer-sized structures on the 
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substrate, which have been observed by atomic force microscopy (Erhard Rothe, personal 

communications). 

5. Summary and Conclusions 

In this study, we have incorporated periodic boundary conditions into the finite-

difference time-domain algorithm to enable it to calculate scattering from periodic 

systems, especially structure or roughness on substrates. With some care this algorithm 

can also be employed to calculate the scattering from isolated structures on an infinite 

substrate. In such cases the enclosed discretized volume should be chosen so that there is 

large enough separation between the simulated periodic structures that the interaction 

between them is negligible. Experimental measurements have shown that such a volume 

is rather small, especially with regards to the TE incidence.42 In this case the far-field can 

be determined by integrating over the single near-field perturbance from the system of a 

plane substrate. For such isolated systems, we are not restricted to specific discrete 

incident angles, since the size of the volume can be varied to select the required incident 

angle; i.e., 00 sinθλ Dm =  where D is the length of the substrate under consideration and 

m is an integer. 

We have applied the finite-difference time-domain technique to calculate the scattered 

and transmitted electromagnetic fields near a period of an infinite periodic rough surface. 

The elements of Mueller matrix for scattered light are calculated by an integral of the 

near fields over a significant number of periods of the surface. The normalized Mueller 

matrix elements of the scattered light and the field density of transmitted light for a 

monolayer of dielectric spheres on a silicon substrate are calculated. The numerical 

results show that the nonzero Mueller matrix elements of the system of a monolayer of 
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dielectric spheres on a silicon substrate have two specific maxima at the scattering angles 

of ~115o and ~145o, respectively. These maxima may be used in characterization of the 

system. For light transmitted through the monolayer of spheres, our results show that the 

transmitted energy focuses around the ray passing through centers of the spheres. At 

other locations, the transmitted flux is very small.  
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Figure Captions 
 
1. Illustration of a monolayer of dielectric spheres on a silicon substrate and the 

coordinate system used in this study. 

2. Illustration of implementing the FDTD algorithm for calculation of the 

scattered and transmitted fields near a periodic rough surface. 

3. Geometry for the derivation of the amplitude scattering matrix elements 

4. Geometry of one period in the system of a monolayer of dielectric spheres on 

a silicon substrate. 

5. Normalized light scattering phase function )/( 2
11 skS  of the flat silicon 

substrate. 

6. Normalized light scattering phase function )/( 2
11 skS  of a monolayer of 

dielectric spheres on a silicon substrate. 

7. Normalized Muller matrix elements of the monolayer of dielectric spheres on 

a silicon substrate under normal incidence:  (a) S12 (S21) / S11, (b) S33 (S44) / 

S11, and (c) S34 (-S43) / S11. Also shown are the corresponding normalized 

Muller matrix elements of the flat silicon substrate in dashed line. 

8. Normalized transmitted light flux at a depth of 30/0λ  inside the silicon 

substrate for a period of the rough surface system as shown in Fig. 4.  
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Fig. 1 of Sun et al. 
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Fig. 2 of Sun et al. 
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Fig. 3 of Sun et al. 

y 

x 

z 

o 
r  

β  

Scattering 
plane 

Incident direction 

a  

R 



 27

 

 

 

 

 

 

 

 

 

 

Fig. 4 of Sun et al. 
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Fig. 5 of Sun et al. 
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Fig. 6 of Sun et al. 
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Fig. 7 (a) of Sun et al. 



 31

90 100 110 120 130 140 150 160 170 180
-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

S
3

3 
(S

44
) 

/ S
11

Scattering Angle (deg)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 (b) of Sun et al. 
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Fig. 7(c) of Sun et al. 
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Fig. 8 of Sun et al. 


