Introduction

Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. Silica-based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. However, the fragile nature of aerogel monoliths prevents their widespread use in more down-to-earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. This coating reinforces the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. Finally, Lu et al. have incorporated carbon nanofibers into the silica aerogel matrix for added structural integrity. The carbon nanofibers were an effective reinforcement for the silica aerogels made by introducing a sol into a fibrous batting reinforcement, incorporating carbon nanofibers used are Pyrograf®-III nanofibers, a highly graphitic, low-cost carbon nanofiber. The base fibers were subjected to a proprietary oxidation process to give about 5 atom % singly bonded oxygen (combination of ether, epoxide, and alcohol) by XPS analysis. An SEM of the nanofibers is shown in Figure 1.

Results and Discussion

SEM of a fracture surface of a typical low density aerogel monolith (no fiber) is shown in Figure 2a. In a comparison, a micrograph of a monolith of similar density produced under similar conditions but containing 5 w/w% fiber is shown in Figure 2b. The structure of the aerogel is similar to the non-fiber containing sample, but the fibers clearly stand out as the diameters of the fibers are about an order of magnitude larger than the fine structure of the aerogel. In places, the aerogel appears to be intimately wrapped around the fibers, while in others the fiber is free of aerogel. For comparison, higher density aerogels are shown in Figures 2c (without fiber) and 2d (with fiber).
Figure 3 illustrates the response surface model for density vs. percent di-isocyanate and total silane. As is evident from the graph and in agreement with previous studies, the most influential variable on density of the aerogels is total silane concentration (total molar amount of APTES and TMOS). Also, density slightly decreases with increasing di-isocyanate concentration at low total silane, while at high total silane, increasing di-isocyanate increases density. Most notably, there was no significant effect of fiber concentration on density over and above random error.

Graphs of response surface models for Young’s modulus which were extracted from compression tests are shown in Figure 4 (top). Once again, the most dominant effect on the measured property is the total silane concentration followed by an effect of di-isocyanate concentration. Overall, maximum modulus values are achieved when density is at a maximum. However, the model indicates that increasing fiber concentration heightens modulus, especially at low total silane concentration. Hence, it is possible to obtain a three-fold increase in modulus from 0.2 MPa to 0.6 MPa by going from 0 to 5% fiber at low total silane concentration while not increasing density.

The response surface model for tensile stress at break (Figure 4, bottom) is also dominated by total silane concentration although both fiber and di-isocyanate concentration are also significant terms in the model. When di-isocyanate concentration is high, tensile stress at break reaches a maximum at approximately 2% fiber for all levels of total silane. The maximum value for tensile stress at break across the whole study is predicted to be 9.1 MPa when silane and di-isocyanate are both at the highest values studied and 1.8 w/w % fiber is used. It may be that when di-isocyanate concentration is high and especially when total silane is also high; the effect of the fiber is smaller because the large amount of polymer cross-linking toughens the aerogel structure enough to mask any further improvement due to the fibers. When di-isocyanate concentration is low, the effect of fiber is much more pronounced especially when total silane is also low. In fact, at low total silane and di-isocyanate concentration, stress at break is predicted to be five times higher when fiber concentration goes from 0% fiber (0.07 MPa) to 5% fiber (0.36 MPa). This improvement in tensile strength comes with no penalty in increased density or decreased porosity, as these responses are unaffected by the amount of carbon nanofiber present.

Conclusions

We have examined the effect of including up to 5 w/w % carbon nanofibers in the silica backbone of di-isocyanate cross-linked silica aerogels. Most notably, a three-fold increase in compressive modulus with 5% fiber was observed for aerogels made from the lowest total silane concentration with no increase in density. Similarly, a five-fold increase of tensile stress at break is predicted by including 5% fiber when total silane and di-isocyanate concentration are at a low. At higher levels of total silane and low di-isocyanate concentrations, there is still an increase in tensile stress at break but it is not as pronounced. When both total silane and di-isocyanate concentration are high, tensile stress at break reaches a maximum when 2 w/w % fiber is used. Since some agglomeration of fiber was observed in the dried aerogels at higher fiber loading, it may also be that better dispersion would result in greater improvement of mechanical properties.

No effect was seen on the density or porosity of the aerogels. Hence, the improvements in modulus and tensile strength due to fiber do not compromise other important properties of the aerogels. Perhaps the biggest impact of including carbon fiber in the aerogels may be an improvement in the strength of the initial hydrogels before cross-linking. Extracting the wet gels from the molds resulted in no breakage of the fiber containing gels, while nearly half of the gels from the lowest density runs with no fiber broke on initial extraction. This may have implications in large scale manufacturing of the lower density polymer cross-linked aerogels.

Acknowledgements

We thank Demetrios Papadopolous of University of Akron for running compression tests and Dr. Brad Lerch for consultation in running tensile tests. Financial support from NASA’s Subsonics Program and Advanced Extravehicular Activities Program (AEVA) is gratefully acknowledged. We also thank Bayer Corporation for providing the di-isocyanate oligomers and Applied Sciences, Inc. for the carbon nanofiber.

References

(4) For example see, Stepanian; C. J.; Gould; G. L.; Begag; R., United States Patent, 7,078,359, July 18, 2006.
CARBON NANOFIBER INCORPORATED SILICA BASED AEROGELS WITH DI-ISOCYANATE CROSS-LINKING

Lightweight materials with excellent thermal insulating properties such as silica based aerogels are used for a variety of aerospace and aeronautic applications. Although the fragile nature of aerogel monoliths prevents their widespread use in many applications, we have shown that reinforcement with a structural polymer cross-linked with amine decorated silica surfaces significantly strengthens the aerogels with minimal effect on density or porosity. In our current research, we further enhance the desired structural characteristics of cross-linked aerogels by integrating carbon nanofibers into the silica aerogel matrix. A statistical experimental design approach was utilized to analyze series of fiber-containing cross-linked aerogels using different concentrations of the silica precursors tetramethoxysilane (TMOS) and aminopropyltriethoxysilane (APTES), polymer crosslinker (Desmodur N3200, a hexamethylene diisocyanate), and Pyrograf-III carbon nanofiber. Results include a three-fold increase in compressive modulus and a five-fold increase in tensile strength in the lowest density aerogels (0 -5% fiber) with no impact on density.
Lightweight materials with excellent thermal insulating properties such as silica based aerogels are used for a variety of aerospace and aeronautic applications. Although the fragile nature of aerogel monoliths prevents their widespread use in many applications, we have shown that reinforcement with a structural polymer cross-linked with amine decorated silica surfaces significantly strengthens the aerogels with minimal effect on density or porosity. In our current research, we further enhance the desired structural characteristics of cross-linked aerogels by integrating carbon nanofibers into the silica aerogel matrix. A statistical experimental design approach was utilized to analyze series of fiber-containing cross-linked aerogels using different concentrations of the silica precursors tetramethoxysilane (TMOS) and aminopropyltriethoxysilane (APTES), polymer crosslinker (Desmodur N3200, a hexamethylene diisocyanate), and Pyrograf-III carbon nanofiber. Results include a three-fold increase in compressive modulus and a five-fold increase in tensile strength in the lowest density aerogels (0 -5% fiber) with no impact on density.
Carbon Nanofiber Incorporated Silica Based Aerogels with Di-isocyanate Cross-linking

Stephanie L. Vivod*, Mary Ann B. Meador*, Lynn A. Capadona*, Roy M. Sullivan*, Louis J. Ghosn*, Derek J. Quade*, Linda McCorkle†, and Nicholas Clark*

*NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, †Ohio Aerospace Institute, 22800 Cedar Point Rd, Cleveland, Ohio 44142

Introduction

Silica based aerogels have been of significant interest to the aeronautics and aerospace industries due to their light weight and low thermal conductivity. Unfortunately, being primarily made of silica, the native aerogel tends to be extremely fragile. By incorporating an amine functionalized silica precursor, we are able to chemically modify the surfaces of secondary particles of the aerogel. These surface amines accommodate a conformal polymer coating to structurally enhance the weak neck regions which form the bead-like assembly associated with aerogels. To further enhance the structural integrity of the cross-linked aerogel, we have added carbon nanofibers to the silica matrix. The fibers have been oxidized using a proprietary process to provide surface ethers, epoxides and alcohols to promote good interface between matrix and nanofiber.

Empirical Models

In low density samples, increasing fiber concentration from 0 to 5% increases modulus by a factor of three. Fiber has no effect on density or porosity. In high density aerogels, Tensile Stress at break increases with increasing fiber by as much as a factor of five.

Di-isocyanate Cross-linking Mechanism

Surface areas show a small but significant decrease with increasing fiber concentration. At low di-isocyanate concentrations, pore diameter has linear increase with increasing fiber.

Conclusions

• Three-fold increase in compressive modulus with 5% fiber - lowest density aerogels
• Five-fold increase in tensile stress at break shown by including 5% fiber at low density
• Some agglomeration of fiber was observed in aerogels at higher fiber loading, better dispersion may give greater improvement of mechanicals
• No effect of fiber was seen on density or porosity
• Improvements in modulus and tensile strength due to fiber do not compromise other important properties of the aerogels.
• Strength of initial hydrogels before cross-linking also improved by fiber—may have implications in large scale manufacturing of the lower density aerogels.