The Effect of Variable End of Charge Battery Management on Small-Cell Batteries

Jeremy S. Neubauer, Andrea Bennetti, and Chris Pearson
ABSL Space Products, Boulder, Colorado

Nick Simmons
ABSL Space Products, Abingdon, Oxfordshire, United Kingdom

Concha Reid and Michelle Manzo
Glenn Research Center, Cleveland, Ohio

December 2007
NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 301–621–0134

- Telephone the NASA STI Help Desk at 301–621–0390

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
The Effect of Variable End of Charge Battery Management on Small-Cell Batteries

Jeremy S. Neubauer, Andrea Bennetti, and Chris Pearson
ABSL Space Products, Boulder, Colorado

Nick Simmons
ABSL Space Products, Abingdon, Oxfordshire, United Kingdom

Concha Reid and Michelle Manzo
Glenn Research Center, Cleveland, Ohio

Prepared for the
Fifth International Energy Conversion Engineering Conference and Exhibit (IECEC)
sponsored by the American Institute of Aeronautics and Astronautics
St. Louis, Missouri, June 25–27, 2007
Acknowledgments

The authors would like to acknowledge NASA for their investment in studying the ABSL 18650HC cell at REOCV conditions, as well as Crane for collecting and delivering the wealth of high quality data used in this study.

This report contains preliminary findings, subject to revision as analysis proceeds.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov
The Effect of Variable End of Charge Battery Management on Small-Cell Batteries

Jeremy S. Neubauer, Andrea Bennetti, and Chris Pearson
ABSL Space Products
Boulder, Colorado 80301

Nick Simmons
ABSL Space Products
Abingdon, Oxfordshire, OX14 3ED, United Kingdom

Concha Reid and Michelle Manzo
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

Batteries are critical components for spacecraft, supplying power to all electrical systems during solar eclipse. These components must be lightweight due to launch vehicle limitations and the desire to fly heavier, more capable payloads, and must show excellent capacity retention with age to support the ever growing durations of space missions. ABSL’s heritage Lithium Ion cell, the ABSL 18650HC, is an excellent low mass solution to this problem that has been proven capable of supporting long mission durations.

The NASA Glenn Research Center recently proposed and initiated a test to study the effects of reduced end of charge voltage on aging of the ABSL 18650HC and other Lithium Ion cells. This paper presents the testing details, a method to analyze and compare capacity fade between the different cases, and a preliminary analysis of the to-date performance of ABSL’s cells. This initial analysis indicates that employing reduced end of charge techniques could double the life capabilities of the ABSL 18650HC cell. Accordingly, continued investigation is recommended, particularly at higher depths of discharge to better assess the method’s potential mass savings for short duration missions.

Nomenclature

\(n \) \hspace{1cm} cycle number
\(EMF_{EOC} \) \hspace{1cm} cell electromotive force at end of charge
\(EMF_{EOD} \) \hspace{1cm} cell electromotive force at end of discharge
\(I_{BOC} \) \hspace{1cm} current at beginning of charge
\(I_{EOD} \) \hspace{1cm} current at end of discharge
\(R_{EOD} \) \hspace{1cm} internal cell resistance at end of discharge
\(V_{EOC} \) \hspace{1cm} terminal voltage at end of charge
\(V_{EOD} \) \hspace{1cm} terminal voltage at end of discharge
\(\Delta V_1 \) \hspace{1cm} difference between terminal voltage and electromotive force at end of discharge
\(\Delta V_2 \) \hspace{1cm} difference between terminal voltage and electromotive force at beginning of charge
\(\Delta SOC(n) \) \hspace{1cm} change in state of charge of cycle \(n \)

I. Introduction

Batteries make up a significant portion of the dry mass of a spacecraft, and are mission critical items that provide electrical power to all systems during periods of solar array shadowing. Solar array shadowing occurs naturally during missions due to eclipses of the sun by various heavenly bodies, most commonly the Earth and Moon. As space applications require lightweight technology due to the finite lift capacity of launch vehicles, all spacecraft components must be as light as possible. This has naturally driven the adoption of Lithium Ion battery technology thanks to its high specific energy.
In contrast to terrestrial applications where batteries (and even the powered devices themselves) are replaced frequently, space applications typically must undergo thousands of charge/discharge cycles over mission durations on the order of five to ten years. In order to meet battery requirements at End Of Life (EOL), the battery must have low degradation levels in terms of calendar and cycle life. Thus, in addition to mass and energy, ageing is a critical performance characteristic in judging a cell’s suitability for space.

In response to these needs, ABSL has invested heavily in characterising the long-term performance of its heritage Lithium Ion cell, the ABSL 18650HC cell. Ongoing lifetests have passed the 40-million cell-hour point at various Depths Of Discharge (DOD), temperatures, and charge/discharge profiles simulating various space mission types (LEO, GEO, Interplanetary…). This data enables ABSL to make accurate long term performance predictions, vital to ensuring EOL power requirements are met, and has proven the ABSL 18650HC cell to be the an excellent candidate commercial cell in terms of calendar and cycle life. For example, ABSL’s lifetest program has demonstrated that this cell can sustain more than 75,000 cycles, which is necessary for long duration LEO missions that accumulate more than 5,000 cycles per year. Based on this and other performances from ABSL’s extensive lifetest program, the ABSL 18650HC has been selected for both LEO and GEO missions with target durations of 10 years. As life testing extends the confidence in the capabilities of the cell, ABSL expects these mission durations will continue to grow.

TABLE 1. — ABSL 18650HC SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>ABSL 18650HC</td>
</tr>
<tr>
<td>Dimensions</td>
<td>18 mm by 65 mm</td>
</tr>
<tr>
<td>Mass</td>
<td>42 grams</td>
</tr>
<tr>
<td>Maximum Cell Voltage</td>
<td>4.2 V</td>
</tr>
<tr>
<td>Minimum Cell Voltage</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Nameplate Cell Capacity</td>
<td>1.5 Ah</td>
</tr>
<tr>
<td>Nameplate Cell Energy</td>
<td>5.4 Wh</td>
</tr>
</tbody>
</table>

Traditionally, ABSL has recommended charging the cell to its maximum voltage of 4.2 V. Accordingly, the majority of ABSL’s lifetest data employs cycling to this end of charge voltage (EOCV). However, NASA Glenn Research Center (GRC) recently proposed and initiated a lifetest program to assess long term performance when cycling to reduced end of charge voltages (REOCVs) and verify the hypothesis that such charge management regimes could further improve cycling performance. This paper provides a report on the current status of these ongoing REOCV lifetests. First, ABSL’s battery architecture, background on GRC’s testing details, and a method to calculate and compare capacity fade between the multiple test cases is introduced. Then results from the first ~4000 cycles of the GRC test data are presented and discussed, along with a simple case study to assess the projected effect on mission durations when REOCV techniques are employed. Finally, conclusions regarding the benefits of REOCV operation are drawn and recommendations for future REOCV testing are made.

II. The ABSL Battery Architecture

Traditional spacecraft batteries, based on Nickel Cadmium, Nickel Hydrogen, or Lithium Ion, consist of a single string of cells connected in series. This approach has three main drawbacks:

Reliability: A single point failure within a string of cells leads to a large step loss in voltage and energy (cell short circuit) or loss of the battery (cell open circuit).

Cost/Parasitic Mass: Battery capacity requirements vary from mission to mission so that a fresh, qualified cell design is generally required. The cost of designing and qualifying a new cell design can be considerable. For occasions where qualified cell designs could be used for a new mission, it was commonly found that considerable excess mass had to be flown due to cell oversize.
Complexity: To overcome the problem of battery loss following an open circuit cell failure, cell bypass electronics had to be employed. Additionally, small batches of space-qualified cells vary in capacity due to slight manufacturing differences. As a result, charge-balancing electronics must be used to ensure full operational capability. Cell balancing and bypass electronics add complexity, cost and mass to the overall battery system.

ABSL’s approach addresses these shortcomings by connecting a large number of highly uniform small cells incorporating protection devices at cell-level into an s-p cell topology, illustrated in figure 1. This strategy counters the typical space battery shortcomings, providing much improved reliability and simplicity while alleviating the need for complex external cell protection and charge-balancing electronics. These benefits have been proven by ABSL’s extensive flight heritage, currently encompassing more than 4,000 cell years in space without failure and the launch of 26 vehicles powered by ABSL, including Proba, the longest operating Lithium Ion powered spacecraft at 5.5 years and counting in LEO. It also allows ABSL to offer a large degree of flexibility and scalability in its batteries, plus the opportunity to optimize total battery mass to any specification, thanks to the small unit size of each cell.

III. Testing Background

GRC commissioned a test of batteries from ABSL and other suppliers to assess the performance of Lithium Ion cells over a wide range of LEO conditions. The data generated will be used to build an empirical model to predict the performance and cycle life of Lithium Ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries.

Test conditions were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, DOD, and EOCV. One of the purposes of the testing is to assess the effects of reduced EOCV cycling on capacity fade. The tests were carried out by Crane, a division of the Naval Surface Warfare Center, and are currently on-going. Twenty 4s2p modules using the 18650HC cell were built by ABSL and delivered to Crane (fig. 2), who then assembled the twenty 4s2p modules into ten 4s4p modules.

The test sequence for all modules went as follows: (1) Open Circuit Voltage (OCV) decay testing, (2) capacity measurement, (3) reduced EOCV cycling, though module 1 alone underwent additional capacity measurements at a range of temperatures prior to this sequence. OCV decay testing was done at 22 °C and 4.1 V per cell over a period of one week. Capacity was measured at 20 °C by charging at C/5 to 4.1 V per cell, taper charging to C/50, then discharging at C/2 to 3.0 V per cell. The value used for C was determined by the capacity measured from the previous cycle, and cycles continued until the change in capacity between iterations was less than 1 percent.
All reduced EOCV cycling was performed on a real-time LEO time scale (55 min for charge, 35 min for discharge) at varying DODs, temperatures, and EOCVs. In each case, the amount of capacity removed in Ah was calculated using the average of the measured total capacities of all modules and the selected DOD in percent. The necessary discharge rate was calculated by dividing the amount of capacity removed by the 35 min discharge period. The charge rate was calculated using 110 percent of the removed capacity and the 55 min charge period, allowing for a short taper charge once the module reaches its selected cut-off voltage. The range of DODs, temperatures, and EOCVs is presented below in table 2.

TABLE 2.—TEST CASES AND CONDITIONS

<table>
<thead>
<tr>
<th>Cell EOCV, V</th>
<th>Temperature, °C</th>
<th>DOD, %</th>
<th>Charge, C</th>
<th>Discharge, C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.05</td>
<td>30</td>
<td>20</td>
<td>0.22</td>
<td>0.34</td>
</tr>
<tr>
<td>4.05</td>
<td>10</td>
<td>30</td>
<td>0.33</td>
<td>0.51</td>
</tr>
<tr>
<td>4.05</td>
<td>20</td>
<td>40</td>
<td>0.44</td>
<td>0.69</td>
</tr>
<tr>
<td>4.05</td>
<td>10</td>
<td>40</td>
<td>0.44</td>
<td>0.69</td>
</tr>
<tr>
<td>3.95</td>
<td>20</td>
<td>20</td>
<td>0.22</td>
<td>0.34</td>
</tr>
<tr>
<td>3.95</td>
<td>30</td>
<td>30</td>
<td>0.33</td>
<td>0.51</td>
</tr>
<tr>
<td>3.85</td>
<td>10</td>
<td>20</td>
<td>0.22</td>
<td>0.34</td>
</tr>
<tr>
<td>3.85</td>
<td>30</td>
<td>20</td>
<td>0.22</td>
<td>0.34</td>
</tr>
<tr>
<td>3.85</td>
<td>20</td>
<td>30</td>
<td>0.33</td>
<td>0.51</td>
</tr>
<tr>
<td>3.85</td>
<td>30</td>
<td>40</td>
<td>0.44</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Every 1000 cycles an operational capacity measurement is performed. Here the battery is cycled between an EODV of 3.0 V per cell and EOCV equal to that used in cycling. Similarly, the same temperature and charge and discharge rates as are used in cycling are maintained during the operational capacity measurement.

IV. State of Charge Capacity Fade Analysis

The wide range of conditions (temperature, DOD, EOCV, etc.) provide the opportunity to look at a wide range of operational conditions and understand in better detail the effects of reduced EOCVs, but unfortunately, due to the manner in which the statistical design of experiments for the test program was created, there is no straightforward means of comparing capacity fade between different cases. Directly comparing the rate of decline of EODVs is not useful for comparing capacity fade due to the varied DODs and EOCVs. Likewise, the operational capacity measurements are difficult to compare due to the difference in EOCV, temperature, and rates from one case to another, and only a few operational capacity measurements have been made to date.

To overcome these obstacles, a method was developed to identify capacity fade independent of cycling conditions and operational capacity measurements. The basis of the method lies in identifying the state of charge (SOC) at EOC and EOD, calculating the change in SOC for each cycle (ΔSOC), then correlating the growth in ΔSOC over time to the remaining capacity of the battery. Details of the method are described below.

First, internal cell resistance at EOD is calculated using recorded voltage and current data. At EOD the cell’s terminal voltage makes a sharp jump when the current switches from negative (discharge) to positive (charge) as seen in figure 3. Of course, the cell’s electromotive force (EMF), which is directly tied to its SOC, makes no such jump. Thus, the change in voltage is strictly a function of the change in current and the cell’s internal resistance, the latter of which can be calculated via eq. (1).

\[R_{EOD} = \frac{\Delta V_1 + \Delta V_2}{(I_{BOC} - I_{EOD})} \] (1)

Next, knowing the cell resistance, terminal voltage, and current at EOD, the EMF at EOD can be calculated using eq. (2). For the data presented in this study, the EMF at EOC is assumed equal to the terminal voltage at EOC. This assumption brings a smaller error relative to the same assumption at EOD due to the lesser difference between terminal voltage and EMF at EOC, thanks to lower current levels at EOC and a reduced cell resistance at high SOC. However, a similar process can be used to account for these differences and will be employed in future work.

\[EMF_{EOD} = V_{EOD} - I_{EOD} R_{EOD} \] (2)

NASA/TM—2007-215044
Figure 3.—Cell Level Terminal Voltage at EOD

The jump in cell terminal voltage when switching from discharge to charge is used to calculate EOD cell resistance, then the value of the cell EMF at EOD.

Figure 4.—Calculating ΔSOC from the EMF versus SOC Curve

The EOC and EOD EMF values can be used to calculate the change in SOC for any given cycle with accurate knowledge of the EMF versus SOC curves.

The third step is translating the EMF values at EOC and EOD to their corresponding SOC values. With accurate knowledge of a cell’s EMF versus SOC curve, these values are readily obtained. However, as it is well known that Li-Ion cells have different relations between EMF and SOC for both charge and discharge, it is important that the EMF at EOC is applied to the charge EMF curve to calculate SOC at EOC, and likewise that the discharge EMF curve is used at EOD. Then, with the EOC and EOD SOCs in hand, the change in SOC for the corresponding cycle (ΔSOC) can be calculated by subtracting the latter from the former as illustrated in figure 4.

The above method is first applied to compute ΔSOC for a reference cycle early in life, preferably the first cycle. Then by applying these same steps to each subsequent cycle, the retained capacity over life can be calculated by comparing the change in ΔSOC using eq. (3). Calculating retained capacity in this manner provides a measurement of capacity fade that allows the direct comparison of multiple cases regardless of EOCV, DOD, rates, temperatures, etc.

Retained Capacity (n) = $100\% \times \frac{\Delta SOC(1)}{\Delta SOC(n)}$ \hspace{1cm} (3)

It is important to note that accurate knowledge of the EMF versus SOC curves over life and across the range of investigated temperatures is crucial. This analysis can be applied to ABSL 18650HC cycling data with confidence only as ABSL has very well characterized this cell’s behavior, showing the changes in temperature and age relevant to this study to have negligible effects on the EMF versus SOC curves.
V. Analysis of Results

The SOC analysis method discussed above has been applied to all of the GRC test cases. The resultant retained capacity plots are presented below in figures 5 to 7, grouped by DOD. Note that in each plot lower EOCVs always outperform higher EOCVs, regardless of temperature.

Figure 8 summarizes the above results, showing the retained capacity after 3,900 cycles for each case. Here it is clearly evident that the lower EOCV cases show better capacity retention. With regard to temperature and DOD, it appears that this data does not always behave as has been witnessed at 4.2 V EOC, with lower temperatures and DODs supporting superior capacity retention over life. However, drawing conclusions on the effects of temperature and DOD is difficult due to the limited number of test cases and the inability to decouple these two factors.

20% DOD

![Figure 5.—Retained Capacity Over Life at 20 percent DOD](image)

30% DOD

![Figure 6.—Retained Capacity Over Life at 30 percent DOD](image)
On the other hand, in similar fashion to cell behavior at 4.2 V EOC (fig. 9) all of these cases are characterized by a region of relatively steep, non-linear capacity fade during initial cycling (commonly known as burn-out), followed by a second region displaying a slower, linear fade rate. For the data presented here, the combination of the steep capacity fade during burn-out and selecting a reference cycle as the first REOCV cycle can exaggerate the effects of small differences in initial capacity and pre-REOCV cycling conditions (including storage and preliminary testing) between cases. As an example, consider moving the reference cycle for the 30 percent DOD / 3.85 V EOC / 20 °C from its current value to one 50 cycles later – the resultant plot would show approximately 6 percent less fade across the board. Thus, slight errors in reference cycle selection (namely, when the pre-reference-cycle histories for multiple cases are not exactly equivalent) in the burn-out region can dramatically distort comparisons of absolute retained capacity values, though the slopes of the linear regimes are largely unaffected.
Results at 4.2 V EOC show similar trends to the data at reduced EOC voltages. In all cases, a steep, nonlinear initial fade region known as burn-out occurs, followed by a linear region with a much reduced fade rate.

This plot shows a comparison of steady state fade rates, where the errors associated with selecting a reference cycle in the SOC capacity fade analysis method have been reduced. The results continue to show a substantial performance improvement at lower EOCVs and more traditional temperature and DOD trends.

To reduce the sensitivity to reference cycle selection induced by the burn-out region, an analysis of the steady state fade rate was undertaken. Here the reference cycle was selected as the 501st cycle to ensure that the burn out region had been surpassed. Then, linear trend lines were fit to each case, and their slopes collected in figure 10. As before, there is a clear progression towards less fade with lower EOCVs. Interestingly, these results show a change in trends with DOD and temperature from the results in figure 8. This could be a result of the analysis method’s reference cycle sensitivity, or it could indicate that changes in temperature and DOD have different effects on the burn-out regime than they do on the subsequent linear fade regime. At this point there is not sufficient data available to identify the true cause.
VI. 40 Percent DOD Case Study

For comparison to traditional charge management architectures, results from a SOC analysis of a real time LEO life test at 4.2 V EOCV, 40 percent DOD, and 20 °C for the same cell type have been included in figure 10. This plot shows that, relative to the most similar REOCV case, reducing the EOCV from 4.2 to 4.05 V reduces the steady state fade rate by a factor of two.

At 4.2 V EOC, these cells display three distinct fade regions over life: a relatively steep and nonlinear fade region early in life, a shallow, linear fade region through mid-life, and a transition to a steep linear region at end of life. Assuming the cells behave similarly at 4.05 V EOC, the extrapolation in figure 11 reveals that life could be approximately doubled for 40 percent DOD cases. Adding in the fade rate benefits at lower EOCVs, combined with the ability to progressively raise EOCV levels over time as minimum EODV levels are met, mission lifetimes could be further extended by the use of REOCVs.

VII. Conclusion

This paper has presented the to-date REOCV lifetesting performed by GRC, and proposed a method to calculate capacity fade and compare performance between the varied cases. Results from the first 3,900 cycles show substantial benefit from even slight reductions in EOCVs, which could double the current lifetime capabilities of the ABSL 18650HC Lithium Ion cell. However, as the amount of accumulated data is small relative to the projected lifetime, it is recommended that analysis of GRC’s REOCV data continue to ensure the improved fade rates persist with additional cycling. Further experimentation, particularly at higher DODs, is also recommended to accurately assess the possible mass savings this method could bring for short duration missions.
The Effect of Variable End of Charge Battery Management on Small-Cell Batteries

Batteries are critical components for spacecraft, supplying power to all electrical systems during solar eclipse. These components must be lightweight due to launch vehicle limitations and the desire to fly heavier, more capable payloads, and must show excellent capacity retention with age to support the ever growing durations of space missions. ABSL’s heritage Lithium Ion cell, the ABSL 18650HC, is an excellent low mass solution to this problem that has been proven capable of supporting long mission durations. The NASA Glenn Research Center recently proposed and initiated a test to study the effects of reduced end of charge voltage on aging of the ABSL 18650HC and other Lithium Ion cells. This paper presents the testing details, a method to analyze and compare capacity fade between the different cases, and a preliminary analysis of the to-date performance of ABSL’s cells. This initial analysis indicates that employing reduced end of charge techniques could double the life capabilities of the ABSL 18650HC cell. Accordingly, continued investigation is recommended, particularly at higher depths of discharge to better assess the method’s potential mass savings for short duration missions.