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Abstract 

 A special-purpose, semi-analytical solution method for determining the stress and 

deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is 

presented.  The analysis includes the effects of cutout size, shape, and orientation; non-uniform 

wall thickness; oval-cross-section eccentricity; and loading conditions.  The loading conditions 

include uniform tension, uniform torsion, and pure bending.  The analysis approach is based on 

the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic 

admissibility requirements on the displacement representations through the use of idealized 

elastic edge restraints.  Specifying appropriate stiffness values for the elastic extensional and 

rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in 

an indirect manner, which enables the use of a broader set of functions for representing the 

displacement fields.  Selected results of parametric studies are presented for several geometric 



 

 2 
  

parameters that demonstrate that analysis approach is a powerful means for developing design 

criteria for laminated-composite shells. 

 

Introduction 

 Cutouts in cylindrical shell-type components are unavoidable in the construction of 

aerospace structures.  This fact is significant because the structural failure of these components 

usually begins near the cutout because of high stress concentrations that initiate the formation of 

cracks.  Hence, a cutout can trigger a local failure at a load level lower than the global failure 

load of a corresponding shell without a cutout. As a result, preliminary-design sizing of a 

cylindrical shell with a cutout is often based on the magnitude of the stress concentrations near 

the cutout.  Therefore, an accurate assessment of the stress concentrations in a given shell 

subjected to various types of loading and support conditions is essential to the development of 

safe and reliable designs. Moreover, validated special-purpose analysis tools that enable rapid 

parametric studies would be very valuable to structural designers and for the development of new 

design criteria and design concepts.  

 Several analytical, numerical and experimental studies have been conducted during the past 

sixty years to determine stress distributions in cylindrical shells with a cutout and subjected to 

various types of loadings; such as, axial tension and compression, torsion, and internal and 

external pressure.  Pioneering analytical work was conducted by Lurie1,2 to investigate the effect 

of axial tension and internal pressure, and shell curvature, on the stress concentrations around a 

circular cutout in the 1940s.  Many years later, analytical studies were presented by 

Lekkerkerker,3 Van Dyke,4 Ashmarin,5 Murthy et al.,6 Guz et al.,7 and Van Tooren et al.8 that 

further investigated the effects of various factors on the stress concentrations around a cutout in a 
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cylindrical shell. Similarly, experimental investigations have been conducted by Tennyson,9 

Starnes,10 Pierce and Chou,11 Bull,12 and Zirka and Chernopiskii,13 and numerical studies have 

been conducted by Liang et al.,14 and Shnerenko and Godzula.15  In 1964 and 1972, respectively, 

Hicks16 and Ebner and Jung17 summarized the results obtained from several of these previous 

studies and provided extensive lists of references related to this problem.  Most of these previous 

studies are for isotropic cylindrical shells with a circular cutout. Only a few of these studies, such 

as those presented by Pierce and Chou11 and by Murthy et al.,6 address the effects of cutout shape 

(elliptical cutouts) on the stress concentrations. 

 Mitigation of high stress concentrations by tailoring shell-wall thickness, material orthotropy 

and anisotropy, and cutout reinforcement are also important considerations in the design of 

aerospace structures made of lightweight composite materials.  Likewise, the potential for using 

shells of non-circular cross section are relevant to fuselage-like structures.  However, only a few 

studies have considered these effects.  For example, the influence of wall-thickness variation on 

the stresses in axially loaded composite cylindrical shells, without a cutout, has been investigated 

by Li et al.18  Although numerous analyses exist in the literature on the analysis of shells with 

circular cross sections, only a few include non-circular cross sections. Sheinman and Firer19 

provided an analytical investigation of stresses in laminated cylindrical shells with arbitrary non-

circular cross sections.  More recently, Hyer and Wolford20,21 studied the effect of non-circular 

cross sections on damage initiation and progressive failure in composite cylinders by employing 

the finite element method. 

 The objective of the present study is to present a special-purpose analysis for a laminated-

composite cylindrical shell with an elliptical cutout that can be used to rapidly, and 

parametrically, investigate the effects of shell curvature; cutout size, shape, and orientation; and 
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ply lay-up on stress-resultant concentrations near the cutout.  The analysis is applicable to thin-

walled cylindrical shells with non-uniform wall thickness, a non-circular (e.g., oval) cross 

section, and subjected to tension, torsion, and bending loads as illustrated in Fig. 1.   

 To accomplish this objective, an overview of the analysis is presented first. Next, the 

boundary value problem is defined along with the kinematics and stress-strain relations used in 

the analysis.  Then, the derivation of the equations governing the response and numerical 

procedure are described.  Finally, selected numerical results for oval and circular cylindrical 

shells with either circular or elliptical cutouts and subjected to either tension, torsion, or pure-

bending loads are presented. 

 

Analysis Overview 

 The analytical approach used herein permits the determination of the pointwise variation of 

displacement and stress components.  It is based on the principle of stationary potential energy, 

but utilizes local and global functions that are not required to satisfy the kinematic boundary 

conditions directly.  Thus, the choice of local and global functions is not limited by a particular 

type of kinematic boundary condition.  The kinematic boundary conditions are imposed by 

employing the Lagrange multiplier method.  Both local and global functions are used, in contrast 

to the traditional approach, to enhance the robustness of the analysis method. In particular, the 

local functions are used to capture rapidly varying stress and strain gradients and local 

deformations near a cutout.  Toward that goal, Laurent series are used for the local functions and 

are expressed in terms of the mapping functions introduced by Lekhnitskii.22  Fourier series are 

used for the global functions and are used to capture the overall deformation and stress fields.  

The kinematic admissibility requirements on the local and global functions are relaxed by 
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defining that the edges of the shell are supported by extensional and rotational springs. Zero-

valued displacement and rotation kinematic boundary conditions are enforced in an indirect 

manner by specifiying values for the spring stiffnesses that are large compared to the 

corresponding shell stiffnesses.  This approach effectively yields a prescribed kinematic 

boundary condition in the limit as the relative stiffness of the spring becomes much greater than 

the corresponding shell stiffness.  Similarly, values for the spring stiffnesses can be selected that 

correspond to a given uniform elastic restraint along an edge, similar to that provided by an end-

ring.  This capability is important, and useful, because in some test fixtures or actual structures 

the edge supports may not be stiff enough to simulate a fully clamped boundary condition or 

flexible enough to simulate a simply supported boundary condition. 

 As suggested by Li et al.18 and Sheinman and Firer,19 nonuniform wall-thickness variations 

of a shell, which lead to non-uniform laminate stiffnesses, are represented by using trigonometric 

series.  Specifically, nonuniform shell-wall thickness is represented in the present study by 

perturbing the ply thicknesses with a function that is periodic in either the longitudinal or the 

circumferential direction.  The variation in wall thickness is accounted for by adjusting the 

lamina properties, resulting in nonhomogeneous in-plane and bending stiffness matrices.  The 

nonuniform shell curvature associated with a noncircular cross section is represented by using 

trigonometric series for the coordinates of an oval-cross-section shell reference surface.23  The 

aspect ratio, or out-of-roundness, of the cross-section is represented in the analysis by using an 

eccentricity parameter. 

 In the derivation of the equations governing the response, the total potential energy consists 

of the elastic strain energy of the shell, the elastic edge restraints and the potential energy of the 

applied loads.  The conditions that may arise from the choice of displacement approximations 
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without any kinematic restrictions are treated as constraint equations, and the potential energy 

arising from constraint reactions is invoked into the total potential energy through the use of 

Lagrange multipliers.  The equations governing the shell response are obtained by enforcing the 

requirement that the first variation of the total potential energy vanish.  The evaluation of the 

area integrals appearing in the potential energy are achieved numerically by using a basic 

quadrature method in conjunction with standard triangulation of the entire domain described by 

Shewchuk.24  Solution to the equations governing the response are obtained by using a standared 

Gaussian elimination procedure, which yields the generalized displacement coefficients and, 

thus, the stress and strain fields.  The accuracy of the analysis depends on the number of terms 

used for the functional representation of the displacement fields. As the number of terms 

increases, the results converge to the exact solution. 

 

Representation of Shell Geometry 

 The geometry of a thin-walled, noncircular, cylindrical shell of length L and with an elliptical 

cutout located at the shell mid-length is shown in Fig. 1. The origin of the global Cartesian 

coordinate system, ( , , )x y z is located at an end point of the longitudinal axis of the shell.  As 

shown in Fig. 1, the x-axis coincides with the longitudinal axis of the shell. The y and z 

coordinates span the cross-sectional plane. A curvilinear coordinate system is also attached to the 

mid-surface of the cylindrical shell. The coordinates of points in the longitudinal, circumferential 

(tangential), and normal-to-the-surface (transverse) directions of the shell are denoted by (s1, s2, 

s3), and the corresponding unit base vectors are {e1, e 2, e 3}. 

 Following Romano and Kempner,23 the non-circular cross-section of the cylindrical shell is 

defined as an oval with the coordinates, y and z expressed as 
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where ξ  represents the eccentricity of the oval cross section and 0R  is the equivalent radius of a 

circular cylindrical shell that has the same circumference as that of the oval cylindrical shell.  

The circumferential coordinate, 2s varies between 0  and 02 Rπ .  The derivation of Eqs. (1) along 

with the explicit forms of the coefficients ( )ma ξ  and ( )mb ξ  are given by Madenci and Barut.25 

 As derived by Romano and Kempner,23 the coordinates y  and z  in Eqs. (1a) and (1b) can be 

related to the radius of curvature of an oval-cross-section cylindrical shell, 2( , )R s ξ , by 

( )
0

2
2 0

( , )
1 cos 2

RR s
s R

ξ
ξ

=
+

    (2) 

Therefore, 0ξ = implies no eccentricity and corresponds to a circular cross section with 

radius 0R .  For positive values of the eccentricity parameter, ξ , the z -coordinate becomes the 

major axis and the y -coordinate becomes the minor axis.  For negative values ofξ , the major 

and minor axes switch to the -y  and -axesz , respectively.  The range of values of the 

eccentricity parameter, ξ , is bounded by 1 1ξ− < < . 

 As shown in Fig. 1, the cylindrical shell contains a cutout.   The shape of this cutout is 

defined such that if the shell is cut along a generator and flattened into a plane, the cutout 

becomes an ellipse with major and minor axes denoted by a  andb , respectively.  For simplicity 

and convenience, the cutout is referred to herein as an "elliptical" cutout.  Because the domain of 

the analysis shown in Fig. 2 corresponds to a similar flat region, a subsequent mapping of the 
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ellipse to a unit circle is possible, which enables the use of Laurent series expansions for the 

local functions.  Note that the special case of a "circular" cutout is given by a b= .   

 In the flat analysis domain, the minor and major axes of the ellipse are aligned with a local 

coordinate system, 1 2( , )x x , whose origin is located at the center of the cutout and coincides with 

the origin of the parameter grid, given by constant values of s1 and s2, that forms the curvilinear 

coordinates (s1, s2) on the cylindrical shell mid-surface.  The orientation of the elliptical cutout is 

arbitrary with respect to the longitudinal shell axis.  Hence, the orientation of the local 1-x  axis 

(major axis) of the cutout and the longitudinal 1s -axis of the cylindrical shell is denoted by the 

angle, ψ .  The elliptical coordinates, α andβ , representing a family of confocal ellipses and 

hyperbolas, respectively, are utilized in order to obtain the stress-resultant distribution in the 

direction tangent to the cutout boundary.  The coordinate α  is equal to 1
0 tanh ( / )b aα −=  on the 

particular ellipse that corresponds to the elliptical cutout.  The other coordinate, β , varying 

from 0 to 2π , is known as the eccentric angle and is related to the 1 2( , )x x  coordinate system by 

1 cosx a β=  and 2 sinx b β= .  The eccentric angle β  is similar to the angle used for polar 

coordinates. 

 The symmetrically laminated cylindrical shells considered herein are made of K  specially 

orthotropic layers, and each layer has an orientation angle, kθ , that is defined with respect to the 

1s -axis. Each layer also has elastic moduli LE  and TE , shear modulus, LTG and Poisson’s 

ratio LTν , where the subscripts L  and T  represent the longitudinal (fiber) and transverse 

principal material directions, respectively.  
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 As for the shell thickness variation, the non-uniform wall thickness of the shell is denoted 

by 1 2( , )h s s , and its variation is included by assuming that the thickness of each ply, kt , varies as 

a function of the curvilinear coordinates in the form 

1 1 2 2
1 2 0 1 2

0

2( , ) 1k k
m s m st s s t Cos Cos
L R

πε ε
⎞⎛ ⎞⎛ ⎛ ⎞= − − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎝ ⎠⎠

  (3) 

where 0kt  denotes the nominal thickness of the thk  layer in the laminate, and the parameters 

( 1 2,m m ) and ( 1ε , 2ε ) respectively, denote the wave numbers and the amplitudes of the periodic 

thickness variation in the longitudinal and circumferential directions. While the wall thickness of 

the shell is allowed to vary across the shell surface, the aspect ratio of the plies through the 

thickness is maintained, thus making the thickness variation of each ply to remain conformable 

to each other throughout the shell surface.  A periodic thickness variation in the longitudinal 

direction is obtained by setting 1 0ε ≠  and 2 0ε = , and in the circumferential direction by 1 0ε =  

and 2 0ε ≠ . A shell with uniform thickness, 0k kt t= , is obtained by setting 1 0ε =  and 2 0ε = . 

 

Boundary Conditions and External Loads 

 To facilitate a general imposition of prescribed boundary tractions, displacements, or 

rotations; the external as well as the internal edge boundary Γ  of the shell is decomposed into 

(1) (2) (3)Γ = Γ +Γ +Γ   (4) 

As shown in Fig. 1, (1)Γ and (2)Γ  denote the external edge boundary of the cylindrical shell and 

(3)Γ  represents the traction-free internal edge boundary around the cutout.  The unit vector 

normal to an edge is represented byn .  Throughout this paper, a variable with the superscript “*” 

is treated as a known quantity, arising from the externally applied loads or from prescribed 
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displacements and rotations.  Also, the subscripts n , s , and t  denote the directions normal, 

tangent, and transverse (through-the-thickness) to the boundary, respectively.  The details of how 

prescribed edge loads and displacements are imposed in the analysis are presented subsequently. 

 

Prescribed edge loads 

 External loads are applied to a shell by specifying values for the positive-valued stress 

resultants shown in Fig. 1.  More precisely, the membrane loads applied to the thA  boundary 

segment, ( )Γ A , are given by  

*
11 nN t=   (5a) 

*
12 sN t=   (5b) 

where N11 and N12 are the axial and shear stress resultants, respectively, defined in the 

cylindrical coordinate system. Likewise, shell-wall bending loads that are applied to the thA  

boundary segment are given by 

*
11 nM m= −   (6a) 

* *
11,1 12,2 ,22 2t sM M t m+ = −   (6b) 

where 11M  and 12M  are the pure-bending and twisting stress resultants, respectively, defined in 

the cylindrical coordinate system.  Moreover, the left-hand side of Eq. (6b) is the Kirchhoff shear 

stress resultant of classical shell theory. 

 As a matter of convenience, the analysis is formulated to also permit the specification of 

concentrated forces and moments that are transmitted to the ends of the shell as if through a rigid 

end-ring, as shown in Fig. 3.  Presently, the concentrated force *
nP  and the concentrated axial 
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torque *
sP  are included in the analysis.  The force *

nP  is simulated in the analysis by specifiying a 

uniform distribution of the axial displacement, with the unknown magnitude nΔ , such that 

( )

*
11 nN d P

Γ

Γ =∫
A

  (7a) 

Likewise, the torque *
sP  is simulated by specifiying a uniform distribution of the tangential 

displacement, with the unknown magnitude sΔ , such that 

( )

*
12 sN d P

Γ

Γ =∫
A

  (7b) 

The analytical process that is used to ensure that the magnitudes of nΔ  and sΔ  correspond to the 

specified values of *
nP  and *

sP , respectively, is described in the following section and in 

Appendix A. 

 

Prescribed edge displacements and rotations 

 Edge displacements and rotations are applied to a shell by specifying values for the 

displacements and rotations shown in Fig. 4 that correspond to the positive-valued stress 

resultants shown in Fig. 1.  In particular, the axial and tangential displacements, *
nu and *

su , 

respectively, that are applied to the thA  boundary segment, ( )Γ A ,  are given by  

*
1 1( ) nu u=n ei   (8a) 

[ ] *
2 3 2( ) su u× =e n ei   (8b) 

Similarly, the transverse displacement *
3u  and the rotation about an axis tangent to an edge *

nϑ  

that are applied to the thA  boundary segment are defined by 

*
3 tu u=   (9a) 
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*
3,1 1( ) nu ϑ=n ei   (9b) 

 As mentioned previously, these prescribed displacements are enforced through the use of 

elastic edge restraints (springs) to relax kinematic admissibility requirments on the functions that 

are used to represent the displacement fields.  The uniformly distributed extensional and 

rotational springs that are attached to the shell edges in the normal, tangential, and transverse 

directions and used to enforce the kinematic boundary conditions are depicted in Fig. 4.   

 Specifying appropriate stiffness values for the springs results in full or partial restraints along 

the shell edges.  A zero value of the spring stiffness corresponds to a traction-free-edge 

condition. In contrast, a value of the spring stiffness that is large compared to the corresponding 

shell stiffness effectively corresponds to a prescribed zero-valued boundary displacement or 

rotation. This approach effectively yields a prescribed kinematic boundary condition in the limit 

as the relative stiffness of the spring becomes much greater than the corresponding shell 

stiffness. Similarly, values for the spring stiffness can be selected that correspond to a specified 

uniform elastic restraint along an edge, similar to that provided by a rigid end-ring.  This 

capability is important, and useful, because in some test fixtures or actual structures the edge 

supports may not be stiff enough to simulate a fully clamped boundary condition or flexible 

enough to simulate a simply supported boundary condition. 

 As depicted in Fig. 4, the membrane displacements, nu and su , and the transverse 

displacement, 3tu u= along the thA  boundary segment are restrained by extensional springs with 

stiffness values of nS , sS , and tS  in the directions normal, tangent, and transverse to the 

boundary, respectively.  In addition to the extensional springs, the edge rotations, nϑ and sϑ , 
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along the thA  boundary segment are restrained by rotational springs with stiffness values of nJ  

and sJ  that correspond to rotation about axes tangent and normal to the edge, respectively.   

 Extensional springs in the directions normal and tangent to the shell edge, with stiffness 

values of ns  and ss , are also used to simulate load introduction through a rigid end-ring, as 

shown in Fig. 3.  Specifying values for the spring stiffnesses ns  and ss  that are relatively large 

compared to the corresponding shell stiffnesses causes the shell edge to behave as if a rigid end-

ring is attached that produces the uniformly distributed displacements with the corresponding 

magnitudes nΔ  and sΔ .  The values for nΔ  and sΔ  that correspond to the specified concentrated 

loads are determined by using a penalty parameter approach.  This approach enforces the 

difference between the edge displacements of the shell and the unknown uniform rigid end-ring 

displacements, ( )n nu −Δ and ( )s su −Δ  to vanish, while retaining the corresponding potential 

energy of the applied concentrated loads *
nP  and *

sP . 

 

Kinematics and Stress-Strain Relations 

 The kinematic equations used in the present study are based, to a large extent, on the 

assumptions of Love-Kirchhoff classical thin-shell theory.  Specifically, the axial, 

circumferential (tangential), and normal (normal to the mid-surface) displacements of a generic 

point of the shell are denoted by 1 1 2 3( , , )U s s s , 2 1 2 3( , , )U s s s  and 3 1 2 3( , , )U s s s , respectively.  The 

corresponding displacements of a generic point of the shell mid-surface that share the same unit 

vector normal to the mid-surface are denoted by 1 1 2( , )u s s , 2 1 2( , )u s s  and 3 1 2( , )u s s , respectively.  

In classical shell theory, these displacements are related by 

1 1 2 3 1 1 2 3 1 1 2( , , ) ( , ) ( , )U s s s u s s s s sβ= −    (10a) 
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2 1 2 3 2 1 2 3 2 1 2( , , ) ( , ) ( , )U s s s u s s s s sβ= −   (10b) 

3 1 2 3 3 1 2( , , ) ( , )U s s s u s s=  (10c) 

where 1 1 2( , )s sβ  and 2 1 2( , )s sβ  are the mid-surface rotations about the s2 and s1 axes, 

respectively, that are given by  

1 1 2 3,1 1 2( , ) ( , )s s u s sβ =   (11a) 

2 1 2 3,2 1 2 2 1 2
2

1( , ) ( , ) ( , )
( )

s s u s s u s s
R s

β = −   (11b) 

in which a subscript after a comma denotes partial differentiation.  The corresponding linear 

membrane-strain-displacement relations are given by 

( )

1,1
11

22 2,2 3

12
1,2 2,1

1
u

u u
R

u u

ε
ε
γ

⎧ ⎫
⎧ ⎫ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎛ ⎞= = +⎨ ⎬ ⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪+⎩ ⎭

ε   (12a) 

 

and the bending-strain-displacement relations are given by 

3,11
11

2
22 3,22

,2
12

3,12 2,1
12

u

uu
R

u u
R

κ
κ
κ

⎧ ⎫
⎪ ⎪−⎪ ⎪⎧ ⎫ ⎪ ⎪⎛ ⎞⎪ ⎪ ⎪ ⎪⎛ ⎞= = − −⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎪ ⎪⎛ ⎞⎪ ⎪− −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

κ   (12b) 

 

It is important to point out that the expression given for the change in surface twist due to 

deformation, 12κ , is that originally published by Love26, 27 in 1888 for general shells, in terms of 

lines of principal-curvature coordinates, and derived in the book by Timoshenko and 
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Woinowsky-Krieger28 for circular cylindrical shells.  As indicated by Bushnell,29 the expression 

for 12κ  vanishes for rigid-body motions in contrast to the corresponding expression presented in 

Reissner's version of Love's first-approximation shell theory (see Reissner,30 Kraus,31 and 

Naghdi32).  Equations (12a) and (12b), and the more general forms presented by Bushnell,29 are 

sometimes referred to as the Love-Timoshenko strain-displacement equations.  Justification for 

this terminology is given by Chaudhuri.33 

 The stress-strain relations used in the present study are those of the classical theory of 

laminated plates and shells,34 which are based on a linear through-the-thickness distribution of 

the strain fields.  For a thin, symmetrically laminated cylindrical shell, with variable wall 

thickness, the relationship between the membrane and bending stress resultants and the 

membrane and bending strains is expressed conveniently in matrix notation by 

 

1 2( , )s s=N A ε   (13a) 

and 

1 2( , )s s=M D κ   (13b) 

The membrane and bending stress resultants in Eqs. (13a) and (13b) are defined as 

{ }11 22 12, ,T N N N=N   (14a) 

and 

{ }11 22 12, ,T M M M=M   (14b) 

It is important to reiterate that when shell-wall thickness variations are present, the membrane 

and bending stiffness matrices, 1 2( , )s sA  and 1 2( , )s sD , are dependent on the curvilinear surface 

coordinates 1s  and 2s . 
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 It is convenient, in the present study, to combine the relations given in Eqs. (13a) and (13b) 

into the matrix form 

=s Ce   (15) 

in whichs , e  and C  are defined as follows: 

{ },T T T=s N M   (16a) 

{ },T T T=e ε κ   (16b) 

1 2
1 2

1 2

( , )
( , )

( , )
s s

s s
s s

⎡ ⎤
⎢ ⎥
⎣ ⎦

= =
A 0

C C
0 D

  (16c) 

 

Equations Governing the Response 

 A general analytical approach for the exact solution of the equilibrium equations for a 

laminated-composite cylindrical shell with variable curvature is not mathematically tractable.  

Therefore, a semi-analytic variational approach that is based on the principle of stationary 

potential energy is used in the present study to obtain numerical results.  Because elastic edge 

retraints are used as a means to relax the kinematic admissability conditions on the assumed 

displacement functions, and because a rigid-end-ring capability is used to impose shell-end force 

resultants, the potential energy consists of the elastic strain energy of the shell and the elastic 

edge restraints and the potential energy of the applied loads. In particular, the potential energy is 

expressed symbolically by 

( , ) ( ) ( , ) ( , )U Vπ = +Ω +q q q qΔ Δ Δ   (17) 

in which U  and Ω  represent the strain energy of the laminate and the elastic edge supports 

(springs), and V  represents the potential energy due to external boundary loads.  Their explicit 
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forms are presented in Appendix A. The symbol q is the vector of unknown, generalized 

displacement coefficients that arises from the mathematical representation of the mid-surface 

displacement fields that is used in the variational solution process. In particular, the mid-surface 

displacement fields are given symbolically by 1( )u q , 2 ( )u q , and 3( )u q .  The symbol Δ represents 

the vector of unknown edge displacements that arise from prescribing end loads. 

 Subjected to the constraint equations that arise from the use of Lagrange multipliers, the 

equations governing the shell response are obtained by enforcing the requirement that the first 

variation of the total potential energy vanish.  As discussed by McFarland et al.,35 because the 

constraint equations are not functionally dependent on spatial coordinates, 1s and 2s , the 

equations governing the response may be generated by modifying the total potential energy into 

the form  

* ( , ) ( , ) ( , )Wπ π= +q λ q q λΔ, Δ    (18) 

in which W  is viewed as the potential energy arising from constraint reactions. In particular,   

( , ) 0TW = =q λ λ G q   (19) 

where λ  is the unknown vector of Lagrange multipliers and G  is the known constraint 

coefficient matrix.  

 Substituting the specific expressions for ( )U q , ( , )Ω q Δ , ( , )V q Δ , and ( , )W q λ  that arise 

from approximation of the surface-displacement field and enforcing the first variation of the 

modified form of the total potential energy to vanish lead to 

 

* ** T T
qq qq qδπ δ Δ⎡ ⎤= + − +⎣ ⎦− −q k q f G λS q s TΔ  

      0T T T
qδ δ∗
ΔΔΔ⎡ ⎤+ − + =⎣ ⎦−P λ G qs s qΔ Δ   (20) 



 

 18 
  

 

in which the matrix, qqk represents the stiffness matrix of the shell and requires evaluation of the 

corresponding integrand over a doubly connected region (see Appendix A for details).  The 

spring-stiffness matrices, qqS and ΔΔs , are associated with the deformation of the shell edges and 

displacement of the rigid end-ring, respectively.  The spring-stiffness matrix, qΔs , captures the 

coupling between the displacement of the shell edges and the rigid end-ring.  The vectors * *,f T , 

and *P arise from the prescribed boundary displacements, external tractions and moments, and 

the concentrated forces applied to a rigid end-ring, respectively.  For the arbitrary variations 

( ,δ δq Δ , andδ λ ), the stationary condition requires that the following equations must be 

satisfied:  

 

( ) * * T
qq qq qΔ⎡ ⎤+ − + =⎣ ⎦− −k q f G λ 0S s TΔ   (21a) 

T
q

∗
ΔΔΔ⎡ ⎤− =⎣ ⎦−P 0s s qΔ   (21b) 

=G q 0   (21c) 

 

 It is convenient, to express Eqs. (21a) - (21c) into the single matrix equation  

=K Q F   (22) 

where K  and F  represent the overall, system stiffness matrix and the overall load vector, 

respectively. These matrices have the general, expanded form  

0

T
qq
T T
q

q

Δ

Δ

ΔΔ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

−
−
K G

K 0
G 0

s
s s     and    

0

∗

∗

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

F
F P   (23a,b) 
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in which  

qq qq qq= +K k S     and    * * *+= fF T   (23c,d) 

The vector of unknowns, Q , that appears in Eq. (22) is defined as 

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

q
Q

λ
Δ   (24) 

Solving for the vector of unknowns in Eq. (22) yields all the information needed to obtain a 

complete variational solution to a specific problem. The accuracy of a solution depends on the 

number of terms included in the expressions for the local and global functions representing the 

displacement fields and converges to the corresponding exact solution as the number of terms 

increases. 

 

Displacement-field representation 

 Representation of the mid-surface displacement field is a critical step in the variational 

solution to the problem.  By relaxing the requirements for kinematic admissibility, the mid-

surface displacement fields are represented in the present study by a combination of rigid-body 

modes, Riu , and global and local functions, denoted by iu and iu  , respectively; that is,  

i Ri i iu u u u= + +   (25) 

where the values of the index are given by  i = 1, 2, and 3. The rigid-body modes account for the 

overall or global translation and rotation of the shell, and are selected so that they produce 

neither membrane strain nor changes in shell curvature and twist.  These terms are included for 

the completeness of the kinematics of the cylindrical shell.  The presence of the appropriate 

displacement boundary conditions inherently eliminates the rigid-body motion.  However, for 
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cases where an insufficient number of kinematic boundary conditions are imposed, these rigid-

body terms need to be eliminated, as discussed in detail in Appendix C.  Following the complex-

variable solution techniques used in the theory of elasticity, the local functions are expressed in 

terms of robust, uniformly convergent Laurent series (used for doubly connected regions) to 

enhance capturing steep stress gradients and deformations near the cutout.  Complete sets of 

trigonometric expansions are used to primarily capture the overall global response of the shell. 

Here, completeness means that all the fundamental waveforms needed to construct the typical 

overall deformations of a shell are included in the set. 

 For convenience, the displacement representations are rewritten in matrix form as  

  ( 1, 2)T T T
i Ri R i i iu i= + + =V α V c V α   (26a) 

3 3 3 3 3
T T T
R Ru = + +V α V c V β   (26b) 

 

An even more useful, compact form is given by 

  with  1, 2,3T
i iu i= =V q   (27) 

where the vector of unknown displacement coefficients, q , is defined by 

{ }1 2 3, , , , ,T T T T T T T
R=q α c c c α β   (28) 

In Eq. (28), the vector Rα  contains the unknown coefficients for the rigid-body motion of the 

shell, and the vectors α  and β  contain the real and imaginary parts of the unknown coefficients 

nmα  and nmβ , respectively, that are associated with the local functions.  The vectors ic , 

where 1,2,3i = , contain the real-valued unknown coefficients, ( )i mnc  that are associated with the 

global functions.  The explicit forms used herein for the unknown coefficient vectors Rα , ic , α , 
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and β  that appear in Eqs. (26a) and (26b) along with the vector functions iV  (and the 

corresponding subvectors RiV , iV , and iV ) are given in Appendix B. 

 In addition to the general representation of the shell surface-displacement fields, similar 

matrix expressions are needed for the displacements and rotations of points on the shell 

boundary. In the present study, the boundary displacement vector Γu  is introduced that consists 

of the mid-surface boundary displacements in the directions normal, tangent, and transverse to a 

shell edge, and the  mid-surface rotations about axes that are normal and tangent to a shell edge. 

The boundary displacements in the directions normal, tangent, and transverse to a shell edge are 

denoted herein by nu , su , and tu , respectively. Similarly, the mid-surface rotations about axes 

that are tangent and normal to a shell edge are denoted by and n sϑ ϑ , respectively. In terms of the 

vector of unknowns defined by Eq. (28), the boundary displacements and rotations are expressed 

in matrix form by  

Γ =u Bq   (29) 

in which the boundary displacement vector, Γu is defined by 

{ }, , ,T
n s t nu u u ϑΓ =u   (30) 

The matrix B is a known matrix of coefficients that is defined as 

T
n
T
s
T
t
T
n

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u
u

B
u
θ

  (31) 

in which the sub-vectors, T
nu , T

su  , T
tu and T

nθ  are known and defined by 

1 1( )T
nu = n e Vi   (32a) 
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[ ]3 2 2( )T
s = ×u e n e Vi   (32b) 

3
T T
t =u V   (32c) 

and 

1 3,1( )T T
n =θ n e Vi   (32d) 

 

Strain- and stress-resultant-field representation 

 After defining the shell mid-surface displacement field in terms of the generalized coordinate 

q, the corresponding representation of the strains is obtained by substituting Eq. (27) into the 

strain-displacement relations given in vector form by Eqs. (12a) and (12b).  This substitution 

yields  

ε=ε L q   (33a) 

and 

 

κ=κ L q   (33b) 

where the strain-coefficient matrices εL  and κL  are defined as 

1,1

2,2 3

1,2 2,1

1

T

T T

T T
Rε

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

V

L V V

V V

  (34a) 

3,11

2
3,22 2,2 22

3,12 2,1

,1

22

T

T T T

T T

R
R R

R

κ

⎡ ⎤
⎢ ⎥−
⎢ ⎥
⎢ ⎥= − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦

V

L V V V

V V

  (34b) 
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Next, the representations for ε  and κ  are substituted into Eq. (15b) to obtain  

=e L q   (35) 

where the overall strain-coefficient matrix L is defined as 

T T T
ε κ⎡ ⎤= ⎣ ⎦L L L   (36) 

 Finally, the corresponding matrix representation of the stress resultants in terms of the 

generalized coordinates is obtained by substituting Eq. (35) into constitutive Eq. (15). The 

resulting vector of stress resultants is given by   

=s C Lq   (37) 

 

Constraint Equations 

 In the generalized-coordinate representations for 1u  and 2u , the coefficients 1(00)c  and 2(00)c  

associated with the global functions, 1 2and  u u , also correspond to rigid-body translation in the 

1s  direction and rigid-body rotation about the 1s  axis, respectively. These two redundant rigid-

body modes are eliminated by introducing constraint conditions using Lagrange multipliers. In 

particular, the unknown Lagrange multipliers (1)RRBλ  and (2)RRBλ  are associated with the 

redundant rigid-body modes. Also, multi-valuedness of the normal-direction displacement 

3 1 2( , )u s s  that arises from the presence of logarithmic terms in the Laurent-series-expansion for 

the local function must be eliminated.  The unknown Lagrange multipliers ( )SV rλ  and ( )SV sλ  are 

used herein to eliminate this multi-valuedness.  Likewise, the rigid-body modes of the cylindrical 

shell must be eliminated by the Lagrange multipliers ( )RB jλ  ( 1,..,6j = ) if the specified kinematic 

boundary conditions are not sufficient enough to prevent them.  In other words, the non-

vanishing rigid body modes must be eliminated by introducing constraint conditions prior to the 
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stress analysis in order for the overall system stiffness matrix K, given in Eq (22), to be 

nonsingular. 

 These requirements on the representation of the shell displacement field are enforced by 

using constraint equations that use Lagrange multipliers.  These constraint equations are 

functionally independent, forming a set of linearly independent equations equal in number to the 

total number of Lagrange multipliers.  The Lagrange multipliers can be viewed as the reactions 

that are needed to enforce the corresponding constraints.  In the present study, all of these 

constraint conditions are included in the matrix equation given in Eq. (19).  The explicit form of 

the vector of unknown Lagrange multipliers, λ , and the known coefficient matrix, G , are given 

in Appendix C. 

 

Overview of Validation Studies 

 A limited series of validation studies were conducted in the present study to determine the 

accuracy of results obtained by using analysis method presented herein. Specifically, the studies 

included circular and non-circular cylindrical shells with either a circular or an elliptical cutout 

under uniform tension.  The stress resultants around the circular and elliptical cutout for varying 

aspect ratios and orientations in a circular cylinder as well as the stress concentrations arising 

from a circular cutout in a non-circular cylindrical shell were computed.  Comparisons of the 

stress-resultant distributions and magnitudes in the shells were made with the corresponding 

results obtained by using an in-house finite element program developed earlier by Madenci and 

Barut.36  This finite element program has been validated, to a large extent, against previously 

published experimental and numerical results for stress, buckling, and post-buckling of thin-shell 

structures (see Madenci and Barut37,38).  Therefore, this finite element program is expected to 
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serve as a reliable indicator of the accuracy of the analysis methods and results presented herein.  

Overall, the comparisons indicate very good agreement (less than 1% difference) between the 

corresponding results produced by the two analysis methods.  For shells with high-aspect-ratio 

cutouts, differences of approximately 5% were obtained and found to be the result of insufficient 

mesh refinement in the finite element models. 

 

Selected Numerical Results 

 Selected numerical results are presented in this section to demonstrate the utility of the 

analysis method presented herein and the potential for its use in developing design technology.  

These results elucidate the effects of loading condition, non-circular cross-section geometry, 

wall-thickness variation, cutout shape, cutout size, and cutout orientation on the intensity of 

stress-resultant concentrations near a cutout.  Specifically, tension, torsion, and pure-bending 

loads are considered for 0 0 0 0 0 0 0
2  [45 /- 45 / 90 / 0 / 90 /- 45 / 45 ]s  quasi-isotropic shells with length 

356 mmL =  and made of graphite-epoxy plies.  The nominal ply thickness is 0 0.14 mmkt = , 

resulting in the total thickness of the shell given by 2.24 mmh = , and the ply orientation angles 

are measured with respect to the longitudinal shell axis.  The Young’s moduli of each ply in the 

longitudinal, fiber direction and in the direction transverse to the fibers are specified as 

135. 0 GPaLE =  and 13.0 GPaTE = , respectively.  The in-plane shear modulus and Poisson’s ratio 

of each ply are given by 6.4 GPaLTG =  and 0.38LTν = . 

 The effects of varying the radius of curvature 0R  on the stress-resultant concentration along 

the contour of a circular cutout with radius 25.5 mm a =  are shown in Fig. 5 for a circular 

cylindrical shell subjected to a uniform axial tension load.  Four curves that correspond to values 
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of 0R L =  0.5, 0.75. 1, and 1.25 are presented that show the tangential stress resultant, Nφφ  

normalized by the far-field applied uniform stress resultant 0N , as a function of position around 

the cutout (indicated by the "cutout angle",φ ).  As shown in Fig. 5, the stress-resultant 

concentration is a maximum at φ =  090  and 0270  (at the net section of the shell) for each case 

and reduces from a maximum value of approximately 4.0 to a minimum value of 3.4 at the net 

section as the radius of curvature increases. In addition, the results show that the 0( ,90 )N aφφ  

stress-resultant concentration approaches the well-known value of three for an isotropic plate as 

the shell radius increases. Away from the net section, changes in the radius of curvature have a 

relatively small effect on the stress-resultant concentration. 

 The effects of varying the circular-cutout radius on the stress-resultant concentration along 

the contour of a circular cutout is shown in Fig. 6 for a circular cylindrical shell with radius 

0R = 381 mm and subjected to a uniform axial tension load.  Five curves that correspond to 

values of the cutout radius a = 15, 25.5. 30, 40, and 50 mm are presented that also show the 

tangential stress resultant ( , )N aφφ φ  , normalized by the far-field applied uniform stress resultant, 

0N , as a function of the cutout angleφ .  The results in Fig. 6 show that the stress-resultant 

concentration is a maximum at the net section of the shell for each case, as expected, and 

changes significantly from a minimum value of approxiamtely 3.1 to a maximum value of 5.1 at 

the net section as the cutout radius increases - an increase of approximately 65%.  The results 

also show that the 0( ,90 )N aφφ  stress-resultant concentration approaches the well-known value of 

three for an isotropic plate as the cutout radius decreases.  Away from the net section, changes in 

the cutout radius have a much smaller effect on the stress-resultant concentration. 
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 The effect of varying the elliptical-cutout aspect ratio, a b , on the tangential stress-resultant 

distribution around the edge of a cutout in a cylindrical shell with radius 0 178 mmR = , and 

subjected to uniform tension is presented in Fig. 7.  The orientation of the elliptical cutout is 

specified by 00ψ = .  Two curves that correspond to the locations φ = 00  and 090  are presented 

that show the tangential stress resultant, 0( , )Nββ α β normalized by the far-field applied uniform 

stress resultant 0N , as a function of the cutout aspect ratio.  As expected, the normalized stress-

resultant concentration, 0 0( , )N Nββ α β  , remains negative for all aspect ratios at φ = 00 , 

consistent with the expected Poisson effect, and the magnitudes are relatively insignificant at this 

location.  In contrast, large stress-resultant concentrations are indicated at the net section (φ = 

90o) that diminish from a maximum value of approximately 17.0 for a widthwise, slot-like cutout 

with ( 5 mm and 30 mm)a b= =  or ( 1 6)a b =  to a minimum value of 1.4 for a lengthwise, slot-

like cutout ( 30 mm and 5 mm)a b= =  or ( 6)a b = . 

 The effects of varying the orientation of a high-aspect-ratio, slot-like elliptical cutout on the 

stress-resultant concentration along the cutout contour is shown in Fig. 8 for a circular 

cylindrical shell with radius 0 =178 mm R and subjected to a uniform axial tension load. The 

major and minor axes of the cutout are given by 30 mma =  and 5 mmb = , respectively.  The 

orientation of the elliptical cutout, with respect to the longitudinal shell axis, is measured by the 

angle,ψ .  Three curves that correspond to values of ψ =  00, 450, and 900 are presented that show 

the tangential stress resultant at the cutout edge, Nββ normalized by the far-field applied uniform 

stress resultant, 0N as a function of the cutout angleφ . 

 The results in Fig. 8 show that the stress-resultant concentration is the least pronounced for 

the case of ψ = 00.  For this case, the cutout major axis is aligned lengthwise with the shell axis 
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and the net section of the shell is the largest. The location on the cutout edge defined by 00φ =  

corresponds to where the edge of the cutout intersects the major axis.  At this location, the edge 

of the cutout is in tangential compression ( 0 1.6N Nββ = − ), consistent with a Poisson effect.  

The location defined by 090φ =  corresponds to where the edge of the cutout intersects the minor 

axis; that is, at the net section of the shell.  At this location, the edge of the cutout is in tangential 

tension ( 0 1.4N Nββ = ).  Between approximately 010φ =  and 1700 and between 0190φ = and 

3500, the cutout width (and hence net section width) does not vary greatly.  This attribute 

accounts for the corresponding flat regions in the 00ψ =  curve shown in Fig. 8. 

 For the case of 090ψ = , the cutout major axis is perpendicular to the shell axis and the net 

section of the shell is the smallest.  As before, the locations defined by 00φ = and 1800 correspond 

to where the edge of the cutout intersects the major axis; that is, at the net section of the shell.  

The results in Fig. 9 show that the edge of this high-aspect-ratio cutout has extremely high stress-

resultant concentrations at these locations ( 0 17.N Nββ = ) that have very step gradients.  

Between approximately 05φ =  and 1750 and between 0185φ = and 3550, the analysis predicts 

relatively benign variations in the stress-resultant concentration.  The case of 045ψ = , exhibits 

stress-resultant concentrations that are, for the most part, bounded by the corresponding results 

for 00ψ =  and 900.  The analysis also predicts very high stress-resultant concentrations where 

the cutout edge intersects the major principal cutout axis ( 0 8.2N Nββ = ). 

 The effects of varying the cross-section eccentricity (see Eq. (2)) of a tension-loaded oval 

shell with a circular cutout are shown in Fig. 9.  The results in this figure correspond to the 

equivalent shell radius 0 381 mmR =  and a circular-cutout radius given by 25.5 mma = .  Moreover, 
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the tangential stress-resultant concentation at the shell net section, 0( ,90 )N aφφ , normalized by the 

applied load 0N , is shown as a function of the eccentricity  parameter for the range of 

-0.15 0.15ξ≤ ≤ .  As indicated in the figure, negative and positive values of ξ  correspond to 

cylindrical shells with the largest cross-sectional width oriented parallel and perpendicular to the 

tangent plane that passes through the two points of the cutout edge that are on the surface 

generator that passes through the center of the cutout, respectively.  A value of 0ξ =  

corresponds to a circular cross-section and a value of 0.15ξ =  corresponds to cross-sectional 

aspect ratio of 0.9. 

 The results presented in Fig. 9 show that the stress-resultant concentration is affected 

benignly by the cross-sectional eccentricity.  In particular, the stress-resultant concentration 

increases almost linearly with increases in the eccentricity parameter from 0
0( ,90 )N a Nφφ =  3.5 

to 3.6, which is slightly less than a 3% variation.  This trend is understood by noting that the 

shells that correspond to negative values of ξ  are flatter near the cutout than those that 

correspond to positive values of ξ  and, as indicated by the results in Fig. 5, are expected to have 

the lower values for the stress-resultant concentrations. 

 The effects of longitudinal and circumferential periodic wall-thickness variations on the 

stress-resultant concentration at the net section of circular cylindrical shell with 

radius 0 178 mmR = , circular cutout radius 25.5 mma = , and subjected to uniform axial tension 

load are shown in Fig. 10.  Two monotonically increasing curves that correspond to values of 1ε  

(with 2 0ε = ) and 2ε  (with 1 0ε = ) are presented that show the tangential stress 

resultant 0( ,90 )N aφφ , normalized by the far-field applied uniform stress resultant 0N , as a 

function of thickness-variation amplitudes (see Eq.(3)) that range from 0 to 0.2.  For the 
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longitudinal thickness variation, the wave numbers used in Eq. (3) are 1 1m =  and 2 0m = . 

Similarly, for the circumferential thickness variation, the wave numbers used in Eq. (3) are 

1 0m =  and 2 1m = . 

 The results shown in Fig. 10 indicate that the stress-resultant concentration at the shell net 

section increases as the magnitude of the thickness variation increases, for variations in either the 

longitudinal or circumferential direction. The maximum variation in the results is approximately 

56%.  Furthermore, the change in the stress-resultant concentration is slightly more pronounced 

for the circumferential thickness variation than for the longitudinal thickness variation.  These 

increases are primarily due to a drastic loss of bending stiffness near the net section of the shell, 

as indicated by the wave numbers 1 0m =  and 2 1m = , where the thickness of the shell near the 

center of the cutout is smaller.  

 The effects of varying the radius of curvature 0R  on the stress-resultant concentration along 

the contour of a circular cutout with radius 25.5 mma =  is shown in Figs. 11 and 12 for a 

circular cylindrical shell subjected to a uniform torsion load and a pure-bending load, 

respectively.  The pure-bending load corresponds to using *
0 2cos( )nt M sπ=  in Eq. (5a).  Four 

curves that correspond to values of 0R L =  0.5, 0.75. 1, and 1.25 are presented that show the 

normalized values of the tangential stress resultant Nφφ  as a function of position around the 

cutout.  In Fig. 11, Nφφ  is normalized by the far-field applied uniform shear stress resultant, 0T .  

In Fig. 12, Nφφ is normalized by the far-field applied uniform bending stress resultant, Mo. 

 The results in Fig. 11 indicate that the stress-resultant concentration has identical maximum 

magnitudes at φ =  450, 1350, 2250, and 3150 (at the net section of the shell) for each case, which 

corresponds to maximum diagonal tension and compression stress resultants associated with the 
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shear stress resultants near the cutout.  The magnitudes of the stress-resultant concentration for 

these four locations reduces from a maximum value of 6.8 to a minimum value of 5.1 as the 

radius of curvature increases (33% variation).  Away from these four locations, changes in the 

radius of curvature have a smaller effect on the stress-resultant concentration.  The results in Fig. 

12 indicate that the stress-resultant concentration for the shell subjected to the pure-bending load 

is quite similar to that presented in Fig. 5 for the corresponding tension-loaded shell.   

 Specifically, the stress-resultant concentration is a maximum at φ =900 and 2700 (at the net 

section of the shell) for each case and reduces from a maximum value of  4.0 to a minimum 

value of 3.5 at the net section as the radius of curvature increases (14% variation).  In addition, 

0N Mφφ approaches the well-known value of three for an isotropic plate as the shell radius 

increases, and away from the net section, changes in the radius of curvature have a relatively 

small effect on the stress-resultant concentration.  For the case of 0R L =  0.5 shown in Fig. 12, a 

contour plot of 0N Mφφ near the cutout is shown in Fig. 13.  The extent of the stress 

concentration at the shell net section (φ =900 and 2700) is clearly captured by the analysis 

method presented herein.  The highest stress-resultant concentration is 0
0( ,90 )N a Mφφ =  4 and 

it attenuates to the value of 1.01 at a radius of about 80 mm (approximately three times the 

cutout radius), measured from the center of the cutout. 

 

Concluding Remarks 

 A special-purpose, semi-analytical approach based on complex potential functions has been 

presented that can be used to investigate the behavior of thin, noncircular cross-section 

cylindrical shells made of laminated-composite materials and with a cutout, efficiently and 
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parametrically.  In particular, the effects of radius of curvature; elliptical cutout size, aspect ratio, 

and orientation; oval cross-section eccentrictity; wall-thickness variations; and loading 

conditions on the stress-resultant concentration near the cutout have been presented for a quasi-

isotropic shell subjected to uniform tension, uniform torsion and pure bending.  In addition, 

studies that were conducted to validate the analysis method have been described.  

 A key finding of the results obtained with this analysis method is that the maximum 

tangential stress-resultant concentration near a circular cutout in a tension-loaded, circular, quasi-

isotropic shell increases by approximately 18% as the shell radius-to-length ratio decreases from 

1.25 to 0.5.  Likewise, increases in the maximum tangential stress-resultant concentration as 

large as 65% have been found to occur with a five-fold increase in cutout radius. Results have 

also been presented that show extremely high tangential stress-resultant concentrations can occur 

for high aspect ratio elliptical cutouts whose principal axes are not aligned with the longitudinal 

axis of a tension-loaded shell.  

 Additionally, results have been presented that show tension-loaded oval shells with a circular 

cutout on one of the flatter sides exhibit slightly lower tangential stress-resultant concentrations 

than the corresponding shell with the cutout on one of the more highly curved sides. Results have 

also been presented that show that wall-thickness variations in either the longitudinal or 

circumferential directions significantly affect the stress concentration, with respect to that for the 

corresponding shell with a nominal thickness.  The analysis also predicts that a quasi-isotropic 

shell with a circular cutout and subjected to pure bending that yields the maximum tensile stress 

resultant at the longitudinal axis of the cutout behaves similarly to the corresponding tension-

loaded shell. The corresponding shell subjected to torsion was found to exhibit the maximum 

tangential stress-resultant concentrations at locations consistent with the maximum diagonal 
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tension and compression near the cutout. Overall, the results demonstrate that the analysis 

approach is a powerful means for developing design criteria for laminated-composite shells. 
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Appendix A  

Strain Energy of shell   

 Based on classical laminated shell theory, the strain energy of the shell can be expressed as 

1
2

T

A

U dA= ∫ s e   (38) 

in which A is the planform area of the shell mid-surface.  Substituting the expressions for the 

resultant stress and strains, given in terms of the vector of unknown displacement coefficients, 

q , by Eqs. (35) and (37), leads to  

( )1( )
2

T T

A

U dA= ∫q q L C L q   (39) 
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The matrix L  involves the derivatives of the assumed, functional displacement representations, 

and C  is the overall constitutive matrix defined by Eq. (16c).  The expression for the strain 

energy is rewritten into the final form used herein as 

1( )
2

T
qqU =q q k q   (40) 

where  

( )T
qq

A

dA= ∫k L C L   (41) 

The evaluation of this area integral is performed numerically by employing basic quadrature 

techniques.  In this analysis, the quadrature points are pre-determined by employing standard 

triangulation of the entire domain as described by Shewchuk.24 

 

Strain energy of elastic restraints 

 The strain energy of the elastic edge restraints (springs), Ω , is expressed as 

( )

( )

( )

( )

( )

( )

2 2
*

1 , ,

2 2
*

1 ,

2
2

1 ,

1
2

1    
2

1    
2

n s t

n s

n s

S u u d

J d

s u d

α α α
α

α α α
α

α α α
α

ϑ ϑ

= = Γ

= = Γ

= = Γ

Ω = − Γ

+ − Γ

+ −Δ Γ +

∑ ∑ ∫

∑ ∑ ∫

∑ ∑ ∫

A

A

A

A

A

A

  (42) 

As depicted in Fig. 4, the boundary displacements ,n su u , and tu  along the A th boundary segment 

are restrained by extensional springs with the stiffness values nS , sS , and tS , respectively. 

Likewise, the boundary rotations nϑ  and sϑ  are restrained by rotational springs with the stiffness 

values nJ  and sJ , respectively. 
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 In order to apply concentrated forces along the edge of a shell and introduce edge 

displacements that are similar to those introduced by a rigid end-ring or by the loading platens of 

a testing machine, additional springs are uses to simulate the load-introduction effects of a rigid 

end-ring. In particular, rigid-end-ring loads are introduced into the shell by using extensional 

springs in the directions normal and tangent to the boundary with corresponding stiffness values 

of ns  and ss , as shown in Fig. 3.  By specifying relatively large values for the spring stiffnesses 

ns  and ss  , the laminate edge behaves as if a rigid end-ring is attached that produces the uniform 

displacements nΔ  and sΔ . In contrast, a relatively small spring stiffness between the shell edge 

and the rigid end-ring eliminates the presence of a rigid end-ring. 

 The desired form of the elastic-restraint strain energy is obtained in terms of the unknown 

vector q by substituting expressions for the boundary displacements and rotations, given 

collectively by Eq. (29), into Eq. (42). This step yields  

( )

( )

( )

2
( ) ( ) * ( )*

( )
1 , ,

2
( ) ( ) * ( )*

( )
1 ,

2
( ) 2

1 ,

( )

1 2
2
1   2
2

1  
2

2

T T
u

n s t

T T

n s

T

n s

Ts d

αα α α
α

αα ϑ α α
α

αα α α
α

α α

= =

= =

= = Γ

Ω = +Ω −

+ +Ω −

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

Δ Γ− Δ

∑ ∑

∑ ∑

∑ ∑ ∫

q S q q f

q J q q r

q s q q s
A

A A A

A

A A A

A

A

A

A

  (43) 

where the matrices ( )
ααS A  and ( )

ααJ A  represent the stiffness contribution of the extensional and 

rotational springs attached to the A  th segment of the boundary. These matrices are defined as 

( )

( ) TS dαα α α α
Γ

= Γ∫S u u
A

A       ( , , )n s tα =   (44a) 

and 

( )

( ) TJ dαα α α α
Γ

= Γ∫J θ θ
A

A       ( , )n sα =   (44b) 
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The matrix ( )
ααs A , representing the stiffness of the springs attached to the rigid end-ring, is defined 

as 

( )

( ) Ts dαα α α α
Γ

= Γ∫s u u
A

A       ( , )n sα =   (45) 

The load vectors, ( )*
αf
A and ( )*

αr
A  , are associated with the prescribed boundary displacements and 

rotations and are defined as  

( )

( )* *S u dα α α α
Γ

= Γ∫f u
A

A        ( , , )n s tα =   (46a) 

and 

( )

( )* *J dα α α αϑ
Γ

= Γ∫r θ
A

A       ( , )n sα =   (46b) 

The vector, ( )
αs
A , is associated with the unknown end-displacements that correspond to a given 

concentrated load and is defined as  

( )

( ) s dα α α
Γ

= Γ∫s u
A

A       ( , )n sα =   (47) 

The strain energies in the springs that arises from the known prescribed displacements 

( *
nu , *

su and *
tu ) and rotations ( *

nϑ and *
sϑ  ) are defined as 

( )

( ) * 2
( )

*
u S u dα α α

Γ

Ω = Γ∫
A

A        ( , , )n s tα =   (48a) 

and 

( )

( ) *
( )

2*J dϑ α α αϑ
Γ

Ω = Γ∫
A

A       ( , )n sα =   (48b) 

For convenience, the expression for the strain energy in the springs is recast in matrix form as 
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*                

1 1( ,
2 2

T T
qq

T T
q

∗

ΔΔ

Δ

+

− −

Ω =

+Ωf

q q S q s

q s q

Δ) Δ Δ

Δ
  (49) 

in which the matrices, qqS , ΔΔs  and qΔs  represent the stiffness of the springs associated with the 

deformation of the laminate, the end-displacements and their coupling, respectively.  These 

matrices are defined by 

2 2 2
( ) ( ) ( )

1 , , 1 , 1 ,
qq

n s t n s n s
αα αα αα

α α α= = = = = =

+ +=∑ ∑ ∑ ∑ ∑ ∑S J sS A A A

A A A
  (50a) 

(1) (2) (1) (2)
0Diag , , , 2n n s ss s s s RπΔΔ ⎡ ⎤= ×⎣ ⎦s   (50b) 

(1) (2) (1) (2)
q n n s sΔ ⎡ ⎤= ⎣ ⎦s s s ss   (50c) 

The vector of unknown end-displacements, Δ , is defined by 

{ }(1) (2) (1) (2), , ,T
n n s s= Δ Δ Δ ΔΔ   (51) 

The load vectors arising from all prescribed boundary displacements and rotations, *f , is defined 

as 

2 2( ) ( )*

1 , , 1 ,

1 1
2 2n s t n s

α α
α α

∗ ∗

= = = =

+= ∑ ∑ ∑ ∑f f r
A A

A A
  (52) 

and the strain energy of all the springs due to prescribed displacements and rotations is 

2 2
* ( ) * ( ) *

( ) ( )
1 , , 1 ,

1 1
2 2u

n s t n s
α ϑ α

α α= = = =

=Ω Ω + Ω∑ ∑ ∑ ∑A A

A A
  (53) 

 

Potential of external loads 
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 The potential energy of the external tractions * * *( ,  and )n s tt t t  and moments * *(  and )n sm m  acting 

along the A th boundary segment, and the concentrated loads * *(  and P )n sP  acting on the rigid end 

rings, is given in terms of the corresponding boundary displacements and rotations by 

 

( )

( )

2
*

1 , ,

2 2

1 , 1 ,

   

n s t

n s n s

t u d

m d P

V α α
α

α α α α
α α

ϑ

= = Γ

∗ ∗

= = = =Γ

Γ

− Γ − Δ

= −∑ ∑ ∫

∑ ∑ ∑ ∑∫

A

A

A

A A

  (54) 

 Substituting the expressions for the boundary displacements and rotations, given in terms of 

the vector q, and combining terms in Eq. (55) yields 

*( , T TV ∗= − − Pq q TΔ) Δ   (55) 

where the vectorΔ , containing the uniform end-displacements nΔ  and sΔ  of the thA  boundary 

segment, is defined by 

{ }(1) (2) (1) (2), , ,n n s s
Τ = Δ Δ Δ ΔΔ   (56) 

The load vectors, *T and ∗P  are defined by 

( ) ( )

2 2
* *

1 , , 1 ,

T T T

n s t n s

t d dα α α α
α α

ϑ∗

= = = =Γ Γ

Γ Γ= +∑ ∑ ∑ ∑∫ ∫T u θ
A AA A

  (57a) 

and 

{ }(1) (2) (1) (2), , ,T

n n s sP P P P∗ ∗ ∗ ∗ ∗=P   (57b) 

in which ( )Pα
∗A , with ( , )n sα = , represents the membrane forces applied on the thA  boundary 

segment through a rigid end-ring. 
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Rigid-body modes 

 As given by Madenci and Barut24, the rigid-body displacements ( 1Ru , 2Ru and 3Ru  ) of a 

cylindrical shell, defined with respect to the curvilinear coordinates, ( 1 2 3, ,s s s ), are expressed 

herein as 

1 1 6 5Ru y zα α α= − +   (58a) 

( )2 2 3 4

5 6

cos sin sin cos
                                     sin cos

Ru y z
x x

α θ α θ α θ θ
α θ α θ

= − − +

+ +
  (58b) 

( )3 2 3 4

5 6

sin cos cos sin
                                      cos sin

Ru y z
x x

α θ α θ α θ θ
α θ α θ

= + + −

− +
  (58c) 

where θ  denotes the angle between the radius of curvature at a point on the shell surface and z-

axis as shown in Fig. 1. 

 

Global functions 

 The global functions iu  that are used to capture the overall deformations away from the 

cutout are expressed in terms of a series expansion of orthogonal functions of the form 

1 2 ( ) 1 2
0 0

( , ) ( ) ( )
M m

i i mn m n
m n

u s s c T s W s
= =

= ∑∑   (59) 

The symbols ( )i mnc  are the unknown real-valued coefficients, and 1( )mT s  and 2( )nW s  are defined 

as 

1

1                                    0
( )                                  1

( 1)sin ( 1)     1
2

m

m
T s m

m m

ζ

ζ

⎧
⎪ =⎪⎪= =⎨
⎪ −⎡ ⎤⎪ + >⎢ ⎥⎪ ⎣ ⎦⎩

  (60a) 
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and 

( )
( )2

cos / 2           =0,2,4,6,8,
( ( ))

sin ( 1) / 2    =1,3,5,7,9,n

n n
W s

n n
θ

θ
θ

⎧⎪= ⎨ +⎪⎩

"
"

  (60b) 

in which 1 1ζ− ≤ ≤  and 1s  is related to ζ  as 1s = 2Lζ , with L being the length of the cylinder.  

Note that nW is periodical. These particular functions were chosen because they form a complete 

set of functions when used with Eq. (59).  Hence, they are desirable for employing in energy 

based semi-analytic solution techniques such as the total potential energy principal that is used in 

this study. 

 

Local functions 

 The local functions are expressed in terms of mapping functions that transform the contour of 

an elliptical cutout to a unit circle.  These mapping functions are used permit the use of Laurent 

series expansions as local functions, which is desirable because Laurent series are analytic and 

uniformly convergent in domains with a circular hole.  As a result, the use of mapping functions 

reduces the number of terms in the Laurent series significantly that are needed to adequately 

capture steep stress and strain gradients and local deformations near a cutout.  In accordance with 

the principle of minimum potential energy, the local local functions are not required to satisfy the 

traction boundary conditions at the cutout boundary.  Thus, the local functions, iu , are expressed 

in the form of Laurent series, in terms of complex functions, as 

2
(1) *

1
1

0 

2Re ( ) ( )
N

m nm nm m
m n N

n

u u z Hεα ρ
= =−

≠

⎡ ⎤
⎢ ⎥= Φ⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑   (61a) 
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2
(2) *

2
1

0 

2Re ( ) ( )
N

m nm nm m
m n N

n

u u z Hεα ρ
= =−

≠

⎡ ⎤
⎢ ⎥= Φ⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑   (61b) 

2
*

3
1

0

2Re ( ) ( )
N

nm nm m
m n N

n

u F z Hκβ ρ
= =−

≠

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑   (61c) 

with 

2 2
1 2x xρ = +   (62) 

where the parameter N  defines the extent of the complex series.  In these series, nmα and nmβ  

are the unknown complex coefficients that appear in Eqs. (26)-(28).  The auxiliary function 

( )H ρ  that defines the domain of influence of the local functions is expressed in a polynomial 

form as 

3 4 5

10 15 61 0

0                                                                   

( ) o

o

o o oH
ρ ρ

ρ ρ

ρ
ρ ρ ρ
ρ ρ ρ

− + − ≤ ≤

>

=

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎪
⎩

  (63a) 

with  

( ) ( ) ( ) 0o o oH H Hρ ρ ρ′ ′′= = =   (63b) 

where the prime marks denotes differentiation with respect to the variable ρ  and the parameter 

oρ  denotes the radius of the region in which the local functions are effective.  The purpose of 

chosing the auxiliary function is to prevent any possible linear dependency between the local and 

global functions and to restrict the influence of the local functions to a limited domain around the 

cutout.   

 The complex functions (1) (2)( ) and ( )m m m mu z u zε ε   that appear in Eqs. (61a) and (61b) are 

defined as  
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(1) ( ) cos ( ) sin ( )m m m m m mu z p z q zε ε εψ ψ= −   (64a) 

(2) ( ) sin ( ) cos ( )m m m m m mu z p z q zε ε εψ ψ= +   (64b) 

where the complex constants mp  and mq  are given by  

2
11 12 16m m mp a a aε εμ μ= + −   (65a) 

12 22 26/m m mq a a aε εμ μ= + −   (65b) 

In Eqs. (65a) and (65b), the unknown complex constants, mεμ , are the roots to the characteristic 

equation associated with membrane deformation, i.e.,  

4 3 2
11 16 26 66

26 22

2 (2 )

                                   2 0
m m m

m

a a a a

a a
ε ε ε

ε

μ μ μ

μ

− + +

− + =
  (66) 

in which the coefficients ija  are the coefficients of the flexibility matrixa , which is the inverse 

of the stiffness matrix A defined by Eq. (13a).  Both the flexibility and the stiffness matrices, 

a and A , are measured with respect to the local coordinate system 1 2( , )x x .  The angle, 

ψ represents the orientation of the local coordinate system with respect to the global coordinate 

system, 1 2( , )s s .  

 The complex potential function, * ( )nm mzεΦ , appearing in Eqs. (61a) and (61b) is defined as 

* ( ) n
nm m mzε εξΦ =   (67) 

in which the mapping functions, mεξ , map a cutout onto a unit circle.  The mapping functions for 

an elliptical cutout, introduced by Lekhnitskii22, are given by 

2 2 2 2

2           ( 1, 2)m m m
m

m

z z a b
m

a i b
ε ε ε

ε
ε

μ
ξ

μ
± − −

= =
−

  (68) 
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where 1 2m mz x xε εμ= + , a  and b  are the major and minor axes of the elliptical cutout, 

and 1i = − . The sign of the square-root term is chosen so that 1mεξ ≥  (i.e., the mapped point is 

guaranteed to be on or outside the unit circle).  

 Inverting the mapping function provides ( )m mε εω ξ  as 

( ) m
m m m m m

m

sz r ε
ε ε ε ε ε

ε

ω ξ ξ
ξ

= = −   (69) 

in which 

( ) ( )1 1 ,     
2 2m m m mr a i b s a i bε ε ε εμ μ= − = +   (70a,b) 

The unknown complex constants 1εμ  and 2εμ , and their complex conjugates, i.e., 

3 1ε εμ μ= and 4 2ε εμ μ= , are the roots obtained from the characteristic equation associated with 

membrane deformation 

 The complex potential functions, * ( )nm mF zκ in E. (61c) are defined as 

2

* 2

2

, 1
1 1

( ) ln , 1
2

ln , 1
2

n nm m
m m

m
nm m m m m

m
m m m

r s n
n n
rF z s n

sr n

κ κ
κ κ

κ
κ κ κ κ

κ
κ κ κ

ξ ξ

ξ ξ

ξ ξ

−

−

⎧
− >⎪ + −⎪

⎪
= − =⎨
⎪
⎪

+ = −⎪
⎩

  (71) 

in which the expressions for the mapping function mκξ  and the constants mrκ and msκ  have the 

same form as the corresponding expressions for mεξ , mrε , and msε given by Eqs. (68) - (70a,b), 

except that the subscript ε  is replaced byκ . 

The complex variables mzκ  are defined by 

1 2m mz x xκ κμ= +   (72) 
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in which the unknown complex constants 1κμ  and 2κμ  and their conjugates, i.e., 

3 1κ κμ μ= and 4 2κ κμ μ= , are the roots obtained from the characteristic equation associated with 

the bending equilibrium equation  

4 3 2
22 26 12 66

16 11

4 (2 4 )

4 0                                    
m m m

m

D D D D

D D
κ κ κ

κ

μ μ μ

μ

+ + +

+ + =
  (73) 

where ijD  are the components of the bending stiffness matrix D  (see Eq. (13b), which is defined 

with respect to the local coordinate system, 1 2( , )x x . 

 It is important to note that the local functions in Eq. (61) satisfy the in-plane and bending 

equilibrium equations of a homogeneous, flat laminate of uniform thickness, not a cylindrical 

shell.  Therefore, the roots to the characteristic equations, Eqs. (66) and (73) serve as 

approximation to their exact values which are not mathematically tractable.  Because the solution 

procedure is based on the principle of minimum potential, their exact values are not necessarily 

required.  However, they capture the stress concentration and local deformation near the cutout 

in cylindrical shells because these functions possess the inherent solution characteristics.  They 

satify the equilibrium equations exactly as the radius of curvature approaches inifinity and are 

uniformly convergent in a doubly connected region. 

 In  the displacement representations defined by Eqs. (26a) and (26b), the vectors, Rα , ic , α , 

and β  are defined as 

{ }1 2 3 4 5 6, , , , ,T
R R R R R R Rα α α α α α=α   (74a) 

{
}

(00) (10) (01) ( 0)

(( 1)1) (1( 1)) (0 )

, , ,....,

                      , ,...., ,

T
i i i i i M

i M i M i M

c c c c

c c c− −

=c
  (74b) 

{ }1 1 1 1, ,...., , ,...., ,T T T T T T T
N N N N− − + − −=α α α α α α α   (74c) 
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in which 

{ }1 2,T T T
n n n=α α α   (75) 

with 

{ }Re , ImT
nj nj njα α⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦α   (76a) 

and 

{ }1 1 1 1, ,...., , ,...., ,T T T T T T T
N N N N− − + − −=β β β β β β β   (76b) 

in which 

{ }1 2,T T T
n n n=β β β   (77) 

with 

{ }Re , ImT T T
nj nj njβ β⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦β   (78) 

The vector functions, iV , with 1,2,3i =  associated with the unknown generalized coordinates q  

appearing in Eq. (27) are defined as 

{ }1 1 1 1, , , , ,T T T T T T T
R=V V V 0 0 V 0   (79a) 

{ }2 2 2 2, , , , ,T T T T T T T
R=V V 0 V 0 V 0   (79b) 

{ }3 3 3 3, , , , ,T T T T T T T
R=V V 0 0 V 0 V   (79c) 

where 

( )( ){0,0,0,..,0}   of order   M+1 M+2 2T ⎡ ⎤⎣ ⎦=0   (80a) 

8{0,0,..,0} of order T N=0   (80b) 

The vectors associated with rigid body motion are  
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{ }1 1,0,0,0, ,T
R z y= −V   (81a) 

2 2 2 2

2 2

2 0, , ,

                                      , ,

T
R

dy dz dz dyy z
ds ds ds ds

dz dyx x
ds ds

⎧ ⎛ ⎞⎪ −⎨ ⎜ ⎟
⎪ ⎝ ⎠⎩

⎫
− − ⎬

⎭

=V
  (81b) 

2 2 2 2

2 2

3 0, , ,

                                           , ,

T
R

dz dy dy dzy z
ds ds ds ds

dy dzx x
ds ds

⎧ ⎛ ⎞⎪ − +⎨ ⎜ ⎟
⎪ ⎝ ⎠⎩

⎫
− − ⎬

⎭

=V
  (81c) 

Similarly, the vectors associated with the global functions are  

0 1 0 2 1 1 0 2

0 1 1 2 2 1 0 2

1 1 1 2 0 1 2 2

1 0 2 1 1 1 2

1 1 1 2 0 1 2

{ ( ) ( ), ( ) ( ),
           ( ) ( ), ( ) ( ),
           ( ) ( ), ( ) ( ),..
           ..., ( ) ( ), ( ) ( ),..
           ..., ( ) ( ), ( ) ( )}

T
i

M M

M M

T s W s T s W s
T s W s T s W s
T s W s T s W s

T s W s T s W s
T s W s T s W s

−

−

=V

  (82) 

in which the expressions for 1( ) iT s and 2( )iW s  are given by Eq. (60), and 

{
}

( ) ( 1) ( 1)

(1) ( 1) ( )

, ,....,

                             , ,..., ,

T T T
i N i N i

T T T
i i N i N

T
i − − + −

−

= V V V

V V V

V
  (83) 

with 

{ }( ) ( 1) ( 2),T T T
i n i n i n=V V V  (84) 

in which 

{ }* *( ) ( )
( ) 2Re , 2Imnj nj
T i i

j ji nj u u⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= Φ − ΦV   (85) 

where , 1, 2i j =  and 
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{
}

3( ) 3( 1) 3( 1)

3(1) 3( 1) 3( )

3 , ,....,

                             , ,..., ,

T T T
N N

T T T
N N

T
− − + −

−

= V V V

V V V

V
  (86) 

with 

{ }3( ) 3( 1) 3( 2),T T T
n n n=V V V   (87) 

in which 

{ }* *
3( ) 2Re , 2Im , ( 1,2)nj nj
T

nj F F j⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − =V   (88) 

 

Appendix C  

Constraint Equations 

 The unknown vector of Lagrange multipliers, λ and the known coefficient matrix, G , in Eq. 

(19) are defined by 

{ }(1) (2) ( ) ( ) (1) (6), , , , ,...,T
RRB RRB SV r SV s RB RBλ λ λ λ λ λ=λ   (89a) 

and 

(1)

(2)

( )

( )

(1)

(2)

(3)

(4)

(5)

(6)

T T T T T T
R RRB

T T T T T T
R RRB

T T T T T T
R SV s

T T T T T T
R L SV r

T T T T T T
RB

T T T T T T
RB

T T T T T T
RB

T T T T T T
RB

T T T T T T
RB

T T T T T T
RB

⎡ ⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢= ⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎣

0 g 0 0 0 0

0 0 g 0 0 0

0 0 0 0 0 g

0 0 0 0 0 g

g 0 0 0 0 0
G

g 0 0 0 0 0

g 0 0 0 0 0

g 0 0 0 0 0

g 0 0 0 0 0

g 0 0 0 0 0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎦

  (89b) 
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in which the constant coefficient vectors, (1)RRBg and (2)RRBg  are associated with redundant rigid-

body modes, ( )SV rg and ( )SV sg  with single valuedness of the radial displacement component, and 

( )RB jg  with the rigid-body modes introduced by the global functions defined in Eq. (59).  The 

rigid-body modes must be eliminated in the absence of a sufficient number of specified 

kinematic boundary conditions.  These terms, as well as, the vectors with zeros are defined in the 

following subsections. 

 

Redundant rigid-body modes 

 The coefficients, 1(00) 2(00) and c c in Eq. (59) for the global displacement functions produce 

additional rigid-body translation in the 1s  direction and rigid body rotation about the 1s  axis, 

respectively.  Because these rigid-body modes are already represented by 1Rα  and 6Rα  in Eq. 

(58), the redundant rigid-body motion arising from the presence of 1(00) 2(00) and c c , must be 

eliminated in order to obtain a unique representation of the displacements. These redundant 

rigid-body modes are eliminated by using the constraint conditions  

(1) 1(00) 0RRB cλ =   (90a) 

(2) 2(00) 0RRB cλ =   (90b) 

in which the unknown Lagrange multipliers are denoted by (1) (2) and RRB RRBλ λ .  In terms of the 

vector of unknowns, q , these constraints are rewritten  in vector form as 
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{ } 2
(1)

3

, , , , , 0

R

T T T T T T
RB R RRBλ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

1

α
c
c

0 g 0 0 0 0
c
α
β

  (91a) 

{ } 2
(2)

3

, , , , , 0

R

T T T T T T
RB R RRBλ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

1

α
c
c

0 0 g 0 0 0
c
α
β

  (91b) 

in which the vectors of zeros, T
R0 , T

R0  and T
R0  are defined as  

{0,0,0,0,0,0}T
R =0  (92a) 

( )( ){0,0,0,..,0}  of order M+1 M+2 2T = ⎡ ⎤⎣ ⎦0   (92b) 

{0,0,0,..,0}  of order 8T N=0  (92c) 

The constant coefficient vector, RRBg is defined as 

( )( ){1,0,0,..,0}  of order M+1 M+2 2T
RRB = ⎡ ⎤⎣ ⎦g   (93) 

 

Single-valuedness of the radial displacement component 

 The multi-valuedness of the normal displacement component that arises from the presence of 

logarithmic terms in the local expression for the radial displacement component in Eq. (61c) 

must be rendered single valued in order to obtain a unique solution.  The logarithmic terms 

associated with complex constants, 1 1and m mβ β− , with ( 1,2)m = , in Eq. (71) result in two real 
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constants.  Representing the complex variable of the Laurent series, mi
m me θξ ρ= , the single-

valuedness requirement is enforced as  

( 2 )( ) ( ) 0m mi i
z m m z m mu e u eθ θ πξ ρ ξ ρ += − = =   (94) 

Associated with the complex constants, 1 1and m mβ β− with ( 1,2)m = , in Eq. (71), this condition 

yields 

{
}

2
*
1

1

( 2 )*
1 1

2Re{ ( )

             ( ) } 0

m

m

i
m m m

m

i
m m m m

F e

F e

θ

θ π

ξ ρ

ξ ρ β

−
=

+
− −

=

− = =

∑
  (95a) 

or 

[ ]
2

1
1

Im 0m m
m

r β−
=

=∑   (95b) 

and 

{
}

2
*

1
1

( 2 )*
1 1

2Re{ ( )

             ( ) } 0

m

m

i
m m m

m

i
m m m m

F e

F e

θ

θ π

ξ ρ

ξ ρ β
=

+

=

− = =

∑
  (96a) 

or 

[ ]
2

1
1

Im 0 m m
m

sκ β
=

=∑   (96b) 

In order to ensure single-valuedness, these constraints are enforced as 

[ ]
2

( ) 1
1

Im 0SV r m m
m

rκλ β−
=

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑   (97a) 

and 

[ ]
2

( ) 1
1

Im 0 SV s m m
m

sκλ β
=

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑   (97b) 
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in which the unknown Lagrange multipliers are denoted by ( )SV rλ  and ( )SV sλ .   

 In terms of the vector of unknowns, q , these constraint conditions can be recast in matrix 

form as 

{ } 2
( ) ( )

3

, , , , , 0

R

T T T T T T
SV r R SV rλ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

1

α
c
c

0 0 0 0 0 g
c
α
β

  (98a) 

{ } 2
( ) ( )

3

, , , , , 0

R

T T T T T T
SV s R SV sλ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

1

α
c
c

0 0 0 0 0 g
c
α
β

  (98b) 

where the constant coefficient vectors ( )SV rg  and ( )SV sg  are given by  

{
}

( ) ( )( ) ( )( 1) ( )( 1)

( )(1) ( )( 1) ( )( )

, ,....,

                         , ,...., ,

T T T T
SV j SV j N SV j N SV j

T T T
SV j SV j N SV j N

− − + −

−

=g g g g

g g g
  (99) 

in which 

[ ] [ ] [ ] [ ]{ }( )(1) 1 1 2 2Im ,Re , Im ,ReT
SV r r r r r=g   (100a) 

( )( ) {0,0,0,0}      if    1T
SV r n n= ≠g   (100b) 

and  

[ ] [ ] [ ] [ ]{ }( )(1) 1 1 2 2Im ,Re , Im ,ReT
SV s s s s s=g   (100c) 

( )( ) {0,0,0,0}      if    1T
SV s n n= ≠g   (100d) 

with N n N− ≤ ≤ . 
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Rigid-body modes 

 In the absence of kinematic boundary conditions, the rigid-body modes of the displacement 

field are eliminated by enforcing the constraint conditions in the form 

( ) ( ) 0RB j R jλ α =   (101) 

where 1,2,3,4,5,6j = , and the unknown Lagrange multipliers are denoted by ( )RB jλ .  In terms of 

the vector of unknowns, q , these constraints are rewritten in vector form as 

{ } 2
( ) ( )

3

, , , , , 0

R

T T T T T T
RB j RB jλ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

1

α
c
c

g 0 0 0 0 0
c
α
β

  (102) 

where the constant coefficient vectors, ( )RB jg are defined as  

{ }( ) 1 2 3 4 5 6, , , , ,T
RB j j j j j j jδ δ δ δ δ δ=g   (103) 

in which ijδ  is the Kronecker delta. 
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Fig. 1   Geometry, coordinates systems, and applied edge tractions for an oval cylindrical shell 

with an elliptical cutout and non-uniform wall thickness. 
 
 

 
Fig. 2   Computational domain of a cylindrical shell with an elliptical cutout. 
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Fig. 3   Application of a concentrated force through a rigid end-ring by using elastic springs 
along a shell edge  

 
  

 
 

Fig. 4   Types of uniformly distributed elastic spring supports that can be prescribed along the 
edge of a cylindrical shell. 
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Fig 5   The effect of varying shell radius on the tangential stress resultants around a circular 

cutout in a quasi-isotropic circular cylindrical shell subjected to a uniform tension load. 
 
  

 
 
Fig 6   The effect of varying circular-cutout radius on the tangential stress resultants around a 

circular cutout in a quasi-isotropic circular cylindrical shell subjected to a uniform tension 
load. 
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Fig 7   The effect of varying elliptical-cutout aspect ratio on the tangential stress resultants 

around a cutout in a quasi-isotropic cylindrical shell subjected to a uniform tension load. 
 
 

 
 
Fig 8   The effect of varying elliptical-cutout orientation on the tangential stresses around the 

cutout in a quasi-isotropic cylindrical shell subjected to a uniform tension load. 
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Fig 9   The effect of shell cross-section eccentricity on the stress-resultant concentration in an 

oval quasiisotropic cylindrical shell with a circular cutout and subjected to a uniform 
tension load. 

 
 

 
 
Fig 10   The effects of longitudinal ( 1 0ε ≠ and 2 0ε = ) and circumferential ( 1 0ε ≠ and 2 0ε = ) wall 

thickness variations on the tangential stress-resultant concentration around a circular 
cutout in a quasi-isotropic circular cylindrical shell subjected to a uniform tension load. 
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Fig 11   The effect of varying shell radius on the tangential stresses around a circular cutout in a 

quasi-isotropic circular cylindrical shell subjected to a uniform torsion load. 
 
  

 
 
Fig 12   The effect of varying shell radius on the tangential stresses around a circular cutout in a 

quasi-isotropic circular cylindrical shell subjected to a pure-bending load. 
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Fig 13   Stress resultant distribution near the cutout in a quasi-isotropic circular cylindrical shell 

subjected to a pure-bending load. 
 


