ABSTRACT

An apparatus for detecting flashback occurrences in a pre-mixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

12 Claims, 7 Drawing Sheets
FIG. 1
FIG. 3

FIG. 4
BACKGROUND OF THE INVENTION

Gas turbines generally include a compressor, one or more combustors, a fuel injection system and a turbine. Typically, the compressor pressurizes inlet air which is then reverse-flowed to the combustors where it is used to provide air for the combustion process and also to cool the combustors. In a multi-combustor system, the combustors are located about the periphery of the gas turbine, and a transition duct connects the outlet end of each combustor with the inlet end of the turbine to deliver the hot products of combustion to the turbine.

Gas turbine combustors are being developed which employ lean premixed combustion to reduce emissions of gases such as NOx (nitrogen oxides). One such combustor comprises a plurality of burners attached to a single combustion chamber.

Each burner includes a flow tube with a centrally disposed fuel nozzle comprising a center hub which supports fuel injectors and swirl vanes. During operation, fuel is injected through the fuel injectors and mixed with the swirling air in the flow tube, and a flame is produced at the exit of the burner. The combustion flame is stabilized by a combination of bluffbody recirculation behind the center hub and swirl-induced recirculation. Because of the lean stoichiometry, lean premixed combustion achieves lower flame temperature and thus produces lower NOx emissions.

These premixed systems are susceptible to an unpredictable phenomena commonly referred to as “flashback.” Flashbacks can be caused by any of a number of events, including ignition of impurities in fuel or ignition during mode switching when the flames are in a transient phase. When flashback occurs, a flame enters zones or cavities of the combustor chamber which may not be designed to contain flames. A flame can also move unexpectedly into combustor cavities used for firing modes other than the combustion mode being exercised at the time of the flashback. Both types of flashback occurrences result in a loss of combustion control and can additionally cause heating and melting of combustor parts, such as fuel nozzles, for example, that are not designed to withstand excessive heating. An operator generally has no method of recognizing the occurrence of a flashback until the combustor sustains damage.

Flashback is accompanied by a step change in emitted visible light from the flame in an area of the combustor where the flame should not exist. Some factors which can contribute to variability in the light profile include: fuel nozzle dimensions, combustion modes, location of sensor with respect to flame, and sensor integrity (aging effects, temperature effects, and fiber fouling).

Fiber optic sensors for combustion and industrial process monitoring and diagnosis in gas turbine and aircraft engine applications require rugged equipment and a high signal level. Generally such fiber optic sensors include large diameter sapphire or quartz rods or bundles of multiple fibers. These designs can be bulky, rigid, and expensive because of special components needed for coupling and packaging. For example, either a very long fiber bundle or a connector with special lenses is required to couple a fiber bundle sensing head to a remote electronic device, and these elements are lossy, bulky, and expensive. Similar coupling problems exist for sensors involving large diameter sapphire or quartz rods. Additionally, rods are too rigid to withstand mechanical and thermal stress for large mechanical systems which frequently undergo high temperature thermal cycles. During machining thermal cycles, dynamic vibrations, installation, and maintenance handling, large rods can crack.

Multiple optical fiber bundles are useful in some applications to provide a large light collecting area as well as redundancy in the event of fiber damage. Many packaging techniques, however, cannot withstand temperatures in excess of about 250°C. Commercially available adhesives such as high temperature ultra-violet cured optical epoxies can withstand temperatures up to about 175°C. Quartz tubing fused fiber bundles require heating the bundle to a temperature greater than 1500°C, in order to melt the quartz. Silica fibers generally include germanium or fluorine dopants to provide desired numerical apertures. At above 700°C, and particularly at above 900°C, dopants in silica fiber cladding start to diffuse into the blank fused silica fiber core and the fibers then lose their original numerical apertures.

Therefore, 700°C is often used as the damage threshold for long term heating of silica fibers.

Detection circuitry must detect flashbacks and prevent false indications of flashbacks. A simple static comparator circuit (such as a limit switch) may have a limited lifetime as compared with the combustor and may require individual tuning of sensors and/or their data to cancel the effects of systematic variations on DC levels and AC levels such as mounting location, diode efficiency, and fiber optic cable/conector efficiency, for example.

SUMMARY OF THE INVENTION

It would be desirable to have a means of quickly detecting the occurrence of a flashback so that a combustor control could react to prevent damage by altering or turning off the combustion; to have an economical sensor that is flexible to mounting location, diode efficiency, and fiber optic cable/conector efficiency, for example.

In one embodiment of the present invention, multiple optical fibers and at least one photodetector are used to sense flashback.

In another embodiment of the present invention an optical sensor includes a single optical fiber conduit system in a sensing head and light guide.

In another embodiment of the present invention, an optical fiber device has a bullet tip shape which enables simple fabrication of a sensor head and reduces the escape of hot gases from seal failure.

In another embodiment of the present invention, a plurality of optical fibers are packed in a support ring, the spaces between the optical fibers are filled with a glass paste which is heated to a melting temperature until the glass paste fuses and bonds to the bundle ends, and the temperature of the glass paste is slowly reduced.

In the above embodiments of the present invention, a microprocessor can be used to reduce the consequences of
systematic and time variant effects and to reduce the costs of installation and testing.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself, however, both as to organization and method of operation, together with further objects and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings, where like numerals represent like components, in which:

FIG. 1 is a block diagram of a flashback protection embodiment of the present invention.

FIG. 2 is a sectional view of a portion of the embodiment of FIG. 1.

FIG. 3 is a circuit diagram of a flashback protection embodiment of the present invention.

FIG. 4 is a partial block diagram of another embodiment of the present invention.

FIG. 5 is a sectional side view of an optical fiber device.

FIG. 6 is a perspective view of a plurality of fibers.

FIG. 7 is a view similar to that of FIG. 6 further showing a ring filled with glass paste.

FIG. 8 is a view similar to that of FIG. 7 showing a polished glass and fiber surface.

FIG. 9 is a circuit diagram of one detection electronics embodiment of the present invention.

FIG. 10 is a block diagram of a signal processor for use in the embodiment of FIG. 9.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

FIG. 1 is a block diagram of a flashback protection embodiment of the present invention, and FIG. 2 is a sectional view of a portion of the embodiment of FIG. 1.

A combustor 1 includes at least one fuel nozzle (and preferably a plurality of fuel nozzles 12a, 12b, 12c, 12d, and 12e) capable of supplying flames 44. Each of the fuel nozzles is monitored using a fiber optic element 24a, 24b, 24c, 24d, or 24e comprising at least one respective optical fiber which serves as a signal to a respective photodetector 14a, 14b, 14c, 14d, or 14e.

If desired, each optical fiber optic element 24a, 24b, 24c, 24d, or 24e may comprise several optical fibers in a bundle as shown by optical fibers 24a', 24b', 24c', and 24d' in FIG. 2.

In one embodiment each fiber optic element includes at least one optical multi-mode fiber pressure-sealed at one end 26 or both ends into a protective tube (shown in FIG. 2) which is capable of withstanding the operating environment. In one embodiment the optical fiber comprises quartz and tube 25a comprises stainless steel. An optical microlens can be used, if desired, for selectively collecting light from the flame which exists during flashback from a portion of the protective tube. The tube can be inserted through holes in a combustor casing 10 (in the air path 46) and a combustor liner 48. The tube can be attached to the combustor casing using a compression fit connection (not shown).

On the other end of the tube, a photodetector can be mounted. In one embodiment, the photodetector comprises a semiconductor photodiode of a material such as silicon, gallium arsenide, silicon carbide, germanium, gallium nitride or gallium phosphide. The photodetectors can be situated outside of an engine compartment 5 which holds the combustor and therefore be protected from the harsh combustion environment. Each photodetector can send an electrical signal to a multiplexer 18 which can then transmit the data to a signal processor 20 before being acted on by a gas turbine controller/monitor 22 (shown in FIG. 1)

In one embodiment, each fiber optic element 24a, 24b, 24c, 24d, or 24e comprises a respective single fiber sensing and conduit system which is useful for achieving mechanical flexibility for tight space packaging. A fine single fiber having a diameter from about 100 micrometers to about 200 micrometers is very flexible and light weight and thus can bend with little damage or light loss and can fit into crowded spaces. Light weight and flexibility reduce the damage impact from any mechanical stress on the assembly. A single fiber system enables the use of commercial fiber optic components including fibers, couplers, connectors, cables, and tools, for example, for applications such as multiplexing, splicing, terminating connectors, fiber polishing, and instrument measuring. The telecommunications industry has infrastructures for its fiber optic products that can be applied and modified as needed for sensing applications.

For combustor sensing in a high temperature environment, an optical fiber must have high endurance in the applicable temperature range. Although rods can generally withstand high temperatures, special mating components are needed to couple light from a rod to a conduit in the vicinity of a high temperature combustor.

Many multi-fiber bundles are limited by temperature constraints, and those that can withstand high temperatures are generally expensive.

Individual high temperature resistant fibers are more flexible and can be fabricated at a lower cost than bundles and rods. For example, metal coated silica fibers are commercially available and can withstand temperatures as high as about 700°C. These fibers can serve as sensing heads and are easily attachable to a regular fiber cable by a standard fiber optic connector. A single fiber sensor head can be packaged and supported at a tip, as described below with respect to FIG. 5.

Although one fiber optic element and one photodetector per fuel nozzle are shown, any of a number of configurations is possible. For example, as shown in FIG. 4, one fiber optic element 24a, 24b, 24c, 24d, or 24e can be used for each nozzle with all the fiber optic elements either arranged together in a bundle 54 and served by one photodetector 56 or optically coupled to a single fiber (not shown) and served by one photodetector. Whenever multiple photodetectors are used, a simple scanning or multiplexing system (shown as multiplexer 18 in FIG. 1) can be used as an interface between the multiple sensing system and the signal processor.

As shown in FIG. 2, in a preferred embodiment the fiber optic element is pointed or aimed at regions (hereinafter referred to as test regions) 13a or 13b of the fuel nozzles wherein flames are not present under normal operating conditions. One such test region is at the back portion of the fuel nozzle 12a or 12b just forward (downstream) from swirl vanes 52a or 52b and a fuel injector 50a or 50b. At this location, the fuel nozzle is not sufficiently hot to emit significant amounts of infrared radiation (IR) that otherwise would saturate a broad spectral responsive semiconductor photodiode with small bandgaps (e.g. silicon, germanium, or gallium arsenide). This simplifies the detection scheme because no IR filters are required.
If desired, for redundancy purposes, a plurality of fiber optic elements \(24a\) and \(24b\) in respective tubes \(25a\) and \(25b\) can be used to monitor flashback in a fuel nozzle.

FIG. 3 is a circuit diagram of an example flashback protection embodiment of the present invention. Fiber optic elements \(24a\), \(24b\), and \(24c\) transmit any detected light to respective photodetectors \(14a\), \(14b\), and \(14c\) which transmit any resulting electrical signals to multiplexer \(18\) which includes switches shown as field effect transistors \(34a\), \(34b\), and \(34c\), for example. A shift register \(44\) can control the timing of switch operation, and an amplifier \(38\)/resistor \(40\) pair can be used for signal amplification before signal transmission from the multiplexer to signal processor \(20\). The diagram of FIG. 3 is for purposes of example only. In another embodiment, for example, an analog-to-digital converter can be used with the switching and amplification then occurring digitally.

If light is detected by a photodetector at a level to indicate that a flame is present in a test region wherein it should not be, the information is transmitted from the signal processor \(20\) to the controller/monitor \(22\) (shown in FIG. 1) which can then turn off combustor \(1\) and/or provide instructions for preventing damage.

FIG. 5 is a sectional side view of an optical fiber device. In a combustion environment, an optical fiber sensor should be hermetically sealed to withstand the high temperatures and high gas pressures.

In the present invention an optical fiber device includes a cylindrically shaped bullet tip \(125\) having a hole \(125\) extending axially therethrough and front and back bullet tip ends \(129\) and \(131\) preferably with a larger diameter at the front bullet tip end than at the back bullet tip end. A section of tubing \(130\) surrounds the back bullet tip end. The bullet tip and tubing can be welded together using a silver brazing or hard soldering process.

After welding, any debris is removed by machining, polishing, and solvent cleaning. The bullet tip and tubing may comprise materials that can withstand high temperatures and pressures such as stainless steel and molybdenum, for example. In one embodiment, the tubing comprises a layered material which provides proper thermal matching to the combustor and the bullet tip and fiber. The diameter of hole \(125\) preferably ranges from about 200 microns to about 5 millimeters. In a preferred embodiment, bullet tip \(128\) includes angled surface \(134\) for helping to guide a fiber \(124\) into the hole of the bullet tip. Although the bullet tip and tubing are shown as two separate elements, in an alternative embodiment, an integral tip may comprise both elements.

A fiber \(124\) is inserted and guided through the back bullet tip end until it extends out of the front bullet tip end (in one embodiment to about two millimeters from the front bullet tip end). In one embodiment the fiber comprises a multimode quartz fiber that has a fiber connector attached thereto with an epoxy.

A liquid molding compound is then injected through the front bullet tip end. The liquid molding compound may comprise a material which is capable of supporting the fiber in the bullet tip such as an adhesive, for example. The molding compound can be injected with a syringe apparatus so that it fills up at least a portion of the inside of tubing \(130\). In one embodiment, the compound comprises a high temperature silica-based adhesive which is able to withstand temperatures up to about 1500°C.

A glass or quartz capillary centering sleeve \(126\) can be slipped over the fiber in the bullet tip prior to the hardening of the liquid molding compound. The diameter of the centering sleeve preferably ranges from about 150 microns (for a smallest inner diameter) to about 4 millimeters (for a largest outer diameter). The lengths of the centering sleeve and bullet tip must be sufficient to center the fiber and generally range from several millimeters to several inches. The tubing length is dependent on the application wherein the fiber will be used.

After the adhesive cures, the front surface and fiber can be polished using a fiber optic polisher. In one embodiment, the front surface is polished until the largest diameter section of the bullet tip front end is about 0.2 micrometers fine.

Because the bullet tip hole \(125\) has a diameter smaller than the diameter of tubing \(130\), the bullet tip helps to reduce hot gas leakage in the event of an adhesive failure.

FIG. 6 is a perspective view of a plurality fibers \(140\) coated with fiber coating \(142\). Any suitable optical fiber material can be used. In one embodiment, germanium or fluorine doped silica fibers are used for the fibers and a plastic such as a polyimide is used for the coating. Preferably the fibers are of substantially equal length and each of the fibers has had the coating removed from a bundle end. The coating can be removed by a technique such as flame-burning, for example. The coating material remains intact beyond the bundle ends.

FIG. 7 is a view similar to that of FIG. 6 further showing a support ring \(146\) filled with glass paste \(147\). The bundle ends of the optical fibers are packed into support ring \(146\). In one embodiment, the support ring comprises an alloy such as Kovar that can withstand high temperatures.

The spaces between the bundle ends of the optical fibers are then filled with a glass paste which may comprise glass frit or powder, for example. In one embodiment, the glass paste comprises a borosilicate glass paste which is useful because of its relatively low melting temperature.

The glass paste is heated to its melting temperature (about 680°C) and maintained at the melting temperature until the glass paste fuses and bonds to the bundle ends. The process may occur over several hours. The temperature should not exceed 700°C for silica optical fibers. After bonding, the temperature of the glass paste is slowly reduced to anneal the glass. Prolonged heating at about 500°C is expected to be useful for silica optical fibers and borosilicate glass paste to prevent cracking. A slow annealing process occurring over about six to about twelve hours is useful because most glass shrinks more significantly (about 1 x 10⁻⁵ inch per inch per degree Celsius (°C)) than quartz (about 0.5 x 10⁻⁵ °C).
An input port 916 preferably includes a photodetector 918, a preamplifier 920, and a low pass filter 922. The preamplifier is useful for converting the photodetector output signal to an output signal compatible with an input range of an analog to digital (A/D) converter 924. The low pass filter can be used for anti-aliasing. Although one input port 916 is shown in FIG. 9, in one embodiment, a plurality of input ports are multiplexed within the A/D converter or by a separate multiplexer (not shown in FIG. 9).

The A/D converter can operate at a sample rate that is higher than a Nyquist rate defined by the bandwidth of the photodetector and thus permit a simpler anti-aliasing filter implementation and reduces the effects of random noise on the conversion data stream. In one embodiment the photodetector comprises a photodiode with a bandwidth of about 10 kilohertz.

A power supply 926 converts raw bus quality power from sources 912 to the required regulated voltages. If one of the sources fails, a diode connection permits the detection electronics to continue operation.

In one embodiment, a plurality of controllers 914 are present with each controller corresponding to a respective buffer. The ability to perform the computation in an amplifying function is provided by a digital signal microprocessor. A contact 932 can be used to permit the signal processor to reset the detection electronics. If desired, flashback can be deliberately induced so that the change in correlated and normalized components can be recorded and evaluated.

An actuation element 942 can be used to control the state of the event indicators 928 and 930 and contact 932. A debug/log monitor 944 can provide real time through interface 934.

Thus, the detection electronics including the signal processor permit adaptive signal processing (tailored to the detection sensitivity to the particular mode of operation) for multiple flashback sensor inputs simultaneously while eliminating erroneous pickup data and ensuring the correct detection based on both correlated and normalized shifts of various levels. Therefore, there is no need to tailor an algorithm for each individual sensor.

While only certain preferred features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

What is claimed is:

1. An apparatus for detecting flashback occurrences in a premixed combustor system including at least one fuel nozzle, the apparatus comprising:
 at least one photodetector;
 at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein the at least one fuel nozzle is not present under normal operating conditions; and
 a signal processor for monitoring a signal of the at least one photodetector.

2. The apparatus of claim 1 wherein the at least one fiber optic element comprises a single optical fiber for sensing the respective flame and coupling the test region and the photodetector.

3. The apparatus of claim 2 wherein the single optical fiber comprises an optical fiber having a diameter ranging from about 100 micrometers to about 200 micrometers.

4. The apparatus of claim 2 further including an optical fiber device comprising:
 a cylindrically shaped bullet tip having a hole extending axially therethrough and front and back bullet tip ends, the single optical fiber extending through the bullet tip;
 a capillary sleeve situated around a portion of the single optical fiber; and
 a molding compound supporting the single optical fiber and the capillary sleeve in the bullet tip.

5. The apparatus of claim 1 wherein the at least one fiber optic element includes at least one optical fiber positioned within a protective tube.

6. The apparatus of claim 5 wherein the at least one fiber optic element includes at least two fiber optic elements coupled to the test region.

7. The apparatus of claim 5, wherein the combustor system is situated in an engine compartment and wherein the
at least one optical fiber and the protective tube have lengths sufficient to situate the at least one photodetector outside the engine compartment.

8. The apparatus of claim 1 wherein the at least one fuel nozzle comprises a plurality of fuel nozzles, the at least one photodetector comprises a plurality of photodetectors, and the at least one fiber optic element comprises a plurality of fiber optic elements, each fiber optic element coupled between a respective one of the plurality of photodetectors and a respective test region of a respective one of the plurality of fuel nozzles.

9. The apparatus of claim 1 wherein the at least one fuel nozzle comprises a plurality of fuel nozzles and the at least one fiber optic element comprises a plurality of fiber optic elements, each fiber optic element coupled between the at least one photodetector and a respective test region of a respective one of the plurality of fuel nozzles.

10. The apparatus of claim 1, wherein the signal comprises a plurality of digital signals, and further including an analog to digital converter coupled between the photodetector and the signal processor for converting an analog signal of the photodetector into the plurality of digital signals.

11. The apparatus of claim 10, wherein the signal processor includes:
 - a decimation element for integrating a selected number of the plurality of digital signals to provide sample data;
 - a filter correlation element for correlating the sample data with a fixed step response; and
 - a false alarm filter for using the correlated sample data to prevent false alarms.

12. The apparatus of claim 11, further including:
 - a high pass filter for filtering the normalized sample data, wherein the false alarm filter uses both the correlated sample data and the filtered normalized sample data for preventing false alarms.

* * * * *