COPOLYMER SEALANT COMPOSITIONS AND METHOD FOR MAKING

Inventors: Navjot Singh, Clifton Park, NY (US); John Thomas Leman, Niskayuna, NY (US); John M. Whitney, Niskayuna, NY (US); Herman Otto Krabbenhoft, Scotia, NY (US)

Assignee: General Electric Company, Niskayuna, NY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 10/199,661
Filed: Jul. 22, 2002

Prior Publication Data

Related U.S. Application Data
Division of application No. 09/626,768, filed on Jul. 27, 2000, now Pat. No. 6,451,954.

Int. Cl. C08G 77/06
U.S. Cl. 528/35, 528/36, 528/37

Field of Search 528/35, 36, 37

References Cited
U.S. PATENT DOCUMENTS
3,202,634 A * 8/1965 Merker 528/35
6,184,209 B1 * 2/2001 Abu-Isa et al. 523/179

* cited by examiner

Primary Examiner—Margaret G. Moore
Attorney, Agent, or Firm—Bernadette M. Bennett; Patrick K. Patnode

ABSTRACT
Condensation curable poly(fluoroorganosiloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about −54° C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorganosiloxane compounds, such as 1,4-bis [trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

25 Claims, No Drawings
1. COPOLYMER SEALANT COMPOSITIONS AND METHOD FOR MAKING

2. CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of application Ser. No. 09/626,768, filed Jul. 27, 2000, which is hereby incorporated by reference in its entirety, now U.S. Pat. No. 6,451,954.

The present invention is based on work sponsored under NASA’s High Speed Research Contract NASI 20220, with Boeing under subcontract ZA0073 Task 22, Subtask 4.2.2.4.

BACKGROUND OF THE INVENTION

The present invention is directed to copolymer compositions useful in the preparation of fuel tank sealants. More particularly, the present invention relates to condensation curable poly[(fluoroorgano)siloxane]-poly(silarylene) siloxane block copolymer compositions and the use of polyalkoxysilylorganics compounds as cross-linkers to facilitate the condensation cure of poly[(fluoroorgano)siloxane]-poly(silarylene) siloxane block copolymers.

As shown by Smith, U.S. Pat. No. 3,109,826, bis (alkoxysilyl) hydrocarbons, such as 1,2-bis(triethoxysilyl) ethane, can be used as cross-linkers in combination with a metal salt to effect the neutral condensation cure of hydroxy end-blocked polydiorganosiloxanes. However, the resulting cured silicone compositions have been found to be problematic as aircraft fuel tank sealants, as they do not have the required solvent or fuel resistance. It is known that fluorosilicones, for example, made by polymerizing tri[(trifluoropropyl)methyl]cyclosiloxanes, can provide excellent fuel resistance. However, fluorosilicones often do not meet the wide temperature stability requirements needed in aircraft sealants, such as temperatures in a range between −54°C and 177°C over an extended period of time. In addition, fluorosilicones are subject to depolymerization which can result in the formation of low molecular weight cycles.

In an effort to enhance the thermal stability of fluorosilicones, non-siloxane groups, such as p-silphenylene, have been inserted into the polyfluorosiloxane backbone, as shown by Grassie and Beattie, “The Thermal Degradation of Polyorganosiloxanes: Part 7”, Polymer Degradation and Stabilization 8:177-193 (1984). It is also reported by Dvornic and Lenz, Macromolecules, 25, 3769 (1992), that copolymers having a glass transition temperature (Tg) of −51°C can be made by reacting methyl(3,3,3-trifluoropropyl)methyl)cyclosiloxane, which can provide excellent fuel resistance. However, fluorosilicones often do not meet the wide temperature stability requirements needed in aircraft sealants, such as temperatures in a range between −54°C and 177°C over an extended period of time. In addition, fluorosilicones are subject to depolymerization which can result in the formation of low molecular weight cycles.

In an effort to enhance the thermal stability of fluorosilicones, non-siloxane groups, such as p-silphenylene, have been inserted into the polyfluorosiloxane backbone, as shown by Grassie and Beattie, “The Thermal Degradation of Polyorganosiloxanes: Part 7”, Polymer Degradation and Stabilization 8:177-193 (1984). It is also reported by Dvornic and Lenz, Macromolecules, 25, 3769 (1992), that copolymers having a glass transition temperature (Tg) of −51°C can be made by reacting methyl(3,3,3-trifluoropropyl)methyl)cyclosiloxane, which can provide excellent fuel resistance. However, fluorosilicones often do not meet the wide temperature stability requirements needed in aircraft sealants, such as temperatures in a range between −54°C and 177°C over an extended period of time. In addition, fluorosilicones are subject to depolymerization which can result in the formation of low molecular weight cycles.

While fluorosilicones having improved thermal stability of fluorosilicones, non-siloxane groups, such as p-silphenylene, have been inserted into the polyfluorosiloxane backbone, as shown by Grassie and Beattie, “The Thermal Degradation of Polyorganosiloxanes: Part 7”, Polymer Degradation and Stabilization 8:177-193 (1984). It is also reported by Dvornic and Lenz, Macromolecules, 25, 3769 (1992), that copolymers having a glass transition temperature (Tg) of −51°C can be made by reacting methyl(3,3,3-trifluoropropyl)methyl)cyclosiloxane, which can provide excellent fuel resistance. However, fluorosilicones often do not meet the wide temperature stability requirements needed in aircraft sealants, such as temperatures in a range between −54°C and 177°C over an extended period of time. In addition, fluorosilicones are subject to depolymerization which can result in the formation of low molecular weight cycles.

Experience also has shown that in addition to being sensitive to depolymerization, condensation curable fluorosilicone compositions often suffer from an incomplete cure using a conventional curing catalyst, such as a tin salt, and a standard neutral condensation curable cross-linker, for example a polyalkoxysiloxane. One possible explanation, as discussed by Fujiki, U.S. Pat. No. 5,236,997, is that the steric hindrance or electronic effects of bulky terminal trifluoropropyl groups inhibit crosslinking of the network.

Accordingly, depolymerization resistant silicone base copolymers which could be compounded to a fuel resistant condensation curable silicone composition convertible to the elastomeric state upon cure exhibiting stability over an operable temperature in a range between about −54°C or below and at least about 177°C over an extended period of time are currently being sought which also exhibit low temperature flexibility, in addition to high temperature stability.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a condensation curable poly[(fluoroorganosiloxane]-poly[(silarylene) siloxane block copolymer exhibiting a glass transition temperature not exceeding about −54°C.

A further embodiment of the present invention provides a method for making a poly[(fluoroorganosiloxane]-poly[(silarylene) siloxane copolymer comprising effecting reaction between a bis(diorganohydroxysilyl)arylene and a poly[(fluoroalkylorgano)cyclopolsiloxane

In yet a further embodiment of the present invention, there is provided a neutral condensation curable poly[(fluoroorganosiloxane]-poly[(silarylene) siloxane block copolymer sealant composition comprising

(a) a poly[(fluoroorganosiloxane]-poly[(silarylene) siloxane block copolymer,
(b) a cross-linker, and
(c) a condensation catalyst.

In yet another embodiment of the present invention, there is provided a method for making a neutral condensation curable poly[(fluoroorganosiloxane]-poly[(silarylene) siloxane block copolymer sealant composition which comprises

(a) effecting reaction between bis(diorganohydroxysilyl) arylene and poly[(fluoroalkylorgano)cyclopolsiloxane to form a condensation curable poly[(fluoroorganosiloxane]-poly[(silarylene) siloxane block copolymer,
(b) shearing the copolymer, and
(c) blending a cross-linker and a condensation catalyst with the copolymer to form a sealant.

DETAILED DESCRIPTION OF THE INVENTION

The poly[(fluoroorganosiloxane]-poly[(silarylene) siloxane block copolymers, or “block copolymers” within the scope of the present invention, can be used to make aircraft fuel tank sealants having property profiles which include a glass transition temperature (Tg) of about −54°C or below and can be made by the ring opening polymerization of a poly[(fluoroalkylorgano)cyclopolsiloxane in the presence of a bis(diorganohydroxysilyl) arylene.

As used hereinafter, the term “bis(diorganohydroxysilyl) arylene”, or “bis(hydroxysilyl) arylene” is shown by the formula,

and the term “silarylenesiloxoxy” can be represented by the formula,

where Q1 is a C(6.12) divalent aromatic organic radical, and R is a C(1-4) alkyl radical. Preferably, the bis (diorganohydroxysilyl) arylene is 1,4-bis(dimethylhydroxysilyl)benzene.

Poly[(fluoroalkylorgano)cyclopolsiloxane], sometimes expressed as “poly[(fluoroalkyl)cyclic siloxane]” is shown by the following formula:

![Formula Image]
3

where R is a C_{2-12} alkyl radical, R is a C_{1-12} organic radical, and "a" is an integer in a range between about 3 and about 8 inclusive, and preferably 3 or 4. Poly(fluoroalkylorganosiloxy)polysiloxanes can be used in a proportion in a range between about 0.5 and about 4 moles, and preferably in a range between about 1 and about 2 moles, per mole of bis[(diorganohydroxy)silyl]arylene. Reaction to form the copolymer is typically effected with agitation under neat conditions or in the presence of an inert organic solvent, for example, toluene, at temperatures in a range between about 60°C and about 150°C. Reaction is typically effected for a time period in a range between about 30 minutes and about 2 hours, and preferably, in a range between about 45 minutes and about 1.5 hours. It is preferred to operate within an inert atmosphere, for example, under a nitrogen blanket. Typically, there is also present an initiator, for example, an alkali hydroxide (e.g. sodium hydroxide) or an alkali fluorosilanolate (e.g. sodium fluorosilanolate) in a range between about 5 parts and about 15 parts by weight per 100 parts of block copolymer. The neutral condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane copolymer sealant composition can be made by blending the block copolymer masterbatch with an effective amount of a condensation catalyst and a suitable bis(polyalkoxysilyl)organo cross-linker, referred to hereinafter sometimes as “cross-linker”. “Neutral” as used herein refers to a sealant composition which is substantially acid-free and substantially base-free. Suitable condensation catalysts are present in a range between about 0.1 and about 2 parts, per 100 parts of block copolymer. A copolymer and include, for example, organo-metal compounds such as dibutyltin diacetate, dimethyltin neodecanoate, dibutyltin dilaurate, stannous octoate, dimethyltin hydroxyoleate, or combinations thereof. Some of the preferred bis(polyalkoxysilyl)organo cross-linkers included within formula (I) are, for example, 1,2-bis(triethoxysilyl)ethane, 1,6-bis(trimethoxysilyl)hexane, 1,4-bis[(trimethoxy)silyl(ethyl)]benzene, 1,2-bis(methylidithoxysilyl)ethane, and 1,6-bis[(methylidithoxysilyl)]hexane. The cross-linkers are present in a range between about 1 and about 20 parts, per 100 parts of block copolymer. In order that skilled in the art will be better able to practice the present invention, the following examples are given by way of illustration and not by way of limitation. All parts are weight unless otherwise indicated.

EXAMPLE 1

A poly(fluoroorganosiloxy)siloxane-poly(silarylene)siloxane block copolymer useful in making a condensation curable sealant composition was prepared as follows:

A mixture of 2.26 grams (g) (0.010 mole) of 1,4-bis(dimethylhydroxysilyl)benzene and 9.42 g (0.020 mole) of tris[(trifluoropropyl)methyl]cyclosiloxane was heated with stirring to about 150°C under a nitrogen atmosphere. There was then added 0.04 g of sodium fluorosilanolate. After 60 minutes at 150°C, there was added to the mixture 0.065 g of a silyl phosphate. The reaction mixture was maintained with stirring for an additional at 150°C and then allowed to cool. Based on method of preparation, there was obtained a block copolymer, including chemically combined blocks of 1,4-dimethyl-silylphenylenesiloxane units and blocks of methyl(3,3,3-trifluoropropyl)siloxane units. A silicon-29 nuclear magnetic resonance spectrum indicated the 1,4-
were obtained, where the respective cross-linked condensation curable sealant compositions were prepared as follows from a block copolymer made in accordance with the method of Example 1. The block copolymer was initially compounded in a Baker-Perrins double-planetary mixer for 1 hour under a nitrogen blanked with a silazane/octamethylcyclotetrasiloxane treated fumed silica, and red iron oxide. A homogeneous filler dispersion was prepared based on the use of 1324 parts of block copolymer, 105 parts of a bis(polyalkoxysilyl)Q hydrocarbon cross-linker, and 0.5 part of dibutyltindiacetate, as a condensation catalyst. The respective catalyzed formulations at ambient temperatures were obtained at a temperature of 150°C. The viscous red sealant paste contained in a Semco cartridge. The respective red sealant paste was then discharged while slightly above room temperature into a 4 liter (L) SemcoB 1350 apparatus of PRC paste was then discharged while slightly above room temperature into a 4 liter (L) apparatus of PRC Desoto Inc of Mount Laurel, N.J. and then dispensed into 6 ounce Semco cartridges.

Several neutral condensation curable sealant compositions were prepared by blending in a Semco 388 mixer, 4 parts of a bis(polyalkoxy)silyl)C(2-30) hydrocarbon cross-linker and 100 parts of the above block copolymer red sealant paste contained in a Semco cartridge. The respective neutral condensation cure sealant compositions are identified in the tables below by the particular bis(polyalkoxy)silyl)Q cross-linker, where Q is as previously defined. More particularly, the bis(polyalkoxy)silyl)Q cross-linkers include 1.2-bis[(trimethoxysilyl)ethane, or “BTMSEB”, 1,6-bis[(trimethoxysilyl)hexane, or “BTMSEX”, and 1,4-bis[(trimethoxysilyl)(ethyl)]benzene, or “BTMSEB”.

There was also mixed with the respective red sealant paste blends of block copolymer and cross-linker, 0.5 part of dibutyltindiacetate, or “DBTA”, as a condensation catalyst. Test specimens were prepared by compression molding the respective catalyzed formulations at ambient temperatures into 4 inch x 5 inch x 0.08 inch sheets. The sheets were allowed to cure to the elastomeric state for a minimum of 7 days in 25°C, and 50% relative humidity (RH). Tensile properties, such as tensile strength (psi), elongation (%), and 100% modulus (psi) of each of the respective compression molded elastomeric sheets were then measured after a series of seven day test periods. The initial test period, “A”, was standard cure at room temperature at 50% RH. Another test period, “B”, was heat aging at 177°C for 7 days after standard cure. There was also included, “C”, immersion in Jet A fuel at 60°C. For 7 days after standard cure, and, “D”, 2 days in Jet A at 60°C. Followed by 5 days in air at 177°C. After standard cure. The following results were obtained, where the respective cross-linked condensation cure sealant compositions are denoted by their previously identified cross-linkers, namely BTMSEB, BTSE and BTMSEX:

<table>
<thead>
<tr>
<th>7 Day Test Periods</th>
<th>Tensile Strength (psi)</th>
<th>Elongation (%)</th>
<th>100% Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BTMSEB</td>
<td>250</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>BTSE</td>
<td>227</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>BTMSEX</td>
<td>227</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>BTMSEB</td>
<td>273</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>BTSE</td>
<td>239</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>BTMSEX</td>
<td>268</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>BTMSEB</td>
<td>151</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>BTSE</td>
<td>146</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>BTMSEX</td>
<td>192</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>BTMSEB</td>
<td>291</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>BTSE</td>
<td>253</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>BTMSEX</td>
<td>275</td>
<td>191</td>
</tr>
</tbody>
</table>

The above results show that the copolymers of the present invention are depolymerization resistant and provide neutral condensation curable compositions which are useful as solvent resistant sealants. The crosslinker in the present invention can be employed in non-corrosive cure systems to fabricate elastomers useful as fuel resistant sealing materials, electronic encapsulation, and in applications requiring chemically resistant materials. Particularly, the crosslinkers can be used for preparation of fuel tank sealants.

While typical embodiments have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the invention. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the spirit and scope of the present invention.

What is claimed:

1. A condensation curable poly(fluoroorgano)silazane/poly(silarylene)siloxane block copolymer exhibiting a glass transition temperature not exceeding about -54°C.
2. The copolymer in accordance with claim 1, wherein the copolymer exhibits a weight average molecular weight in the range between about 60,000 and about 190,000.
3. The copolymer in accordance with claim 2, wherein the copolymer comprises the reaction product of a bis(diorganohydroxysilyl)arylene chemically combined with a poly(fluoroalkylykorgano)cyclopolsiloxane.
4. The copolymer in accordance with claim 3, wherein the copolymer is depolymerization resistant.
5. The copolymer in accordance with claim 3, wherein the copolymer exhibits a weight average molecular weight in the range between about 0.5 moles and about 4 moles, per mole of bis(diorganohydroxysilyl)arylene.
6. The copolymer in accordance with claim 5, wherein the poly(fluoroalkylykorgano)cyclopolsiloxane is present in a range between about 1 moles and about 2 moles, per mole of bis(diorganohydroxysilyl)arylene.
7. The copolymer in accordance with claim 2, wherein the bis(diorganohydroxysilyl)arylene comprises the formula

\[\text{(HO-}(\text{R})_{2}\text{Si})_{n}Q^1 \]

where \(Q^1 \) is a \(C_{10-12} \) divalent aromatic organic radical, and \(R \) is a \(C_{1-8} \) alkyl radical.

\[\text{(HO-}(\text{R})_{2}\text{Si})_{n}Q^1 \]
The copolymer in accordance with claim 7, wherein the bis(diorganohydroxysilyl)arylene comprises 1,4-bis(dimethylhydroxysilyl)benzene.

The copolymer in accordance with claim 2, wherein the poly(fluoroalkylorgano)cyclopolsiloxane comprises the formula

$$[(R^1)_{a}(R^2)_{b}SiO]_n$$

where R^1 is a C(3-8) polyfluoroalkyl radical, R^2 is a C(1-12) organic radical, and “a” is an integer in a range between about 3 and about 8 inclusive.

The copolymer in accordance with claim 9, wherein the poly(fluoroalkylorgano)cyclopolsiloxane comprises the reaction product of 1,4-bis(dimethylhydroxysilyl)benzene chemically combined with tris[(trifluoropropyl)methyl]cyclosiloxane.

A depolymerization resistant condensation curable poly(fluoroalkylorgano)siloxane-poly(silarylene)siloxane block copolymer exhibiting a glass transition temperature not exceeding about -54°C and a weight average molecular weight in the range between about 60,000 and about 190,000 wherein the copolymer comprises the reaction product of 1,4-bis(dimethylhydroxysilyl)benzene chemically combined with tris[(trifluoropropyl)methyl]cyclosiloxane.

A method for making a poly(fluoroalkylorgano)siloxane-poly(silarylene)siloxane copolymer comprising effecting reaction between bis(diorganohydroxysilyl)arylene and poly(fluoroalkylorgano)cyclopolsiloxane.

The method in accordance with claim 12, wherein the copolymer has a glass transition temperature not exceeding about -54°C and a weight average molecular weight in the range between about 60,000 and about 190,000, comprising effecting reaction between 1,4-bis(dimethylhydroxysilyl)benzene and tris[(trifluoropropyl)methyl]cyclosiloxane in the presence of sodium fluorosilanolate and silyl phosphate at a temperature in a range between about 60°C and about 150°C.

* * * * *