
I Ill11 ll111111 Ill Ill11 Ill11 IIIII IIIII Ill11 11111 11111 11111 11llll Ill1 1111 Ill1 
US006609036Bl 

(12) United States Patent (io) Patent No.: US 6,609,036 B1 
Bickford (45) Date of Patent: Aug. 19,2003 

SURVEILLANCE SYSTEM AND METHOD 
HAVING PARAMETER ESTIMATION AND 
OPERATING MODE PARTITIONING 

Inventor: Randall L. Bickford, 7932 Country 
Trail Dr., Orangevale, CA (US) 95662 

Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 314 days. 

Notice: 

Appl. No.: 09/591,140 

Filed: Jun. 9, 2000 

Int. Cl? ................................................ G05B 13/02 
U.S. C1. ............................. 700/30; 700128; 700131; 

700140; 700146; 700147; 700148; 706114; 
706115; 706116; 70112; 70113; 701111; 701123 

700131, 32, 40, 44, 45, 46, 47, 48, 49, 
Field of Search .............................. 700128, 29, 30, 

50, 51; 70111, 2, 3, 4, 11, 14, 23; 706114-17 

References Cited 

U.S. PATENT DOCUMENTS 

4,295,128 A 1011981 Hashemian et al. 
4,478,783 A 1011984 Broadwater 
4,761,748 A 811988 Le Rat et al. 
4,937,763 A 611990 Mott 
4,975,968 A * 1211990 Yukl .......................... 3241647 
5,009,833 A 411991 Takeuchi et al. 
5,223,207 A 611993 Gross et al. 
5,274,572 A 1211993 O'Neil et al. 
5,381,140 A * 111995 Kuroda et al. .............. 3401961 
5,392,320 A 211995 Chao 
5,402,521 A 311995 Niida et al. 
5,410,492 A 411995 Gross et al. 
5,459,675 A 1011995 Gross et al. 
5,465,321 A 1111995 Smyth 
5,506,794 A 411996 Lange 
5,586,066 A 1211996 White et al. 
5,602,886 A 211997 Gross et al. 
5,629,872 A 511997 Gross et al. 
5,680,409 A 1011997 Qin et al. 
5,706,321 A 111998 Chen et al. 
5,740,033 A 411998 Wassick et al. 

5,745,382 A 411998 Vilim et al. 
5,761,090 A 611998 Gross et al. 
5,764,509 A 611998 Gross et al. 
5,774,379 A 611998 Gross et al. 
5,774,569 A * 611998 Waldenmaier .............. 3481143 
5,864,773 A 111999 Barna et al. 
5,877,999 A * 311999 Holt et al. ................ 310167 R 
5,950,147 A 911999 Sarangapani et al. 
5,987,399 A 1111999 Wegerich et al. 
5,991,525 A 1111999 Shah et al. 
6,016,465 A 112000 Kelly 

OTHER PUBLICATIONS 

Bickford, Randall L., Phase Partioning the Multivariate 
State Estimation Technique (MSET) Process for Improved 
Parameter Estimation Performance and Processing Speed, 
New Technology Report, Jan. 13, 2000, Printed in USA by 
Expert Microsystems, Inc. 
Herzog, Dr. James P., System Classification Using A Learn- 
ing Vector Quantization (LVQ) Neural Network, New Tech- 
nology Report, Jan. 13, 2000, Printed in USA by Argonne 
National Laboratory. 

(List continued on next page.) 

Primary Examinerqamesh Pate1 
(74) Attorney, Agent, or F i r m 4 e n n i s  A. DeBoo 

(57) ABSTRACT 

Asystem and method for monitoring an apparatus or process 
asset including partitioning an unpartitioned training data set 
into a plurality of training data subsets each having an 
operating mode associated thereto; creating a process model 
comprised of a plurality of process submodels each trained 
as a function of at least one of the training data subsets; 
acquiring a current set of observed signal data values from 
the asset; determining an operating mode of the asset for the 
current set of observed signal data values; selecting a 
process submodel from the process model as a function of 
the determined operating mode of the asset; calculating a 
current set of estimated signal data values from the selected 
process submodel for the determined operating mode; and 
outputting the calculated current set of estimated signal data 
values for providing asset surveillance andlor control. 

23 Claims, 23 Drawing Sheets 



US 6,609,036 B1 
Page 2 

OTHER PUBLICATIONS 

Herzog et al, MSET Modeling of Crystal River-3 Venturi 
Flow Meters, 6th International Conference on Nuclear Engi- 
neering, 1998, Printed in USA by ASME. 
Herzog, et al. Dynamics Sensor Validation For Reusable 
Launch Vehicle Propulsion, 34th AIAAIASMEISAEIASEE 
Joint Propulsion Conference, 1998, Printed in USA by 
Argonne National Laboratory & Expert Microsystems. 
Gross, K.C. et al, Application of a Model-Based Fault 
Detection System to Nuclear Plant Signals, International 
Conference on Intelligent System Application To Power 
Systems, Jul. 1997,Printed in USAArgonne National Labo- 
ratory & Florida Power Corporation. 
Stinger, Ralph M. et al, Model-Based Nuclear Power Plant 
Monitoring And Fault Detection: Theoretical Foundations, 
International Conference On Intelligent Systems, Jul. 1997, 
Printed in USA by Argonne National Laboratory. 
Hylko, James M., New AI Technique Detects Instruments, 
Power, Nov. 1998, Printed in USA by Power. 
Deyst, John J. Jr., Sensor Validation: Method To Enhance 
The Quality Of The ManIMachine Interface In Nuclear 
Power Stations, IEEE Transactions On Nuclear Science, 
Feb. 1981, Printed in USA by IEEE Transactions On 
Nuclear Science. 
Gross, Kenny c. et al, Sequential Probability Ratio Test For 
Nuclear Plant Component Surveillance, Nuclear Technology 
1990, Printed in USA by Argonne National Laboratory. 
Racz, A,, Comments On The Sequential Probability Ratio 
Testing Methods, Ann. Nuclear Energy 1995, Printed in 
USA KFKI-Atomic Energy Research Institute Applied 
Reactor Physics Laboratory 

Kulacsy, Katalin, Further Comments On The Sequential 
Probability Ratio Testing Methods, Annals Of Nuclear 
Energy, 1996, Printed in USA by KFKI Atomic Energy 
Research Institute. 

Bickford, Randall et al, Real-Time Space Shuttle Main 
Engine Sensor Validation, National Aeronautics and Space 
Administration, Aug. 1995, Printed in USAby ExperTech & 
Intelligent Software Associates, Inc. 

Bickford, R.L. et al, Real-Time Flight Data Validation For 
Rocket Engines, AIAA, 1996, Printed in USA by 
ExperTech, NYMA, Inc. 

Bickford, R.L. et al, Real-Time Sensor Validation for 
Autonomous Flight Control, AIAA, Jul. 1997, Printed in 
USA Expert Microsystems, Inc. & Intelligent Software 
Associates, Inc. & Beoing Defense and Space Group. 

Bickford, R.L. et al, Real-Time Sensor Validation For 
Propulsion Systems, American Institute of Aeronautics and 
Astronautics, 1998, Printed in USA by Expert Microsys- 
tems, Inc & Dynacs Engineering Co. 

Bickford, R.L. et al, Real-Time Sensor Data Validation For 
Space Shuttle Main Engine Telemetry Monitoring, AIAA, 
Jun. 1999, Printed in USA by Expert Microsystems, Inc.& 
Intelligent Software Associates, Inc. & Dynancs Engineer- 
ing Company & NASA Glenn Research Center. 

* cited by examiner 



U S .  Patent Aug. 19,2003 Sheet 1 of 23 US 6,609,036 B1 

{ Asset 

and Digitization d 1 0  

/-- *O 

I Select 

I Modes 
I I 

I I Training Procedure 
No 

- - - - - - - - - - - - -__-- - -____________ 

I 

r 6o 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 1 



U S .  Patent Aug. 19,2003 

cv r - - -  
I r 

I 
I 
I 
I 
I 
I 
I 

E l  v I 
I N  ; \  I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Sheet 2 of 23 US 6,609,036 B1 

t 

0 

i QI 
i------t---- I 

----- 

0 
e9 

t 

I I 

I 
I 
I 
I 
I 
I 
I 
I 
I N  

a I 
I 3 
0 I 

I L L  
I 
I 
I 
I 
I 
I 
I 
I 
I 
R 
I 
D 
I 
I 
I 
I 
I 
I 

L 

.- 



U S .  Patent Aug. 19,2003 Sheet 3 of 23 US 6,609,036 B1 

I 
, - - - - - - - - - - - - - - - - - - - - -- 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 1  
CD q 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

N I 
r 

(Y 
b I 

I 1 

\ \--Ti-- 

I 
A 
I 2. I 
I 
1 
I m I 

I - - - - - - - - ’  -- ------- I 
I - - - - I  

a, 
3 
L 



U S .  Patent Aug. 19,2003 Sheet 4 of 23 

0 
d 

L 
L 

E .- 
E 

n 

L 

c, 
a, 
a, 

a, 
73 

- r" 

US 6,609,036 B1 

0 1  
0 0 1  

Yt  
a 
3 
0) 

LL 

L 

.- 



U S .  Patent Aug. 19,2003 Sheet 5 of 23 

Trai ni ng Model 
Data , 

24 

90 

Extract MSET 
Model 

US 6,609,036 B1 

Analyze Training 
Data 

- 
100 

Matrices T- 

102 

Figure 5 



U S .  Patent Aug. 19,2003 Sheet 6 of 23 US 6,609,036 B1 

Begin 
Surveillance 

Initialize Fault 
De te c to rs 

62 -1 
Data Acquisition Acquire Current 
and Digitization Operating Data 

(Xo bs) 
I 

Means 
J 

66 

No rm al ize d 

Perform Fault 
Detection 

Corn p le te) 

Figure 6 



U S .  Patent Aug. 19,2003 Sheet 7 of 23 US 6,609,036 B1 

10 

L 

E! 
L 
W 

I I I I 1 

Number of Observation Vectors in D Matrix 

Figure 7 



U S .  Patent Aug. 19,2003 

60 

0 
a, 
E 50 
h 
v )  

m 
.- &i 40 
a 

- 

30 
F 

Sheet 8 of 23 US 6,609,036 B1 

0 100 200 300 400 500 

Number of Observation Vectors in D Matrix 

600 

Figure 8 



U S .  Patent Aug. 19,2003 Sheet 9 of 23 

Operating Mode 

Extract Mode i 
Submodel 

I 

92 

94 

US 6,609,036 B1 

I I 

I 
I 
I 
I 
I 

Initialize Mode i I 
Submodel I 

Ginv (i) MSET (i) 
Matrix 

96 

I 

98 -+ 
b 

I '  
I 

Analyze Mode i 
Training Data 

I -  

I 1  I 

- - _ _  4- - - - - - - - - - - -. 

Next i 
36 

37 

50 

Figure 9 



U S .  Patent Aug. 19,2003 Sheet 10 of 23 

Begin 

1 - - - - - - - - - - - - - Asset 
Initialize 

Submodel 
Fault Detectors I 

I 

and Digitization 
Means (Xobs) 

40 
Operating Mode 

for Xobs 34\<t Mode i 

I SubmodeI(i) I 

US 6,609,036 B1 

I 
I 

_ I  

6 6 ~ ~ ~ ~ 9 4 ~ 1  Submodel Model Array 
Parameters 

(Xest) 

Calculate 

Residual Error 

I ,  I 

68$/ Perform Fault 
Detection 

Found 
Action 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

k-’26 

Figure 10 



U S .  Patent Aug. 19,2003 Sheet 11 of 23 US 6,609,036 B1 

Figure 11 



U S .  Patent Aug. 19,2003 

Number of Output Nodes per Class (NclaSs) 
Learning Algorithm 

Sheet 12 of 23 

8 (for each operating 
LVQ2.1 

US 6,609,036 B1 

1 LVQ Neural Network Parameter I Design Value 
Input Signals 

Number of Classes 

MCC-PC-AVG ~ 

~ 

(PC-CNTL-REF - MCC-PC-AVG) I 
(APC CNTL REF / ATIME) 
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START1 2 
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SHUTDOWN 

Operating Mode Criteria 

All observations preceding the vehicle start command to 
the engine. Considered a non-operating mode. 

Controller cycles 0 through 24 after receipt of the engine 
start command. 

Controller cycles 25 through 49 after receipt of the engine 
start command. 

Controller cycle 50 through detection of steady-state 
operation (typically at controller cycle -1 10). The rule for 
transition to STEADY-FULL is: If in START24 and if 
IPC-CNTL-REF - MCC-PC-AVG I <= (5 * 3.351, and 
PC-CNTL-REF >= 2500 transition to STEADY-FULL 

STEADY-FULL is declared when either: 1) the last cycle’s 
state was STEADY-FULL and the commanded PC is both 
unchanged and greater than 2500 psi, e.g., 
I PC-CNTL-REF -LAST-PC-CNTL-REF I < 3.35 and 
PC-CNTL-REF >= 2500; 
or 2) when the last cycle’s state was a transient state and 
I PC-CNTL-REF - MCC-PC-AVG I <= (5 * 3.35) and 
PC-CNTL-REF >= 2500. 

STEADY-LOW is declared when either: 1) the last cycle’s 
state was STEADY-LOW and the commanded PC is both 
unchanged and less than 2500 psi, e.g., 
I PC-CNTL-REF -LAST-PC-CNTL-REF I < 3.35 and 
PC-CNTL-REF < 2500; 
or 2) when the last cycle’s state was a transient state and 
I PC-CNTL-REF - MCC-PC-AVG 1 <= (5 * 3.35) and 
PC-CNTL-REF 2500. 

UPTHRUST is declared when 1) the commanded PC has 
increased since the last cycle, and 2) 
I PC-CNTL-REF - MCC-PC-AVG 1 > (5 * 3.35) 

DOWNTHRUST is declared when 1) the commanded PC 
has decreased since the last cycle, and 2) 

All observations following the vehicle shutdown command 
to the engine. Considered a non-operating mode. 

I PC-CNTL-REF - MCC-PC-AVG I > (5 * 3.35) 

Figure 16 
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SURVEILLANCE SYSTEM AND METHOD 
HAVING PARAMETER ESTIMATION AND 

OPERATING MODE PARTITIONING 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH AND 

DEVELOPMENT 

The invention described herein was made in the perfor- 
mance of work under NASA Small Business Innovation 
Research (SBIR) Contract NAS4-99012, and is subject to 
the provisions of Public Law 96-517 (35 USC 202) and the 
Code of Federal Regulations 48 CFR 52.227-11 as modified 
by 48 CFR 1852.227-11, in which the contractor has elected 
to retain title. 

FIELD OF THE INVENTION 

6,609,036 B1 
2 

span the entire set of possible operating modes. Hence, a 
significant shortcoming of the known prior-art is that, inter 
alia, statistically derived models become extremely large 
and neural network models become difficult or impractical 

s to train when the process operating state space is complex. 
The implication for statistically derived models is that the 
parameter estimation method and system becomes compu- 
tationally expensive to operate thereby limiting the utility of 
the method for on-line or real-time surveillance. An alter- 
native for statistically derived models is to constrain the size 
of the model; however this constraint limits the accuracy of 
the parameter estimation method and thereby limits the 
sensitivity of the surveillance method. The implication for 
mathematical and neural network models is simply that the 
parameter estimation method and system becomes less accu- 
rate thereby degrading the sensitivity of the surveillance 
method. 

The instant invention relates generally to a system and Many attempts to apply multivariate state estimation 
method for process parameter estimation using operating techniques, mathematical modeling techniques and neural 
mode partitioning and, in particular, to a system and method 20 network techniques to assets such as industrial, utility, 
for performing high sensitivity surveillance of an asset such business, medical, transportation, financial, and biological 
as a process and/or apparatus preferably having at least two processes have met with poor results in part because the 
distinct modes of operation wherein surveillance is per- parameter estimation models used were expected to charac- 
formed using an operating mode partitioned parameter esti- terize the entire operating state space of the process. In one 
mation model of the asset. 25 example, a multivariate state estimation technique (MSET) 

based surveillance system for the Space Shuttle Main 
Engine's telemetry data was found to produce numerous 

Conventional process surveillance schemes are sensitive false alarms when the learned MSET parameter estimation 
only to gross changes in the mean value of a process signal model was constrained to a size suitable for on-line, real- 
or to large steps or spikes that exceed threshold limit 30 time surveillance. In this case, the surveillance system false 
value, These conventional methods suffer from either a large alarm rate could be reduced by desensitizing the surveillance 

normal operating levels) or from a large number of missed became too high for practical use in the data 

(or delayed) alarms (if the thresholds are set too 35 monitoring 
expansively). Moreover, most conventional methods cannot Moreover, current multivariate state estimation 
perceive the onset of a process disturbance or sensor signal techniques, mathematical modeling techniques and neural 
error that gives rise to a signal below the threshold level or network techniques for surveillance of assets such as 
an alarm condition. Most conventional methods also do not industrial, utility, business, medical, transportation, 
account for the relationship between a measurement by one financial, and biological Processes fail to recognize the 
sensor relative to another sensor. 40 surveillance performance limitations that occur when it 

BACKGROUND OF THE INVENTION 

number of false alarms (if thresholds are set too close to parameters; however, the missed rates then 

Recently, improved methods for process surveillance 
have developed from the application of certain aspects of 

becomes necessary to trade-off decision processing 'peed 
against decision accuracy. This may be attributed, in part, to 

artificial intelligence technology, Specifically, parameter the relative immaturity of the field of artificial intelligence 
estimation methods have been developed using either 45 and computer-assisted surveillance with regard to real-world 

learn a model of the normal patterns present in a system of to recognize the specific limitations of trading off decision 
statistical, mathematical or neural network techniques to process a general 

process signals, After learning these patterns, the learned 
model is used as a parameter estimator to create one or 
virtual signals given a new observation of the actual process 

processing speed against decision accuracy for computer- 
assisted is punctuated by an apparent lack Of 

known prior art that address potential methods to 

signals, Further, high sensitivity surveillance methods have 
been developed for detecting process and signal faults by 
analysis of a mathematical comparison between the actual 
process signal and its virtual signal counterpart. 

been shown to provide improved surveillance relative to 

overcome this limitation. In general, the known prior-art 
teaches computer-assisted surveillance solutions that are 
either Operating modes Of an asset Or 

applied only to a single predominant operating mode, for 
example, applied only to steady state operations while 

globally to 

Parameter estimation based surveillance schemes have 55 neglecting all transient operating states of the asset, 

conventional schemes for a wide variety of assets including 
industrial, utility, business, medical, transportation, 
financial, and biological systems, However, parameter esti- 

For the foregoing reasons, there is a need for a 

Of the known prior-art as 
lance system and method that the significant 

herein- 

mation based surveillance schemes have in general shown 60 above. 
limited success when applied to complex processes. Appli- 
cant recognizes and believes that this is because the param- 
eter estimation model for a complex process must charac- The instant invention is distinguished over the known 
terize the entire operating state space of the process to prior art in a multiplicity of ways. For one thing, the instant 
provide effective surveillance. Moreover, a review of the 65 invention provides a surveillance system and method that 
known prior-art discloses that virtually all such systems partitions parameter estimation models of an asset for over- 
developed to date utilize a single model of the process to coming a performance limiting trade-off between decision 

SUMMARY OF THE INVENTION 



US 6,609,036 B3 
3 

processing speed and decision accuracy that has been gen- 
erally unrecognized by the known prior-art. Additionally, the 
instant invention can employ any one of a plurality of 
parameter estimation methods and the process models used 
therewith for improving surveillance performance. 
Furthermore, the instant invention provides a surveillance 
system and method that provides an operating mode parti- 
tioned parameter estimation model that can be accomplished 
by observation and analysis of a time sequence of process 
signal data and by a combination of a plurality of techniques. 

Moreover, the instant invention provides a surveillance 
system and method that provides an operating mode parti- 
tioning of the parameter estimation model which enables 
different parameter estimation methods, thresholds and deci- 
sion logic to be used for surveillance within each individual 
operating mode of an asset. This ability enables surveillance 
to be performed by the instant invention with lower false 
alarm rates and lower missed alarm rates than can be 
achieved by the known prior-art methods. 

Hence, the instant invention provides a surveillance sys- 
tem and method that performs its intended function much 
more effectively by enabling higher decision processing 
speed without a concomitant reduction in decision accuracy. 
Conversely, the instant invention alternately enables 
improved decision accuracy without a concomitant reduc- 
tion in decision processing speed. Additionally, these com- 
peting criteria may be traded-off to achieve the optimal 
performance solution for a specific surveillance application. 
Further, parameter estimation methods, thresholds and deci- 
sion logic may be individually tailored for each operating 
mode of the asset thereby providing additional capability to 
reduce decision error rates for the surveillance system. 

In one preferred form, the instant invention provides a 
surveillance system and method that creates and uses, for the 
purpose of process surveillance, a coordinated array of 
process parameter estimation submodels wherein each pro- 
cess submodel in the coordinated array is optimized for a 
single process operating mode or subset of operating modes 
of an asset. 

OBJECTS OF THE INVENTION 

Accordingly, a primary object of the instant invention is 
to provide a new, novel and useful surveillance system and 
method having process parameter estimation and operating 
mode partitioning. 

A further object of the instant invention is to provide a 
system and method as characterized above for performing 
high sensitivity surveillance of a wide variety of assets 
including industr ia l ,  uti l i ty,  business ,  medical ,  
transportation, financial, and biological processes and appa- 
ratuses wherein such process and/or apparatus asset prefer- 
ably has at least two distinct modes of operation. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 
partitions a parameter estimation model for a process sur- 
veillance scheme into two or more coordinated submodels 
each providing improved parameter estimation for a single 
operating mode or related subset of operating modes of the 
process. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 
creates an improved parameter estimation model for a 
process surveillance scheme using recorded operating data 
for an asset to train a parameter estimation model. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 

4 
provides an improved system and method for surveillance of 
signal sources and detecting a fault or error state of the 
signal sources enabling responsive action thereto. 

Another further object of the instant invention is to 
5 provide a system and method as characterized above which 

provides an improved system and method for surveillance of 
on-line, real-time signals, or off-line accumulated signal 
data. 

Another further object of the instant invention is to 
lo provide a system and method as characterized above for 

generating an improved virtual signal estimate for at least 
one process parameter given an observation of at least one 
actual signal from the asset. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 
provides an improved system and method for ultra-sensitive 
analysis and modification of asset processes and apparatuses 
using at least one parameter estimation technique for the 
generation of at least one virtual signal parameter. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 
provides an improved system and method for ultra-sensitive 
analysis and modification of asset processes and apparatuses 
wherein the parameter estimation technique used for the 
generation of at least one virtual signal parameter is a 
multivariate state estimation technique (MSET) having any 
one of a plurality of pattern recognition matrix operators, 
training procedures, and operating procedures. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 
provides an improved system and method for ultra-sensitive 
analysis and modification of asset processes and apparatuses 
wherein the parameter estimation technique used for the 

3s generation of at least one virtual signal parameter is a neural 
network having any one of a plurality of structures, training 
procedures, and operating procedures. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 

4o provides an improved system and method for ultra-sensitive 
analysis and modification of asset processes and apparatuses 
wherein the parameter estimation technique used for the 
generation of at least one virtual signal parameter is a 
mathematical process model having any one of a plurality of 

Another further object of the instant invention is to 
provide a system and method as characterized above which 
provides an improved system and method for ultra-sensitive 
analysis and modification of asset processes and apparatuses 

so wherein the parameter estimation technique used for the 
generation of at least one virtual signal parameter is an 
autoregressive moving average (ARMA) model having any 
one of a plurality of structures, training procedures, and 
operating procedures. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 
provides an improved system and method for ultra-sensitive 
analysis and modification of asset processes and apparatuses 
wherein the parameter estimation technique used for the 

60 generation of at least one virtual signal parameter is a 
Kalman filter model having any one of a plurality of 
structures, training procedures, and operating procedures. 

Another further object of the instant invention is to 
provide a system and method as characterized above which 

65 provides a novel system and method for using at least one of 
a plurality of methods to classify the operating mode of an 
asset for performing high sensitivity surveillance. 

20 

2s 

3o 

4s structures, training procedures, and operating procedures. 

5s 
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Another further object of the instant invention is to 
provide a system and method as characterized above which 
provides a novel system and method to classify the operating 
mode of an asset wherein said classification is performed 
using a mathematical or logic sequence having any one of a 
plurality of structures, training procedures, and operating 
procedures. 

Yet another object of the instant invention is to provide a 
system and method as characterized above which provides a 
novel system and method to classify the operating mode of 
an asset wherein said classification is performed using an 
expert system having any one of a plurality of structures, 
training procedures, and operating procedures. 

Still yet another object of the instant invention is to 
provide a system and method as characterized above which 
provides a novel system and method to classify the operating 
mode of an asset wherein said classification is performed 
using a neural network having any one of a plurality of 
structures, training procedures, and operating procedures. 

These and other objects will be made manifest when 
considering the following detailed specification when taken 
in conjunction with the appended drawing figures. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic functional flow diagram of a 
preferred embodiment in accordance with the instant inven- 
tion. 

FIG. 2 is a schematic functional flow diagram of a 
preferred method and system for training an operating mode 
partitioned array of parameter estimation models using 
recorded observations of the actual process signals in accor- 
dance with the instant invention. 

FIG. 3 is a schematic functional flow diagram of a 
preferred method and system for performing surveillance of 
an asset using an operating mode partitioned array of 
parameter estimation models in accordance with the instant 
invention. 

FIG. 4 is a schematic functional flow diagram of a 
surveillance procedure using an operating mode partitioned 
parameter estimation model in accordance with the instant 
invention. 

FIG. 5 is a schematic functional flow diagram of a method 
and system for the MSET training procedure in accordance 
with the instant invention. 

FIG. 6 is a schematic functional flow diagram of a method 
and system for the MSET surveillance procedure in accor- 
dance with the instant invention. 

FIG. 7 illustrates the relationship between the overall 
MSET parameter estimation error and the number of obser- 
vation vectors used in the process memory matrix when 
unpartitioned process modeling methods are used for MSET 
training and surveillance; 

FIG. 8 illustrates the relationship between the data pro- 
cessing time required for producing an MSET parameter 
estimate and the number of observation vectors used in the 
process memory matrix when unpartitioned process model- 
ing methods are used for MSET training and surveillance; 

FIG. 9 is a schematic functional flow diagram of the 
training procedure for a preferred embodiment using an 
operating mode partitioned array of MSET parameter esti- 
mation models in accordance with the instant invention. 

FIG. 10 is a schematic functional flow diagram of the 
surveillance procedure for a preferred embodiment using an 
operating mode partitioned array of MSET parameter esti- 
mation models in accordance with the instant invention. 
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FIG. 11 is a schematic architecture diagram of a learning 

vector quantization neural network useful for classifying the 
operating mode of an asset in accordance with the instant 
invention. 

FIG. 12 lists the learning vector quantization neural 
network operating mode classifier design characteristics 
used for feasibility testing of a preferred embodiment in 
accordance with the instant invention. 

FIG. 13 lists the Space Shuttle Main Engine parameters 
used for feasibility testing of a preferred embodiment in 
accordance with the instant invention. 

FIG. 14 lists the Space Shuttle Main Engine flight telem- 
etry data sets used for feasibility testing of a preferred 
embodiment in accordance with the instant invention. 

FIG. 15 lists the parameter estimation model and model 
array configurations used for feasibility testing of a preferred 
embodiment in accordance with the instant invention. 

FIG. 16 lists the Space Shuttle Main Engine operating 
mode partitioning rules used for feasibility testing of a 
preferred embodiment in accordance with the instant inven- 
tion. 

FIG. 17 lists the feasibility test results for nominal flight 
data using a preferred embodiment of an operating mode 
partitioned MSET process model array for the Space Shuttle 
Main Engine in accordance with the instant invention. 

FIG. 18 lists the feasibility test results for signal drift 
failure detection simulations using a preferred embodiment 
of an operating mode partitioned MSET process model array 
for the Space Shuttle Main Engine in accordance with the 
instant invention. 

FIG. 19 lists the comparative test results for nominal flight 
data using an unpartitioned MSET model for the Space 
Shuttle Main Engine containing one hundred fifty observa- 
tion vectors. 

FIG. 20 lists the comparative test results for signal drift 
failure detection using a unpartitioned MSET model for the 
Space Shuttle Main Engine containing one hundred fifty 
observation vectors. 

FIG. 21 lists the comparative test results for nominal flight 
data using a unpartitioned MSET model for the Space 
Shuttle Main Engine containing three hundred observation 
vectors. 

FIG. 22 lists the comparative test results for signal drift 
failure detection using a unpartitioned MSET model for the 
Space Shuttle Main Engine containing three hundred obser- 
vation vectors. 

FIG. 23 illustrates a mathematical process model relation 
of a type used for Space Shuttle Main Engine telemetry data 
surveillance in an alternate embodiment. 

DESCRIPTION OF PREFERRED 
EMBODIMENTS 

Considering the drawings, wherein like reference numer- 
als denote like parts throughout the various drawing figures, 
reference numeral 10 is directed to the system according to 
the instant invention. 

In its essence, and referring to FIG. 1, the system 10 is 
generally comprised of a method and apparatus for perform- 
ing high sensitivity surveillance of a wide variety of assets 
including industr ia l ,  uti l i ty,  business ,  medical ,  
transportation, financial, and biological processes and appa- 
ratuses wherein such process and/or apparatus asset prefer- 
ably has at least two distinct modes or domains of operation 
(e.g., transient and steady state modes or domains). The 
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system includes a training procedure 20 wherein a parameter The training loop is in general controlled by two decision 
estimation process model array 50 of an asset 12 (e.g., a procedures. The mode enabled decision procedure 34 deter- 
process and/or apparatus) is learned from historical operat- mines whether the designer intends a specific operating 
ing data using at least one of a plurality of computer-assisted mode to be included in the process model array 50. If the 
techniques. Historical operating data includes a set of obser- s operating mode is not to be included, no further processing 
vations from normal operation of the asset 12 that is is required and the training loop proceeds to the next 
acquired and digitized by a data acquisition means 40 using possible operating mode as controlled by the more modes 
any combination of electronic data acquisition hardware and decision procedure 36. If the operating mode is to be 
signal processing software known to those having ordinary included, all observations included in the training data set 24 
skill in the art, and informed by the present disclosure. i o  are assessed using the operating mode determination proce- 
Additionally, and as delineated infra, one hallmark of the dure 26 in order to extract the training data subset 28 specific 
instant invention is an operating mode partitioning method to the currently selected operating mode. Depending on the 
of a parameter estimation process model array 50 for the preference of the designer implementing the training loop, 
asset 12 which is performed during the training procedure the operating mode determination and training data subset 
20. is extraction procedures may be, in general, performed as 

The system 10 further includes a surveillance procedure needed or in advance of the training loop. The training loop 
60 wherein the operating mode partitioned parameter esti- shown in FIG. 2 illustrates operating mode determination 
mation process model array 50 is used for high sensitivity and extraction on an as needed basis but is not intended to 
computer-assisted surveillance of the asset 12 for the pur- constrain the method to preclude determination and extrac- 
pose of determining whether a process fault or failure 20 tion in advance of implementing the training loop. The final 
necessitates an alarm or control action. Another hallmark of step in the training loop is a process submodel creation 
the instant invention, as delineated hereinbelow, is the use of procedure 30. The process submodel creation procedure 30 
the operating mode partitioned parameter estimation process creates the parameter estimation submodel for the currently 
model array 50 as an element of the surveillance procedure selected operating mode and trains the submodel using the 
60. The svstem 10 described herein is useful for ultra- zs traininn data subset 28 suecific to the currentlv selected 
sensitive detection of the onset of sensor or data signal 
degradation, component performance degradation, and pro- 
cess operating anomalies. 
Description of the Training Procedure 

More specifically, and referring to FIG. 2, the training 
procedure 20 of the system 10 includes a method and 
apparatus for training or preparing the process model array 
50 using historical operating data from the asset 12 that has 
been acquired by the data acquisition means 40 using any 
combination of conventional electronic data acauisition 

a 

operating mode. The process submodel creation procedure 
30 further stores this submodel as a new element in the 
process model array 50. 

Still referring to FIG. 2, the operating mode determination 
30 procedure 26 used to classify each observation included in 

the training data set 24 may be, in general, performed using 
any method suitable for determining the operating mode of 
the asset 12 given an observation or series of observations 
therefrom. Methods suitable for the operating mode deter- 

3s mination urocedure 26 include. but are not limited to. a 
hardware and signal processing software as is well known in plurality of mathematical or logic sequence techniques, a 
the art. The historical operating data is acquired in digital plurality of expert system techniques, a plurality of fuzzy 
format and stored using a data storage procedure 22 to create logic techniques, and a plurality of neural network tech- 
a training data set 24. The training data set 24 includes at niques. 
least N discrete observations of the asset 12 wherein each 40 Continuing to refer to FIG. 2, the process submodel 
single observation, herein denoted Xobs, is comprised of a creation procedure 30 may be, in general, performed using 
vector of data values for each signal parameter to be any method suitable for defining a parameter estimation 
included in the process model array 50. For the purposes of model useful for estimating the values of one or more 
the training procedure 20, the number of observations, N, process signals. Methods suitable for the process submodel 
acquired is at least great enough to adequately bound the 4s creation procedure 30 include, but are not limited to, a 
operating state space of the asset 12. Thus, the training data plurality of multivariate state estimation techniques, a plu- 
set 24 provides a representative sample of the signals rality of neural network techniques, a plurality of math- 
produced by the asset 12 during all normal modes of ematical model techniques, a plurality of autoregressive 
operation. moving average techniques, and a plurality of Kalman filter 

Again referring to FIG. 2, upon acquiring the training data SO techniques. Each process submodel contained in the process 
set 24 the designer proceeds to implement the unique model array 50 may be created to implement any one of a 
method for the training procedure 20 in accordance with plurality of parameter estimation techniques. Further, the 
instant invention. The unique method for the training pro- parameter estimation technique implemented for an indi- 
cedure 20 is comprised of partitioning the training data set vidual submodel is not constrained to be the same as the 
24 into subsets wherein a training data subset 28 is repre- ss parameter estimation technique implemented for any other 
sentative of a single operating mode or subset of operating submodel contained in the process model array 50. 
modes of the asset 12. Further, the unique method for the The training procedure 20 is completed at training com- 
training procedure 20 also includes a process submodel plete point 37 when all possible operating modes of the 
creation procedure 30 for creating at least one process system 10 have been assessed. At this point, the process 
submodel for inclusion in the process model array 50 using 60 model array 50 includes parameter estimation models for 
at least one training data subset 28. In practice, the designer each operating mode enabled by the designer. The process 
first selects the operating modes that will be included in the model array 50 is thereafter useful for performing surveil- 
process model array 50 by means of an operating mode lance of the asset 12. 
enable procedure 32. The method thereafter is comprised of Description of the Surveillance Procedure 
a training loop wherein each possible operating mode of the 65 More specifically, and referring to FIG. 3, the surveillance 
asset 12 is assessed for inclusion in the process model array procedure 60 is comprised of acquiring successive vectors of 
50. current operating data and determining for each such obser- 
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vation vector whether the current operating data is indicative making the fault detection decision. The fault decision 
of a fault or failure of the asset 12. The surveillance procedure 70 may be in general performed using any method 
procedure 60 further includes implementing an alarm or suitable for ascertaining a fault of the asset 12 given a fault 
control action for the purpose of notifying an operator or detection result or series of fault detection results therefrom. 
taking a corrective action in response to a detected fault or s Methods suitable for the fault decision procedure 70 include, 
failure of the asset 12. The surveillance procedure 60 is in but are not limited to, single observation techniques (e.g., 
general an open-ended data acquisition and analysis loop alarm on every detected fault), multi-observation voting 
that continues until such time as the operator chooses to techniques (e.g., alarm when X out of Y observations 
terminate the surveillance. contain a fault indication), and conditional probability tech- 

Again referring to FIG. 3, the surveillance procedure i o  niques (e.g., compute the fault probability given a series of 
begins with an observation acquisition procedure 62 for fault detection results). Upon completing the fault decision 
acquiring a current vector of observed signal data values, procedure 70, the surveillance procedure then repeats for as 
herein denoted Xobs. Signal data values are acquired by the long as -a more data decision procedure 72 determines that 
data acquisition means 40 using any combination of con- additional surveillance data are available or terminates at 
ventional electronic data acquisition hardware and signal is surveillance complete step 75 when no more surveillance 
processing software as noted supra. Next the operating mode data are available. 
determination procedure 26 is used to determine the oper- Continuing to refer to FIG. 3, the usefulness of the instant 
ating mode for the current vector of observed signal data invention is, inter alia, the improvement achieved in the 
values, Xobs. It is essential only that the operating mode accuracy of the fault detection decision made by the fault 
determination procedure 26 used during the surveillance 20 decision procedure 70. Improving the accuracy of the fault 
procedure 60 is the same operating mode determination decision procedure 70 accomplishes a reduction in the 
procedure 26 used during the training procedure 20. Upon number of false alarms sent to a process operator or control 
determination of the current operating mode for the current system that can in turn result in an erroneous alarm or 
observed signal data, the process submodel for the current control action by the alarm or control action procedure 74. 
operating mode is selected from the array of submodels zs Further, improving the accuracy of the fault decision pro- 
contained in the process model array 50 using a process cedure 70 accomplishes a reduction in the number of missed 
submodel selection procedure 64. The selected process alarms thereby accomplishing more timely alarm or control 
submodel for the current operating mode is then used with action by the alarm or control action procedure 74. The 
a parameter estimation procedure 66 to produce a current instant invention thereby enables improved operating safety, 
vector of estimated signal data values, herein denoted Xest. 30 improved efficiency and performance, and reduced mainte- 
It is essential only that the parameter estimation procedure nance costs for a wide variety of industrial, utility, business, 
66 used during the surveillance procedure 60 is the same medical, transportation, financial, and biological processes 
parameter estimation procedure 66 for which the process and apparatuses wherein such process and/or apparatus asset 
submodel was trained using the process submodel creation 12 preferably has at least two distinct modes or domains of 
procedure 30 during the training procedure 20. The current 3s operation. 
vector of estimated signal data values, Xest, in general FIG. 4 outlines a general surveillance procedure of the 
includes at least one estimated signal data value correspond- system 10 when employing the operating mode partitioned 
ing to at least one actual signal data value included in the parameter estimation process model array 50. In a typical 
current vector of observed signal data values, Xobs. Aseries surveillance procedure, the asset 12 is the source of at least 
of estimated signal data values produced by successive 40 one process signal 42 that is acquired and digitized using 
observation and parameter estimation cycles is termed conventional data acquisition means 40 for providing the 
herein a “virtual signal” for the signal parameter. data acquisition procedure for the purpose of computer- 

Still referring to FIG. 3, the current vector of estimated assisted surveillance. The digitized signal data is generally 
signal data values, Xest, may be in general compared to the evaluated using a computer 44 having computer software 
current vector of observed signal data values, Xobs, using a 4s modules implementing the operating mode determination 
fault detection procedure 68. The fault detection procedure procedure 26, the parameter estimation procedure 66, and 
68 serves the useful purpose of determining whether the the fault detection procedure 68. The operating mode deter- 
current vector of observed signal data values indicates a mination procedure 26 is used to determine the current 
fault or failure of a component of the asset 12. The fault operating mode of the asset 12 given the acquired process 
detection procedure 68 may be performed using any one of SO signal data. The parameter estimation procedure 66 is used 
a plurality of comparative techniques including, but not to produce an estimated signal value for at least one process 
limited to, evaluation of the current comparison result signal 42 emanating from the asset 12. The parameter 
against numerical limit values, evaluation of the current estimator procedure 66 in general makes use of the process 
comparison result using any one of a plurality of statistical model array 50 stored in a memory means 48 associated with 
hypothesis test techniques, evaluation of the current com- ss the computer 44 to produce the estimated signal values. The 
parison result using any one of a plurality of expert system specific process submodel selected from the process model 
techniques, and evaluation of the current comparison result array 50 and used by the parameter estimation procedure 66 
using any one of a plurality of neural network techniques. is dependent on the operating mode determined by the 
FIG. 3 illustrates the use of a mathematical difference operating mode determination procedure 26. The estimated 
(Xobs-Xest) to calculate the residual error between the 60 signal values are then generally evaluated using the fault 
observed and estimated signals but is not intended to pre- detection procedure 68 to identify faults or operating anoma- 
clude any other form of comparison whatsoever. lies in the asset 12. The results of the fault detection 

The results of the fault detection procedure 68 provide evaluation are thereafter communicated by a conventional 
fault detection for the current vector of observed signal data communications link 80 (as is known to those having 
values. In many cases, fault detection decision quality is 65 ordinary skill in the art, and informed by the present 
improved by using a fault decision procedure 70 that incor- disclosure) to an operator console 82 or automated process 
porates logic for considering a series of observations in control system 84 for possible alarm and/or control action. 
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equal to the number of states at which observations were 
made and the number of rows equal to the number of 
measurements (a total of n signal data values) that were 
available at each observation. We begin by defining the set 
of measurements taken at a given time t, as an observation 
vector X(t,), - 

X(5)=[X1(5)ryz(~,) > ’ ’ ’ > X n ( 5 ) l T  (1) 
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where x,(tj) is the measurement from signal i at time tj. We 
then define the data collection matrix as the process 
memory matrix D: 
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The computer 44 along with the associated memory estimation model. If data are collected from a process over 
means 48 can also be employed to perform the training and a range of operating states, these data can be arranged in 
surveillance procedures 20, 60 as delineated supra and to matrix form, where each column vector (a total of m) in the 
store all the data associated with these Procedures, for matrix represents the measurements made at a particular 
example, the historical operating data, the training data and 5 state, nus. this matrix will have the number of columns 
process model array. 
MSET Procedure 

In one preferred embodiment of the instant invention; the 
method used for parameter estimation is a multivariate state 
estimation technique (MSET) procedure. The US Depart- 
ment of Energy’s Argonne National Laboratory originally 
developed the implementation of MSET described herein for 
surveillance of sensors and components in nuclear power 
plant applications. However, other implementations of a 
multivariate state estimation technique are possible and 
useful in conjunction with the instant invention. MSET is in 
general a statistically derived parameter estimation algo- 
rithm that uses advanced pattern recognition techniques to 
measure the similarity or overlap between signals within a 
defined operational domain (set of process operating states). 
MSET “learns” patterns among the signals by numerical 
analysis of historical process operating data. These learned 
patterns or relationships among the signals are then used to 
identify the learned state that most closely corresponds with 
a new signal data observation. By quantifying the relation- 
ship between the current and learned states, MSET estimates 
the current expected response of the process signals. MSET 
then uses a form of statistical hypothesis testing, such as the 
sequential probability ratio test (SPRT) or similar probabil- 
ity ratio test algorithm (as shown in U.S. Pat. No. 5,459,675 
and which is hereby incorporated by reference in its entirety) 
to compare the current estimated value of a signal with its 
observed value. The statistical hypothesis comparison test 
provides a sensitive and widely applicable method to detect 
a fault or failure in an asset. However, other implementa- 
tions of the comparison test are possible and useful in 
conjunction with the instant invention. 

An MSET model is created for the asset 12 using the 
MSET training algorithms to learn the inherent data rela- 
tionships within a set of historical process operating data. 
The trained MSET model is then used with the MSET 
parameter estimation and fault detection algorithms to per- 
form the process surveillance function when presented with 
a new observation of signal data values. The following 
sections will first provide a mathematical overview of the 
MSET algorithms and procedures useful for training a 
parameter estimation model and for using this trained model 
for process surveillance. The description is followed by a 
detailed description of a preferred embodiment of the instant 
invention using a novel operating mode partitioned MSET 
process model array for parameter estimation and process 
surveillance. 
Description of the MSET Training and Surveillance Proce- 
dures 

The MSET methods are generally described in the fol- 

Each of the column vectors (X(tj)) in the process memory 
matrix represents an operating state of the process. Any 
number of observation vectors can be assigned to the 
process memory matrix. Training an MSET model includes 
collecting enough unique observation vectors from histori- 
cal operation of the process during normal conditions such 
that the process memory matrix encompasses the full 
dynamic operating range of the process. Computation of the 
D matrix is the first of three steps in the method for training 
an MSET model based on historical operating data. 

One of at least two algorithms is used by MSET to select 
the vectors in the D matrix. The MinMax algorithm extracts 
vectors that bound the vector space defined by the training 
data and returns the smallest process memory matrix that 
will produce an effective system model (see also U.S. Pat. 
No. 5,764,509 and which is hereby incorporated by refer- 
ence in its entirety). The Vector Ordering algorithm selects 
and includes representative vectors from the inner regions of 
the vector space producing a more accurate system model. 

Once the process memory matrix has been constructed, 
MSET is used to model the dynamic behavior of the system. 
For each current observation of the system (Xobs), MSET 
compares the observation vector to the stored operating 
states to calculate an estimate of the process parameter 
values. The parameter estimate of the current process state 
(Xest) is an n-element vector that is given by the product of 
the process memory matrix and a weight vector, W - . . -  

X,,, =D.W (3) 
I 

lowing two US Government documents produced and main- 5s 
tained by the US Department of Energy’s Argonne National 
Laboratory, Argonne, Illinios, disclosure of which is incor- 
porated in its entirety herein by reference. 

J. P. Herzog, S. W. Wegerich, R. M. Singer, and K. C. 

The weight vector represents a measure of similarity 
between the estimate of the current state and the process 
memory matrix. To obtain the weight vector, we minimize 
the error vector, R, where: 

Gross, “Theoretical Basis of the Multivariate State 60 - -  - 
Estimation Technique (MSET),” Argonne National R =  obs- est (4) 

G=(o;Q o;)y(o;Q ZObJ (5) 

Laboratory, ANL-NT-49, December 1997. 
J. P. Herzog, S. W. Wegerich, K. C. Gross, and R. M. 

Singer, “MSET Code Structure and Interface Devel- 

The MSET algorithm uses pattern recognition with his- 
torical operating data from an asset to generate a parameter 

The error is minimized for a given state when: 

opment Guide,” ANL-NT-48, August 1997. 65 
This equation represents a “least squares” minimization 

when the pattern recognition operator @ is the matrix dot 
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product. Several advanced pattern recognition operators in one instance within the ANL train.c software module, 
have been defined that provide excellent parameter estima- including but not limited to the MinMax method, and the 
tion performance. Pattern recognition operators used by Vector Ordering method. A MSET model initiation proce- 
MSET include, but are not limited to, the System State dure 94 is the second step of the method and is used to 
Analyzer (SSA) method (see also U.S. Pat. No. 4,937,763 s initialize the MSET process model by the computation of a 
and which is hereby incorporated by reference in its inverse similarity matrix 96 (Ginv). The MSET model 
entirety), the Bounded Angle Ratio Test (BART) method initiation procedure 94 makes use of at least one of a 
(see also U.S. Pat. No. 5,987,399 and which is hereby plurality of pattern recognition operator methods embodied 
incorporated by reference in its entirety), the Vector Pattern in one instance within the ANL sys-mod.c software 
Recognizer (VPR) method, the Vector Similarity Evaluation i o  module, including but not limited to the SSA method, the 
Technique (VSET) method, and the Probabilistic State Esti- BART method, the VPR method, the VSET method, and the 
mation Method (PSEM). PSEM method. The third step of the MSET training proce- 

Once the weight vector is found, the resulting current state dure uses the process memory matrix 92 and the inverse 
estimate of the system (i.e., the parameter estimate vector) similarity matrix 96 to perform a MSET training data 
is given by: is analysis procedure 98 using the training data set 24. The 

MSET training data analysis procedure 98 computes the 
(6) residual error mean and variance vectors 100 (M and V, 

The first application of the pattern recognition operator in respectively) over the training data. The MSET training 
equation (6) (DT@D) involves a comparison between the procedure is in general performed once for the training data 
row vectors in the DT matrix and each of the column vectors 20 set 24 thus preparing an unpartitioned MSET model 102 for 
in the D matrix. If we define G=DT@D, then G, the use in the MSET surveillance procedure. 
similarity matrix, is an m by m matrix. The element in the In the MSET surveillance procedure, new operating data 
i-th row and j-th column of the matrix (gij) represents a observations are evaluated sequentially using the unparti- 
measure of the similarity between the i-th and j-th column tioned MSET model 102 for the purposes of validating the 
vectors (i.e., memorized states) in the process memory zs data or discerning an anomalous (not normal) process oper- 
matrix. The second application of the pattern recognition ating condition. For each new observation vector, Xobs, 
operator in equation (6) (DT@X,,) involves a comparison presented to the MSET parameter estimation method, the 
between the row vectors in the DT matrix and each of the memorized state having the greatest similarity to the current 
elements in the observation vector Xobs. If we define observed state is returned as a parameter estimate vector, 
A=DT@X,,, then A, the similarity vector, is an m by 1 30 Xest. Diagnostic decisions are then made on the basis of the 
vector. Each element in the similarity vector is a measure of difference (residual error) between the observed and esti- 
the similarity between the observation vector and the i-th mated values for at least one process signal parameter 
column vector (i.e., memorized state) in the process memory contained in the estimate vector. MSET uses at least one of 
matrix. a plurality of statistical hypothesis test algorithms including, 

Note that the similarity matrix is a function of the process 35 but not limited to, a Sequential Probability Ratio Test 
memory matrix only. Thus, the similarity matrix and its (SPRT) algorithm, and a Bayesian Sequential Probability 
inverse Ginv=(DT@D)-' can be calculated as soon as the (BSP) test algorithm to produce a fault indication based on 
process memory matrix has been derived thereby making the the value of the residual error for at least one process 
application of MSET to an on-line surveillance system more parameter. 
computationally eficient. Computation of the Ginv matrix 40 FIG. 6 illustrates the method and system for MSET-based 
initializes the process model and completes the second of surveillance. The MSET surveillance methods as described 
three steps in the procedure for training an MSET model herein are embodied in one instance within the ANL soft- 
based on historical operating data. ware modules known as sys_mod.c and fault-detect.c. 

The third and final step in the MSET training procedure Prior to performing surveillance for new operating data 
includes analyzing the historical training data using equation 45 observations, a MSET fault detector initialization procedure 
(6) to characterize the expected statistical mean and variance 106 is performed. The MSET fault detector initialization 
of the residual error vector, R, for each signal parameter in procedure 106 takes the variance (V) vector 100 and several 
the observation vector. The resulting mean vector, M, is later other constants as its arguments. The initialization procedure 
used in the surveillance procedure to normalize the residual makes use of one of a plurality of fault detection methods 
error for each observation evaluated using the statistical SO embodied in one instance within the ANL fau1tdetect.c 
hypothesis test. The resulting variance vector, V, is later used software module, including but not limited to the SPRT 
at the beginning of the surveillance procedure to initialize method, and the BSP method. The MSET surveillance 
the fault detection threshold values used in the statistical procedure then proceeds by sequentially acquiring and 
hypothesis test. evaluating each new data observation until such time as 

FIG. 5 illustrates the procedure for training an MSET 55 surveillance is completed. Data observations are acquired 
parameter estimation model. The procedure is used to pro- using the observation acquisition procedure 62. For each 
duce an unpartitioned MSET model 102 that is not parti- new observation vector, Xobs, a parameter estimate vector, 
tioned by operating mode. The MSET training procedure Xest, is produced by the parameter estimation procedure 66 
developed by Argonne National Laboratory (ANL) as using the unpartitioned MSET model 102 with the same 
described herein is embodied in one instance within the ANL 60 pattern recognition operator that was used in the MSET 
software modules known as train.c and sys_mod.c. As training procedure. The residual error vector, R, is computed 
described herein above, the MSET training procedure begins and is then normalized using a residual value normalization 
with a MSET model extraction procedure 90 used to popu- procedure 108 that includes subtracting the mean (M) vector 
late a process memory matrix 92 (D) from the training data 100 from the value of the residual error. The normalized 
set 24 (historical process operating data). The MSET model 65 residual vector is then evaluated using the same fault detec- 
extraction procedure 90 makes use of at least one of a tion procedure 68 that was initialized at the start of the 
plurality of observation vector extraction methods embodied MSET surveillance procedure. If the fault detection proce- 

- 
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dure 68 results in a fault determination by the fault decision 
procedure 70, the alarm or control action procedure 74 
communicates the fault information by the conventional 
communications link 80 (not shown) to the operator console 
82 (not shown) and/or automated process control system 84 
(not shown) for corrective action. In the fault decision 
procedure 70, a Bayesian conditional probability test is in 
general used to reach a fault decision based on a series of 
fault detection results from the fault detection procedure 68. 
The surveillance procedure then repeats for as long as the 
more data decision procedure 72 determines that additional 
surveillance data is available. 
Limitations of the MSET Training and Surveillance Method 
and System 

In the method and system described above, MSET is 
trained by the construction of a process memory matrix, D, 
based on historical operating data from all normal operating 
states of the process. MSET creates the process memory 
matrix by selecting representative process data observations 
(herein termed observation vectors) that characterize the 
dynamic patterns inherent across all operating states of the 
process. However, if the process can operate in two or more 
distinct modes of operation, then the totality of operating 
states for all possible operating modes must be represented 
in the process memory matrix to produce an effective MSET 
model. As the number of distinct operating modes of process 
operation represented in the training data increases, one of 
two limitations occur: 

Limitation 1. If the total number of observation vectors in 
the process memory matrix is fixed, then the number of data 
patterns used to represent any single operating mode of a 
process decreases. This directly reduces the accuracy of 
MSET’s parameter estimates, which may result in false 
alarms or reduce the ability of the fault detection procedure 
to reliably detect subtle sensor failures or other process 
anomalies. 

The parameter estimation accuracy of the MSET algo- 
rithm is in general an inverse power law function of the 
number of vectors in the process memory matrix. Limitation 
1 is evident in the example of FIG. 7 that illustrates the 
overall parameter estimation error versus the number of 
vectors in the process memory matrix for an unpartitioned 
MSET model of six Space Shuttle Main Engine sensors. 

Limitation 2. Allowing the number of observation vectors 
in the process memory matrix to increase ameliorates Limi- 
tation 1 above, but incurs a computational performance cost. 
The number of computer operations required for MSET to 
produce a parameter estimate scales with the square of the 
number of observation vectors stored in the process memory 
matrix. This is because the MSET parameter estimation 
algorithm must perform pattern matching between the cur- 
rent operating data vector and each element of the process 
memory matrix. Pattern matching uses the Ginv matrix, the 
size of which increases as the square of the number of 
observation vectors. Processing time for MSET parameter 
estimation has been empirically shown to follow a square 
law equation of the form: 

Observation processing time (msec)=A+B*[Number of 
observation vectors in D]’ (7) 

Limitation 2 is evident in the example of FIG. 8 that 
illustrates the overall MSET parameter estimation process- 
ing time on a 300-MHz Pentium I1 desktop computer versus 
the number of vectors in the D matrix for an unpartitioned 
MSET model of six Space Shuttle Main Engine sensors. 

Novel Improvements to the MSET Training and Surveil- 
lance Procedures 

Having described the MSET training and surveillance 
methods herein above, this section describes the novel 

16 
improvements made by the instant invention when used for 
MSET training and surveillance, said improvements being 
applicable to any asset preferably having at least two distinct 
modes of operation. It is explained herein above that it is 

s beneficial to minimize the number of vectors in the process 
memory matrix in order to optimize the processing speed of 
the MSET algorithm. It is further explained herein above 
that the MSET methods require a trade-off to be made 
between processing time and parameter estimation accuracy. 

i o  In the worst case, this trade-off results in unacceptable 
performance for a process surveillance application. The 
novel solution to this problem made by the instant invention 
is to use multiple coordinated MSET process submodels, 
with each submodel trained over a limited operating mode 

is state space. With the instant invention, each submodel may 
be defined to contain only the minimum number of obser- 
vation vectors required to adequately characterize a single 
specific operating mode or related subset of modes. Since 
only one submodel must be evaluated for each data obser- 

20 vation presented to MSET during the surveillance 
procedure, both parameter estimation accuracy and process- 
ing speed are greatly improved. 

The following example illustrates an unobvious benefit of 
the instant invention. Consider a process that requires 

zs on-line surveillance across multiple modes of operation. 
Further consider that the safety or other critical nature of 
said surveillance requires fault decision performance within 
a time interval that allows for on-line MSET processing with 
a process memory matrix containing at most 100 vectors. 

30 However, further suppose that the desired fault detection 
accuracy requires on-line MSET parameter estimation with 
a process memory matrix containing 300 vectors to 
adequately characterize the operating mode state space. In 
the prior art, both criteria could not be simultaneously 

3s satisfied. The instant invention solves this problem for many 
types of processes and apparatuses by enabling the MSET 
model designer to partition the operating mode state space 
and thus produce three 100 vector submodels providing the 
desired level of fault detection sensitivity (300 vectors) 

40 while having a processing speed comparable to the 100 
vector model. This implementation requires only the addi- 
tion of an operating mode determination procedure that 
selects the appropriate submodel for each new observation 
presented to the MSET system. 

4s Improved MSET Training Procedure 
An array of MSET process submodels is termed an MSET 

process model array herein. An MSET process model array 
is one of a plurality of possible implementation specific 
instances of the process model array 50. 

FIG. 9 illustrates the training procedure 20 useful for 
producing process model array 50 or specifically a MSET 
process model array 50 in accordance with the instant 
invention. The training procedure includes and modifies the 
MSET training methods described in FIG. 5 and illustrated 

ss in FIG. 9 as MSET training procedure 118. With the instant 
invention, the MSET model designer may now individually 
specify those operating modes for which MSET training and 
surveillance is enabled. The training procedure loops 
through each defined operating mode with the loop con- 

60 trolled by the mode enabled decision procedure 34 and the 
more modes decision procedure 36. If the operating mode is 
enabled, a MSET process submodel 114 is created (this is a 
specific example of process submodel creation procedure 30 
when employing MSET) for the operating mode. In order to 

65 create the MSET process submodel 114, the operating mode 
specific training data subset 28 is first extracted from the 
training data set 24 using the operating mode determination 

SO 
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procedure 26. This operating mode specific training data array 50 as delineated hereinabove. The surveillance proce- 
subset 28 is then used to create the MSET process submodel dure 60 includes and modifies the MSET surveillance meth- 
114 using the Same procedures used in the MSET training ods described in FIG. 6 and illustrated in FIG. 10 as MSET 
procedure 118 to create an unpartitioned MSET model, surveillance procedure 122,126. With the instant invention, 
Specifically, the MSET procedures used in sequence are the s the MSET model designer may now individually specify 
MSET model extraction procedure 90 to produce the process those Operating modes for which MSET is 
memory matrix 92, the MSET model initialization proce- 

MSET training data analysis procedure 98 to produce the 
residual mean and variance vectors 100. Note that this series i o  

submode’ procedure 30. The process is repeated 

&re 94 to produce the inverse similarity matrix 96, and the At the beginning Of the procedure, the 
detection procedures are initialized for each enabled process 
submodel. Initialization of each MSET process submodel 
114 uses the same MSET fault detector initialization proce- 

model 102. The surveillance procedure thereafter includes 

Of procedures is grouped in the genera’ as the process dure 106 used for initialization of the unpartitioned MSET 

an open-ended loop for data acquisition and surveillance 
processing that is terminated by the more data decision 

During surveillance, each new vector of observed signal 
data values, Xobs, is acquired using the data acquisition 
procedure 40 and the observation acquisition procedure 62. 
Next, the operating mode determination procedure 26 is 

The process model array 50 is a linear combination of the 20 used to determine the operating mode for each new data 
observation, Xobs, acquired from the asset 12. If the new 
data observation is determined by the mode enabled decision 
procedure 34 to represent an operating mode that is not 
enabled for MSET surveillance, no further Processing is 

zs required until the next data observation is acquired from the 
asset 12. Conversely, if the new data observation is deter- 
mined to represent an enabled operating mode, the correct 
MSET process submodel 114 is selected from the MSET 
process model array 50 using the process submodel selection 

30 procedure 64 and all required process submodel data is 
loaded into the computer memory. From this point, MSET 

previously described for the MSET method. Once surveil- 

35 acquire a new data observation from the asset 12. 

with each loop a MSET process submodel storage 
procedure to add the MSET process submodel to the 
process model array 50 for each enabled operating mode. At 15 procedure 72, 
the concl~sion of the training Procedure 20, the operating 
mode Partitioned Process model array 50 includes an array 
of individual MSET process submodels 114, one for each 
enabled operating mode. 

operating mode specific MSET process submodels. The 
process model array 50 includes the following at a mini- 
mum: 

An array of process memory matrices 92 (D), one for each 

~n array of inverse similarity matrices 96 ( ~ i ~ ~ ) ,  one for 

An array of residual mean and variance vectors 100 (M 

Working together these process submodels provide 
parameter estimation over the entire operating mode state 

additional novel feature of the instant invention is that each 

be of unique dimensions, that is each submodel may contain 
An unobvious benefit of only performing MSET process- unique numbers of modeled signal parameters and process 

model array 50 does not need to provide parameter estima- may be different than the dimensions selected for any other 
operating mode thereby permitting the unobvious benefit of es for those Operating modes that do not 
further optimizing the MSET method and system for the 40 require on-line surveillance. For example, it may be desir- 

able to exclude certain modes of operation (or non- surveillance requirements of each individual operating mode operation) from the MSET process model array 50 even of the asset. This is important because certain modes of though such modes are included within the training data set process operation are often more performance or safety 24. The ability to explicitly exclude operating modes that do critical than others. 
45 not require surveillance simplifies the training data acquisi- An additional novel feature of the instant invention is that 

each of the process submodels in the process model array 5o tion procedures and minimizes the on-line processing time 
required for a parameter estimation based surveillance may also be specified with unique parameter estimation and 
method. fault detector settings for each operating mode. This pro- Neural Network Method and System for Determining the vides the unobvious benefit of optimizing MSET surveil- 

SO Operating Mode of the Asset lance sensitivity and performance by operating mode. 

is required for both the training procedure 20 and the are not limited to, the following: surveillance procedure 60 using an operating mode parti- 
Selection of the parameter estimation and training algo- tioned process model array 50, For each new data 

rithm the BART, VPR2 VSET2 Or ss observation, the operating mode determination procedure 26 
Other pattern recognition Operator) by Operating mode; must classify the observation as belonging to exactly one of 

detection a plurality of defined operating modes thereby allowing the 
algorithm by operating mode; required process submodel to be selected for training or 

Selection of the fault detection procedure false alarm surveillance. The operating mode determination procedure 
probability, missed alarm probability, system distur- 60 26 may use any form of algorithm that can determine the 
bance magnitude values, or other threshold constants current operating mode of the asset 12 based on one or more 
by operating mode; data observations from the asset. The specific implementa- 

Selection of the fault decision procedure algorithm and tion or type of the operating mode determination procedure 
associated thresholds and constants by operating mode. 26 does not affect or modify the operation of the instant 

Improved MSET Surveillance Procedure 
FIG. 10 illustrates a novel method and system for the In one preferred embodiment, a Learning Vector Quanti- 

surveillance procedure 60 using the MSET process model zation (LVQ) neural network is used for the operating mode 

enabled operating mode; 

each enabled operating mode; and 

and V), one for each enabled operating mode. 

space that the designer has selected for surveillance, An surveillance processing occurs the Same procedures 

of the process submodels in the process model array 50 may lance processing is the procedure returns to 

memory matrix vectors, A process submodel’s dimensions ing for Operating modes is that the MSET process 

capab 

Examples of optimization by operating mode include, but Amethod to determine the Operating mode Of the asset l2 

Of the spRT, BSP Or Other 

65 invention. 
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determination procedure 26. The LVQ neural network pro- the correct class for the input vector. Conversely, an element 
cedure is generally applicable to a wide range of assets. An of a target vector has a value of zero if the corresponding 
LVQ neural network model is created for a specific asset output node represents an incorrect class for the input vector. 
using conventional neural network training algorithms to For each training pair presented to the LVQ network, the 
learn the inherent operating mode relationships within a set 5 Euclidean distance between the input vector and each of the 
of historical Process Operating data. The trained LVQ model weight vectors is calculated, The Euclidean distances are 
is then used to Perform the operating mode determination then ordered, from smallest to largest. Only the weight 
procedure when presented with each new data observation. vectors that produce the smallest two distances in the 
Because the LVQ network is trained by pattern ordered sequence are allowed to learn. This form of learning 
matching a vector of observations from historical data, this i o  is called competition, because only those weight vectors that type of neural network will always determine the most 

Euclidean distances) are modified during an iteration of the observation. 
training algorithm. Three commonly used learning methods 

similar operating mode when presented with a new data produce the best "Ores (i.e.? producing the 

~n LVQ neural network is a two-layer, pattern classifi- 
cation neural network in which each output node represents for training an LVQ neural network are herein designated 
a particular class or category. 

FIG. 11 illustrates the architecture of an LVQ neural In the first learning method (LvQl), only the weight 
network, An LVQ network is one of a group of related vector that is closest to the current input vector (i.e., the 
pattern classification neural network models that can be used weight vector that produces the minimum Euclidean 
to cluster a set of s-element input vectors {X}={x,, distance) is allowed to learn. For each matched pair of input 

, xs} into t clusters. The input nodes of the neural 20 and training vectors presented to an LVQ network during 
draw data either directly from sensor signals or from the training, the Euclidean distance between the input vector 
output of a mathematical function applied to one or more and each of the weight vectors is calculated and the output 
sensor signals. An input vector is defined as the set of data node connected to the weight vector that produces the 
values, one value for each input node that is derived from the minimum Euclidean distance is identified. If the output node 
sensor signals at a given moment in time. The output nodes zs that produces the minimum Euclidean distance corresponds 
of the network correspond to one of the classes (herein, the to the correct operating mode, the connection weights for the 
operating modes) recognized by the neural network. During output vector are positively reinforced as follows. Let the 
operation of the neural network, an input vector is presented subscript j represent the output node whose weight vector 
to the network, passes through the network, and activates produces the minimum Euclidean distance. If the target 
one of the t output nodes (y,, . . . , y,, . . . , y,). Each of the 30 value for that output node is 1 (i.e., t,=l), then the weight 
output nodes corresponds to one of the classes recognized by vector for the output node (W,) is updated by 
the neural network. The LVQ neural network returns the 

determining the current operating mode of the asset. 

of connection weights. The subset of connection weights 
that connect all of the input nodes to one of the output nodes 
is called a weight vector. For example, output node y, is 
connected to the input nodes by weight vector {WI}={wlJ, 
. . . , w,,,, . . . , wsJ}. An LVQ neural network that contains 40 
s input nodes and t output nodes would contain a total of t 

is LVQ1, LVQ2.1, and LVQ3. 

class corresponding to the activated output node, thereby G1=G1+A(ZG1 ) (8 )  

where X is the current input vector and h is a scalar 
parameter called the learning rate that varies from 0 to 
1. If the output node whose weight vector produces the 
minimum Euclidean distance corresponds to the incor- 
rect operating mode (i.e., t,=O), the connection weights 
for the output vector are negatively reinforced by 

The input nodes are connected to the output nodes by a set 3s 

weight vectors, with each weight vector containing s con- G1=G1-A(ZG1) (9) 

In the second (LVQ2.1) and third (LVQ3) learning 
methods, the two weight vectors that are closest to the 
current input vector are identified. These two weight vectors 
may be positively or negatively reinforced depending upon 
a number of conditions. The most important of these con- 
ditions is that the two weight vectors are modified only if 
they are roughly equidistant from the input vector. A user- 
defined control parameter (E), called the window size, is 
used to determine whether or not the two weight vectors are 
of comparable distances from the input vector. The window 
condition test that must be satisfied by the two closest weight 
vectors is that the ratio of distance between the closest 
weight vector and the input vector (del) to the distance 
between the second closest weight vector and the input 
vector (dc2) must fall within the window. Namely, 

- - 
(10) 

neural network. In this scheme, training is accomplished by 

target vectors to the neural network, causing some of the 
network's connection weights to be adjusted with each 
presentation of a training pair. The target vector The window size is a small user-defined constant with 
{T}={t,, . . . , t,, . . . , t,} is a set of binary values, one value typical values in the range O.lc~cO.5. 
for each output node in the network. An element of a target 65 In the LVQ2.1 algorithm, a second condition that must be 
vector has a value of one if the corresponding output node met is that one of the two closest weight vectors connects to 
represents an output node of the same class as the input vector. While 

dc I 4 2  - > l - s a n d  - < l + s  
4 2  dc I 

presenting a sequence of matched pairs of input vectors and 60 

nection weights. 
An LVQ neural network is designed to recognize a 

predefined set of classes. Each one of the classes corre- 45 
sponds to a distinct operating mode of the asset under 
surveillance. During training of an LVQ neural network, the 
designer decides how many output nodes will be used to 
model each of the operating modes classified by the net- 
work. More than one output node can be used to represent SO 
a class (operating mode) recognized by the neural network. 
By using more than one node to represent a class, the 
number of neural network connection weights dedicated to 
that class is increased. This improves the ability of the neural 
network to recognize an operating mode of the asset. For ss 
each of the r classes, the designer specifies the number of 
output nodes that will model that class. 

A supervised training scheme is used for training an LVQ 
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weight vector that is closest to it connects to an output node 
of the same class as the input vector. As each input vector in 
the training set is passed through the LVQ neural network 
during a training epoch, the program notes if the input vector 

s was correctly or incorrectly classified. The error rate is then 
given by the ratio of the number of incorrectly classified 
input vectors to the total number of input vectors in the 
training set. By keeping track of the error rate, the training 
algorithm can be halted as soon as the neural network stops 

The learning methods devised for the LVQ neural network 
are fine-tuning procedures. Only slight modifications are 
made to the network weight vectors during any training 
epoch. Therefore to minimize the number of epochs needed 

IS to train the neural network, the initial values of the weight 
vectors must be chosen wisely. The simplest method of 
initializing the weight vectors is to randomly select t vectors 
from the set of input vectors used to train the neural network 
and use them as initial values for the weight vectors, where 

20 t is the number of output nodes in the network. Although this 
initialization method works, a better method, which in 
general reduces the number of epochs needed to adequately 
train the network is to use the K-means clustering algorithm 
to set the initial values of the weight vectors. The K-means 

zs clustering algorithm is a method that will divide a vector 
space into K clusters and identify the centers of each cluster. 
The K-means clustering algorithm can be used to divide the 
input vectors used to train the LVQ network into t clusters 
and use the centers of the clusters as the initial values for the 

The K-mean clustering algorithm is used to initialize the 
weight vectors as follows. For each of the r classes recog- 
nized by the network, the input vectors that belong to each 
class are identified and collected into r arrays. Next the 

3s output nodes that belong to each class are identified. By 
definition, the number of output nodes that belong to each 
class is given by the nodes-per-class vector (Nclass). Then for 
each class, the K-means clustering algorithm is used to 
cluster the input vectors that belong to the class into a 

40 number of clusters that equals the number of output nodes 
that belong to the class. For instance for class j, the K-means 
clustering algorithm is used to divide the input vectors into 
nout, clusters and to evaluate the centers of the clusters. The 
cluster centers for class j are used to initialize the weight 

4s vectors whose output nodes belong to the class. The 
K-means clustering algorithm evaluates cluster centers for 
the class by minimizing the Euclidean distances between 
each of the input vectors in the class and the cluster center 
nearest to each. Thus, each cluster center is the mean value 

SO of the group of input vectors in a cluster domain. The 
K-means clustering algorithm was found to improve the 
recall capabilities of the neural network over the random 
initialization scheme, at a minimal increase in the compu- 
tational cost of the training calculations. 

A trained LVQ neural network operates as follows. At a 
point in time, a current data observation is acquired from the 
asset 12 and an input vector is constructed. The Euclidean 
distance between the input vector and each of the weight 
vectors is calculated. The weight vector producing the 

60 minimum Euclidean distance is found and its corresponding 
output node is activated. The neural network declares the 
operating mode corresponding to the activated output node 
to be the current operating mode of the asset 12 under 
surveillance. 

65 In Use and In Operation Using An MSET Process Model 
Array and A Neural Network for Determining the Operating 
Mode of the Asset 

i o  learning. 

30 weight vectors. 

ss 

at the same time, the other weight vector must connect to an 
output node of a class that differs from the class of the input 
vector. If both the window and class conditions are met, then 
the weight vector whose output node belongs to the same 
class as the input vector is positively reinforced according to 
equation (8). Also, the weight vector whose output node 
belongs to a class that differs from that of the input vector 
is negatively reinforced according to equation (9). 

In the LVQ3 algorithm, the two weight vectors that are 
closest to the input vector are allowed to learn as long as the 
same window and class conditions as in the LVQ2.1 algo- 
rithm are met. The LVQ3 algorithm contains an additional 
learning mode. If the two weight vectors that are closest to 
the input vector meet the window condition (i.e., the con- 
ditions in equation (10) are met), and if both weight vectors 
connect to output nodes that are of the same class as the 
input vector, then both weight vectors are positively rein- 
forced. Both weight vectors are updated by 

G=G+iqZ-G) (11) 

where 6 is a user-defined parameter, called the LVQ3 
multiplier, that reduces the learning rate. The LVQ3 
multiplier is a small constant with typical values in the 
range 0 . 1 ~ 6 ~ 0 . 5 .  

The concept behind the LVQ2.1 and LVQ3 learning 
methods is that as the input vectors used for training are 
presented to the neural network, learning occurs only when 
an input vector is close to two of the weight vectors. In this 
case, the input vector is near the boundary between two 
weight vectors. Learning occurs in the LVQ2.1 algorithm 
only if one of the weight vectors belongs to the same output 
class as the input vector and the other weight vector belongs 
to a different class. The weight vector belonging to the 
correct class is positively reinforced and the other vector is 
negatively reinforced. The LVQ3 algorithm contains the 
same conditions as the LVQ2.1 algorithm. But an additional 
condition in the LVQ3 algorithm allows the network to 
learn, at a slower rate, if both weight vectors belong to the 
same class as the input vector. Over the course of the 
iterative training procedure, this technique works to sharply 
define the boundaries between the vector spaces recognized 
by each weight vector. 

Aset of input vectors and corresponding target vectors are 
used to train the LVQ neural network. The set of input and 
target vectors is presented to the network and the connection 
weights are adjusted depending upon the learning algorithm 
selected. Then, the learning rate parameter (h) is decreased 
by a small amount and the set of input and target vectors is 
passed through the network again. The cycle is repeated 
until the learning rate decreases to zero or until the error rate 
for the neural network converges. Each training cycle of data 
presentation and learning rate reduction is called an epoch. 
The maximum number of epochs (n,J to be performed by 
the training algorithm is a user-defined control parameter. 
The learning rate decreases linearly with epoch number, 
with the learning rate decreasing to zero when the maximum 
number of epochs is reached. The initial value of the 
learning rate (h,) is a user-defined control parameter that, 
along with the maximum the number of epochs, determines 
the rate at which the learning rate is decreased. Specifically, 
the learning rate is decreased by a factor of neps/ho at the end 
of each epoch. 

During each training epoch, the error rate for the neural 
network is calculated. The error rate is defined to be the 
fraction of input vectors that are incorrectly classified by the 
neural network. An input vector is correctly classified if the 
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Operating mode partitioned MSET processing was first by the unpartitioned MSET model creation procedure with 
reduced to practice by applicant in the performance of a process memory matrix (D) size of 150 vectors used in the 
NASA Contract NAS4-99012 cited hereinabove. Testing unpartitioned MSET model. This enabled a direct compari- 
performed under this contract conclusively demonstrated the son of surveillance performance between the operating 
reduction to practice for and unobvious benefits of the mode partitioned (instant invention) and unpartitioned mod- 
instant invention. The contract final report and new tech- els given a constant processing time, ne third 
nology disclosure dOCuments by applicant, delivered to the validation software module, herein denoted the A300 
United States Government under this contract and listed module, was created by the unpartitioned MSET model 
herein below, further describe one Preferred ~ ~ b o d i m e n t  creation procedure with a process memory matrix (D) size of 
and its reduction to practice, the disclosure of which is 300 vectors used in the unpartitioned MSET model, The 
incorporated in its entirety herein by reference. A300 module enabled improved surveillance performance 

NASA SBIR Phase 1 Final Report, “System State Deter- for the unpartitioned MSET model case, albeit at the cost of 
mination for Real-Time Sensor Validation,’’ NASA greater processing time. 
Contract NAS4-99012, Jun. 12, 1999. Publication or FIG. 15 further lists the parameter estimation model and 
disclosure restricted to US Government personnel for is fault detector configurations used for feasibility testing. 
four years pursuant to Code of Federal Regulations 48 The operating mode partitioned sensor validation module 
CFR 52.227-20. (denoted PD) incorporated an MSET process model array 

New Technology Report for NASA Contract NAS4- partitioned into seven (7) modes representative of the pri- 
99012, “Phase Partitioning the Multivariate State Esti- mary operating modes of the SSME. The rules used for 
mation Technique (MSET) Process for Improved 20 partitioning the training data for the SSME operating modes 
Parameter Estimation Performance and Processing are provided in FIG. 16. The two unpartitioned sensor 
Speed,” Expert Microsystems, Inc. Document Control validation modules (denoted A150 and A300) were prepared 
Number 2000-4446, Jan. 24, 2000. Publication or dis- using exactly the same training data without the benefit of 
closure restricted to US Government personnel for four operating mode partitioning. 
years pursuant to Code of Federal Regulations 48 CFR zs The System State Analyzer (SSA) type pattern recogni- 
52.227-20. tion operator was used in all of the MSET models. The fault 

New Technology Report for NASA Contract NAS4- detection models were all based on the SPRT mean positive 
99012, “System State Classification Using A Learning Vec- and mean negative test methods. SPRT is a statistically 
tor Quantization (LVQ) Neural Network,” Expert derived test statistic with an explicit, non-zero false alarm 
Microsystems, Inc. Document Control Number 2000-4447, 30 probability. For this reason, SPRT fault detectors are gen- 
Jan. 24, 2000. Publication or disclosure restricted to US erally used in combination with a multi-cycle fault decision 
Government personnel for four years pursuant to Code of algorithm to filter out the possible one-cycle SPRT alarms. 
Federal Regulations 48 CFR 52.227-20. The fault decision procedure was configured using a four (4) 

In the performance of NASA Contract NAS4-99012, a out of seven (7) multi-cycle decision algorithm. This fault 
sensor validation software module was designed to validate 35 decision procedure will declare a sensor failure whenever 
seventeen (17) mission critical telemetry signals for the any 4 of the last 7 observation cycles produce any type of 
Space Shuttle Main Engine (SSME), as listed in FIG. 13. one-cycle SPRT fault detection alarm. 
These signals were selected based on their importance for Performance testing clearly demonstrated the feasibility 
real-time telemetry monitoring of the three Space Shuttle and benefits of using the operating mode partitioned MSET 
Main Engines during vehicle ascent to orbit. The names 40 process model array for real-time sensor signal validation. 
listed in FIG. 13 use standard SSME nomenclature. Data Metrics used to evaluate the test results included the fol- 
from ten nominal Space Shuttle flights, with flights and lowing: 
engine positions as listed in FIG. 14, were selected as the Total One Cycle Alarm Count-This is a measure of the 
training data for the MSET submodels and LVQ neural total number of SPRT fault detector generated alarms for a 
network used in the performance of this work. 45 single simulation run. For nominal cases, this is expected to 

A series of parametric studies were performed to deter- be a near zero number. For failure simulation cases, the 
mine the LVQ neural network configuration and training number will be non-zero. This metric provides a measure of 
constants that provide the best performance for SSME the overall performance of the fault detection procedure. 
operating mode determination. The neural network configu- Average Parameter Estimation Error Percentage-This is 
ration and training constants selected for applicant’s reduc- SO a measure of the globally averaged parameter estimation 
tion to practice are defined in FIG. 12. Ten SSME flight data error. The global averaged error is the sum of the single 
sets, defined in FIG. 14, were used to train the neural cycle error for all sensors and data observations divided by 
network. The operating mode determination capability of the total number of sensors and data observations. This 
the LVQ neural network was shown to be excellent with metric provides a measure of the overall performance of the 
operating mode classification error rates of less than 2% ss parameter estimation procedure. 
observed in testing with additional SSME flight data sets Average One Cycle Processing Time-This is a measure 
that were not used for training the neural network. of the globally averaged single cycle validation processing 
Specifically, FIG. 15 illustrates three versions of the sensor time. The one cycle processing time is the sum of the 
validation software module. The first sensor validation soft- processing time for all validated data observations divided 
ware module, herein denoted the PD module, was created by 60 by the total number of validated data observations. The 
the methods of the instant invention with a process memory processing time is calculated as the elapsed time between the 
matrix (D) size of 150 vectors for each operating mode time of the test driver’s call to the sensor validation mod- 
partitioned MSET process submodel in the process model ule’s surveillance procedure and the time that the surveil- 
array. The PD module’s MSET process submodels were lance procedure returns its results to the test driver. 
created using an LVQ neural network for the operating mode 65 Time to Failure Detection (Failure Simulations Only)- 
determination procedure. The second sensor validation soft- This is a measure of the elapsed time between the first 
ware module, herein denoted the A150 module, was created observation containing sensor failure data and the observa- 
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tion for which the sensor validation module declares the 
sensor failed. Time to fault detection depends on the diag- 
nostic capability of the sensor validation module, the time of 
failure occurrence and the nature and magnitude of the 
sensor failure. The data herein report the elapsed mission 
time between the initiation of a slow drift in the signal and 
the time that the drift failure was detected. For consistency, 
all test cases herein used a drift magnitude of 0.2% of the 
nominal, full power level value of the sensor signal applied 
per second of engine operating time. 

Signal Error at Failure Detection (Failure Simulations 
Only)-This is a measure of the total accumulated drift error 
in a sensor signal at the time of failure detection. The data 
reported herein normalize the error at the time of detection 
in terms of a percentage of the nominal, full power level 
value of the sensor signal. 

The results tabulated in FIGS. 17 through 22 demonstrate 
the very significant improvement in sensor validation per- 
formance achieved using the operating mode partitioned 
MSET process model array in accordance with the instant 
invention. The operating mode partitioned MSET process 
model array provided better fault detection sensitivity, lower 
parameter estimation error, and much faster processing time 
in comparison to the unpartitioned MSET models. The 
operating mode partitioned MSET process model array 
exhibited zero (0) false alarms and zero (0) missed alarms 
during all testing performed. The results tabulated in FIGS. 
17 and 18 were generated using an LVQ neural network for 
the operating mode determination procedure. 

Two test series were performed for comparison of the 
operating mode partitioned sensor validation module to the 
unpartitioned modules. In the first series, an unpartitioned 
model with a process memory matrix of 300 vectors was 
constructed (denotedA300). The operating mode partitioned 
model (denoted PD) used a process memory matrix of 150 
vectors for each individual operating mode. When compared 
to the 300 vector unpartitioned model, the operating mode 
partitioned process model array in accordance with the 
instant invention demonstrated: 

34% reduction in parameter estimation error; 
73% reduction in per cycle processing time; 
73% reduction in time to detect a sensor signal drift; 
73% reduction in the total signal error at drift failure 

In addition, the 300 vector unpartitioned model missed 
two subtle noise failures that were properly detected by the 
operating mode partitioned process model array in accor- 
dance with the instant invention. 

In the second series, the operating mode partitioned 
process model array was compared to an unpartitioned 
model of equivalent run-time speed. To accomplish this, an 
unpartitioned model with a process memory matrix of 150 
vectors was constructed (denoted A150). When compared to 
the 150 vector unpartitioned model, the operating mode 
partitioned process model array in accordance with the 
instant invention demonstrated: 

detection. 

42% reduction in parameter estimation error; 
Equivalent per cycle processing time; 
77% reduction in time to detect a sensor signal drift; 
76% reduction in the total signal error at drift failure 

In addition, the 150 vector unpartitioned model produced 
two sensor failure false alarms and missed one noise failure 
in cases that were properly detected by the operating mode 
partitioned process model array in accordance with the 
instant invention. 

detection. 
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The operating mode partitioned process model array 

provides better fault detection sensitivity because the oper- 
ating mode specific MSET process submodels are better able 
to estimate the current value of each observed parameter. 
This capability of the operating mode partitioned process 
model array is demonstrated by the reduction achieved in the 
parameter estimation error. Reduced parameter estimation 
error allows the SPRT thresholds for fault detection to be set 
to lower values thereby making the sensor validation model 
more sensitive to the early indications of sensor failure 
(fewer missed alarms). This phenomenon proportionally 
reduces the time to drift failure detection as illustrated by 
comparison of the results reported in FIG. 18 to the results 
reported in FIG. 20 and FIG. 22. 

Parameter estimation error may be traded off against 
processing time by increasing the number of vectors in the 
process memory matrix. As is evident by comparison of 
FIG. 19 and FIG. 21, doubling the process memory matrix 
size increased the single cycle processing time by a factor of 
four (2’). Operating mode partitioning provides an effec- 
tively larger process memory matrix without the concomi- 
tant penalty in processing time. For example, the operating 
mode partitioned SSME sensor validation module (PD) 
includes seven active operating modes with process memory 
matrices sized at 150 vectors per mode. This provides an 
effective process memory matrix size of 1050 vectors with 
processing speed equivalent to a process memory matrix 
containing 150 vectors. A single unpartitioned model of 
equivalent accuracy would be 49 (7’) times slower than the 
operating mode partitioned process model array. 

Processing speed results demonstrated the real-time 
monitoring capability of the operating mode partitioned 
process model array. Single observation processing times of 
5-msec (200 samplesisecond) were demonstrated with the 
seventeen (17) sensor SSME sensor validation module run- 
ning on a 300-MHz Pentium I1 processor. It is reasonable to 
allocate between 2 and 50-msec per data cycle for sensor 
validation processing in SSME real-time control applica- 
tions. The results of this testing show these goals are only 
attainable with operating mode partitioning of the MSET 
model in accordance with the instant invention. The unob- 
vious benefits of the instant invention are therefore demon- 
strated by this reduction to practice. 

Alternate Embodiment and In Use and Operation Using A 
MSET Process Model Array for Parameter Estimation and A 
Rule-Based Logic Sequence for Determining the Operating 
Mode of the Asset 

In another preferred embodiment, the same MSET pro- 
cess model array methods and procedures described here- 
inabove were used with a rule-based logic sequence for the 
operating mode determination procedure 26. A rule-based 
classifier is generally specific to a single type of asset and 
may be implemented in a plurality of forms. A rule-based 
classifier may use expert system or procedural logic depend- 
ing on the nature and complexity of the operating modes of 
the asset. In one preferred embodiment herein, procedural 
logic representing the rules specified in FIG. 16 for deter- 
mining the operating mode of the SSME was reduced to 
practice using C language procedural software as follows. 
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. .. . . .. . .. . Begin Source Code Listing----------- 
I* SSME operating mode determiner function *I 
I* Copyright 1999 by Expert Microsystems, Inc. *I 
I* All Rights Reserved 
#define START-COMMAND 33024.0 
#define SHUTDOWN-COMMAND 35328.0 
#define COMMAND-ISSUED(COMVAL,DATUM) ((DATUM>(COMVAL - 1.0)) 

&& (DATUM<(COMVAL + 1.0))) 
enum SSME-modes SSME-modedeterminer (double *data, enum Boolean initialize) 

float pc; I* Combustion chamber pressure *I 
float vehcom; I* Vehicle command code *I 
float compc; I* Commanded chamber pressure *I 
static float last-PL=O.O; 
static int cyclesin-start=O; 
static float last-compc=O.O; 
static enum SSMELmodes lastLstate=PREFIRE 
if(initia1ize) { 

{ 

last-PL = 0.0; 
cycles-in-start = 0; 
last-compc = 0.0; 
last-state = PREFIRE; 
return PREFIRE; 

I; 
pc = data[PID63]; 
vehcom = data[PID280]; I* Vehicle command is PID280 *I 
compc = data[PID287]; I* Commanded chamber pressure is PID287 *I 
I* Take care of special cases first. . . *I 
if (last-state == PREFIRE) { 

I* Chamber pressure is PID63 *I 

if(C0MMAND-ISSUED (START-COMMAND, vehcom)) { 
I* If we’re waiting for START and receive START, then we’re in TRANSIENT. *I 
last-state = STARTO1; 
return STARTO1; 

I* Keep waiting. *I 
last-state = PREFIRE; 
return PREFIRE; 

} else { 

I 
} else if(1astLstate == SHUTDOWN 1 1  COMMAND-ISSUED (SHUTDOWN-COMMAND, vehcom)) { 

I* Once SHUTDOWN is detected, stay in SHUTDOWN until re-initialized. *I 
last-state = SHUTDOWN, 
return SHUTDOWN, 

if(last-state==STARTOl) { 
if(++cycles-in_start<ZS) { I *  0 to 1.0 sec *I 

last-compc = compc; 
last-state = STARTO1; 
return STARTO1; 

I 

} else { 
last-state = START12; 
return START12; 

I 
I; 
if(lastLstate==STARTlZ) { 

if(++cycles-in-start<SO) { I* 1.0 to 2.0 sec *I 
last-compc = compc; 
last-state = START12; 
return START12; 

} else { 
last-state = START24; 
return START24; 

I 
I; 
if(lastLstate==START24) { 

if(++cycles-in-start<25*4) { I* 2.0 to 4.00 sec minimum *I 
last-compc = compc; 
last-state = START24; 
return START24; 

I; 
I; 
I* ELSE. . .mainstage operation. *I 
if((1ast-state==STEADY-LOW 1 1  last-state==STEADY-FULL) && fabs(compc-last~compc)<3.35) { 

last-PL=pc; 
last-compc = compc; 
if(compc <2500.0) { 

last-state = STEADY-LOW, 
return STEADY-LOW, 

last-state = STEADY-FULL; 
} else { 
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-continued 

30 

return STEADY-FULL, 
I 

} else { /* In transient */ 
if(fabs (compc - pc) <= (5 * 3.35)) { 

/* Transition to steady-state. */ 
last-PL = pc; 
last-compc = compc; 
if(compc < 2500.0) { 

last-state = STEADY-LOW, 
return STEADY-LOW, 

last state = STEADY-FULL; 
return STEADY-FULL, 

} else if(lastLstate==START24) { 

} else { 

I 
last-PL = pc; 
last-compc = compc; 
return last-state; 

last-PL = pc; 
last-compc = compc; 
last-state = UPTHRUST; 
return UPTHRUST, 

last-PL=pc; 
last-compc = compc; 
last-state = DOWNTHRUST; 
return DOWNTHRUST, 

} else if(compo1ast-compc 1 1  pc<compc) { 

} else { 

I; 
I; 

End Source Code Listing------------ 
I 
............ 

Reduction to practice and performance testing was 
accomplished using the MSET parameter estimation tech- 
niques and rule-based operating mode determination proce- 
dure described hereinabove. Substantially identical test 
results were achieved using the rule-based method and the 
LVQ neural network method for the operating mode deter- 
mination procedure 12. This was expected because both 
methods implemented the same operating mode determina- 
tion criteria, as defined in FIG. 16, albeit using very different 
means. Reduction to practice using both neural network and 
rule-based methods illustrates that the instant invention may 
employ any one of a plurality of operating mode determi- 
nation procedures 12 to achieve the benefits described 
herein. 
Alternate Embodiment and In Use and Operation Using A 
Mathematical Process Model Array for Parameter Estima- 
tion and A Rule-Based Logic Sequence for Determining the 
Operating Mode of the Asset 

In yet another preferred embodiment, an array of math- 
ematical models of the asset is used with the same rule-based 
logic sequence for operating mode determination described 
herein above. The mathematical type of process model array 
50 is generally specific to a single type of asset and may be 
implemented in a plurality of forms. In the reduction to 
practice described herein, the mathematical process model 
array 50 was prepared for the operating modes of the SSME, 
as defined in FIG. 16. This embodiment was first reduced to 
practice in the performance of NASA Contract NAS3- 
97130. The contract final report, delivered to the United 
States Government and listed hereinbelow, further describes 
the preferred embodiment and its reduction to practice, the 
disclosure of which is incorporated in its entirety herein by 
reference. 

NASA Contract Final Report, “Sensor Validation Tools 
and SSME Network,” NASA Contract NAS3-97130, 
December 1999. Unrestricted distribution. 

The mathematical process modeling approach taken in 
this work was to empirically derive a plurality of math- 

ematical redundancy relations between related groups of 
SSME signals. For example, FIG. 23 illustrates a math- 
ematical redundancy relation among three related signals 

35 using a standard formula for fluid flow line resistance. 
Additionally, mathematical limit relations were defined in 
the form of threshold comparison checks for the signal 
values. Engine system design relationships and sensor 
redundancies were used to select the mathematical relations 
used in the mathematical process submodels. A network of 

40 these mathematical relations was then assembled to create a 
separate mathematical process submodel for each SSME 
operating mode. These operating mode specific mathemati- 
cal process submodels were then assembled into a process 
model array 50 comprised of one mathematical process 

Reduction to practice and performance testing was 
accomplished using the mathematical process model array 
50 and the rule-based operating mode determination proce- 
dure 26 described hereinabove. Substantially similar test 
results were achieved using the mathematical process model 
array 50 and the MSET process model array 50 for param- 
eter estimation. 

Moreover, having thus described the invention, it should 
be apparent that numerous structural modifications and 

55 adaptations may be resorted to without departing from the 
scope and fair meaning of the instant invention as set forth 
hereinabove and as described hereinbelow by the claims. 

45 submodel for each operating mode of the SSME. 

I claim: 
1. A surveillance system for monitoring an asset, said 

a) a data acquisition means for acquiring a current set of 
signals engendered from said asset correlative to asset 
status; 

b) a digitizing means for digitizing said current set of 
signals for defining a current set of digitized signals; 

c) a process model array comprised of an array of process 
submodels, each said process submodel trained with at 

6o system comprising in combination: 

65 
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least one of a plurality of training data subsets parti- 
tioned from a unpartitioned training data set for pro- 
viding training of each submodel and wherein each of 
said plurality of training data subsets has at least one 
defined operating mode associated therewith; 

d) an operating mode determination means for determin- 
ing a current operating mode of said asset as a function 
of both said current set of digitized signals and said 
defined operating modes associated with said plurality 
of training data subsets; 

e) a process model selection means for selecting at least 
one of said process submodels as a function of said 
determined current operating mode wherein said 
selected process submodel is representative of said 
determined current operating mode of said asset; 

f )  a parameter estimation means for producing a set of 
estimated signal values from said selected process 
submodel; 

g) a fault detection means for detecting the presence of a 
fault as a function of said set of estimated signal values 
from said selected process submodel and said current 
set of digitized signals; 

h) a communication means for outputting detected faults 
for providing asset surveillance. 

2. The system of claim 1 wherein each of said plurality of 
process submodels are of a type individually selected from 
the group comprised of a multivariate state estimation 
technique model, a neural network model, a mathematical 
model, an autoregressive moving average model, and a 
Kalman filter model. 

3. The system of claim 1 wherein said operating mode 
determination means is selected from the group comprised 
of a logic sequence method, a mathematical model method, 
a neural network method, and a expert system method. 

4. The system of claim 1 wherein said parameter estima- 
tion means is different for producing individual estimated 
signal values in said set of estimated signal values. 

5. The system of claim 1 wherein said parameter estima- 
tion means for producing said set of estimated signal values 
from said selected operating mode specific model is of a type 
individually selected from the group comprised of a multi- 
variate state estimation technique method, a neural network 
method, a mathematical model method, an autoregressive 
moving average method, and a Kalman filter method. 

6. The system of claim 1 wherein said fault detection 
means is of a type individually selected from the group 
comprised of a threshold limit test, a statistical hypothesis 
test, a sequential probability ratio test, and a conditional 
probability test. 
7. A method for training a process model array using 

historical data, the steps including: 
acquiring historical operating data of an asset; 
generating observation vectors from said historical oper- 

ating data such that each observation vector represents 
an operating state of said asset; 

forming a training data set comprised of said observation 
vectors; 

partitioning said training data set into a plurality of 
training data subsets; 

associating at least one of a plurality of predefined oper- 
ating modes to each of said plurality of training data 
subsets; 

determining a plurality of operating modes; 
iteratively creating a process submodel for at least one of 

said plurality of determined operating modes to be 

32 
included in said process model array by determining 
which determined operating mode is enabled and 
extracting from said partitioned training data set at least 
one of said plurality of training data subsets having an 

5 associated predefined operating mode substantially 
matching said enabled determined operating mode and 
training said process submodel with said training data 
subset; and 

storing each created process submodel as a new element 
in said process model array for subsequent use in 
surveillance of said asset. 

8. The method of claim 7 wherein said operating mode 
determination means is selected from the group comprised 
of a logic sequence method, a mathematical model method, 

is a neural network method, and a expert system method. 
9. The method of claim 7 wherein said process model 

training means for training a operating mode specific pro- 
cess model is of a type individually selected from the group 
comprised of a multivariate state estimation technique 

20 method, a neural network method, a mathematical model 
method, an autoregressive moving average method, and a 
Kalman filter method. 

10. The method of claim 7 wherein said plurality of 
process submodels are stored as elements in an array of 

11. A method for performing surveillance of an asset, the 

acquiring historical operating data of an asset; 
generating observation vectors from said historical oper- 

ating data such that each observation vector represents 
an operating state of the asset; 

forming a training data set comprised of said observation 
vectors; 

partitioning said training data set into a plurality of 
training data subsets each having at least one of a 
plurality of predefined operating modes associated 
therewith by partitioning said observation vectors into 
said plurality of training data subsets such that each of 
said observation vectors is associated with at least one 
of said plurality of predefined operating modes; 

i o  

zs model elements indexed by operating mode type. 

steps including: 

30 
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40 

determining a plurality of operating modes; 
iteratively creating a process submodel for at least one of 

said plurality of determined operating modes to be 
included in said process model array by determining 
which determined operating mode is enabled and 
extracting from said partitioned training data set at least 
one of said plurality of training data subsets having an 
associated predefined operating mode substantially 
matching said enabled determined operating mode and 
training said process submodel with said training data 
subset; and 

storing each created process submodel as a new element 
in said process model array for subsequent use in 

acquiring a current set of observed signal data values from 
the asset; 

determining an operating mode of the asset for the current 
set of observed signal data values as a function of both 
said current set of observed signal data values and said 
predefined operating modes associated with said plu- 
rality of training data subsets; 

selecting at least one said process submodel from said 
process model array such that said selected process 
submodel has an associated operating mode substan- 
tially matching said determined operating mode of the 
asset for the current set of observed signal data values; 

45 

55 surveillance of the asset; 

60 
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calculating a current set of estimated signal data values 
from said selected process submodel for said deter- 
mined operating mode; 

comparing the calculated current set of estimated signal 
data values with the current set of observed signal data 5 
values for detecting a fault condition; 

outputting a signal correlative to each detected fault 
condition for providing asset surveillance. 

12. A system for controlling an asset, said system com- 

a) a data acquisition means for acquiring a current set of 
signals engendered from the asset correlative to asset 
status; 

b) a digitizing means for digitizing said current set of 1~ 
signals for defining a current set of digitized signals; 

c) a process model array comprised of an array of process 
submodels, each said process submodel trained with at 
least one of a plurality of training data subsets parti- 
tioned from an unpartitioned training data set for pro- 20 
viding training of each submodel and wherein each of 
said plurality of training data subsets has at least one 
defined operating mode associated therewith; 

d) an operating mode determination means for determin- 
ing a current operating mode of the asset as a function 2s 
of both said current set of digitized signals and said 
defined operating modes associated with said plurality 
of training data subsets; 

e) a process model selection means for selecting at least 
one of said plurality of process submodels as a function 30 
of said determined current operating mode wherein said 
selected process submodel is representative of said 
determined current operating mode of the asset; 

f) a parameter estimation means for producing a set of 
estimated signal values from said selected process 
submodel; 

g) a communication means for communicating the esti- 
mated signal values to a control means for using one or 
more of the estimated signal values for providing asset 4o 
control. 

10 prising in combination: 

3s 

13. The system of claim 12 wherein each of said plurality 
of process submodels are of a type individually selected 
from a group comprised of a multivariate state estimation 
technique model, a neural network model, a mathematical 4s 
model, an autoregressive moving average model, and a 
Kalman filter model. 

14. The system of claim 12 wherein said operating mode 
determination means is selected from a group comprised of 
a logic sequence method, a mathematical model method, a so 
neural network method, and a expert system method. 

15. The system of claim 12 wherein said parameter 
estimation means for producing said set of estimated signal 
values from said selected operating mode specific model is 
of a type individually selected from a group comprised of a ss 
multivariate state estimation technique method, a neural 
network method, a mathematical model method, an autore- 
gressive moving average method, and a Kalman filter 
method. 

16. Amethod for controlling an asset, the steps including: 6o 

providing a training data set partitioned into a plurality of 
training data subsets having a plurality of predefined 
operating modes associated therewith such that each of 
said plurality of training data subsets has at least one of 
said predefined operating modes associated thereto; 

acquiring a current set of observed signal data values from 
the asset; 
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determining an operating mode of the asset for the current 
set of observed signal data values by comparing the 
current set of observed signal data values to said 
plurality of training data subsets; 

selecting a process submodel as a function of said deter- 
mined operating mode of the asset; 

calculating a current set of estimated signal data values 
from said selected process submodel for said deter- 
mined operating mode; 

outputting the calculated current set of estimated signal 
data values for providing asset control. 

17. Amethod for monitoring an asset, the steps including: 
a) acquiring a current set of signals engendered from said 

asset correlative to asset status; 
b) digitizing said current set of signals for defining a 

current set of digitized signals; 
c) providing a process model array comprised of an array 

of process submodels, each said process submodel 
trained with at least one of a plurality of training data 
subsets partitioned from a unpartitioned training data 
set for providing training of each submodel and 
wherein each of said plurality of training data subsets 
has at least one defined operating mode associated 
therewith; 

d) determining a current operating mode of said asset as 
a function of both said current set of digitized signals 
and said defined operating modes associated with said 
plurality of training data subsets; 

e) selecting at least one of said process submodels as a 
function of said determined current operating mode 
wherein said selected process submodel is representa- 
tive of said determined current operating mode of said 
asset; 

f) producing a set of estimated signal values from said 
selected process submodel; 

g) detecting the presence of a fault as a function of said 
set of estimated signal values from said selected pro- 
cess submodel and said current set of digitized signals; 

h) communicating detected faults for providing asset 
surveillance. 

18. A system for training a process model array using 

means for acquiring historical operating data of an asset; 
means for generating observation vectors from said his- 

torical operating data such that each observation vector 
represents an operating state of said asset; 

means for forming a training data set comprised of said 
observation vectors; 

means for partitioning said training data set into a plu- 
rality of training data subsets; 

means for associating at least one of a plurality of 
predefined operating modes to each of said plurality of 
training data subsets; 

means for determining a plurality of operating modes for 
defining a plurality of determined operating modes to 
be included in a process model array; 

means for iteratively creating a process submodel for at 
least one of said plurality of determined operating 
modes to be included in said process model array by 
determining which determined operating mode is 
enabled and extracting from said partitioned training 
data set at least one of said plurality of training data 
subsets having an associated predefined operating 
mode substantially matching said enabled determined 

historical data, said system comprising in combination: 
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operating mode and training said process submodel 
with said training data subset; and 

means for storing each created process submodel as a new 
element in said process model array for subsequent use 
in surveillance of said asset. 

19. Asystem for performing surveillance of an asset, said 

means for acquiring historical operating data of an asset; 
means for generating observation vectors from said his- 

torical operating data such that each observation vector 
represents an operating state of the asset; 

means for forming a training data set comprised of said 
observation vectors; 

means for partitioning said training data set into a plu- 
rality of training data subsets each having at least one 
of a plurality of predefined operating modes associated 
therewith by partitioning said observation vectors into 
said plurality of training data subsets such that each of 
said observation vectors is associated with at least one 
of said plurality of predefined operating modes; 

means for determining a plurality of operating modes for 
defining a plurality of determined operating modes to 
be included in a process model array; 

means for iteratively creating a process submodel for at 
least one of said plurality of determined operating 
modes to be included in said process model array by 
determining which determined operating mode is 
enabled and extracting from said partitioned training 
data set at least one of said plurality of training data 
subsets having an associated predefined operating 
mode substantially matching said enabled determined 
operating mode and training said process submodel 
with said training data subset; and 

means for storing each created process submodel as a new 
element in said process model array for subsequent use 
in surveillance of the asset; 

means for acquiring a current set of observed signal data 
values from the asset; 

means for determining an operating mode of the asset for 
the current set of observed signal data values as a 
function of both said current set of observed signal data 
values and said predefined operating modes associated 
with said plurality of training data subsets; 

means for selecting at least one said process submodel 
from said process model array such that said selected 
process submodel has an associated operating mode 
substantially matching said determined operating mode 
of the asset for the current set of observed signal data 
values; 

means for calculating a current set of estimated signal 
data values from said selected process submodel for 
said determined operating mode; 

means for comparing the calculated current set of esti- 
mated signal data values with the current set of 
observed signal data values for detecting a fault con- 
dition; 

means for outputting a signal correlative to at least one 
detected fault condition for providing asset surveil- 
lance. 

20. Amethod for controlling an asset, the steps including: 
a) acquiring a current set of signals engendered from the 

b) digitizing said current set of signals for defining a 

system comprising in combination: 

asset correlative to asset status; 

current set of digitized signals; 

36 
c) providing a process model array comprised of an array 

of process submodels, each said process submodel 
trained with at least one of a plurality of training data 
subsets partitioned from an unpartitioned training data 
set for providing training of each submodel and 
wherein each of said plurality of training data subsets 
has at least one defined operating mode associated 
therewith; 

d) determining a current operating mode of the asset as a 
function of both said current set of digitized signals and 
said defined operating modes associated with said 
plurality of training data subsets; 

e) selecting at least one of said plurality of process 
submodels as a function of said determined current 
operating mode wherein said selected process sub- 
model is representative of said determined current 
operating mode of the asset; 

f )  producing a set of estimated signal values from said 

g) communicating the estimated signal values for provid- 

21. A system for controlling an asset, said system com- 

a training data set partitioned into a plurality of training 
data subsets having a plurality of predefined operating 
modes associated therewith such that each of said 
plurality of training data subsets includes at least one of 
said predefined operating modes associated thereto; 

means for acquiring a current set of observed signal data 
values from the asset; 

means for determining an operating mode of the asset for 
the current set of observed signal data values by 
comparing the current set of observed signal data 
values to said plurality of training data subsets and 
using at least one of said plurality of predefined oper- 
ating modes associated with at least one of said training 
data subsets which is found to be correlative to the 
current set of observed signal data values based on said 
comparison as a determined operating mode; 

means for selecting a process submodel as a function of 
said determined operating mode of the asset; 

means for calculating a current set of estimated signal 
data values from said selected process submodel for 
said determined operating mode; 

means for outputting the calculated current set of esti- 
mated signal data values for providing asset control. 

22. A method for performing surveillance of an asset, the 

partitioning an unpartitioned training data set into a 
plurality of training data subsets each having an oper- 
ating mode associated thereto; 

creating a process model comprised of a plurality of 
process submodels each trained as a function of at least 
one of the training data subsets; 

acquiring a current set of observed signal data values from 
the asset; 

determining an operating mode of the asset for the current 
set of observed signal data values; 

selecting a process submodel from the process model as 
a function of the determined operating mode of the 
asset; 

calculating a current set of estimated signal data values 
from the selected process submodel for the determined 
operating mode; and 
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outputting the calculated current set of estimated signal 

23. A method for Performing control of an asset, the steps 

partitioning an unpartitioned training data set into a 5 asset; 

determining an operating mode of the asset for the current 
set of observed signal data values; 

selecting a process submodel from the process model as 
a function of the determined operating mode of the 

calculating a current set of estimated signal data values 
from the selected process submodel for the determined 
operating mode; and 

outputting the calculated current set of estimated signal 
data values for providing asset control. 

data values for providing asset surveillance. 

including: 

plurality of training data subsets each having an OW- 
ating mode associated thereto; 

creating a process model comprised of a plurality of 
Process submodels each trained as a function of at least 1o 
one of the training data subsets; 

acquiring a current set of observed signal data values from 
the asset; * * * * *  


