Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical properties of novel organic compounds, "Opt. Lett. 20 (18), pp. 435-437 (1995)."

Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical properties of novel organic compounds, "Opt. Lett. 20 (18), pp. 435-437 (1995)."
OTHER PUBLICATIONS

* cited by examiner
FIGURE 1

- δ (cm4/s/photon)
- R_p (μm3/S)

FIGURE 3a

- Na-DMAS + TPS-HFA
- TPS-DMAS

Abs. (norm) vs. Wavelength (nm)
FIGURE 2a

FIGURE 2b
FIGURE 3b
FIGURE 4

Wavelength (nm)

Fluorescence intensity (arb. units)

Na-DMAS
TPS-DMAS

FIGURE 5

Energy (mJ)

Fluorescence signal (arb. units)

Pump @ 560

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>71.426</td>
<td>7.0156</td>
</tr>
<tr>
<td>m2</td>
<td>21.534</td>
<td>8.2006</td>
</tr>
<tr>
<td>Chisq</td>
<td>808.95</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.98725</td>
<td>NA</td>
</tr>
</tbody>
</table>

y = m2 + m1 * m0^2

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>4.4422</td>
<td>0.2877</td>
</tr>
<tr>
<td>m2</td>
<td>10.335</td>
<td>0.6631</td>
</tr>
<tr>
<td>Chisq</td>
<td>10.406</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.98765</td>
<td>NA</td>
</tr>
</tbody>
</table>
FIGURE 6
FIGURE 10

Ag COATED ANILINE-ACRYLATE
40 031 10.0kV X450 66.7μm
This application claims priority based on provisional application No. 60/082,128 filed Apr. 16, 1998, and is a continuation-in-part of Ser. No. 08/965,945 filed Nov. 7, 1997, now U.S. Pat. No. 6,267,913.

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the following applications:

(1) U.S. Provisional Patent Application No. 60/082,128, titled “Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species,” filed Apr. 16, 1998, with inventors Brian Cumpston, Matthew Lipson, Seth Marder and Joseph Perry, the disclosure of which is incorporated herein by reference; and

(2) U.S. patent application Ser. No. 08/965,945, titled “Two-Photon or Higher-Order Absorbing, Optical Materials and Methods of Use,” filed Nov. 7, 1997, now U.S. Pat. No. 6,267,913, with inventors Seth Marder and Joseph Perry, the disclosure of which is incorporated herein by reference.

ORIGIN OF INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Public Law 96-517 (35 U.S.C. 202) in which the Contractor has elected to retain title. The invention was also partially supported by the United States Government through the Office of Naval Research (ONR Grant Nos. N00014-95-1-1319), Air Force Office of Scientific Research (AFSOR Grant No. AFOSR Grant No. AFOSR Grant No. F49620-97-1-0200), and the National Science Foundation (NSF Grant No. CHE 94-08701, Amendment 001).

BACKGROUND OF THE INVENTION

The invention described herein relates generally to materials which exhibit nonlinear absorptive properties as described in U.S. patent application Ser. No. 08/965,945, which is incorporated herein by reference. More particularly, the present invention relates to structural variants of those materials which have high two-photon or higher order absorptivities and which, due to absorption of multiple photons, undergo chemistry with high efficiency, including, but not limited to, the creation of Lewis acidic species, Lewis basic species, radical species and ionic species.

For years, the possible applications of using two-photon or higher-order absorption for a variety of applications including optical limiting, optical memory applications, microfabrication, and rational drug delivery have been considered. There are two key advantages of two-photon or higher-order induced processes relative to single-photon induced processes. 1) Whereas single-photon absorption scales linearly with the intensity of the incident radiation, two-photon absorption scales quadratically with incident intensity and higher-order absorptions will scale with yet higher powers of incident intensity. As a result, it is possible to perform multiphoton processes with three dimensional spatial-resolution. 2) Because these processes involve as a first step the simultaneous absorption of two or more photons, the chromophore is excited with a number of photons whose total energy equals the energy of multiphoton absorption peak but where each photon is of insufficient energy to excite the molecule individually. Because the exciting light is not attenuated by single-photon absorption in this case, it is possible to excite molecules at a depth within a material that would not be possible via single-photon excitation by use of a beam that is focused to that depth in the material. These two advantages also apply to, for example, excitation within dense biological materials. In multiphoton lithography or stereolithography, the nonlinear scaling of absorption with intensity can lead to the ability to write features below the diffraction limit of light and the ability to write features in three dimensions, which is also of interest for holography.

It was discovered in accordance with an earlier invention (as described in U.S. application Ser. No. 08/965,945, now U.S. Pat. No. 6,267,913, which is incorporated herein by reference) that molecules that have two or more electron donors, such as amino groups or alkoxy groups, connected to aromatic or heteroaromatic groups as part of a π-electron bridge exhibit unexpectedly and unusually high two-photon or higher-order absorptivities in comparison to, for example dyes, such as stilbene, diphenyl polyenes, phenylene vinylene oligomers and related molecules. In addition, it was found that the strength and position of the two-photon or higher-order absorption can be tuned and further enhanced by appropriate substitution of the π-electron bridge with acceptors such as cyano. It was also discovered in accordance with the earlier invention that molecules that have two or more electron acceptors, such as formyl or cyano groups, connected to aromatic or heteroaromatic groups as part of a π-electron bridge exhibit unexpectedly and unusually high two-photon or higher-order absorptivities in comparison to, for example dyes, such as stilbene, diphenyl polyenes, phenylene vinylene oligomers and related molecules. The strength and position of the two-photon or higher-order absorption can likewise be tuned and further enhanced by appropriate substitution of the π-electron bridge with donating groups such as methoxy. Realization of many of the possible applications of two-photon or higher-order absorption by dyes rests on the availability of chromophores with both large two-photon or higher-order absorption cross sections and structural motifs conducive to excited state chemical reactivity.

Chemistry induced by the linear absorption of electromagnetic radiation (single photon) has been proposed and exploited for polymerization initiation, photorecrosslinking of polymers, holography, computer memory storage, microfabrication, medicine, and biochemistry among many other applications. Chemistry induced by linear absorption, however, allows spatial control largely limited to two dimensions (i.e., a surface). The invention described herein allows spatial control of photoinduced chemistry over three dimensions.

SUMMARY OF THE INVENTION

The present invention provides compositions of matter that have large two-photon or higher-order absorptivities and which upon two-photon or higher-order absorption lead to formation of one or more of Lewis acidic species, Lewis basic species, radical species and ionic species. It was discovered in accordance with the present invention that chromophores that include the specific structural motifs described below allow efficient and hitherto unexplored access via multiphoton absorption to species of great material engineering, biological, and medicinal importance.

For example, compositions of the present invention are useful when incorporated into solutions, prepolymers, polymers, Langmuir-Blodgett thin films, self-assembled monolayers, and cells. The compositions may be advantageously modified to allow for variation of ease of dissolution in a variety of host media, including liquids and polymeric hosts, by changing the nature of the substituents attached to the central π-conjugated framework of the molecule as well as either the donors or acceptors, or both. In addition, by controlling the length and composition of the π-electron bridge of the molecule, it is possible to control the position and strength of the two-photon or higher-order absorption and the two-photon or higher-order excited fluorescence.

Examples of compositions in accordance with the present invention have the general formulas as shown below.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to ensure a complete understanding of the present invention, the following drawings are provided in which:

FIG. 1 is a graph showing the rate of polymerization of monomethyl-ether hydroquinone (MEHQ) inhibited Sartomer SR9008 initiated by bis-dibutylaminostilbene (BDAS) and two-photon absorptivity as a function of initial wavelength.

FIGS. 2a, 2b, 2c and 2d are SEM micrographs of cantilever and optical waveguide structures fabricated in solid films consisting of 30% w/w PSAN (75% polystyrene:25% polyacrylonitrile copolymer), 69.9% w/w reactive monomer (50% inhibitor-free Sartomer SR9008 and 50% Sartomer SR368) and 0.1% w/w dye (1,4-bis (bis(dibuty1amino) styryl) 2,5-dimethoxybenzene."

FIGS. 3a and 3b show UV-visible light absorption spectra for TPS-HFA, Na-DMAS and TPS-DMAS.

FIG. 4 shows two-photon fluorescence excitation spectra of Na-DMAS and TPS-DMAS.

FIG. 5 shows the two-photon fluorescence spectra of Na-DMAS and TPS-DMAS as a result of “pumping” at 560 nm.

FIG. 6 illustrates the potential chemical structure of photoacid generator compounds having strong two-photon absorption according to the invention.

FIGS. 7 and 8 illustrate the chemical structure of aniline diacylate (ADA), a composition according to the invention, and its absorption spectrum, respectively.

FIG. 9 shows fluorescence spectra of aniline and aniline diacylate (ADA), after two-photon excitation at 300 nm.

FIGS. 10 and 11 show SEM micrograph and EDS spectrum of Ag-coated poly (ADA) column.

DETAILED DESCRIPTION

To ensure a complete understanding of the invention, the following definitions are provided:

Bridge: a molecular fragment that connects two or more chemical groups.

Donor: an atom or group of atoms with a low ionization potential that can be bonded to a π(π)-conjugated bridge.

Acceptor: an atom or group of atoms with a high electron affinity that can be bonded to a π(π)-conjugated bridge.

A more complete description of electron donors or donating groups and electron acceptors or electron accepting groups can be found in J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Fourth edition, Wiley-Interscience, New York, 1992, Chapter 9.

Aromatic group: a carboxyclic group that contains 4n+2 π electrons, where n is an integer.

Heteroaromatic group: a cyclic group of atoms, with at least one atom within the ring being an element other than carbon, that contains 4n+2 π electrons where n is an integer.

Chromophore: a molecule or aggregate of molecules that can absorb electromagnetic radiation. Simultaneous: refers to two (or more) events that occur within the period of 10⁻¹⁴ sec.

Two-Photon Absorption: process wherein a molecule absorbs two quanta of electromagnetic radiation.

Multiphoton Absorption: process wherein a molecule absorbs two or more quanta of electromagnetic radiation.

Heterolytic cleavage: fragmentation of a two-electron chemical bond such that the two electrons that composed the bond both reside on one of the two fragments formed.

Homolytic cleavage: fragmentation of a two-electron chemical bond such that each of the two fragments formed has one of the two electrons that composed the bond.

Two-photon or higher-order absorption: phenomenon wherein a molecule simultaneously absorbs, two or more photons (also referred to as multi-photon absorption) without the actual population of an excited state by the absorption of a single photon.

In many cases, as will be made clear below, the molecules we teach have large two-photon or higher-order absorptivities and are themselves novel compositions of matter. The
general formulas below are not inclusive of all the structures which we teach for use as two-photon or higher-order absorbers that lead to formation of Lewis acidic species, Lewis basic species, radical species, and ionic species. Other compositions which have the characteristic electronic properties as well as other advantageous properties for a variety of applications will also become apparent to those with ordinary skill in the art, when one considers the examples described in the general structures below.

U.S. application Ser. No. 081965,945; U.S. Pat. No. 6,267,913, described, in part, four structural motifs for chromophores with high two-photon or multiphoton absorptivities in which the position of two-photon or multiphoton absorption bands may be controlled. The current invention focuses on two new structural motifs that modify these chromophores such that, upon absorption of multiple photons, the chromophores will undergo chemistry with high efficiency to create one or more of Lewis acidic species, Lewis basic species, radical species, and ionic species.

Generally, the two new structural motifs of the present invention are:

1. Iodonium and sulfonium salts for use as multiphoton absorption initiated sources of Lewis acids;
2. Fluorenyl and dibenzosuberenyl moieties for use as multiphoton absorption initiated sources of one or more Lewis acids, Lewis bases, radical species, and ionic species.

where \(L \), (standing for a leaving group) and \(D \), will be defined below.

The modifications used in our previous invention to tune the energetic position of the two-photon or higher-order absorption state of chromophores apply to the invention herein as well. The advantageous inclusion of moieties of known excited state reactivity in chromophores with strong two-photon or multi-photon absorption allows the compounds described herein to have a great variety of novel and useful applications including, but not limited to:

1. Two-photon generation of charge carriers, especially in photorefractive polymers;
2. Initiation of changes in host media to allow the writing of holographic information;
3. Optical lithography and three dimensional optical memory;
4. Microfabrication of three dimensional objects; and
5. In vivo or in vitro decaging of biochemical substrates for biological, physiological, or medicinal purposes.

A more extensive listing of applications that would be rendered substantially more useful by virtue of the large two-photon or multi-photon absorptivities of the compounds described herein can be found for example in U.S. Pat. Nos. 4,228,861, 4,238,840, 4,471,470, 4,333,165, 4,466,080 and 5,034,613.

SULFONIUM- AND IODONIUM-CONTAINING CHROMOPHORES

Chromophores of the present invention with large two-photon and multi-photon absorptivities containing the sulfonium or the iodonium moiety will, upon two-photon or multi-photon excitation, efficiently form protic acid. Photo-acid generation using compounds containing sulfonium or iodonium moieties has been documented in R. S. Davidson, "The Chemistry of Photoinitiators—Some Recent Developments", J. Photochem. Photobiol. A: Chem., 73, 81–96 (1993) and M. Shirai and M. Tsunooka, "Photoacid and Photobase Generators: Chemistry and Applications to Polymeric Materials", Prog. Polym. Sci., 21, 1–45 (1996). None of these disclosed molecules was, however, a strong two-photon absorber. In contrast, at least some of the compositions of the present invention have a structural framework having strong two-photon absorption, and exhibit all of the advantageous characteristics of two-photon absorbers.

Synthesis of Sulfonium- and Iodonium-Containing Chromophores

Methods for the synthesis of iodonium salts are well documented in C. Herzig and S. Scheiding, German Patent 4,142,327, CA 119,250,162 and C. Herzig, European Patent 4,219,376, CA 120,298,975, which are incorporated herein by reference.

Structure of Sulfonium- and Iodonium-Containing Chromophores

In the structural formulae herein, an asterisk (*) identifies the atom of attachment to a functional group and implies that the atom is missing the equivalent of one hydrogen that would normally be implied by the structure in the absence of the asterisk. "−" indicates a single bond between 2 atoms, "=" indicates a double bond between 2 atoms, and "≡" indicates a triple bond between 2 atoms.

One embodiment of the invention includes compounds with one of the four following general formulae

\[
\text{General Structure } 1-1
\]
General Structure 1-11 -(CH,CH,O),-(CH,)pCl, -(CH,CH,O),-(CH,)pI, -(CH,CH,O),+CH,),-Phenyl, where 05a5 10 and 050510; (d) an aryl group; (e) a fused aromatic ring; (f) a polymerizable functionality; or (g) a group selected from the group consisting of -NR,,R,, R,, Re3, SR,,, -F, -Br, -Cl, -I, and phenyl, where Re1, Re2, Re3, Re4 are independently selected from the group consisting of (1) H; (2) a linear or branched alkyl group with up to 25 carbons; (3) phenyl; and (4) a polymerizable functionality.

Aryl Group
When any of R,, R,, R,, R,, R,, R,, R,, R,, R,, or R,, is an aryl group, they may be aryl groups of the formula

In these formulae:
A,, and A,, are independently selected from I or S+. To satisfy the proper bonding coordination, when A or A,, is an I group, there is only one R group attached to the I group; that is, R,, R,, R,, or R,, may be nothing, as required.
Anionic Counterions
All cationic species may be accompanied by counterions appropriate to make an electrically neutral complex. If, for example, the cationic species carries a double positive charge, it will be accompanied by either two singly charged anionic species or by one doubly charged anionic species. Anionic species that may be used include, but are not limited to, Cl-, Br-, I-, and SbF6-.

m, n, and o are integers and are independently selected such that 05m510, 05n510, and 05o510. X, Y, and Z may be the same or different and may be CR,, CR,, O, S, or N—R,, R,, R,, and R,, are defined below.
R,, R,, R,, R,, and R, may be the same or different and may be (i) H; (ii) a linear or branched alkyl group with up to 25 carbons; (iii) -(CH2CH2O),-(CH2),-Phenyl, where 05a510 and 15b525; (iv) an aryl group; (v) a fused aromatic ring; (vi) a polymerizable functionality; and (vii) nothing when A is I or A,, is I+.
R,, R,, R,, R,, R,, R,, R,, R,, and R,, may be the same or different and may be (a) H; (b) a linear or branched alkyl group with up to 25 carbons; (c) -(CH2CH2O),-(CH2),OR,, - (CH2CH2O),-(CH2),pRN R,, - (CH2CH2O),-(CH2),p.
where * indicates the atom through which the fused aromatic ring is attached.

Polymerizable Functionality
When any of R₅, R₆, R₇, R₈, R₉, R₊, R₁₀, Rₒ, R₁₁, R₁₂, or Rₐₒ is a polymerizable functionality, they may preferably be selected from the following:

(a) vinyl, allyl, 4-styryl, acryloyl, methacryloyl, oxirane (such as cyclohexene oxide), acrylonitrile, which may be polymerized by either a radical, cationic or anionic polymerization;

(b) isocyanate, isothiocyanate, epoxides such that the polymerizable functionality may be copolymerized with difunctional alkyls or alcohols such as HO(CH₂)ₙ, H₂N(CH₂)ₙNH₂, where 1<*=<25;

(c) strained ring olefins such as dicyclopentadienyl, norbornenyl, and cyclobutenyl where the chromophore is attached to any of the saturated carbon linkages in the strained ring olefin—in this case the monomer may be polymerized via ring opening metathesis polymerization using an appropriate metal catalyst as is known in the art; and

(d) (—CH₂)ₙSiCl₃, (—CH₂)ₙSi(OCH₂CH₂)n, or (—CH₂)ₙSi(OCH₃), where 0<*=<25—in this case the monomers can be reacted with water under conditions known to those skilled in the art to form either thin film or monolithic organically modified sol-gel glasses, or modified silica surfaces.

Alkyl Groups
Unless otherwise indicated explicitly or by context, alkyl group as used in the above formulae means alkyl groups having up to 25 carbon atoms and includes both branched and straight chain alkyl groups. Exemplary alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, in the normal, secondary, iso and neo attachment isomers.

Aryl groups
Unless otherwise indicated explicitly or by context, aryl group as used in the above formulae means aromatic hydrocarbons having up to 20 carbon atoms. Exemplary aryl groups include phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl, and tellurophenyl.

FLUORENYL- AND DIBENZOSUBERENYL-CONTAINING CHROMOPHORES

Synthesis of Fluoren 9-Fluorenyl and Dibenzosuberenyl Containing Chromophores

Methods for the synthesis of fluorenyl and dibenzosuberenyl containing molecules are known to practitioners of the
art. Exemplary synthetic procedures are given in the EXAMPLES section below.

Structure of Fluorenyl and Dibenzosubereryl Containing Chromophores

There are two classes of compounds of the present invention containing the fluorenyl or dibenzosubereryl groups: (1) compounds where the endgroups are electron donor groups, and (2) compounds where the endgroups are electron acceptor groups.

(1) Compounds where the Endgroups are Electron Donor Groups

In these formulae:
D, and D, are the same or different and are N, O, S, or P. To satisfy the proper bonding coordination, when D, or D, is an —O— group or —S— group, there is only one R group attached to the D, or D, group; that is, R,, R,, R,, or R, may be nothing, as required.

L, is a homolytic or heterolytic leaving group and may be
(i) H;

where R,, R,, and R, are defined below
(iii) a functional group derived essentially from an amino acids selected from the group consisting of alanine; valine; leucine; isoleucine; proline; tryptophan; phenylalanine; methionine; glycine; serine; threonine; tyrosine; cysteine; glutamine; asparagine; lysine; arginine; histidine; aspartic acid; and glutamic acid;
(iv) a polypeptide;
(v) a fused aromatic ring;
(vi) a polymerizable functionality; and
(vii) methacryloyl chloride.

Anionic Counterions

All cationic species are accompanied by counterions appropriate to make an electrically complex neutral. If, for example, the cationic species carries a double positive charge, it will be accompanied by either two singly charged anionic species or by one doubly charged anionic species. Anionic species that may be used include, but are not limited to, Cl−, Br−, I−, and SbF6−.

m, n, o and p are integers and are independently selected such that 0 ≤ m ≤ 10, 0 ≤ n ≤ 10, 0 ≤ o ≤ 10, and 0 ≤ p ≤ 10.

U, V, X, and Y
13

R, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, and R17 may be the same or different and may be
(a) H;
(b) a linear or branched alkyl group with up to 25 carbons;
(c) -(CH2CH2O)m-(CH2)nORa1, -(CH2CH2O)m-CN, -(CH2CH2O)m-Cl, -(CH2CH2O)m-Br, -(CH2CH2O)m-(CH3)j, -(CH2CH2O)m-Phenyl, where 0 ≤ m ≤ 10, 1 ≤ n ≤ 25 and R41, R42, and R43 are the same or different and may be H or a linear or branched alkyl group with up to 25 carbons;
(d) an aryl group;
(e) a fused aromatic ring;
(f) a polymerizable functionality; or
(h) -NRa4Ra5, -ORa6, -SRa7, -F, -Br, -Cl, -I, or phenyl, where R41, R42, R43, R44 are independently selected from the group consisting of
(1) H;
(2) a linear or branched alkyl group with up to 25 carbons;
(3) phenyl; and
(4) a polymerizable functionality.

In a preferred embodiment, R4 is the same as R5, R6 is the same as R7, and R8 is the same as R9.

Aryl Group

When any of R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, and R51 is an aryl group, they may be aryl groups of the formula

where E is S or O, and R41, R42, R43, R44, R45, R46, R47, and R48 are one of the following:
(i) H;
(ii) a linear or branched alkyl group with up to 25 carbons;
(iii) phenyl; and
(iv) -NRa4Ra10, -ORa11, where R44, R49, and R411 are independently selected from H, a linear or branched alkyl group with up to 25 carbons, and phenyl.

Fused Aromatic Ring

When any of R4, R5, R6, R7, R8, R9, R10, R11, R12, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R57, and R58 are fused aromatic rings, they may be

where * indicates the atom through which the fused aromatic ring is attached.

Polymerizable Functionality

When any of R4, R5, R6, R7, R8, R9, R10, R11, R12, R41, R42, R43, R44, R45, R46, R47, and R48 is a polymerizable functionality, they may be those which can be initiated by a strong Lewis acid group such as a proton and epoxides (such as cyclohexeneoxide).

Alkyl Groups

Unless otherwise indicated explicitly or by context, alkyl group as used in the above formulae means alkyl groups having up to 25 carbon atoms and includes both branched and straight chain alkyl groups. Exemplary alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, in the normal, secondary, iso and neo attachment isomers.

Aryl groups

Unless otherwise indicated explicitly or by context, aryl group as used in the above formulae means aromatic hydrocarbons having up to 20 carbon atoms. Exemplary aryl groups include phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selanophenyl, and tellurophenyl.

(2) Compounds where the Endgroups are Electron Acceptor Groups.
In a preferred embodiment, \(R_y \) is the same as \(R_z \), \(R_x \) is the same as \(\text{R}_w \), and \(R_s \) is the same as \(\text{R}_u \). \(\text{A}_a \) and \(\text{A}_b \) can be the same or different and may be \(-\text{CHO}, -\text{CN}, -\text{NO}_2, -\text{Br}, -\text{Cl}, -\text{I}\) or one of the following:

- \(\text{A}_1 \)
- \(\text{A}_2 \)
- \(\text{A}_3 \)
- \(\text{A}_4 \)
- \(\text{A}_5 \)
- \(\text{A}_6 \)
- \(\text{A}_7 \)
- \(\text{A}_8 \)
- \(\text{A}_9 \)
- \(\text{A}_{10} \)
- \(\text{A}_{11} \)
- \(\text{A}_{12} \)
- \(\text{A}_{13} \)
- \(\text{A}_{14} \)
- \(\text{A}_{15} \)
- \(\text{A}_{16} \)
is a homolytic or heterolytic leaving group and may be
(i) H;
(iii) a functional group derived essentially from an amino acids selected from the group consisting of alanine; valine; leucine; isoleucine; proline; tryptophan; phenylalanine; methionine; glycine; serine; threonine; tyrosine; cysteine; glutamine; asparagine; lysine; arginine; histidine; aspartic acid; and glutamic acid;
(iv) a polypeptide;
(v) adenine, guanine, tyrosine, cytosine, uracil, biotin, ferrocene, ruthenocene, cyanuric chloride and derivatives thereof; and
(vi) methacryloyl chloride.
Anionic Counterions

All cationic species are accompanied by counterions appropriate to make an electrically neutral complex. If, for example, the cationic species carries a double positive charge, it will be accompanied by either two singly charged anionic species or by one doubly charged anionic species. Anionic species that may be used include, but are not limited to, Cl\(^-\), Br\(^-\), F\(^-\), and SbF\(_6\)^-.

\[\text{Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rw} \]

m, n, and o are integers and are independently selected such that \(0 < m < 10\), \(0 < n < 10\), and \(0 < o < 10\).

U, V, X, and Y may be the same or different and may be \(\text{CR}_{3} \equiv \text{CR}_{2} \equiv \text{CR}_{1} \equiv \text{C} \equiv \text{CR}_{3}\), \(\text{OR}_{3}\), \(\text{CN}\), or \(\text{NR}_{3}\).

When any of \(\text{Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rw}\) they may be \(\text{H}\) or a linear or branched alkyl group with up to 25 carbons;

(iv) an aryl group;

(v) a fused aromatic ring; and

(vi) a polymerizable functionality.

Re, Rf, Rg, Rh, Ri, Rj, Rk, Rw may be the same or different and may be

(a) \(\text{H}\);

(b) a linear or branched alkyl group with up to 25 carbons;

(c) \(\text{NR}_{3}\), \(\text{OR}_{3}\), \(\text{SR}_{3}\), \(\text{N} \equiv \text{OR}_{3}\), \(\text{N} \equiv \text{BR}_{3}\), \(\equiv \text{Cl}_{3}\), \(\equiv \text{I}_{3}\), or phenyl, where \(\text{R}_{3}\), \(\text{R}_{2}\), \(\text{R}_{1}\), \(\text{R}_{4}\) are independently selected from the group consisting of

(1) \(\text{H}\);

(2) a linear or branched alkyl group with up to 25 carbons;

(3) phenyl; and

(4) a polymerizable functionality;

(5) \(\text{NR}_{3}\), \(\text{OR}_{3}\), \(\text{SR}_{3}\), \(\equiv \text{OR}_{3}\), \(\equiv \text{BR}_{3}\), \(\equiv \text{Cl}_{3}\), \(\equiv \text{I}_{3}\), or phenyl, where \(\text{R}_{3}\), \(\text{R}_{2}\), \(\text{R}_{1}\), \(\text{R}_{4}\) may be the same or different and may be

(i) \(\text{H}\);

(ii) a linear or branched alkyl group with up to 25 carbons;

(iii) phenyl; or

(iv) a polymerizable functionality.

Fused Aromatic Ring

When any of \(\text{Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rw}\) they may be an aryl group, they may be aryl groups of the formula

\[\text{E} \equiv \text{S} \equiv \text{O} \equiv \text{F} \equiv \text{Br} \equiv \text{Cl} \equiv \text{I} \equiv \text{phenyl} \equiv \text{aryl group} \]

where \(\ast\) indicates the atom through which the fused aromatic ring is attached.

Polymerizable Functionality

When any of \(\text{Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rw}\) they are polymerizable functionalities, they may be those which can be initiated by a strong Lewis acid group such as a proton and epoxides (such as cyclohexeneoxide).

Alkyl Groups

Unless otherwise indicated explicitly or by context, alkyl group as used in the above formulae means alkyl groups having up to 25 carbon atoms and includes both branched and straight chain alkyl groups. Exemplary alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, in the normal, secondary, iso and neo attachment isomers.
Aryl groups

Unless otherwise indicated explicitly or by context, aryl group as used in the above formulae means aromatic hydrocarbons having up to 20 carbon atoms. Exemplary aryl groups include phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl, and tellurophenyl.

Examples 1-6

Exemplary Syntheses of Compounds V, VI, VIII, IX, X and XI
General Remarks. 1H and 13C spectra were recorded on a GE QF300 spectrometer (270 MHz, 75 MHz). Mass spectral data were acquired by MALDI-TOF. Elemental (CHN) analysis were performed by Analytical Microlabs. 4-(N,N-Bis-(4-n-butylphenyl))amino)benzaldehyde [Thayumanavan, S., Barlow, S., Marder, S. R., Chem. Mater., 9, 3231-3235 (1997)] was stirred with 1.2 equivalents of triethylamine in dry dimethylformamide with 2,7-dibromofluorenone in 76% yield.†

Example 1
Preparation of Compound V
V was synthesized via the Pd(0) catalyzed coupling of 2,7-dibromofluorenone with bis-(4-n-butylphenyl)-amine. Preparation of Compound VI
VI was synthesized via the Pd(0) catalyzed Heck coupling of N,N-bis-(4-n-butylphenyl))amino)benzaldehyde [Thayumanavan, S., Barlow, S., Marder, S. R., Chem. Mater., 9, 3231-3235 (1997)] was stirred with 1.2 equivalents of triethylamine in dry dimethylformamide with 2,7-dibromofluorenone in 76% yield.†

Example 2
Preparation of Compound VI
VI was synthesized via the Pd(0) catalyzed Heck coupling of N,N-bis-(4-n-butylphenyl))amino)benzaldehyde [Thayumanavan, S., Barlow, S., Marder, S. R., Chem. Mater., 9, 3231-3235 (1997)] was stirred with 1.2 equivalents of triethylamine in dry dimethylformamide with 2,7-dibromofluorenone in 76% yield.†
Example 3
Preparation of Compound VIII

V was reduced quantitatively to VIII with sodium borohydride in THF/ethanol at room temperature under air at RT. The course of the reaction was easily followed by the disappearance of the deep blue color of V. Light brown solid.

\(^1\)H NMR (acetone-d6, 300 MHz) \(\delta 7.52 \text{ ppm (d, } J=8.2 \text{ Hz, 2H)}, \delta 7.24 \text{ ppm (d, } J=1.6 \text{ Hz, 2H)}, \delta 7.14 \text{ ppm (d, } J=8.6 \text{ Hz, 8H)}, \delta 7.00 \text{ ppm (m, 10H)}, \delta 5.35 \text{ ppm (d, } J=6.7 \text{ Hz, 1H)}, \delta 4.75 \text{ ppm (d, } J=7.3 \text{ Hz, 1H)}, \delta 2.60 \text{ ppm (t, } J=7.6 \text{ Hz, 8H)}, \delta 1.60 \text{ ppm (m, 8H)}, \delta 1.39 \text{ ppm (m, 8H)}, \delta 0.94 \text{ ppm (t, } J=7.3 \text{ Hz, 12H)}.

Example 4
Preparation of Compound IX

IX was synthesized via a Williamson Ether synthesis from VIII. 1.2 equivalents of NaH were added to a deoxygenated solution of 1 equivalent of V and 2 equivalents of methanol. Solvent was removed under reduced pressure. A two-photon polymerization action spectrum was performed for BDAS (#1) in MEHQ-inhibited SR9008 triacylate monomer to investigate the wavelength dependence of the polymerization rate, \(R_p\). FIG. 1 shows a plot of \(R_p\) as a function of initiation wavelength. Also on this plot is the two-photon absorbiveness, \(\delta\), obtained by ps (picosecond) non-linear fluorescence measurements of a 1 mM solution of BDAS in toluene. Values of \(\delta\) were determined using a 2.5 mM BDAS solution in SR9008. \(R_p\) is greatest at about 590 nm, 15 nm below the maximum value of \(\delta\) at 605 nm. The discrepancy in wavelength may be due to linear absorption by the BDAS radical centered at 600 nm. Polymerization stopped entirely at 645 nm even though there was some two-photon absorption out to about 680 nm.

Example 5
Preparation of Compound X

XII was synthesized via a Williamson Ether synthesis from IX. 1.2 equivalents of NaH were added to a deoxygenated solution of 1 equivalent of VIII and 2 equivalents of methanol. Solvent was removed under reduced pressure. A two-photon polymerization action spectrum was performed for BDAS (#1) in MEHQ-inhibited SR9008 triacylate monomer to investigate the wavelength dependence of the polymerization rate, \(R_p\). FIG. 1 shows a plot of \(R_p\) as a function of initiation wavelength. Also on this plot is the two-photon absorbiveness, \(\delta\), obtained by ps (picosecond) non-linear fluorescence measurements of a 1 mM solution of BDAS in toluene. Values of \(\delta\) were determined using a 2.5 mM BDAS solution in SR9008. \(R_p\) is greatest at about 590 nm, 15 nm below the maximum value of \(\delta\) at 605 nm. The discrepancy in wavelength may be due to linear absorption by the BDAS radical centered at 600 nm. Polymerization stopped entirely at 645 nm even though there was some two-photon absorption out to about 680 nm.

Example 6
Preparation of Compound XI

XI was reduced quantitatively to XII with sodium borohydride in THF/ethanol at room temperature under air at RT. The course of the reaction was easily followed by the disappearance of the red color of XI. XII may be recrystallized from hexanes. Yellow crystals.

\(^1\)H NMR (acetone-d6, 300 MHz) \(\delta 7.51 \text{ ppm (d, } J=8.2 \text{ Hz, 2H)}, \delta 7.20 \text{ ppm (d, } J=1.9 \text{ Hz, 2H)}, \delta 7.12 \text{ ppm (d, } J=5.4 \text{ Hz, 8H)}, \delta 6.98 \text{ ppm (m, 10H)}, \delta 6.57 \text{ ppm (s, 1H)}, \delta 2.58 \text{ ppm (t, } J=7.7 \text{ Hz, 8H)}, \delta 1.98 \text{ ppm (s, 3H)}, \delta 1.60 \text{ ppm (m, 8H)}, \delta 1.39 \text{ ppm (m, 8H)}, \delta 0.93 \text{ ppm (t, } J=7.3 \text{ Hz, 12H)}.

Example 7
Preparation of Compound XII

Preparation of Compound XIII

XIII was synthesized via a Williamson Ether synthesis from XII. 1.2 equivalents of NaH were added to a deoxygenated solution of 1 equivalent of XI and 2 equivalents of methanol. Solvent was removed under reduced pressure. A two-photon polymerization action spectrum was performed for BDAS (#1) in MEHQ-inhibited SR9008 triacylate monomer to investigate the wavelength dependence of the polymerization rate, \(R_p\). FIG. 1 shows a plot of \(R_p\) as a function of initiation wavelength. Also on this plot is the two-photon absorbiveness, \(\delta\), obtained by ps (picosecond) non-linear fluorescence measurements of a 1 mM solution of BDAS in toluene. Values of \(\delta\) were determined using a 2.5 mM BDAS solution in SR9008. \(R_p\) is greatest at about 590 nm, 15 nm below the maximum value of \(\delta\) at 605 nm. The discrepancy in wavelength may be due to linear absorption by the BDAS radical centered at 600 nm. Polymerization stopped entirely at 645 nm even though there was some two-photon absorption out to about 680 nm. Enhancements in the two-photon polymerization action spectrum for BDAS (#1) in MEHQ-inhibited SR9008 triacylate monomer to investigate the wavelength dependence of the polymerization rate, \(R_p\). FIG. 1 shows a plot of \(R_p\) as a function of initiation wavelength. Also on this plot is the two-photon absorbiveness, \(\delta\), obtained by ps (picosecond) non-linear fluorescence measurements of a 1 mM solution of BDAS in toluene. Values of \(\delta\) were determined using a 2.5 mM BDAS solution in SR9008. \(R_p\) is greatest at about 590 nm, 15 nm below the maximum value of \(\delta\) at 605 nm. The discrepancy in wavelength may be due to linear absorption by the BDAS radical centered at 600 nm. Polymerization stopped entirely at 645 nm even though there was some two-photon absorption out to about 680 nm. Enhancements in the two-photon polymerization action spectrum for BDAS (#1) in MEHQ-inhibited SR9008 triacylate monomer to investigate the wavelength dependence of the polymerization rate, \(R_p\). FIG. 1 shows a plot of \(R_p\) as a function of initiation wavelength. Also on this plot is the two-photon absorbiveness, \(\delta\), obtained by ps (picosecond) non-linear fluorescence measurements of a 1 mM solution of BDAS in toluene. Values of \(\delta\) were determined using a 2.5 mM BDAS solution in SR9008. \(R_p\) is greatest at about 590 nm, 15 nm below the maximum value of \(\delta\) at 605 nm. The discrepancy in wavelength may be due to linear absorption by the BDAS radical centered at 600 nm. Polymerization stopped entirely at 645 nm even though there was some two-photon absorption out to about 680 nm. Enhancements in the two-photon polymerization action spectrum for BDAS (#1) in MEHQ-inhibited SR9008 triacylate monomer to investigate the wavelength dependence of the polymerization rate, \(R_p\). FIG. 1 shows a plot of \(R_p\) as a function of initiation wavelength. Also on this plot is the two-photon absorbiveness, \(\delta\), obtained by ps (picosecond) non-linear fluorescence measurements of a 1 mM solution of BDAS in toluene. Values of \(\delta\) were determined using a 2.5 mM BDAS solution in SR9008. \(R_p\) is greatest at about 590 nm, 15 nm below the maximum value of \(\delta\) at 605 nm. The discrepancy in wavelength may be due to linear absorption by the BDAS radical centered at 600 nm. Polymerization stopped entirely at 645 nm even though there was some two-photon absorption out to about 680 nm.
Two-photon Photodeposition of Silver Metal.

In addition to using the two-photon process to initiate polymerization, it is also possible to perform metallization using this technique. Swainson provided a method for depositing Ag or CuO using methylene blue as a sensitizer for one-photon photoreduction of a metal cation to its elemental form [W. K. Swainson and S. D. Kramer, “Method and Media for Accessing Data in Three Dimensions,” U.S. Pat. No. 4,471,470 (1984)]. This process is modified for simultaneous two-photon photoreduction by use of chromophores described in this disclosure. The ability to deposit metal by a two-photon process allows fabrication of complex three-dimensional metallic or polymer-metal composite structures.

A solution of 1 g AgNO₃ dissolved in 10 ml DI H₂O was titrated with NH₄OH until the initially formed, dark precipitate was dissolved. Two drops of triethanolamine (TEA) was added to this solution along with enough chromophore, either methylene blue (MB) or lysine-substituted BDAS (LBDAS), to form a 10⁻⁹ M solution of the dye. This solution was used as prepared for solution studies or was added to an 8% by weight solution of poly(vinyl alcohol) (PVA) in DI H₂O to form a castable, solid film.

Initial studies of Ag photodeposition were done using single-photon excitation in methylene blue solutions. Excitation was done at 600 nm using a 20 Hz Nd:YAG-pumped dye laser. Silver deposition was observed on the glass walls of the cell containing the silver nitrate solution. Also, a plume of silver particles could be seen in the solution, emanating from the focal point of the laser. Scanning electron microscopy (SEM) was used to examine the morphology of the deposited silver and showed that the deposited film consists of many small agglomerates. X-ray analysis confirmed that these small particles were indeed silver. Because of the roughness of these films, they are not useful for producing mirrored surfaces. The confined surface (against the glass wall of the cell), however, was a highly reflective mirror. The deposited lines were not conducting.

This technique for silver deposition from aqueous solutions was also attempted using LBDAS. This solution was pumped by two-photon excitation at 600 nm. Small amounts of Ag were deposited onto the walls of the cell and some Ag particulates were formed in solution and then settled to the bottom of the cuvette.

Initial attempts to fabricate solid or gel photopolymer films for Ag deposition were done based on the aqueous silver nitrate chemistry and thus required a water soluble silver. PVA was chosen but, because it is soluble only in boiling water, the silver salt cannot be prepared directly with the polymer solution or the reduction to Ag will occur thermally. Instead, the polymer solution was prepared and cooled and then mixed with the AgNO₃ solution. The combined solution was then poured into small polyethylene petri dishes and left under a halogen lamp. The photoreduction of the silver salt occurred as water evaporated from the film. The first film prepared by this method contained 17% Ag by weight. The film had good mechanical properties and was easily peeled away from the petri dish. It was dark-colored and transmitted only red light, apparently because of the size of the Ag particles in the film. The resistance of this film was 5.5 MΩ.

A second film was prepared with a 52% loading of Ag. This film had a shiny, metallic appearance but the film was still somewhat surprising since the value of AG is positive for this group (575 mV vs. FcH⁻/FcH). Solutions of #97 and AgBF₄ were prepared in methylene chloride, THF, acetone, tolouene, and acetonitrile and the formation of Ag was observed in all solvents except acetonitrile. This result was somewhat surprising since the value of AG is positive for THF (165 mV) and acetone (395 mV). The value of AG in acetonitrile is quite high at 535 mV. Unfortunately, it is difficult to find a polymer that is soluble in acetonitrile—at this time cellulose acetate is the only polymer found.

The next step was to search for a system that allows two-photon deposition of Ag. Qualitative two-photon fluoro
cence measurements indicated that because methylene blue had no significant two-photon absorption in the spectral region of interest, a different chromophore was needed. BDAS was chosen first and was incorporated into an aqueous solution of cellulose acetate hydroxyethyl ether and silver tetrafluoroborate (AgBF₄) by dissolving it in dioxane, which is completely miscible with water. In this case, AgBF₄ was soluble in water without the addition of NH₄OH and no TEA was necessary. Upon introducing the first drop of the BDAS solution into the silver salt solution, Ag precipitated out. Table 1 shows electrochemical data for the reduction of Ag⁺ in different solvents and free energies for electron transfer from different two-photon chromophores to Ag⁺. It is clear that in any solvent, BDAS is such a strong reducing agent that Ag⁺ will always be reduced thermally. The ideal situation is to use a chromophore that will not thermally reduce Ag⁺, but will upon exposure to light. Since the HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of BDAS and 4,4-bis(cyanophenylamino)biphenyl (TPD) molecules is on the order of 3000 meV, any of these molecules will photoreduce Ag⁺ in any solvent upon excitation.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>E°red, Ag⁺/Ag⁺ (mV)</th>
<th>BDAS</th>
<th>TPD</th>
<th>p-CN TPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCl₂</td>
<td>-685</td>
<td>-270</td>
<td>-75</td>
<td></td>
</tr>
<tr>
<td>DMF</td>
<td>-525</td>
<td>-110</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>-515</td>
<td>-100</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>-465</td>
<td>-50</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>THF</td>
<td>-445</td>
<td>-80</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>-215</td>
<td>200</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>CH₃CN</td>
<td>-75</td>
<td>340</td>
<td>535</td>
<td></td>
</tr>
</tbody>
</table>

Values of E°red are given vs. FcH⁺/FcH⁻
topolymer films made with #97 and AgBF$_4$ in cellulose acetate/acetone solutions will be studied in the near future.

Example 10

Two-photon Excitable Photoacid Generators

The use of free-radical polymerization based on electron transfer from two-photon chromophores to acrylate monomers has proven very successful for the fabrication of microscale three-dimensional objects. Periodic structures suggestive of photonic crystals, tapered waveguide couplers, and cantilever-shaped objects have been reported in previous months. Also, high-density optical data storage based on acrylate polymerization has been demonstrated. While the size of the bits written by this method is sufficiently small to obtain storage densities of 1 terabit/cm2, the speed of the recording process is too slow. Parallelization of the recording process can decrease the overall processing time, but it is also highly desirable to make the inherent response of the photopolymer material faster.

In this example, we extend PAG chemistry discussed above to the realm of two-photon excitation. All of the advantages of the two-photon process that have been demonstrated in acrylate polymerization can be realized. At the same time, PAG chemistry may provide a better materials system for data storage or microfabrication than acrylates. Increased sensitivity due to catalytic processes, increased mechanical stability, and decreased shrinkage upon polymerization are all possible improvements to be made. In order to realize these benefits, PAG chromophores with large two-photon absorption coefficients must be developed.

To this end, sulfonium salts with a two-photon absorbing counterion that have significant two-photon absorption themselves are being considered. First of these is triphenylsulfonium dimethoxyanthracenesulfonate (TPS-DMAS).

This material is not commercially available but has been made by anion exchange between TPS-HFA and sodium dimethoxyanthracenesulfonate (Na-DMAS) [K. Naitoh, T. Yamaoka, and A. Umehara, “Intra-ino-pair Electron Transfer Mechanism for Photolysis of Diphenyliodonium Salt Sensitized by 9,10-Dimethoxyanthracene-2-sulfonate Counternion,” *Chem. Lett.*, 1869 (1991)]. 150 mg of sodium dimethoxyanthracenesulfonate (Na-DMAS) was dissolved in 50 ml of hot DI H$_2$O. To this hot solution was added 440 ml of a 50 wt % solution of triphenylsulfonium hexafluorosulfonate (TPS-SbF$_6$) (also referred to herein as TPS-HFA), giving equimolar amounts of the two salts. The solution was vigorously shaken and then cooled at 4°C. For about 16 hours. A waxy solid precipitated onto the walls of the flask during this time. The solid was dried overnight under vacuum at 35-40°C. The size of the bits written by this method is sufficiently small to obtain storage densities of about 1 terabit/cm2, the speed of the is the flask during this time. The solid was dried overnight under vacuum at 35-40°C. The yield of this research is to develop photoresists that can be used at 193 nm, a wavelength necessary to increase the density of components in integrated circuits. The photoacid generator can initiate different chemical processes depending on the composition of the photopolymer material. For instance, the photoacid can be used to initiate cross-linking of epoxide groups. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining Applications of a High Resolution Ultrathick Photoresist,” *J. Vac. Sci. Technol. B*, 13, 3012 (1995); H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A Low-cost Negative Resist for MEMS,” *J. Micromech. Microeng.*, 7, 121 (1997)] or it can convert aqueous-insoluble ester groups into aqueous-soluble acid groups [R. D. Allen, G. M. Wallraff, W. D. Hinsberg, and L. L. Simpson, “High Performance Acrylic Polymers for Chemically Amplified Photoresist Applications,” *J. Vac. Sci. Technol. B*, 9, 3357 (1991)]. The advantage to the second process is that it can be made to be catalytic, that is, for each functional group converted, a proton is formed which can then go on to convert another group.

In this example, we extend PAG chemistry discussed above to the realm of two-photon excitation. All of the advantages of the two-photon process that have been demonstrated in acrylate polymerization can be realized. At the same time, PAG chemistry may provide a better materials system for data storage or microfabrication than acrylates. Increased sensitivity due to catalytic processes, increased mechanical stability, and decreased shrinkage upon polymerization are all possible improvements to be made. In order to realize these benefits, PAG chromophores with large two-photon absorption coefficients must be developed.

To this end, sulfonium salts with a two-photon absorbing counterion that have significant two-photon absorption themselves are being considered. First of these is triphenylsulfonium dimethoxyanthracenesulfonate (TPS-DMAS). The precipitate was dissolved into about 4 ml acetonitrile (CH$_3$CN) and re-precipitated from 350 ml DI H$_2$O at 4°C. This solution was vacuum filtered through a fine frit, scrap and dried overnight under vacuum at 35-40°C. The yield of this research is to develop photoresists that can be used at 193 nm, a wavelength necessary to increase the density of components in integrated circuits. The photoacid generator can initiate different chemical processes depending on the composition of the photopolymer material. For instance, the photoacid can be used to initiate cross-linking of epoxide groups. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining Applications of a High Resolution Ultrathick Photoresist,” *J. Vac. Sci. Technol. B*, 13, 3012 (1995); H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A Low-cost Negative Resist for MEMS,” *J. Micromech. Microeng.*, 7, 121 (1997)] or it can convert aqueous-insoluble ester groups into aqueous-soluble acid groups [R. D. Allen, G. M. Wallraff, W. D. Hinsberg, and L. L. Simpson, “High Performance Acrylic Polymers for Chemically Amplified Photoresist Applications,” *J. Vac. Sci. Technol. B*, 9, 3357 (1991)]. The advantage to the second process is that it can be made to be catalytic, that is, for each functional group converted, a proton is formed which can then go on to convert another group.

In this example, we extend PAG chemistry discussed above to the realm of two-photon excitation. All of the advantages of the two-photon process that have been demonstrated in acrylate polymerization can be realized. At the same time, PAG chemistry may provide a better materials system for data storage or microfabrication than acrylates. Increased sensitivity due to catalytic processes, increased mechanical stability, and decreased shrinkage upon polymerization are all possible improvements to be made. In order to realize these benefits, PAG chromophores with large two-photon absorption coefficients must be developed.

To this end, sulfonium salts with a two-photon absorbing counterion that have significant two-photon absorption themselves are being considered. First of these is triphenylsulfonium dimethoxyanthracenesulfonate (TPS-DMAS).
absorption is anticipated because the A-II-A and A-D-A structures are analogous to D-II-D and D-A-D molecules already shown to have high two-photon absorption cross-sections. The alkyl chains on the proposed structures are present to improve the solubility of the chromophores.

Example 11

Two-photon Polymerization of an Aniline-substituted Diarylate Monomer (ADA) and Subsequent Deposition of Silver onto this Polymer.

ADA is a difunctional monomer. The structure of ADA is given in FIG. 7. A neat solution of aniline diacrylate (ADA) was placed in a dose array cell and polymerized using a collimated beam of ns pulses at 600 nm. Unexposed monomer was then washed away using THF. The columns were then soaked in a concentrated solution of AgBF₄ in CH₃CN for 3 hours and analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray fluorescence spectroscopy (EDS).

A photopolymer film of ADA was prepared by dissolving 600 mg polystyrene-co-acrylonitrile (PSAN), 470 mg Sartomer SR368, 425 µL Sartomer SR9008, and 470 µL ADA in 3 ml of dioxane. This solution was cast onto a glass microscope slide using a casting knife set for a wet film thickness of 1 mm. Lines were polymerized using collimated light at 600 nm from a ns OPO laser. After polymerization, the unexposed material was removed using dimethylformamide (DMF) and the substrate was soaked for 3 hours in a concentrated solution of AgBF₄ in CH₃CN.

The aniline group in ADA is a sufficiently strong electron donor to thermally reduce Ag⁺ to metallic Ag. Initial attempts to polymerize this monomer were done in a dose array fashion. It was found that polymerization occurred in neat monomer at 600 nm without the addition of any other two-photon chromophore. The absorption spectrum of ADA is given in FIG. 8 and it is clear that there is no linear absorption at 600 nm. However, the aniline absorption at 300 nm is two-photon allowed since the molecule does not have a center of symmetry. This demonstrates that the polymerization at 600 nm is due to two-photon absorption.

Upon two-photon excitation at 600 nm, the polymerization appears to proceed by intramolecular charge transfer from the aniline group to the reactive acrylate centers. If this is the case, the fluorescence of ADA should be quenched relative to that of aniline alone. FIG. 9 shows that this is indeed the case.

After polymerization of columns from ADA, the polymer was soaked in AgBF₄ to test the ability of the ADA polymer, poly(ADA), to reduce the metal cations. Indeed, the columns darkened upon exposure. SEM micrographs (FIG. 10) show that the coated polymer’s morphology is consistent with previous observations in polymer columns produced by two-photon dose array experiments. X-ray fluorescence spectra (FIG. 11) indicate that the coating contains Ag and BF₄⁻ anions. Quantitative analysis was not available by this technique.

Polymerization has also been performed in photopolymer films containing ADA. In this case, three lines were written at different energy levels and then the unexposed film was washed away. The lines remained, attached to the glass substrate. The lines darkened upon exposure to AgBF₄ solution, but no analysis of the coating has been performed yet.

We claim:

I. A chromophore selected from the group consisting of

We claim:

where D₃ and D₅ are independently selected from the group consisting of N, O, S, and P;

L₂ is a homolytic or heterolytic leaving group, wherein said leaving group comprises an atom selected from the group consisting of N, O, S, P, Cl, Br, and I attached to the fluorene ring carbon;

m, n, o, and p are independently selected from the range of integers greater than or equal to zero and less than or equal to ten;

U, V, X, and Y are independently selected from the group consisting of CR₆, CR₅, O, S, and N—R₆, where R₅, R₆, and R₇ are defined below;

R₅, R₆, R₇, and R₈ are independently selected from the group consisting of

(i) —H;

(ii) a linear or branched alkyl group with up to 25 carbons;

(iii) -(CH₂)nCH₂OR₆n; -(CH₂)nPR₆n; -(CH₂)nNR₆n; -(CH₂)nCN; -(CH₂)nCl; -(CH₂)nBr; -(CH₂)nI;

(iv) an aryl group;

(v) a fused aromatic ring; and

(vi) a polymerizable functionality;

wherein one of R₅ and R₆ is not present when D₃ is O or S, and wherein one of R₇ and R₈ is not present when D₅ is O or S.
5. The chromophore according to claim 1 wherein the chromophore comprises an aryl group at a position selected from Ru, Rr, Rg, Rh, Rj, Rs, Rp, Rm, Rq, Rr, Rs, Rp, Rm, Rn, Rg, Rh, Rj, Rs, Rp, Rm, wherein said aryl group is selected from the group consisting of phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl and tellurophenyl.

6. The chromophore according to claim 1 wherein the chromophore comprises a fused aromatic ring at a position selected from Ru, Rr, Rg, Rh, Rj, Rs, Rp, Rm, Rn, Rg, Rh, Rj, Rs, Rp, Rm, wherein said fused aromatic ring is selected from the group consisting of

- A fused aromatic ring
- A fused aromatic ring

7. The chromophore according to claim 1 wherein Rj is the same as Rg, Rf is the same as Rr, and Rs is the same as Rs.

8. The chromophore according to claim 1 wherein the chromophore comprises a polymerizable functionality at an apposition selected from Ru, Rr, Rg, Rh, Rj, Rs, Rp, Rm, wherein said polymerizable functionality can be initiated by strong Lewis acid groups.

9. The chromophore according to claim 8 wherein the polymerizable functionality is an epoxide.

10. The chromophore according to claim 1 wherein Lg is selected from the group consisting of

- OR12
- NR1R2
- N+R1R2R3
- PR1R2
- P+R1R2R3
- SR1
- S+R1R2R3
- Cl, Br, I, —I+R1

where * indicates the atom through which the fused aromatic ring is attached.
where

E is selected from the group consisting of —S— and —O--; and R_{A1}, R_{A2}, R_{A3}, R_{A4}, R_{A5}, R_{A6}, R_{A7}, and R_{A8} are selected from the group consisting of

(i) H;
(ii) a linear or branched alkyl group with up to 25 carbons;
(iii) phenyl; and
(iv) —NR_{4a}R_{4b}, —OR_{4a}, —SR_{4a}, where R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, R_{4g}, R_{4h}, R_{4i}, R_{4j}, and R_{4k} are independently selected from the group consisting of —H, a linear or branched alkyl group with up to 25 carbons, and phenyl,

where * indicates the atom through which the aryl group is attached.

17. The chromophore according to claim 11 wherein the chromophore comprises an aryl group at a position selected from R_{A}, R_{B}, R_{C}, R_{D}, R_{E}, R_{F}, R_{G}, R_{H}, R_{I}, R_{J}, R_{K}, R_{L}, R_{M}, R_{N}, R_{O}, R_{P}, R_{Q}, R_{R}, R_{S}, R_{T}, R_{U}, R_{V}, R_{W}, R_{X}, R_{Y}, R_{Z}, and R_{AA}, wherein said aryl group is selected from the group consisting of phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl and tellurophenyl.

18. The chromophore according to claim 11 wherein the chromophore comprises a fused aromatic ring at a position selected from R_{A}, R_{B}, R_{C}, R_{D}, R_{E}, R_{F}, R_{G}, R_{H}, R_{I}, R_{J}, R_{K}, R_{L}, R_{M}, R_{N}, R_{O}, R_{P}, R_{Q}, R_{R}, R_{S}, R_{T}, R_{U}, R_{V}, R_{W}, R_{X}, R_{Y}, R_{Z}, and R_{AA}, wherein said fused aromatic ring is selected from the group consisting of

where * indicates the atom through which the fused aromatic ring is attached.

19. The chromophore according to claim 11 wherein R_{A} is the same as R_{B}, R_{C} is the same as R_{D}, and R_{E} is the same as R_{F}.

* * * *

37

(CH_{2})_{2}Br, —(CH_{2})_{2}Cl—(CH_{2})_{2}I,

—(CH_{2})_{2}Cl—(CH_{2})_{2}O)—(CH_{2})_{2}I,

—(CH_{2})_{2}Cl—(CH_{2})_{2}O)—(CH_{2})_{2}phenyl, where 0 ≤ α ≤ 10,

1 ≤ β ≤ 25 and R_{A1}, R_{A2}, and R_{A3} are independently selected from the group consisting of H and a linear or branched alkyl group with up to 25 carbons;
(d) an aryl group;
(e) a fused aromatic ring;
(f) a polymerizable functionality;
(g) —F, —Br, —Cl, —I, phenyl;
(b) —NR_{4a}R_{4b}, —OR_{4a}, —SR_{4a}, where R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, R_{4g}, R_{4h}, R_{4i}, R_{4j}, and R_{4k} are independently selected from the group consisting of —H, a linear or branched alkyl group with up to 25 carbons, and phenyl;

11. The chromophore of claim 10, wherein L_{g} is —OR_{4a}, —NR_{4a}R_{4b}, —N+R_{4a}R_{4b}R_{4c}, —PR_{4a}R_{4b}, —P+R_{4a}R_{4b}R_{4c}, SR_{4a}, —S+R_{4a}R_{4b}, —F, —Br, —Cl, —I, —I+R_{4a}.

12. The chromophore according to claim 11, wherein the chromophore is a salt comprising an anion selected from the group consisting of Cl−, Br−, I−, and SbF_{6}−.

13. The chromophore according to claim 11 wherein the chromophore comprises a polymerizable functionality at a position selected from R_{A1}, R_{A2}, R_{A3}, R_{A4}, R_{A5}, R_{A6}, R_{A7}, R_{A8}, R_{A9}, R_{A10}, R_{A11}, R_{A12}, R_{A13}, R_{A14} and R_{A15}, wherein said polymerizable functionality can be initiated by strong Lewis acid groups.

14. The chromophore according to claim 11 wherein the polymerizable functionality is an epoxide.

15. The chromophore according to claim 11 wherein the chromophore comprises an aryl group at a position selected from R_{A}, R_{B}, R_{C}, R_{D}, R_{E}, R_{F}, R_{G}, R_{H}, R_{I}, R_{J}, R_{K}, R_{L}, R_{M}, R_{N}, R_{O}, R_{P}, R_{Q}, R_{R}, R_{S}, R_{T}, R_{U}, R_{V}, R_{W}, R_{X}, R_{Y}, R_{Z}, and R_{AA}, wherein said aryl group is selected from the group consisting of phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl and tellurophenyl.

16. The chromophore according to claim 11 wherein the chromophore comprises an aryl group at a position selected from R_{A}, R_{B}, R_{C}, R_{D}, R_{E}, R_{F}, R_{G}, R_{H}, R_{I}, R_{J}, R_{K}, R_{L}, R_{M}, R_{N}, R_{O}, R_{P}, R_{Q}, R_{R}, R_{S}, R_{T}, R_{U}, R_{V}, R_{W}, R_{X}, R_{Y}, R_{Z}, and R_{AA}, wherein said aryl group is selected from the group consisting of

* * * *

where * indicates the atom through which the fused aromatic ring is attached.

19. The chromophore according to claim 11 wherein R_{A} is the same as R_{B}, R_{C} is the same as R_{D}, and R_{E} is the same as R_{F}.