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(57) ABSTRACT 

A system for and method of determining an input command 
profile for substantially any dynamic system that can be 
modeled as a linear system, the input command profile for 
transitioning an output of the dynamic system from one state 
to another state. The present invention involves identifying 
characteristics of the dynamic system, selecting a command 
profile which defines an input to the dynamic system based 
on the identified characteristics, wherein the command pro- 
file comprises one or more pulses which rise and fall at 
switch times, imposing a plurality of constraints on the 
dynamic system, at least one of the constraints being defined 
in terms of the switch times, and determining the switch 
times for the input to the dynamic system based on the 
command profile and the plurality of constraints. The char- 
acteristics may be related to poles and zeros of the dynamic 
system, and the plurality of constraints may include a 
dynamics cancellation constraint which specifies that the 
input moves the dynamic system from a first state to a 
second state such that the dynamic system remains substan- 
tially at the second state. 
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dering how to quickly maximize profits by varying his 
investment portfolio. Alternately, the operators of a hydro- 
electric power plant might wish to increase the plant’s power 
output as fast as possible to meet a sudden increase in 

5 demand. In all of these cases, as well as countless others, a 
knowledge of how to change things quickly would prove 
highly valuable. 

Understanding how to move things faster can go a long 
way toward enhancing the performance of many systems. In 
some situations, however, this is not enough. Imagine a 
manufacturing robot moving so quickly that it tears itself 
from the factory floor. Or, how about a weather satellite that 
can scan the atmosphere with blazing speed but, in the 
process, exhausts its supply of fuel. One can imagine that the 

1~ chairman of the Federal Reserve has more on his mind when 
adjusting interest rates than reducing inflation as rapidly as 
possible. Since he knows that his economic models are not 
perfect, he opts for a prudent schedule of interest rate 
adjustment in order to reliably and gradually improve eco- 

2o nomic indicators. In most applications, resting alongside the 
need for speed is such a set of practical issues that must also 
be addressed. 

The modern world demands indeed that many systems 
change in a rapid and desirable manner. The question that 

2s still remains, however, is how to effect this change. As 
varied as the performance demands from system to system, 
so are the strategies for meeting these demands. Adisk drive 
designer, for example, might choose to use a lighter material 
or a different type of actuator to reduce the access time of his 

30 drive. As an alternate approach, he might also decide to 
outfit his machine with sensors and develop a high- 
performance control system to meet more stringent perfor- 
mance specifications. These two strategies, hardware rede- 
sign and enhanced feedback control, are both viable 

35 methods for improving system performance. Many systems, 
however, do not tolerate these types of changes. An engineer 
at a hydroelectric plant, for example, would be foolhardy to 
consider building a new dam to better control the power 
output. Similarly, commissioning the Space Shuttle to install 

40 new sensors on an operating weather satellite might also 
prove equally absurd. In situations like these, engineers must 
focus their effort on improving performance by working 
with the system at hand. Even for systems that can be 
improved through hardware redesign and feedback control, 

45 the designer must then work with the improved system to 
further maximize performance. 

The question, then, that remains is how to control the 
inputs to a given system to achieve a desired behavior at the 
system’s output. For example, how can a crane operator best 

SO position a joystick to maneuver a cargo crate from a trans- 
port ship to a train platform as quickly as possible? What 
kind of torque profile should a designer specify in a disk 
drive actuator to most efficiently move the read-write head 
of the drive from track to track? How should the Fed vary 

ss the interest rate to quickly and reliably control inflation? The 
answer to each of these questions depends on many different 
factors. Understanding these factors and how they influence 
performance is the key to understanding how to answer 
these questions. 

60 1 The Feedforward Control Problem 
The problem facing designers who wish to improve the 

performance of their systems, which can be called “the 
feedforward control problem”, addresses the question of 
how to select the input command for a given system that 

65 produces the most desirable output response. As illustrated 
in FIG. 1, the feedforward control problem can be stated as 
follows: 

1 
METHOD AND APPARATUS FOR CREATING 

SYSTEMS 
TIME-OPTIMAL COMMANDS FOR LINEAR 

This application is a continuation of and claims priority 
to U.S. application Ser. No. 091261,987 filed Mar. 4, 1999, 
which claims priority to U.S. Provisional Application No. 
601076,951 filed Mar. 5, 1998. Both of these references are 
hereby incorporated by reference in their entirety. 

GOVERNMENT SUPPORT 

This invention was made with government support under 
Contract Number NAGW-1335, awarded by NASA. The 
United States government has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention is directed to a system for creating 

commands that increase the speed of system response. The 
invention can be applied to virtually any type of machine, 
process, or entity that can be modeled linearly. In particular, 
the invention deals with the creation of command profiles 
that are time-optimal, meaning commands that will move a 
system from one rest state to another rest state in the shortest 
amount of time. To this end, the invention provides a 
three-step procedure for generating time-optimal command 
profiles for all types of linear single-input, single-output 
systems. Constraint equations that result from this approach 
are both notationally and computationally simple. 
Consequently, the invention delivers results for complex 
systems faster and more reliably than traditional approaches. 
The invention furthermore incorporates additional practical 
constraints into its solution framework, thereby producing 
different types of time-efficient commands which satisfy a 
range of system performance requirements. 

2. Description of the Related Art 
With every passing year, the modern world demands that 

things change faster than they did before. In machines, 
processes, and attitudes, success is often defined by the 
speed with which these transitions can be made. In the 
information storage industry, for example, the speed of 
change is the primary performance metric than can make or 
break a product. In every computer disk drive or compact 
disk player, data storage and retrieval is performed by a 
read-write head that must scan rapidly from one disk track 
to another. The speed at which this read-write head can 
reposition itself between tracks is directly related to the 
speed of information access and the overall performance of 
the product. As another example of the importance of rapid 
change, the modern manufacturing environment contains 
many types of automated machines that are used for preci- 
sion positioning, assembly, and inspection operations. The 
performance of these machines is measured largely by their 
ability to produce rapid and precise motions. Companies 
typically focus considerable attention toward improving the 
speed of these machines in order to maximize the throughput 
of the entire plant. 

As with disk drives and manufacturing systems, it is not 
difficult to think of examples of automated machines that 
could benefit by an enhanced speed of operation. 
Furthermore, this rationale can be extended beyond 
mechanical hardware to many other kinds of systems. The 
pilot of a fighter jet, for example, would probably be very 
interested in the fastest way to change altitude if trying to 
avoid an oncoming missile. One could also imagine a stock 
broker working with a complicated financial model won- 
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Given a known system, what is the input command that 
will move the output of the system from one state to 
another in the most desirable manner? 

When stated in this form, it can be reasoned that the answer 
to this question will depend on four different factors. These 5 
four factors are as follows. 

This problem statement, however, is far too general to lend 
insight into a solution approach. To further clarify the 
problem, the following assumptions will be made to limit the 
scope of the solution approach to more manageable levels. 

First, it will be assumed that the system under consider- 
ation can be modeled linearly. Although ignoring a certain 

1. The first factor which influences the profile of the input class of systems that cannot be described by linear 
is the nature of the change in the system output. For representations, this assumption allows all the tools of linear 
example, the actuator command that will best move a system theory to be enlisted to help solve this problem. Note 
scanning sensor on a weather satellite over a ninety that, as long as the input-output behavior of a given system 
degree slew will probably have little resemblance to the can be modeled linearly, solutions can be applied to both 
command required to complete a three degree slew. open-loop and closed-loop systems. Second, it will be 

2. The second factor which influences the system response assumed that all systems under consideration are single- 
to an input command is the dynamic behavior of the input, single-output (SISO). However, it is noted that the 
system. In manufacturing systems, for example, this 1~ invention described herein can also be used with multiple- 
becomes apparent as machines are designed to be input, multiple-output (MIMO) systems. Third, it will be 
lighter and faster. As an unfortunate side-effect of these assumed that the goal of the problem is to transition the 
performance enhancements, undesirable machine system output rapidly from one rest state to another rest 
dynamics often become the primary barrier to further state. With these three basic assumptions, the feedforward 
performance improvements. For example, in many 2o control problem has been reduced to one of more manage- 
high-performance assembly systems, the speed with able complexity. Labeled “the time-efficient control 
which a machine can operate is dictated not by the time problem,” this reduced problem is illustrated in FIG. 3 and 
required to execute positioning maneuvers, but rather can be stated as follows. 
by the time required for unwanted vibrations to settle. For a given SISO linear system, G(s), find the input 
Consequently, the best input command profile for a 25 command, u(t), that will move the system output, y(t), 
given high-performance system should not ignore the from one rest state to another in the shortest possible 
dynamics of the system. time subject to constraints such as: (1) actuator limits, 

3. The third factor that should be considered when (2) robustness to system uncertainty, (3) fuel usage 
answering the foregoing question is the allowable level requirements, etc. 
of the system inputs. One straightforward way to 30 As will be discussed later herein, this time-efficient problem 
improve the speed of response in a manufacturing formulation lends itself to a particular class of command 
robot, for example, is to employ powerful actuators. solutions. These types of solutions can all produce a rapid 
However, due to design limitations, actuator capacity state change at the system output while satisfying a variety 
must often be restricted. As a result, motion commands of additional constraints. If time is the only performance 
used for these systems should be designed to remain 35 variable of interest in a system, this problem can be reduced 
within the actuator capability. Given this constraint, it even further by eliminating all unnecessary constraints. 
can be reasoned that the command profiles that deliver Known widely as “the time-optimal control problem,” this 
the best system performance should account for the most fundamental form of the feedforward control problem 
limitations of the system inputs. is illustrated in FIG. 4 and can be stated as follows: 

4. The fourth factor that should be considered is system 40 For a given SISO linear system, G(s), find the input 
performance variables. In this regard, in addition to command, u(t), that will move the system output, y(t), 
accounting for desired output behavior, system from one rest state to another in the shortest possible 
dynamics, and input limitations, many systems may be time subject to the actuator constraints: umin<u(t)<um,,. 
sensitive to other performance variables. For example, Unlike the time-efficient control problem statement, the 
for systems that have shifting or uncertain dynamics, 45 time-optimal control problem requires that only two condi- 
the performance delivered by input commands must tions be met: (1) that the system output transition by an 
remain robust to these changes. Other systems may amount dy, and (2) that the input command remain within 
have additional requirements such as limitations on the actuator limits. These two problem specifications repre- 
internal loading or energy efficiency. Any useful strat- sent the minimum set of constraints required to ensure a 
egy for creating command profiles should effectively SO nontrivial solution to this problem. Furthermore, any com- 
address these practical concerns. mand that satisfies this problem defines the performance 

Although the feedforward control problem, as posed baseline for how fast a linear system can be moved from one 
above, is still fairly broad, it has helped to identify four state to another. Because of the fundamental importance of 
issues that influence its solution. Any strategy designed to this problem statement, the time-optimal control problem 
address the stated problem should address these four issues. ss has been the subject of investigation for over forty years. 
As one way of looking at the task at hand, FIG. 2 illustrates 2 The Time-Optimal Control Problem 
that the problem is to determine a strategy for using infor- With this long history of research, it is difficult to know 
mation about (1) the desired system output response, (2) the where to begin to describe the state of the art. Accordingly, 
system dynamics, (3) the limitations on the system inputs, the discussion herein will move from the general to the 
and (4) any additional constraints in order to derive the best 60 specific. To this end, the discussion will begin with an 
input command for a given system. Before this strategy can overview of work in the design and control of flexible 
be formulated, however, the problem statement must be systems. Alarge area of research in itself, many of the recent 
further clarified in order to define system behavior and advances in time-optimal and time-efficient control were 
performance in more concrete terms. spawned from investigations in new techniques for control- 

The feedforward control problem, as noted above, is a 65 ling flexible machines. From this point, the discussion will 
general statement that outlines the basic issues associated turn from feedback to feedforward control. Since this docu- 
with selecting an input command profile for a given system. ment is concerned primarily with generating input command 
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profiles, section 2.2 surveys various techniques for deriving hardware innovation and closed-loop control. What should 
motion command profiles for different types of systems. not be overlooked, however, is the critical importance of 
Two specific command generation techniques, time-optimal open-loop, or feedforward control, techniques for enhancing 
control and input shaping, have relevance to the work in this machine performance. While closed-loop control techniques 
document. Consequently sections 2.3 and 2.4 are devoted to s are used for minimizing error in the face of disturbances, 
outlining the basic theories and the state of the art for each they cannot always be optimized for the task at hand. In a 
of these techniques. From this background on input shaping factory robot, for example, the same pick-and-place task 
and time-optimal control, section 2.5 focuses on identifying might be performed thousands of times every day. The 
the strengths and similarities of these two approaches. feedback controller used by this robot, instead of being 
Building on this comparison, the need for a general approach i o  finely tuned to effectively accomplish the specific pick-and- 
for deriving time-efficient and time-optimal commands place task, must likely be designed to meet such perfor- 
becomes clear. mance specifications as good stability robustness and dis- 
2.1 Design and Control of Flexible Systems turbance rejection. In situations like these, the onus falls on 

The first step in creating a high-performance machine or a feedforward controller to specify the best command that 
system is to design and construct the hardware. In approach- is will move the robot most effectively. From this rationale, the 
ing this task, design engineers typically face a variety of importance of an effective feedforward controller, working 
design tradeoffs that influence the construction of the hard- independently of or alongside a feedback controller, is clear. 
ware and the performance of the machine. For machines that This section is devoted to presenting an overview of some of 
operate in speed-critical environments, designers often try to the research that has been performed in the area of feedfor- 
maximize the speed of system response by making machine 20 ward control. Much of this research can be divided into four 
components powerful and lightweight. At the same time, in categories: (1) trajectory tracking, (2) command formulation 
order to minimize problematic vibrations, designers must using analytic functions, (3) optimal control command 
also look to make structural components rigid. Primarily due formulation, and (4) time-optimal and time-efficient com- 
to space, weight, and power constraints, this is not always mand generation. The first three of these categories are 
possible. One strategy for overcoming this design obstacle is zs concerned with deriving command profiles for applications 
to modify the mechanical structure by adding damping. With that are not necessarily time-critical. The last category 
increased structural damping, vibrations settle quicker and presents feedforward approaches catered to systems that 
are less likely to degrade machine performance. One of the need rapid response. In this realm of time-efficient 
simplest and oldest techniques for adding structural damping approaches, two specific bodies of work, time-optimal con- 
is to use a tuned vibration absorber [l]. Although this is an 30 trol and input shaping, will be addressed in detail in later 
old idea, the technique has evolved into a sophisticated tool sections. 
and many promising modifications to the method are con- 2.2.1 Deriving Commands for Trajectory Tracking 
tinually being developed [2]. When design considerations do In automated equipment such as milling machines and 
not allow for this kind of hardware augmentation, the design pen plotters, the speed of the system response is secondary 
engineer must turn to feedback approaches to eliminate 3s to path-following accuracy. For situations like these, feed- 
undesirable system dynamic behavior. forward control methods are targeted at generating motion 

In the past fifteen years, research in the area of control of paths that minimize machine tracking error. Perhaps the 
flexible systems has been abundant. Targeted primarily most common approach for achieving these performance 
toward boosting the performance of flexible satellites and specifications is to use inverse dynamics. Inverse dynamics 
robots, this research has explored a wide spectrum of 40 refers to a technique for filtering input commands by the 
feedback control concepts. In his 1996 survey paper, [6], inverse of the system model so that the system output tracks 
Wayne Book presents an overview of some of the work in a desired trajectory despite system flexibility. Recent 
this field. Junkins and Kim also provide a thorough treat- research in this area has led to new approaches for achieving 
ment of this subject in their recently published textbook [4]. precise tracking in mechanical systems. Tomizuka [13, 141, 
Although providing a detailed account of the work in this 4s for example, proposed a technique for generating causal 
field is beyond the scope of this patent, some effective command inputs to allow a system to follow a specified path. 
strategies for controlling flexible systems can be found in In this technique, guidelines were presented for dealing with 
[5-121. In all of these works, and in many others, closed- uncancellable zeros in the system model without causing 
loop control strategies have been demonstrated to work phase distortion in the shaped command. Tung [15] 
effectively at preserving system performance in the face of SO extended this theory by proposing a technique for improving 
unwanted vibration. From this result, it can be argued that a accuracy by penalizing model error more heavily for lower 
good control system is an essential component of a high- frequencies. Asada [16, 171 successfully applied inverse 
performance machine. However, in some systems, such as dynamics to a flexible multiple-link robot and proposed an 
ones where sensor feedback is unavailable, high- efficient computational scheme to generate the shaped tra- 
performance control is not an option. In these cases, the ss jectories. By using an inverse dynamics approach to con- 
designer must turn to feedforward methods for meeting struct shaped commands from a sum of sinusoids, Tu [18] 
performance requirements. Additionally, even in systems also demonstrated that flexible systems could benefit from 
that employ effective controllers, feedforward techniques inverse dynamics feedforward control. Additional tech- 
can commonly be used to gain an extra measure of perfor- niques for using feedforward control to enhance trajectory 
mance. 
2.2 Survey of Feedforward Control Methods 2.2.2 Command Formulation Using Analytic Functions 

As Wayne Book notes in [3], “our best hope to expand the Another approach for generating commands for systems 
envelope of feasible performance is a confluence of open- is by using analytic functions with known frequency- and 
and closed-loop controls, design innovations, material time-domain characteristics to construct commands with 
improvements and sensor and actuator developments.” As 65 desirable properties. These techniques are often used, for 
discussed herein above, researchers have taken this message example, to generate fixed-time-length commands with 
to heart and work has been prolific in both the areas of reduced energy at the problematic system modes. Some of 

60 tracking performance can be found in [19-221. 
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the researchers in this area include Aspinwall [23], who 
proposed a technique for minimizing residual vibration in 
flexible systems by generating shaped commands using 
Fourier series. Wiederrich [23-261 used finite trigonometric 
series to generate high-speed cam profiles to avoid exciting 
machine vibration. Similarly, Swigert [27] outlined a 
method for minimizing modal vibration in a flexible satellite 
using shaped torque commands constructed from a finite 
trigonometric series. Adopting a similar shaped-function 
synthesis approach, Meckl [28-311 combined ramped- 
sinusoid functions to minimize residual vibration from 
point-to-point motion in flexible systems. Some additional 
techniques for constructing functions to yield desirable 
motion profiles can be found in [32-341. 
2.2.3 Optimal Control Command Formulation 

Building on the concepts and tools developed for optimal 
feedback control, several techniques have been presented for 
applying optimal control approaches to the generation of 
input commands. Classifying this field of research as opti- 
mal control command formulation, these approaches typi- 
cally employ optimal control theory to generate shaped 
commands that minimize a specific cost index such as 
command energy or residual vibration. Perhaps the first 
application of optimal control to generate feedforward com- 
mands for flexible systems was proposed by Farrenkopf 
[35]. In his work, an analytic solution was derived for the 
input command that minimized structural excitation and 
residual vibration in an undamped second-order system. 
Turner [36, 371, using a numerical optimal-control solution 
technique, derived shaped commands that minimized a 
weighted sum of state deviation and control effort in 
undamped, nonlinear, multiple-mode systems. These shaped 
commands were constrained to produce system response 
with zero residual vibration. In later work, Eisler [38] used 
a similar numerical optimization approach to find the 
minimum-time motion of a two-link robot with actuator 
limits subject to constraints on the tracking error and 
residual vibration of the robot. Parker [39] applied a 
dynamic programming and parameter optimization 
approach to derive commands for point-to-point motion in 
cranes. In other work, Bhat [40-461 used a Linear Quadratic 
Regulator approach to derive a closed-form solution for the 
minimum energy point-to-point command for a flexible 
system. Last, relying on a full non-linear model, Meckl[47] 
proposed a numerical optimization technique for generating 
minimum-energy commands to effect point-to-point motion 
in flexible, nonlinear systems. 
2.2.4 Creating Time-Optimal and Time-Efficient Commands 

For automated systems that require rapid motion, feed- 
forward commands should be designed to maximize the 
speed of response. Numerous methods have been proposed 
by designers to create these time-optimal and time-efficient 
commands. Two, in particular, are of interest: time-optimal 
control and input shaping. Time-optimal control refers to the 
field of research dedicated to finding the input command that 
will move a system as fast as possible from one point to 
another. Much research has been performed in this area in 
the past forty-five years, and the following section will 
attempt to present an overview of some of this work. The 
second area of research to be discussed in detail, input 
shaping, is a field based on a strategy for deriving time- 
efficient discontinuous command profiles that suppress 
residual vibration and are robust to system uncertainties. 
Much attention has been focused on this subject in the past 
ten years, and section 2.4 will give a detailed account of this 
research effort. 

In addition to time-optimal control and input shaping, 
many other techniques exist for creating time-efficient com- 

8 
mands. For example, some researchers [48-501 have set 
conventional digital filtering techniques to the task of com- 
mand profile design. Work in this area has revealed that 
these filtering approaches can be effective for deriving 

s relatively fast commands that avoid exciting unwanted sys- 
tem vibration. By constructing command profiles from a 
series of correctly timed pulses, other researchers [51-551 
have illustrated that rapid motion can be produced in some 
flexible systems without residual vibration. These tech- 

i o  niques and others have successfully demonstrated that many 
approaches can be adopted for creating time-efficient com- 
mands for flexible systems. The following two sections 
focus on two particular techniques that have demonstrated 
widespread use and acceptance: the first, time-optimal 

is control, stands alone for its power and generality, and the 
second, input shaping, gains distinction for its simplicity and 
practicality. 
2.3 Time-Optimal Control 

The time-optimal control problem, as stated above, is 
20 concerned with finding the fastest possible ways to move 

systems from one state to another. Much of the research in 
this field can be divided into two schools. The first school, 
comprised of work performed primarily in the 1950’s and 
1960’s, was concerned with developing the underlying 

zs mathematical theory for time-optimal control. Due in part to 
the complexity of these initial approaches and since energy- 
based control methods promised greener pastures, work in 
this area was largely abandoned. More recently, perhaps in 
the past fifteen years, a new school of work has formed. This 

30 new approach to time-optimal control has been driven by 
expanding research efforts in the control of flexible struc- 
tures as well as new computer capabilities. The result of this 
new school of work has been the development of new 
techniques for solving for time-optimal command profiles 

3s for a small class of flexible systems. This section proposes 
to present an overview of the state of the art in time-optimal 
control and will address both underlying principles as well 
as recent advancements in this field. This discussion will 
begin by describing the origins of time-optimal control as 

40 found in Pontryagin’s Maximum Principle and the Bang- 
Bang Principle. Approaches for applying these theories to 
nonlinear systems will then be addressed followed by an 
overview of recent work in deriving time-optimal com- 
mands for linear systems. 

4s 2.3.1 Pontryagin’s Minimum Principle and the Bang-Bang 
Principle 

For over forty years, researchers have been investigating 
strategies for finding time-optimal commands. Much of this 
research has resulted from Pontryagin’s original formulation 

SO and investigation of the time-optimal control problem [56]. 
In this original work, Pontryagin outlines a set of necessary 
conditions that the time-optimal control for a system must 
satisfy. Specifically, these conditions require that the time- 
optimal control which transitions a system from a fixed 

ss initial state to a desired final state must necessarily satisfy 
the following conditions: (1) it must satisfy the system state 
and costate equations, (2) it must remain within the given 
actuator limits and minimize the Hamiltonian, and (3) it 
must result in a Hamiltonian value of zero over the time- 

60 length of the command. The mathematical details of this 
principle are avoided here but outlined below in section 
6.2.1 of this document. Also, a comprehensive treatment of 
this principle, including a detailed derivation, can be found 
in [57]. A less detailed overview of the fundamentals of the 

65 principle can be found in [58]. Due to its generality, Pontrya- 
gin’s Minimum Principle proved to be a theory of far- 
reaching impact. Not only did it allow researchers to make 
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strong claims about the nature of time-optimal commands for nonlinear systems, but they are also sufficient. With these 
for linear and nonlinear systems, but its result can be applied statements, it can be safely postulated that, if any command 
with equal efficacy to SISO and MIMO systems alike. profile satisfies the three conditions outlined in Pontryagin’s 

Stemming from the powerful insights of the Minimum Minimum Principle, it must necessarily be the unique time- 
Principle, the Bang-Bang Principle further postulates s optimal control solution for a given system. 
about the nature of the shape of time-optimal commands. Given these powerful assertions about the nature of 
Phrased by Hermes [59] as follows, the Bang-Bang Prin- time-optimal commands for linear systems, some generali- 
ciple states that “ . . . if it is desired to have the system zations can be made about the shape of time-optimal com- 
change from one state to another in minimum time, then it mand profiles. As dictated by the Bang-Bang Principle, 
is necessary at all times to utilize the power available; that i o  any time-optimal command for a linear system must saturate 
is, to use bang-bang control.” With this assertion, the the system actuators from the initial time of the command 
time-optimal command for a given system, must have a until the time that the system reaches its desired final state. 
value that always maximizes, in a positive or negative sense, After this terminal time, the time-optimal command must 
at least one of the system actuators. For a system with a then adopt the profile required to maintain the system at its 
single input, the time-optimal command, such as the one is desired final state. For systems that have poles and no zeros 
shown in FIG. 5,  must always saturate the system actuator. after the final switch, the time-optimal command must 
The resulting command profile for such a system will necessarily remain at a constant value. More specifically, if 
consist, therefore, of a series of positive and negative pulses the system has any rigid-body poles, the final value of the 
with a finite number of times where the command value command must be zero, and if there are no rigid-body poles, 
switches between the positive and negative limit. This 20 the final command value must be set to the level required to 
observation greatly simplifies the time-optimal control prob- keep the system at its desired terminal state. The profile of 
lem by reducing the solution space of possible command a typical time-optimal command for a system with just poles 
profiles to simply the set of possible switch times. and no zeros is shown in FIG. 6. 
2.3.2 Time-Optimal Control of Nonlinear Systems When a system has zeros as well as poles, the profile of 

Pontryagin’s Minimum Principle provides powerful tools zs the time-optimal command is somewhat different. Again, the 
for assessing the time-optimality of system commands. Bang-Bang Principle requires that the command saturate 
Unfortunately, applying these tools to the task of deriving the system actuators from the initial time to the time that the 
commands for a given system is not immediately straight- system reaches its desired final value. However, the profile 
forward. For very simple systems, some analytic solutions of the command after this final time can now adopt a wider 
for time-optimal commands exist [57], but in general, com- 30 range of possible values. The only requirement for this 
mands must be derived numerically. Anumber of techniques portion of the command is that it maintains the system at its 
have been proposed for doing this, but all are numerically desired final state. Consequently, since the system has zeros 
intensive and largely too unreliable to be applied to a wide as well as poles, any command profile that has the appro- 
class of systems. The general approach for deriving time- priate initial conditions and drives the system strictly at the 
optimal commands typically relies on solving a two-point, 3s frequencies of the system zeros will not influence the system 
boundary-value problem (TPBVP) with one endpoint that is output. As a result, any command profile that is a linear 
free in time. An iterative approach can be employed to solve combination of the initial condition response at the frequen- 
this problem, solving the state and costate equations during cies of the system zeros will be a potential candidate for the 
every iteration, in order to find the initial costate vector that terminal component, or tail, of the time-optimal command 
meets the problem specifications and optimality conditions. 40 profile. An example of a typical time-optimal command 
Scrivener and Thompson [60], in their literature survey of profile for a system with poles and zeros is shown in FIG. 
work in this area, discuss a number of different techniques 7. As illustrated, this command has two components: (1) a 
used to approach this problem. Additional iterative tech- pulse train which delivers the system output to its desired 
niques for solving the TPBVP using linear programming or final value, and (2) a tail which maintains the system output 
the shooting methods can be found in [61,62]. Amore recent 4s at its desired final value. Since the tail of the time-optimal 
approach called switch-time optimization (STO) is dis- command provides an additional degree of flexibility in the 
cussed in [63]. possible solution space of the optimal command profile, 

Although solution techniques are numerically complex commands designed for both poles and zeros can often result 
and unreliable, many researchers have set these processes to in much shorter system response times than commands 
the task of deriving time-optimal commands for nonlinear SO designed for poles alone. 
systems. Schiller [64-671, for example, derived commands Both the time-optimal command for a system with poles 
for a nonlinear multi-link robot and incorporated additional and the time-optimal command for a system with poles and 
constraints such as joint motion limits and obstacle avoid- zeros contain a pulse train with a finite number of switches. 
ance. Liu and Singh [68] used Meier’s STO process to derive Although the exact number of switches in this pulse train is 
time-optimal commands for nonlinear systems with ss not always known, some general statements can be made to 
improved robustness to parameter uncertainties. Additional bound the possible number of switch times. By convention, 
examples of time-optimal commands for nonlinear systems the number of switches refers to the number of times the 
can be found in [69, 701. command profile transitions between the upper and lower 
2.3.3 Time-Optimal Control of Linear Systems actuator limits; the transitions at the initial time and the 

When concerned strictly with linear, time-invariant 60 terminal time are ignored. First, for the case where the 
systems, the claims that can be drawn from Pontryagin’s system under consideration has only real or rigid-body poles 
Minimum Principle can be further strengthened. First, as and no zeros, the number of switches in the time-optimal 
long as the desired final state can be reached by an input command profile is exactly equal to n-1, where n is the 
command that remains within the actuator limits, the time- number of system poles. If the system has complex poles as 
optimal control for a linear system will exist and be unique. 65 well as real and rigid-body poles and no zeros, the number 
Second, the three general conditions that the time-optimal of switches in the time-optimal command will be finite and 
control must satisfy are not only necessary, as was the case have a lower bound of n-1. In general, the exact number of 
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switches in the time-optimal command for systems with algebraic equations that relate the properties of the time- 
complex poles will depend on the desired state change; the optimal command to specific problem constraints such as 
larger the state change, the more switches that will be zero residual vibration. Because of the simplicity of these 
required in the time-optimal command. For systems with resulting equations, some analytic solutions for very simple 
zeros, the minimum number of switches required in the s systems have been proposed. More importantly, it has been 
time-optimal command can be reduced by one for every zero illustrated that these algebraic constraints can be solved 
in the system. For example, for a system with real poles, effectively using an optimization process. Furthermore, 
rigid-body poles and zeros, the minimum number of since optimizations are not always guaranteed to yield a 
switches is (n-1)-r, and the maximum number of switches is global optimal solution, some researchers [77, 94-96] have 
n-1, where n is the total number of system poles and r is the i o  proposed a simple method for verifying the optimality of 
total number of system zeros. For systems with complex command profiles using the conditions from Pontryagin’s 
poles as well, the lower bound on the number of switches is Minimum Principle. This new approach, which combines an 
(n-1)-r, and the upper bound is finite but dependent on the optimization of algebraic constraint equations with a simple 
desired state change. optimality verification scheme, has been illustrated, for the 

By applying these general principles about the nature of is case of systems with flexible modes, to deliver solutions 
time-optimal commands for linear systems, several much faster and more reliably than conventional iterative 
researchers have made some important insights about time- 
optimal command solutions for specific types of systems. In 
some early work, Barbieri [71] and Dodds [72] looked at First proposed by Singer and Seering in 1989 [97, 1011, 
linear systems with a single undamped flexible mode and 20 input shaping is a technique for shaping system commands 

solution methods. 
2.4 Input Shaping 

made general statements about finding values for the com- 
mand switch times without using complex numerical search 
routines. Pao [73] investigated systems with damped flexible 
modes and outlined basic properties as well as a set of 
algebraic equations that the time-optimal commands must 
satisfy. Investigating new strategies for deriving time- 
optimal commands for linear systems with multiple flexible 
modes, several researchers [74-801 have proposed tech- 
niques for deriving time-optimal commands by solving a set 
of algebraic constraint equations. These algebraic constraint 

to suppress unwanted system vibration. Due to its simplicity 
and effectiveness, even in the face of substantial system 
uncertainty, this technique has seen widespread use and 
development in the past decade. Originally developed as a 

zs method for filtering input command profiles in real-time, 
researchers have extended this work in many directions. 
Most recently, due to similarities in the command structure 
between input shaping commands and time-optimal 
commands, researchers have applied the basic principles of 

30 input shaping to the task of creating time-optimal command 
equations were formulated by making some general insights profiles. 
about symmetry properties of the time-optimal commands The purpose of this section is to present an overview of 
and the mathematical interpretation of the problem boundary input shaping research performed in the past decade with 
conditions. particular attention toward advances made in addressing the 

Building on the initial developments about deriving time- 3s time-optimal control problem. This section begins with a 
optimal commands for systems with flexibility, several discussion of the basic theory of input shaping followed by 
researchers also proposed techniques for extending this a survey of the various extensions that have been made to 
work to derive time-efficient commands with more desirable this theory since its conception. Since the popularity of this 
properties. In particular, several researchers [68, 81-84] technique is largely a measure of its effectiveness, an 
proposed methods for including additional constraint equa- 40 attempt will be made to mention many of the recent appli- 
tions into the time-optimal formulation in order to derive cations of input shaping that have been reported in the 
robust, time-optimal commands. The resulting command literature. Given this overview of the theory and use of input 
profiles still displayed a bang-bang shape, but included shaping, this section will then turn to the time-optimal 
additional switches and a longer overall time to better control problem and outline the work that several research- 
tolerate systems with dynamic uncertainty. An example of a 4s ers have done to apply input shaping techniques to solve this 
robust, time-optimal command profile is shown in FIG. 8. 
Following a similar approach, researchers [85-89] have also 
explored ways to incorporate fuel-usage constraints in order 
to create time-efficient command profiles with better fuel- 
usage characteristics. These fuelhime-optimal command 
profiles, like the one shown in FIG. 9, displayed a typical 
bang-bang nature but also contained idle periods between 
the actuator pulses. Lastly, researchers [90-931 have also 
explored techniques for adding smoothness constraints to 
typical time-optimal bang-bang profiles. The resulting 
near-time-optimal commands, while no longer retaining the 

fundamental problem. 
2.4.1 The Basic Theory of Input Shaping 

In its basic form, input shaping is a strategy for shaping 
command inputs by convolving them with a sequence of 

SO impulses. The sequence of impulses, called the input shaper, 
is selected based on information about the system modes of 
vibration. For the case when a step command is shaped using 
an input shaper, the resulting command profile is a staircase, 
as shown in FIG. 10. This shaped command, if designed 

ss correctly, will deliver the system from its initial value to its 
desired final value without exciting unwanted system vibra- 

bang-bang profile, excited less vibration in the structure tion. Since this approach relies on impulses, or sharp 
upon implementation. changes in the command profile, the resulting commands are 

Although focused almost exclusively on systems with very time-efficient and can typically deliver the system to its 
solely flexible modes, the techniques developed in the past 60 destination faster than many other methods. 
fifteen years for deriving time-optimal command share some Much of the value in the input shaping approach resides 
similarities that deserve note. First, largely due to the in its simplicity. Typically, input shapers are designed by 
complexity of numerical and iterative approaches for solv- solving a set of algebraic constraint equations. These alge- 
ing this problem, much of the recent work in this area has braic equation are derived from the fact that the system must 
focused on making statements about the general nature of 65 have zero residual vibration and can be solved analytically 
optimal commands in order to reduce the size of the solution for some simple systems. The result of these analytic s o h -  
space. From these insights, researchers have developed tions are a set of special purpose impulse sequences that can 
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be implemented readily in a variety of systems with flex- staircase command with more steps. This results, in the 
ibility. Much of Singer’s original work [97-1011, in addition frequency domain, in a notch filter with a wider notch. In the 
to thoroughly investigating the basic theory and its Laplace and discrete domains, this enhanced robustness is 
properties, focuses on these basic impulse sequences that are manifested by the presence of additional zeros located at or 
highly effective at eliminating unwanted vibration in sys- s near the frequencies of the system poles. Typically the 
tems with a single flexible mode. Additional work by Hyde number of zeros in the shaper and their proximity to the 
[102-1041, as well as Singer, looks at numerical approaches system poles can be used to tailor the level of robustness 
for deriving input shapers for systems with multiple modes. required in a given system. 
These approaches typically rely on an optimization routine 2.4.2 Extensions to the Input Shaping Theory 
to solve a set of nonlinear algebraic equations, and results i o  Research in the past decade has led to many extensions of 
have demonstrated input shapers can be derived quickly and the basic input shaping theory in many different research 
reliably for systems with up to around six to ten modes of areas. These areas of active research include: (1) developing 
vibration. new techniques for deriving shaped inputs, (2) proposing 

The concept of using correctly timed staircase profiles to different strategies for tailoring the command robustness to 
create commands that eliminate unwanted vibration, is system uncertainty, (3) implementing input shaping in an 
although fully explored by Singer, was originally presented adaptive framework, (4) proposing new kinds of constraints 
by Smith [105, 1061 about forty years ago. Known as on shaper performance such as system deflection and fuel 
posicast control, this technique presented guidelines for usage, and (5) applying input shaping techniques to improve 
timing the transitions in a staircase command profile using trajectory tracking. This section will attempt to give an 
knowledge about the system vibration modes. Since its 20 account of much of the work that has been performed in 
original presentation, many researchers [ 107-1111 have these areas to date. 
illustrated that these commands can produce time-efficient Perhaps the most active area of input shaping research in 
and vibration-free motion in flexible mechanical systems. A recent years has been in the realm of new derivation strat- 
primary advantage of Singer’s input shaping over posicast egies for shaped commands and impulse sequences. Many 
control is the use of robustness constraints to yield com- zs researchers have explored a range of new derivation tools as 
mands that can still perform effectively in the face of system well as proposed new types of sequences for reducing 
uncertainty. The robustness constraints rely on taking the vibration in flexible systems. In particular, several research- 
derivative of an analytic expression for system residual ers have proposed strategies for using zero-placement in the 
vibration and yield command profiles with a longer time- discrete domain [112-1141 as well as the Laplace domain 
length but better tolerance to system uncertainty. Because of 30 [115-1171 for deriving input shapers for both single- and 
this inherent robustness, input shaping has seen much SUC- multiple-mode systems. Additionally, researchers such as 
cess when applied to a wide class of flexible systems with Singhose and Rappole have investigated specific classes of 
varying degrees of uncertainty. shaped commands and proposed analytic expressions and 

One way to gain insight into the principles and operation design heuristics to aid in the derivation of certain types of 
of input shaping is to consider its interpretation in several 3s impulse sequences [118-1251. By building on a representa- 
different domains. FIG. 11 offers a schematic of how input tion proposed by Singer [99] called vector diagrams, Sing- 
shaping can be interpreted in four different domains: (1) the hose described new strategies for deriving impulse 
time domain, (2) the frequency domain, (3) the Laplace sequences using graphical methods [126-1291. By modify- 
domain, and (4) the discrete domain. For the purposes of this ing constraints to allow for negative impulses, Rappole and 
discussion, consider a step command shaped by an input 40 Singhose have also illustrated that shaped commands can be 
shaper consisting of two impulses in the time-domain. The shortened for some systems and still effectively suppress 
resulting shaped command, which is a two-step staircase, unwanted vibration [130, 1311. Crain and Singhose have 
can then be applied to either an open- or closed-loop flexible investigated properties of two-mode shapers and suggested 
system to produce output motion without residual vibration. guidelines for their construction [132, 1331. In recent work, 
In the frequency domain, the input shaper resembles a notch 4s Pao [134] presented new techniques for deriving input 
filter. If the magnitudes and the times of the impulses in the shapers for systems with multiple actuators, and Singhose 
sequence are selected correctly, this notch will align with the [135] has applied neural nets to the task of creating input 
resonant frequency of the system, and the resulting shaped shapers. 
command will excite little vibration at this mode. In the Another active area of research in the field of input 
Laplace domain, the input shaper contains an infinite num- SO shaping has been formulating new methods for improving 
ber of zeros placed at periodic intervals along the imaginary the robustness properties of shaped commands. In a tech- 
axis. If the shaper is designed correctly, the lowest frequency nique proposed by Singer [136], a method was outlined for 
zeros of the shaper will rest at the identical location of the better controlling shaper robustness by explicitly specifying 
system complex poles. Since these shaper zeros cancel the problem constraints at sampled frequencies in the frequency 
system poles, the system response will display no vibration ss domain. In a related approach, Singhose [137, 1381 pro- 
at the canceled mode. By selecting a sampling interval posed that command robustness could be better tailored to 
coincident with the impulse spacing in the input shaper, a system uncertainty by designing input shapers that better 
discrete domain representation can also be formulated. As place shaper zeros at and near problematic system frequen- 
shown in FIG. 11, the input shaper is comprised of a pair of cies. The resulting sequences, called multi-hump shapers, 
complex zeros and an equal number of poles at the z-plane 60 can then be incorporated into an optimization strategy to 
origin. As in the Laplace domain, when designed correctly, specify precisely the desired robustness of a given shaper 
these zeros exactly cancel the system poles, resulting in a [139,140]. In more recent work, Pao [141] has suggested an 
system response with no problematic vibration. approach for better tailoring input shaping robustness to 

Now, in the case where input shaping is designed with known uncertainty in the damping and frequency of the 
enhanced robustness, the same multi-domain interpretation 65 flexible modes of a system. 
can also be applied. In the time-domain, robust input shapers Although input shaping was originally developed for 
typically require more impulses in the shaper and produce a linear, time-invariant systems, many researchers have inves- 
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tigated adaptive implementations of input shaping to better shaping techniques are flexible robots and flexible space 
apply the technique to systems with time-varying and structures. For example, in two early applications, Christian 
configuration-dependent dynamics. In particular, Khorrami [173] and Yurkovich [174] demonstrated the effectiveness of 
[142] employed a nonlinear controller and a single-mode the technique on multi-link flexible robots. Magee and Book 
shaper to eliminate vibration on a two-link flexible arm. In s [175,176] also applied input shaping with success to reduce 
this approach, a real-time FFT process was used to identify vibration in a Schilling manipulator. In the area of flexible 
system modes and update both the controller and shaper space structures, Singh [177, 1781 demonstrated ways to 
parameters adaptively. In a similar approach, Magee and reduce vibration in 3-D slewing maneuvers of flexible 
Book [143-1461 employed an adaptive approach to imple- spacecraft by applying input shaping. Additionally, Banerjee 
ment a two-mode shaper on a two-link robot. Using analytic i o  [179] successfully implemented input shaping on a model of 
solutions combined with an interpolated lookup table, Rap- 
pole [118] proposed another method for implementing input 
shaping adaptively on a two-link flexible robot. Lastly, in 
work by Tzes [147-1491, an adaptive input shaping scheme 
was presented that uses a non-collocated controller with 
acceleration feedback and a real-time frequency identifica- 
tion scheme. In this case and the others mentioned, input 
shaping was demonstrated to effectively produce the desired 
machine motion without residual vibration in the face of 
channinn svstem modes. 

a long spaced-based antenna, and Chang [ B O ]  collected 
experimental results from a satellite testbed in 1-g. In more 
recent experimental work, Tuttle [ 1811 demonstrated the 
effectiveness of input shaping on space-based systems by 

is collecting data from an experimental testbed flown aboard 
the Space Shuttle Endeavour in March of 1995. 

In addition to flexible robots and space structures, input 
shaping has seen implementation on a variety of other 
system types. Some of the applications that have been 

20 reaorted in the literature are summarized here. In order to a a ,  

By appending the basic input shaping equations with new eliminate measurement-corrupting vibration in coordinate 
types of constraints, recent research has revealed that a measuring machines, several researchers [ 182-1871 have 
variety of shaped commands can be created with certain enlisted input shaping. Additionally, input shaping has also 
desirable properties. For example, for some systems it is seen success when applied to cranes for eliminating swing- 
desirable to regulate the amount of deflection experienced zs ing in the payload during operation [188, 1891. As a testa- 
by a system during motion. By incorporating this condition ment to the wide applicability of this technique, researchers 
into the input shaping formulation, Banerjee and Singhose have demonstrated success when using input shaping with 
derived new types of deflection-limited shaped commands such applications as force control [ 190, 1911, spherical 
[150-1531. Similarly, in some systems with limited fuel, motors [192], and fluid-pouring systems [193]. Other 
command profiles with better fuel usage characteristics are 30 examples of input shaping applications can be found in 
required. By modifying the command structure to include 
idle periods, Singhose developed a new class of shaped In addition to applying input shaping to a wide class of 
commands with desirable fuel-efficient properties systems, several researchers have drawn comparisons 
[ 154-1561, Lastly, by combining both fuel-efficient com- among input shaping techniques and other feedforward 
mand characteristics with deflection limiting constraints, 3s control approaches. For example, some results presented by 
recent research has also revealed that commands can be Bhat [41] compared input shaping, optimal-control 
created with both of these desirable properties [ 157, 1581. techniques, and Fourier synthesis and concluded that all 

Although not specifically designed with the task of tra- techniques were effective at reducing system vibration since 
jectory following in mind, the vibration suppression prop- they placed the shaped command zeros at the system poles. 
erties of input shapers have led many researchers into 40 Kwon [198] and Rattan [159] also drew some comparisons 
investigating the effectiveness of shaped commands for between input shaping, digital filtering, and inverse 
tracking applications. Work in this area has revealed that dynamics, and Wie [199] looked at the performance of input 
certain types of shaped commands can yield better trajectory shaping versus closed-loop techniques. In other work, Pao 
following performance in flexible systems than unshaped [200] and Singhose [201] made comparisons among differ- 
commands [ 159-1621, 4s ent input shaping techniques, and Singer [98,202], Singhose 
2.4.3 Applications of Input Shaping [203], and Bodson [204] compared input shaping to digital 

Due to its ease of implementation and robustness to filtering. Research results revealed that, although input shap- 
system uncertainty, input shaping has been applied with ing is inherently a digital filtering technique, conventional 
much success to many types of open- and closed-loop digital filters, since they are not intended for mechanical 
systems. As an area of particular interest, many researchers SO systems, cannot equal the performance of input shapers. 
have investigated the interaction of shaped commands with 2.4.4 Input Shaping and Time-Optimal Control 
closed-loop control methodologies. Specifically, by apply- In Singer’s original formulation, input shaping was 
ing input shaping to a controlled two-link flexible robot arm, intended to be used for shaping arbitrary actuator commands 
Hillsley and Yurkovich [163,164] noted that the use of input with a sequence of impulses. Because the impulses in this 
shaping with an endpoint-feedback controller provided ss sequence were constrained to be positive in amplitude, the 
superior performance over each technique alone. Similarly, resulting transfer function of the shaped command, in addi- 
Khorrami [165, 1661 noted that, when combined with a tion to having reduced energy at the system natural 
nonlinear feedback controller, input shaping proved effec- frequencies, was guaranteed never to exceed unity gain. 
tive at enhancing the performance of another two-link Consequently, the resulting shaped commands had the desir- 
flexible robot. Lim [167] also demonstrated success when 60 able property of eliminating residual vibration in the mod- 
integrating input shaping with high-performance control. eled system modes while not exciting unwanted vibration in 
Finally, although input shaping was designed to be a strictly unmodeled system modes. By relaxing the constraint that 
feedforward technique, several researchers [168-1721 have impulse amplitudes be positive, Singer [99] illustrated that 
shown enhanced system performance when a shaper is shorter commands could be derived that still cancelled 
included inside the feedback loop. 65 vibration at the modeled system modes. Singhose [205,206] 

Out of the many possible applications for input shaping, further demonstrated that the same input shaping constraint 
two primary application areas that have benefited from input equations could be used to derive bang-bang command 

[194-1971. 
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profiles for flexible systems. By comparing these bang- 
bang commands to traditional time-optimal command 
profiles, it was revealed that they were indeed time-optimal 
[207, 2081. From this work, it became clear that the input 
shaping equations and solution approach, arguably more 
simple than conventional techniques, could now be used to 
derive time-optimal commands for linear systems with flex- 
ible modes. 

In addition to providing a much more convenient proce- 
dure for finding time-optimal commands, the similarities 
between input shaping and time-optimal control suggested 
possible methods for enhancing the performance of time- 
optimal commands. In particular, by applying the same 
robustness strategies originally developed for input shaping 
to time-optimal commands, researchers [95,209-2111 illus- 
trated that time-optimal command profiles with improved 
robustness could be derived easily. Work by Pao and Sing- 
hose [207] also revealed that the robust, time-optimal com- 
mand for a certain system was equivalent to the time- 
optimal command for the same system augmented with 
additional poles at the system modes of vibration. 
Furthermore, by adapting input shaping insights to the 
time-optimal control problem, Singhose [212] developed 
new methods for creating time-optimal commands with 
better fuel-usage properties, and Pao [213] proposed a 
simpler analytic procedure for creating bang-bang com- 
mands that were near time-optimal. 
2.5 The Next Step 

As the profusion of research outlined herein indicates, 
considerable work has been done in the area of feedforward 
control, and, in particular, in the area of creating time- 
optimal and time-efficient commands. In the case of time- 
optimal control, many processes have been developed for 
deriving command profiles for a wide range of systems. 
Built on the strength of Pontryagin’s Minimum Principle, 
these approaches can be applied to many kinds of linear and 
nonlinear systems without loss of generality. Unfortunately, 
due the nature of the constraints in Pontryagin’s principle, 
iterative search routines can be numerically intensive and 
solutions can be elusive. Largely due to this inherent 
complexity, these types of solution approaches have seen 
limited application on complex systems. More recently, as a 
product of research in the area of flexible systems, new 
methods have been presented for creating time-optimal 
commands for systems with flexible modes. In these 
techniques, researchers developed new types of algebraic 
constraint equations that allowed for easier solution of the 
time-optimal control problem for some simple linear sys- 
tems with flexibility. Following a similar strategy, but 
approaching the problem from a different field of research, 
input shaping has recently proven effective for creating 
time-optimal command profiles as well. Originally designed 
to suppress residual vibration in flexible systems, the input 
shaping theory relies on solving a set of constraint equations 
that describe the vibration characteristics of the system. 
Using these same equations, but with different requirements 
on the command amplitude, input shaping has yielded 
time-optimal solutions for linear systems with flexibility. 
This approach, since it relies on a set of simple algebraic 
equations, is both numerically and conceptually simple and 
has been demonstrated to effectively reduce vibration in 
many different types of systems. Furthermore, since the 
technique can be easily augmented with additional 
constraints, many researchers have successfully developed 
time-efficient commands with a range of enhanced qualities, 
such as improved robustness and fuel efficiency. 

Research in the past half-century has made considerable 
progress investigating the creation of time-optimal and 

18 
time-efficient commands. General but complex processes 
have been proposed to solve the time-optimal control 
problem, and many simple solution strategies have been 
developed for systems with flexibility. What is yet 

5 unavailable, however, is a simple approach that can be 
applied with generality to virtually all types of linear sys- 
tems. Such an approach should combine the simplicity, 
practicality, and ease of implementation of input shaping 
with the generality and strength of Pontryagin’s Minimum 
Principle 

SUMMARY OF THE INVENTION 
The present invention addresses the foregoing needs by 

providing a new and practical approach for deriving time- 
optimal and time-efficient command profiles for virtually all 

15 types of linear systems. The invention is general enough to 
apply to a wide class of systems, yet simple enough to allow 
for quick and effective solutions. The general solution 
framework can be summarized in the following three steps. 

Step 1: Select a candidate command profile. Time-optimal 
and time-efficient commands represent a special sub- 
class of optimal command profiles designed to move 
systems rapidly from one point to another. As a result, 
they all have similarities in structure that can be lever- 
aged to better find a solution. Specifically, as above, 
time-optimal and time-efficient commands are typically 
comprised of a staircase or pulse train with a finite 
number of discontinuities. In some cases, namely for 
systems that have zeros, this pulse train or staircase can 
be followed by a tail made up of a sum of exponential 
terms. Due to this unique construction, the profile of 
these commands can typically be described completely 
by a small number of parameters. The solution space of 
these parameters, then, outlines the entire family of 
solutions for the optimal command profile. As is illus- 
trated below, navigating the solution space of possible 
command profiles using a small number of command 
parameters greatly reduces the computational complex- 
ity of this problem. As a result, solutions for time- 
optimal and time-efficient commands are easy to iden- 

Step 2: Impose the problem constraints. Given a param- 
eterized analytic expression for a candidate command 
profile, the next step toward finding an optimal solution 
is imposing the problem constraints. Typically, the 
problem statement, such as the time-optimal and time- 
efficient control problem statements outlined above, 
specifies the exact nature of the constraints required for 
a specific problem. These constraints, however, are 
most commonly expressed as conditions on the system 
performance in response to an input command. For 
example, in the case of the time-optimal control 
problem, it is required that the system output transition 
by a specified amount and come to rest. In order to 
explore the solution space of possible command pro- 
files that meet these conditions, these constraints on the 
performance of the system output must first be trans- 
lated into constraints on the command profile itself. 
This expression of the problem constraints in terms of 
the parameters that describe the input command is very 
much at the heart of this approach. Below, it will be 
illustrated how a minimum set of constraint equations 
can be derived to bound the optimal solution space. As 
will be discussed, these equations are algebraic and of 
manageable complexity and, consequently, allow for 

Step 3: Solve and verify. Given a family of candidate 
command profiles and a set of properly formulated 
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constraints that structure the solution space, the only 
remaining problem is solving the constraints to find the 
optimal solution. For some very simple systems, the 
problem constraints can be solved analytically to yield 
an optimal command profile. In most cases, however, 
solution requires a numerical optimization. Since opti- 
mization processes can be vulnerable to suboptimal 
local minima, an effective solution strategy should also 
provide a means for verifying the optimality of the 
result. As set forth below, by using conditions pre- 
scribed by Pontryagin’s Minimum Principle, not only 
can solutions for time-optimal and time-efficient com- 
mands be derived quickly and reliably, by they can also 
be verified as optimal for certain classes of problems. 

In more detail, according to one aspect, the present 
invention is directed to a system (i.e., a method, an 
apparatus, and computer-executable process steps) for deter- 
mining an input command profile for a dynamic system that 
can be modeled as a linear system, where the input com- 
mand profile is used to transition an output of the dynamic 
system from one state to another state. The invention iden- 
tifies characteristics of the dynamic system, and selects a 
command profile which defines an input to the dynamic 
system based on the identified characteristics. The command 
profile comprises one or more pulses which rise and fall at 
switch times and is useable with substantially any dynamic 
system that can be modeled as a linear system. The invention 
then imposes a plurality of constraints on the dynamic 
system, at least one of which is defined in terms of switch 
times. Thereafter, the invention determines the switch times 
for the input to the dynamic system based on the command 
profile and the plurality of constraints 

According to another aspect, the present invention is a 
system for determining an input command profile for a 
dynamic system that can be modeled as a linear system, 
where the input command profile is used to transition an 
output of the dynamic system from one state to another state. 
The invention includes selecting a command profile for the 
input to the dynamic system, where the command profile 
comprises a pulse train with pulses that rise and fall at switch 
times and is useable with substantially any dynamic system 
that can be modeled as a linear system. The selecting step 
comprises setting pulse train amplitudes based on actuator 
limits, determining if there are any system zeros and, if so, 
including a tail in the command, making an initial guess for 
the switch times, and, in a case that there are system zeros, 
making an initial guess for coefficients defining the tail. 
Thereafter, the invention imposes constraints on the system, 
which constraints comprise one or more of dynamics can- 
cellation constraints, boundary condition constraints, and, in 
a case that there are system zeros, actuator limit constraints. 
The switch times are then solved for based on (1) the 
command profile selected in the selecting step, (2) the initial 
guess for the switch times, (3) in a case that there are zeros 
in the system, the initial guess for the coefficients defining 
the tail, and (4) the problem constraints imposed above. 
Finally, the invention determines whether the switch times 
define an input which makes the command profile time 
optimal. 

This brief summary has been provided so that the nature 
of the invention may be understood quickly. A more com- 
plete understanding of the invention can be obtained by 
reference to the following detailed description of the pre- 
ferred embodiment thereof in connection with the attached 
drawings. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates the feedforward control problem graphi- 

FIG. 2 illustrates the problem addressed by the present 
5 invention. 

FIG. 3 illustrates the time-efficient control problem 
graphically. 

FIG. 4 illustrates the time-optimal control problem 
graphically. 

FIG. 5 shows a typical time-optimal command. 
FIG. 6 shows a typical time-optimal command for a 

FIG. 7 shows a typical time-optimal command for a 

FIG. 8 shows a typical robust time-optimal command. 
FIG. 9 shows a typical fuelhime-optimal command. 
FIG. 10 illustrates the process of generating a shaped 

FIG. 11 illustrates input shaping in four different domains. 
FIG. 12 shows a computer system for implementing the 

FIG. 13 shows the architecture of the computer system of 

FIG. 14 shows a typical time-optimal command profile. 
FIG. 15 shows the dynamics cancellation requirement, 

wherein the input command has zeros that cancel the system 
poles. 

FIG. 16 shows an alternative illustration of the dynamics 

FIG. 17 shows the time-optimal control problem’s bound- 

FIG. 18 is another view of the boundary condition con- 

FIG. 19 shows the actuator limits constraint. 
FIG. 20 shows time-optimal commands for nonminimum 

phase systems. 
FIG. 21a shows a spring-mass system having one rigid 

body pole; FIG. 21b shows the s-plane plot for the transfer 
40 function of the spring-mass system; and FIG. 21c shows the 

time-optimal command profile for the spring-mass system. 
FIG. 22 shows the time-optimal command and response 

for the spring-mass system with one rigid body pole. 
FIG. 23a shows a dynamic system having one real pole; 

4s FIG. 23b shows the s-plane plot for the transfer function of 
the dynamic system; and FIG. 23c shows the time-optimal 
command profile for the dynamic system. 

FIG. 24 shows the step command and response for the 
dynamic system with one real pole. 

FIG. 25 shows the time-optimal command and response 
for the dynamic system with one real pole. 

FIG. 26a shows a dynamic system having a pair of 
complex poles; FIG. 26b shows the s-plane plot for the 

ss transfer function of the dynamic system; and FIG. 26c shows 
the time-optimal command profile for the dynamic system. 

FIG. 27 shows the step command and response for the 
dynamic system with the pair of complex poles. 

FIG. 28 shows the time-optimal command and response 

FIG. 29a shows a dynamic system having one real zero 
and two rigid body poles; FIG. 29b shows the s-plane plot 
for the transfer function of the dynamic system; and FIG. 
29c shows the time-optimal command profile for the 

FIG. 30 shows the pulse command and response for the 
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FIG. 31 shows the time-optimal command and response 
for the system with one real zero and two rigid body poles. 

FIG. 32u shows a spring-mass system; FIG. 32b shows 
the s-plane plot for the transfer function of the spring-mass 
system; and FIG. 32c shows the time-optimal command 
profile for the spring-mass system. 

FIG. 33 shows the time-optimal command and response 
for the spring-mass system. 

FIGS. 34u, 34b, 34c and 34d show the system command 
and response for a pulse command and three different types 
of time-optimal (“TO”) commands. 

FIG. 35 shows a plot of a system’s residual response to 
dynamic uncertainty. 

FIG. 36 shows a pole-zero representation of the dynamic 
uncertainty. 

FIG. 37 characterizes system uncertainty by varying poles 
and zeros. 

FIGS. 38 and 39 show typical robustness or insensitivity 
curves for a dynamic system. 

FIGS. 40u, 40b, 40c and 40d show a time-optimal com- 
mand and its insensitivity to variations in the poles and zeros 
of a dynamic system. 

FIGS. 41u, 41b, 41c and 41d show a time-optimal com- 
mand with enhanced robustness to variations in the complex 
poles of a system and the corresponding insensitivity curves. 

FIGS. 42u, 42b, 42c and 42d show a time-optimal com- 
mand with enhanced robustness to variations in the real and 
complex poles of a system and the corresponding insensi- 
tivity curves. 

FIGS. 43u, 43b, 43c and 43d show time-optimal and 
time-efficient commands with varying tail lengths. 

FIG. 44 shows the insensitivity of commands with four 
different tail lengths to variations in the real poles of a 
system. 

FIG. 45 shows the insensitivity of commands with four 
different tail lengths to variations in the complex poles of a 
system. 

FIG. 46 shows the insensitivity of commands with four 
different tail lengths to variations in the complex poles of a 
system. 

FIG. 47 shows computer-executable process steps for 
determining time-optimal and time-efficient commands. 

FIG. 48 shows a graphical user interface for use with the 
process of FIG. 47. 

FIG. 49 shows a process for verifying optimality of a 
time-optimal command. 

FIG. 50 shows hardware for the Middeck Active Control 
Experiment (MACE). 

FIG. 51 comprises two plots showing the MACE gimbal 
response to a step command. 

FIG. 52 comprises two plots showing the MACE gimbal 
response to a spline command. 

FIG. 53 comprises two plots showing the MACE gimbal 
response to an input shaper. 

FIG. 54 comprises two plots showing the MACE gimbal 
response to a time-optimal command designed for the first 
three flexible modes and no zeros. 

FIG. 55 comprises two plots showing the MACE gimbal 
response to a time-optimal command designed for the first 
four flexible modes and no zeros. 

FIG. 56 comprises two plots showing the MACE gimbal 
response to a time-optimal command designed for the first 
four flexible modes and the first four pairs of complex zeros. 
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FIG. 57 comprises two plots showing the MACE gimbal 

response to a time-optimal command designed for the first 
four flexible modes and the first four pairs of complex zeros 
with additional robustness at the first two system modes. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Initially, it is noted that the present invention can be 
implemented by processors which control the operation of 
many different types of dynamic systems, such as disk 
drives, CD players, robot arms, etc. For the sake of brevity, 
however, the routines comprising the present invention will 
be described as executing on a personal computer (“PC”) 
which controls an external dynamic system. 

FIG. 12 shows computing equipment for a PC on which 
the present invention is implemented. As shown, PC 1 
includes network connection 2 for interfacing to a network 
and faximodem connection 4 for interfacing to other devices 
or dynamic systems (not shown). PC 1 also includes display 
screen 5 for displaying information to a user, keyboard 6 for 
inputting text and user commands, mouse 7 for positioning 
a cursor on display screen 5 and for inputting user 
commands, disk drive 9 for reading from and writing to 
floppy disks installed therein, and drive 10 for accessing data 
stored on CD-ROM or DVD. PC 1 may also have one or 
more local peripheral devices connected thereto, such as 
printer 11. 

FIG. 13 shows the internal structure of PC 1. As shown in 
FIG. 2, PC 1 includes memory 12, which comprises a 
computer-readable medium such as a computer hard disk 
and/or RAID (“redundant array of inexpensive disks”). 
Memory 12 stores data 14, applications 15, database 16, and 
operating system 17. In preferred embodiments of the 
invention, operating system 17 is a windowing operating 
system, such as Microsoft@ Windows98; although the 
invention may be used with other operating systems as well. 
Among the applications stored in memory 12 is dynamic 
system control application 19, which stores code to imple- 
ment the present invention in the manner described below. 

PC 1 also includes display interface 20, keyboard inter- 
face 21, mouse interface 22, disk drive interface 24, drive 
interface 25, computer bus 26, RAM 27, processor 29, and 
printer interface 30. Processor 29 preferably comprises a 
microprocessor or the like for executing applications, such 
those noted above, out of RAM 27. Such applications, 
including application 19, may be stored in memory 12 (as 
noted above) or, alternatively, on a floppy disk in disk drive 
9. Processor 29 accesses applications (or other data) stored 
on a floppy disk via disk drive interface 24 and accesses 
applications (or other data) stored on a CD-ROM or DVD 
via drive interface 25. 

Application execution and other tasks of PC 1 may be 
initiated using keyboard 6 or mouse 7, commands from 
which are transmitted to processor 29 via keyboard interface 
21 and mouse interface 22, respectively. Output results from 
applications running on PC 1 may be processed by display 
interface 20 and then displayed to a user on display 5 and/or 
output to an actuator of a dynamic system via, e.g., fax/ 
modem connection 4. Display interface 20 preferably com- 
prises a display processor for forming images based on 
image data provided by processor 29 over computer bus 26, 
and for outputting those images to display 5 
3 Creating Time-Optimal Commands for Linear Systems 

Turning to dynamic system control application 19, this 
application comprises computer-executable process steps 
(i.e., code) to determine an input command profile for a 
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dynamic system that can be modeled as a linear system, 
where the input command profile is used to transition an 
output of the dynamic system from one point to another 
point. The application also includes code to identify char- 
acteristics of the dynamic system, and to select a command 
profile which defines an input to the dynamic system based 
on the identified characteristics. The command profile com- 
prises one or more pulses which rise and fall at switch times 
and is useable with substantially any dynamic system that 
can be modeled as a linear system. The application further 
includes code to impose a plurality of constraints on the 
dynamic system, at least one of which is defined in terms of 
switch times, and then to determine the switch times for the 
input to the dynamic system based on the command profile 
and the plurality of constraints 

The following outlines the general procedure used by the 
invention to generate time-optimal actuator command pro- 
files that transition a dynamic system from one rest state to 
another rest state as quickly as possible. In this process, it is 
assumed that the time-optimal command will deliver the 
system from a known initial rest state to a desired rest state 
without exceeding pre-specified actuator l imits.  
Furthermore, it is assumed that the given system behavior 
can be represented by a linear system model. Given these 
assumptions, the procedure outlined above is followed to 
derive time-optimal commands. Once it has been shown 
how this procedure delivers reliable solutions to the time- 
optimal control problem, practical constraints are incorpo- 
rated into this framework to yield more desirable optimal 
command profiles. 

A complete description of the time-optimal solution 
approach for linear, SISO systems will be presented first. 
This presentation will follow the three-step framework 
above. In step one of this framework, a general parametric 
equation is defined to represent all candidate time-optimal 
command profiles. In the second step, a set of equations is 
determined to impose the constraints established in the 
problem statement. These equations comprise the minimum 
set of necessary constraints required to properly bound the 
time-optimal solution space. In the third and final step, 
recommendations are made for solving the constraint equa- 
tions in order to extract the desired time-optimal command 
profile for a given system. With these steps complete, the 
specific solution of the time-optimal control problem for 
systems with only denominator dynamics is determined. 
This particular solution proves to be extremely useful for its 
simplicity. Finally, following a brief discussion about the 
influence of nonminimum phase zeros on the nature of the 
optimal command profiles, an overview is presented of the 
equations and solution approach provided by the invention. 
3.1 Step 1: Select a Candidate Command Profile 

As discussed in section 2.3.3 above, Pontryagin's Mini- 
mum Principle and the Bang-Bang Principle dictate that 
the time-optimal command profiles for linear systems nec- 
essarily have a certain structure. For systems with no zeros, 
this structure is a simple pulse train with a finite number of 
pulses. For systems with both poles and zeros, the time- 
optimal command consists of a pulse train followed by a tail 
that is a linear combination of the responses at the frequen- 
cies of the system zeros. FIG. 14 illustrates a typical 
time-optimal command profile for a system with any type of 
linear dynamics. As this figure suggests, the structure of this 
command can be described by a small number of parameters 
such as the switch times, the switch amplitudes and the 
amplitudes of the components in the tail. More accurately, 
by defining some variables to represent these values, an 
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analytic expression for a candidate time-optimal command 
profile can be written as 

(3.1) 

where 
l(t) is the unit step command and 
aj=the amplitude of the steps in the pulse train, 
tj=the switch times of the pulse train, 
cj=the coefficients of the exponential terms in the com- 

zj=the system zeros, 
n=the total number of switches, excluding the first, and 
r=the number of system zeros. 

Note that, since the values of the system zeros, zj, can be 
complex, the coefficients, cj, corresponding to these com- 
plex zero values must also be complex so that the value of 
the command, u(t), is purely real. Using the same notation 
defined above, the Laplace Transform of the candidate 
time-optimal command can be expressed as 

mand tail, 

(3.2) 

Given a linear system model, the number of system zeros, r, 
and their values, zj,, can be completely determined. Also, 
since the pulse train of a time-optimal command must 
always saturate the system actuators, the specified system 
actuator limits can be used to directly determine values for 
the step amplitudes, aj. Consequently, for a given time- 
optimal control problem, the only unknowns that remain in 
equations 3.1 and 3.2 are the number, n, and values of the 
switch times, tj, and the tail coefficients, cj. As the following 
sections illustrate, if the problem constraints can be 
expressed in terms of these unknown command parameters, 
a solution process can be employed to identify optimal 
values for the command profile. 
3.2 Step 2: Impose the Problem Constraints 

As outlined above, the time-optimal control problem 
places a strict set of constraints on system response to a 
time-optimal command profile. In order to understand how 
these constraints influence the selection of an optimal com- 
mand profile, they must first be expressed mathematically in 
terms of the parameters that define the input command. 
Additionally, to avoid over- or under-constraining the prob- 
lem solution, the resulting constraint equations should rep- 
resent the minimum set of necessary conditions required to 
characterize the desired time-optimal command solution. 

From the time-optimal problem statement, three distinct 
constraints can be identified. The first of these constraints 
requires that the system begin and end at a rest state. This 
constraint, labeled the dynamics cancellation constraint, 
necessitates that any dynamics excited by the time-optimal 
input command must also be canceled by the command by 
the time the system reaches its final value. The second 
constraint imposed by the time-optimal control problem 
requires that the boundary conditions be satisfied. In 
particular, this constraint specifies the initial time of the 
time-optimal command and demands that the time-optimal 
command transition the system output by the desired 
amount. The third and final constraint imposed by the 
time-optimal control problem necessitates that the time- 
optimal input command never exceed the system actuator 
limits. This constraint, for obvious reasons, is called the 
actuator limits constraint. 
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In the remainder of this section, algebraic expressions are 
derived to capture each of these three problem constraints. 
For each of these three cases, the exact intention of the 
constraint will be expressed mathematically and related to 
the parameters that define the candidate command profile in 
equation 3.1. Following this derivation, the resulting con- 
straint equations are then used to solve for the unknown 
values of the command profile that best satisfy the time- 
optimal control problem. 
3.2.1 The Dynamics Cancellation Constraint 

The dynamics cancellation constraint is largely respon- 
sible for the effectiveness of the solution approach outlined 
herein. Based on the intuitive concept of pole-zero 
cancellation, this section outlines how a powerful set of 
algebraic equations can be formulated to prevent time- 
optimal commands from exciting unwanted system dynam- 
ics. These equations, although general enough to apply to all 
types of linear systems, are simple enough to allow for fast 
implementation and solution. Furthermore, as illustrated by 
the detailed derivation in Appendix A, these equations can 
be shown to be necessary conditions for any time-optimal 
command profile. This section will proceed by first deriving 
the dynamics cancellation constraint equations for systems 
that have no repeated roots. Following this derivation, the 
more complex yet general equations for systems with 
repeated roots will be presented. For each derivation, the 
resulting equations will be presented in both standard math- 
ematical form as well as a convenient matrix notation to 
allow for easy implementation. 
3.2.1.1 The Dynamics Cancellation Constraint Equations for 
Systems with No Repeated Roots 

The dynamics cancellation constraint is a mathematical 
statement of fact that the time-optimal command must move 
the system from one point and bring it to rest at another 
point. Previous research [48, 105, 113-115, 1461 in the area 
of flexible system control has noted that, for the case of 
flexible modes, this constraint can be implemented by 
designing an input command that has zeros at the complex 
system poles, as depicted in FIG. 15. More specifically, Bhat 
[41] writes, “the necessary and sufficient condition for zero 
residual vibration is that the Laplace transform of the 
time-bounded control input have zero component at the 
system poles.” This is an equivalent statement to the zero- 
vibration condition in Singer’s input shaping approach [97] 
and can be used to derive a set of constraint equations 
governing the optimal command solution. However, unlike 
traditional command shaping approaches, the work in this 
document will illustrate that the dynamics cancellation prin- 
ciple applies not only to oscillatory modes, but to real 
modes, rigid-body modes, and minimum-phase zeros as 
well. Furthermore, by performing a complex derivation of 
the linear system response to a time-optimal command, 
Appendix A demonstrates that the dynamics cancellation 
equations developed in this section are necessary conditions 
for the time-optimal control of a linear system. 

Another view of the dynamics cancellation requirement 
for optimality is illustrated in FIG. 16. In this illustration, the 
optimal input command for a given system, G(s), is gener- 
ated by filtering a step command using a shaper, D(s). In 
order to yield a shaped command, u(t), that matches the 
time-optimal command profile of FIG. 14, this shaper must 
necessarily be identical to the impulse response of the 
time-optimal command profile, where the time-optimal 
impulse response, d(t), is defined as the derivative of the 
time-optimal command, u(t), itself. In the ideal case, the 
time-optimal command would move the system output from 
one point to another instantaneously. Therefore, the most 
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desirable system response would be the one that most 
resembles, in some sense, a step command. Given that the 
input to the shaper, in the context of FIG. 16, is also a step 
command, it can be argued that the time-optimal shaper, 

s D(s), would be the one that exactly cancels the dynamics of 
the system, G(s). In general, finding a D(s) to exactly cancel 
G(s) is not often possible. However, since the time-optimal 
impulse response is the derivative of the time-optimal com- 
mand profile, u(t), it will necessarily contain a series of 

i o  impulses. Additionally, for the case of systems with numera- 
tor dynamics, it will also contain a tail with dynamic 
components at the location of the system zeros. If designed 
correctly, the tail of a time-optimal command will cancel any 
system numerator dynamics by placing poles at the locations 

is of the system zeros. This can be seen in equation 3.2, by 
observing that the value of U(s) is infinite when s is equal to 
the system zeros. The sequence of impulses from the pulse 
train of the time-optimal command, however, will have a 
Laplace Transform with an infinite number of zeros. If 

20 designed correctly, the time-optimal command can be con- 
structed to place some of these zeros at the system poles. The 
impulse response of the time-optimal command will be the 
one that has exactly one zero at every system pole. 

With this understanding, we will now proceed to derive 
zs the dynamics cancellation constraint equations for linear 

systems with no repeated roots. The goal of this derivation 
is to compose a set of simple equations that ensure that the 
time-optimal command has poles that cancel the system 
zeros and zeros that cancel the system poles. As described 

30 above, by properly constructing the tail of the candidate 
time-optimal command, the resulting command profile is 
automatically guaranteed to contain poles at the system 
zeros. The task at hand, then, is to fashion constraint 
equations that ensure that the time-optimal command also 

3s has zeros at the system poles. Since the location of the 
command zeros are determined by the switch times of the 
optimal command profile, these equations should provide a 
mathematically simple representation for relating the known 
system dynamics to the switch time values in the candidate 

We will begin the derivation from the fact that, as 
described above, the impulse response, d(t), of the time- 
optimal command, u(t), must be designed to have zeros at 
the locations of every system pole: 

(3.3) 

for i= l ,  2, . . . , m, where pi is the i-th system pole, and m 
is the total number of system poles. This is equivalent to 
saying that the Laplace Transform of the derivative of the 

so time-optimal command must have exactly one zero at each 
of the system poles: 

40 time-optimal command. 

4s 
L (49 I Ix , ,=~(~)  I,,,=o> 

5s 

By substituting the expression for U(s) from equation 3.2 
into this result, the following algebraic or, more specifically, 
trigonometric equation can be derived: 

60 
(3.5) 

65 for i=l ,  2, . . . , m. This expression is the general form of the 
dynamics cancellation constraint for linear systems with no 
repeated roots. It expresses the requirement for rest-to-rest 
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motion in terms of the parameters that define the command 
profile. In order to properly constrain the search for a 
time-optimal command profile, this expression must be 
evaluated for every system pole, pi, including real, complex, 
and rigid-body poles. For real and rigid-body poles, this 
expression will yield a single real-valued constraint. For 
complex pole pairs, this equation will yield the identical 
result for each complex-conjugate pole. This result, 
however, will have a complex value, and its corresponding 
real and imaginary parts must both be set to zero to properly 
enforce the constraint. 

To better facilitate the computer implementation of this 
dynamics cancellation requirement, a simple matrix expres- 
sion can be defined that imposes the constraint in equation 
3.5 for every system pole. Before this expression can be 
presented, however, a convenient set of vectors must first be 
defined: 

CI (3.8) 

C2 
. 

CY ~ 

coefficients of the command tail, 

(3.6) 

(3.7) 

where, 
n=the total number of switches, excluding the first, 
m=the total number of system poles, and 
r=the total number of system zeros. 

Given these vector definitions, the matrix form of the 
dynamics cancellation constraint can be written as 

ex-(-st)a+M. *ex-(-st,)=O, (3.11) 

where 

M=( 1 ./(l - (1 ./s)z))c. (3.12) 

Note that, in these expressions, the function exp ( ) refers to 
the element-by-element exponential rather than the matrix 
exponential, the operator .* refers to the element-by-element 
multiplication, and the operator ./ refers to the element-by- 
element division. These equations can be easily entered into 
a linear algebra software package, such as Matlab [215], to 
evaluate the dynamics cancellation constraints. Substituting 
the vector definitions into these matrix equations and cal- 
culating the result will yield a column vector with m 
elements. Each of these elements represents the value of 
equation 3.5 evaluated at each of the m different system 
poles. 

An example of the Matlab code required to implement the 
above constraints is shown in Table 3.1. As this listing 
illustrates, only three lines of code are required. 
Additionally, since the equations are algebraic and imple- 
mented as vector operations, computational requirements 
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are small. In this code, the values of all the constraints are 
returned in a vector. This vector, which can contain both real 
and imaginary components, must be completely zero for the 
command that satisfies the time-optimal control problem. 
Note that, since the constraint equations for complex pole 
pairs are identical, only one of the poles in the pair needs to 
be evaluated for the dynamics cancellation requirement. 
Also, since the dynamics cancellation constraint for the first 
system rigid-body mode is automatically satisfied by the 
correct selection of the pulse train amplitudes, it can also be 
ignored in constraint calculation. This point can be better 
seen by evaluating equation 3.16 for the rigid-body pole, 
that is, for s=O. 

10 

15 
TABLE 3.1 

Matlab code to implement the dynamics cancellation constraint 
for systems that have no repeated roots 

% Given the vectors, s, a, c, z, and t defined according to 
% equations 3.6 through 3.10, this code calculates the 
% dynamics cancellation constraints for systems with no 
% repeated roots and returns them in the vector dc-constr. 
% Any time-optimal command must necessarily yield a value 
% of zero for each of these constraints 

20 

25 n = length(t); 
M = (l./(l-(l./s)*z))*c; 
dc-constr = exp(-s*t)*a + M.*exp(-s*t(n)); 

3.2.1.2 The Dynamics Cancellation Constraint Equations for 

For systems with repeated roots, the dynamics cancella- 
tion equations prove to be somewhat more complex, to 
express. Despite this added notational complexity, these 
equations still retain the computational simplicity of the 

35 equations for systems with no repeated roots. As a result, 
solutions derived using these equations can still be found 
quickly and reliably. Furthermore, due to their unique prop- 
erties in the Laplace domain, these constraints will prove 
valuable below for deriving time-efficient commands with 
enhanced robustness to system uncertainty. The derivation in 
this section will proceed by first developing the general 
mathematical equations and then a convenient matrix 
expression to impose this constraint. In order to illustrate the 

45 manageable implementation complexity of the result, an 
example of representative computer code to express these 
equations will also be presented. 

The dynamics cancellation constraint for systems with 
nonrepeated poles is given in equation 3.5. For systems that 

50 have more than one pole at a single location, there must be 
one unique constraint equation for every pole in the system. 
For the first pole at a location, equation 3.5 still applies. 
However, for additional poles, a new type of constraint is 
required. In general, for a system that has qT repeated poles 

55 at a single location, the required constraint equations for 
each of the poles are 

30 Systems with Repeated Roots 

40 

65 
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-continued Again, for a third pole at s=pi, qi=3, equation 3.15 
8 T - I  ( S U ( S ) )  = o, becomes 

pole qT: 
dS4T-I 

s=p,  

aJr:e?'J + 
where U(s) is the Laplace Transform of the candidate 
time-optimal command, u(t), and pi is the value of the 
repeated system pole. By substituting the expression for 
U(s) in equation 3.2, we can rewrite these equations as i o  J = I  

(3.14) 

By observing the pattern followed by this series of 
equations, insight can be gained about a general analytic 
expression that can capture all of these constraints. This 
expression can be written as follows: 

pole 1: aJe?'J +e-''" 
l J ro  

pole 2: - aJe?'J +e-''" 
"s 

J=o 

( m  (3.16) 

"I' 
aJry-le-gJ + 

8 T - I  c s  20 J=o 
pole qT: aJe-"J +e-stn$ +]I s - z  = o ,  

J=O 
ds4T-I 

s=p,  e-%2 [ c J @ - l )  + T ( p q I  ( k ) ) C ' Z ' r ' q ! r k )  
( S - z J ) k  

J = I  k = l  
where the variables in this expression are defined as in 25 

section 3.1. Therefore, if a system has a pole of multiplicity 
3 at a certain location, pi, then three equations in this series 

constraint for that pole location. 
Now, in order to implement these equations, the analytic 

solution for the multiple derivative in the dynamics cancel- 
lation constraint, as in the above equations, must be found 

F~~ a repeated pole of multiplicity qT, this expression must 

3o equation, the variable fl,, represents a function that deter- 
mines the value of the coefficient for the appropriate term in 
the equation. This function can be calculated recursively 
using the formula 

must be used to Properly specify the dynamics cancellation be evaluated qT times, Once for every qi=l, 2, . . . , qT. In this 

This can be done more easily by placing the above equations 
in the form 3s  1, fork = 1 

P i i k ) = (  0, fork # 1 

(3.17) 

40 Table 3.2 lists a range of values for this function fl that were 

Although not shown here, a little math will illustrate that this 
expression is identical to the ones in equation 3.14 for the In order to correctly specify the dynamics cancellation 
case where qi=l, 2, . . . , qT, where qi represents the constraints for a given system, equation 3.16 must be 
multiplicity of each system pole, pi. For example, for a 4s specified once for every system pole, pi. In each equation, 
system with two identical poles, the first pole, pl, would the value of qi corresponding to each system pole must be 
have ql=l ,  and the second, pi, would have q2=2. Any used. As stated before, for nonrepeated system poles, qi=l, 
nonrepeated system poles would have qi=l. Evaluating the and for repeated poles of multiplicity qT, qi=l, 2, . . . , qT. 
derivative in this equation analytically yields equations of 
the following forms: so TABLE 3.2 

becomes 

this 

For a single pole at s=pi, that is for qi=l, equation 3.15 Selected values for the function fi 

k = l  k = 2  k = 3  k = 4  k = S  k = 6  

li; aJKS1J  + [ = 0. 
s - ZJ 

s=p, 
J=O 

5s Bl0.1 1 0 0 0 0 0 

B30.1 2 2 0 0 0 
B40.1 1 3 6 6 0 0 
B50.1 1 4 12 24 24 0 

B20.1 ; 1 0 0 0 0 

Similarly, for a second pole at s=p,, q,=2, equation 3.15 B60.1 1 5 20 60 120 120 

becomes 60 

Given this general expression for the dynamics cancellation 
constraints that can accommodate systems with repeated 
roots, a matrix equation can be developed to allow for easy 

65 implementation. Specifically, by using the vector definitions 
in equations 3.6 through 3.10, the following equation can be 
defined: 

1~ aJrJe-"J + e + n L  [cJrn + 
J = I  
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I 1 + [ k p q J ( k ) F k t $ - k )  (3.18) TABLE 3.3 

Matlab code to implement the full dynamics cancellation constraint 
exp(-st)T'ql-l)a + et! -I) 

k = l  

for systems that can include repeated roots 
0, 5 

where the following definitions hold 
10 

exp( )=element-by-element exponential of a matrix or 

.( )=element-by-element math operation, 

TEdiagonal matrix with the switch time vector, t, along 

vector, 

1s 

the diagonal, 

fl( ) is defined as in equation 3.17, 

F =  

1 1 1 

PI -z1 PI -22  PI - Z r  
~ ... ~~ 

1 

P 2  - Z I  
~. 

1 1 

Prn -z1 Prn - Zr 
~ ... ~ 

C l Z l  1 

% Given the vectors, s, a, c, z, and t defined according to 
% equations 3.6 through 3.10, this code calculates the complete 
% set of dynamics cancellation constraints and returns them 
% in the vector dc-constr. Any time-optimal command 
% must necessarily yield a value of zero for each of these 
% constraints. This code also requires the multiplicities of 
% each system pole to be stored in the vector q. 
dc-constr = [ 1; 
n = length(t); r = length@)); 
T = diag(t); 
alpha = sum(c); 
beta = 1; 

for qi = l:max(q), 
h = c.*(z.'); 

ind = find(q>=qi); 
E = exp(-s*t); 
Etn = exp(-s*t(n)); 
F = l./(s*ones(l, r) - ones(length(s), l)*z); 
val = 0: 

s = s(ind); q = q(ind); 

f o r k  = l:qi, 

end; ~ 

R = E*(T 
dc-constr = [dc-constr; R]; 
beta = [beta 01 + [0 cumsum(ones(1, qi)).*beta]; 

val = val + (beta(k) * (F. ~ k) * (t(n) ~ (qi-k))); 

(qi-l))*a + (alpha*(t(n ~ (qi-1)) + val*h).*Etn; 

end; 

. and 3.2.2 The Boundary Condition Constraint 
In addition to the dynamics cancellation constraints, the 

problem boundary conditions must also be established math- 
ematically. Specifically, for the time-optimal control 
problem, as illustrated in FIG. 17, two boundary conditions 
are required. The first sets the initial time of the optimal 
command to zero and is trivial to implement: 

30 

3s  

t,=O. (3.19) 

The second boundary condition, which requires that the 
system output change by the desired amount, dy, is more 

40 complicated to express. In general, if the dynamics cancel- 
F~~ a system with poles all having the Same multiplicity, qT, 

where qi=l, 2, . . . , qn to impose all of the necessary 

lation constraints are successfully satisfied by an optimal 

command, the system output, y(t), will remain at rest at 
some final value. The boundary condition constraint must be 

equation 3.18 can be evaluated Once for every value of qi, command profile, at the end Of the pulse train Of the Optima' 

dynamics 
given system do not have the Same 

constraints. In general, poles in a 45 selected to that this value agrees with the specified 
dy, One possible way to do this is simulate the time response In these 

cases, equation 3.18 must first be calculated for every Pole 
with a multiplicity of 1, and then for only the poles of 
multiplicity 2, 3, etc. In order to aid this calculation, a 
multiulicitv vector, q,  can be defined. This vector contains 50 Y k J = d Y .  (3.20) 

of the system to the candidate optimal input command and 
impose the following constraint: 

- I  , _, 

the corresponding multiplicity value, qi, for every system 
pole, and, consequently is the same length as the vector s .  
For example, in a system with poles s=[-4 -6 -6IT, the 
corresponding multiplicity vector should be q=[ 1 1 21. Using 
this definition, Table 3.3 lists a segment of Matlab code that 
is a possible implementation of equation 3.18 for systems 
with poles with different multiplicities. From this listing, it 
can be seen that the full implementation of the dynamics 
cancellation constraint for any kind of linear system requires 
less than twenty lines of code. Additionally since all of the 
calculations in this code are algebraic and can be expressed 
largely as vector operations, the computational requirements 
of this code are small. By incorporating this code, as well as 
the other problem constraints, into an optimization routine, 
solutions for the time-optimal command for any kind of 
linear SISO system can be found. 

If this approach is used in a numerical optimization of the 
problem constraints, the system state-transition matrix 
would have to be calculated during every iteration. This 
numerically intensive procedure would likely result in unde- 
sirably long solution times. 

A better approach for expressing the second boundary 
condition is to use the Final Value Theorem [216] to derive 
a single expression relating dy to the unknown command 
parameters. This can be done as follows. First, from the 
system transfer function, an expression can be derived for 
the Laplace Transform of the output response, Y(s): 

(3.21) = = G(s) * Y(s)  = G(s)U(s).  
U ( S )  



US 6,694,196 B2 
33 

Now, from the Final Value Theorem, 
34 

In this case, equation 3.23 takes the following form: 

dy = lim(sG(s)U(s)). (3.22) 
S-10 

Substituting the expression for U(s) in equation 3.2 into this 
equation yields 

(3.23) 

Now, in general, the system transfer function, G(s), can be 
rewritten in the form 

s'bw (s) (3.24) 

srbpD(s) ' 
G(s) = ~ 

where rbp is the number of rigid-body poles, that is poles at 
the s-plane origin, in the system, rbz is the number of 
rigid-body zeros, that is zeros at the s-plane origin, in the 
system, and N(s) and D(s) contain only non-rigid dynamics. 
Depending on the number of rigid-body poles and zeros in 
the system, the solution of equation 3.23 can take on three 
different forms. Each of three cases will be considered 
independently: 

Case 1: G(s) has excess rigid-body zeros (rbzxbp). 
In this case, applying the Final Value Theorem reveals that 

the final value of the system in response to the time-optimal 
command will always be zero. In general, if G(s) has any 
uncancelled zeros at the s-plane origin, it will be impossible 
to transition the output from one rest state to another using 
a bounded input. For example, for the case of a system with 
a single rigid-body zero, the type of command profile 
required to move the output to a new rest state is a ramp. 
Since this type of command will eventually exceed the 
system actuator limits, there is no time-optimal command 
that will satisfy the problem constraints. 

Case 2: G(s) has no rigid-body poles or zeros (rbz=rbp). 
In this case, equation 3.23 can be written in the following 

form: 

which then reduces to 

(3.25) 

(3.27) 

Due to the rigid-body poles in the system transfer function, 
this equation has a (110) term. Additionally, since the dynam- 
ics cancellation equation for the rigid-body pole, which can 

10 be derived from equation 3.5 for s=O, results in the expres- 
sion 

(3.28) 
i;a, = o ,  
J=O 1s 

it can be seen that equation 3.27 will be indeterminate of the 
form (010). Since this is the case, L'Hospital's Rule [217] 
can be invoked to calculate the limit in equation 3.23. 

2o L'Hospital's Rule states that if f(x) and g(x) are zero at x=a, 
then 

(3.29) 

This rule can be applied as many times as necessary to reach 
a determinate result. For very simple systems, L'Hospital's 
Rule can be used to solve for the boundary condition 

30 constraints by hand. However, it is dificult to derive a 
general analytic expression for the solution of equation 3.23 
using this approach. A better approach, that is conceptually 
simpler, easier to implement in computer code, and numeri- 
cally comparable is the following. 

35 For a system with rbp rigid-body modes, 

(3.30) 

40 
the Final Value Theorem can be used, as before, to relate the 
system dynamics and input command to the desired output 
response, dy: 

dy = lim(s G(s) U ( s ) )  (3.31) 
4s S-10 

(3.26) 

Now, since by the Final Value Theorem, we know that the 
expression 

Therefore, implementing this constraint is straightforward. 
All that is required is that the sum of the step amplitudes 
multiplied by the transfer function steady-state gain is equal 
to dy. Since the transfer function steady-state gain can be 
readily determined from the given system model, this con- 
dition can be met by properly selecting the step amplitudes. 
More specifically, given that the values for all of the step 
amplitudes except the last, a,, must be set so that the 
command profile saturates the system actuators, their values 
are dictated by the given actuator limits. Consequently, 
equation 3.26 can be used to directly calculate the optimal 
value for a, to meet the specified boundary conditions. 

Case 3: G(s) has excess rigid-body poles (rbzerbp). 

5s (3.32) 
S-10 

implies that dv is the steady-state output of some system, 
6o G'(s), to the candidate time-optimal input command, u(t). As 

implied by equation 3.32, and illustrated in FIG. 18, this 
system has the transfer function 

1 (3.33) 
G'(s) = -. 

fbp 65 
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Following this logic, we can then combine equations 3.31 
and 3.32 to yield the simpler expression 

36 

(3.34) 

Now, since dv is the steady state output of a system that 
consists of a cascade of simple integrators to the input 
command, u(t), an expression for dv can be formulated as 
follows: 

dv = J'rbp)u(r)drl . (3.35) 

t=co 

In other words, dv is equal to the rbp-th integral of the 
candidate command profile evaluated at t=m. Given the 
block diagram in FIG. 15, and the facts that (1) the transfer 
function N(s)/D(s) has no rigid-body poles or zeros and (2) 
the time-optimal command will move the system output, 
y(t), from one rest state to another, then it can be determined 
that dv will almost always approach some finite steady-state 
value as t goes to m. Consequently, equation 3.35 will almost 
always yield a valid result. The only exceptions to this 
statement are the cases when the time-optimal command has 
a tail that has undamped or unstable oscillation. In these 
situations, the integral in equation 3.35 will not converge as 
t goes to m. However, as will be discussed later herein, 
creating time-optimal commands with undamped or 
unstable oscillation is bad design practice and should not be 
implemented on a real system. 

Therefore, by combining equations 3.34 and 3.35, an 
expression for the second boundary condition can be final- 
ized: 

(3.36) 

In order to implement this equation, all that is required is to 
take the limit of N(s)/D(s), which is trivial given the system 
transfer function, and to integrate u(t) from 0 to m rbp times. 
To perform this integration, a numerical integration routine 
could be performed during the problem optimization, but 
this is very numerically intensive. Abetter approach is to use 
an analytic solution for the integral of the time-optimal 
command profile to calculate this expression. Appendix B 
hereto presents the derivation and resulting algebraic equa- 
tions that can be used to analytically evaluate this integral. 
These equations and their computer implementation are 
highly streamlined and require very little computational 
effort. 
3.2.3 The Actuator Limit Constraint 

The final constraint required to bound the solution space 
of the time-optimal control problem is perhaps the most 
straightforward to implement. This constraint, called the 
actuator limit constraint, ensures that the input command 
profile will not exceed the specified system actuator limits, 
as shown in FIG. 19. For the case of a time-optimal 
command profile that contains no tail, the actuator limits are 
enforced by properly selecting the pulse train amplitudes to 
meet, but not exceed, the given actuator limits. When a tail 
is appended to the pulse train in the optimal command 
profile, a little more care must be taken to impose this 
constraint. Specifically, the second term in equation 3.1 can 
be used to calculate the profile of the tail during the solution 
of the constraint equations: 

5 

By requiring that the tail profile at all times remain within 
the actuator limits, an additional constraint equation can be 
formulated: 

urn,, %d(t)%w (3.38) 
10 

To implement this equation in an optimization routine, 
equation 3.37 must be evaluated over a reasonable time- 
length at some sampling interval. From the result, the 
maximum and minimum value of the command can be 

3.3 Step 3: Solve and Verify 
The three types of constraint equations derived in Step 2 

above comprise the minimum set of constraint equations 
required to determine the solution for a time-optimal com- 

20 mand profile. In some cases, for very simple systems, these 
equations can be solved analytically. Some of these solutions 
are outlined in section 4 below. However in most cases, the 
constraint equations are too complex to succumb to analytic 
solution and must be solved using an optimization process. 

The basic procedure for finding optimal commands begins 
by setting the values of the command amplitudes, a,, from 
the given actuator limits and taking an initial guess for the 
command switch times, t,. A constrained optimization 
process, such as the one in the Matlab Optimization Toolbox 

30 [218], can then be used to search for the shortest set of 
switch times that satisfy equations 3.16,3.19,3.36, and 3.38. 
From the result, equation 3.1 can be used to calculate the 
profile of the time-optimal command. Although search times 
rely on the quality of the initial guess, they are typically on 

35 the order of seconds due to the simplicity of the constraint 
equations presented herein. 

Since optimization processes can be vulnerable to sub- 
optimal local minima, this solution approach cannot guar- 
antee that the time-optimal command will always be found. 

40 Fortunately, Pontryagin's Minimum Principle provides a set 
of necessary and sufficient conditions to verify the optimal- 
ity of a given command profile. These conditions can be 
used to complement an optimization routine and ensure that 
the solution procedure presented above generally returns a 

45 time-optimal result. Section 6 below discusses both the 
solution approach and the verification process in more 
detail. 
3.4 The Reduced Equations for Systems with Only Poles 

IS determined and constrained by equation 3.38. 

zs 

As discussed in section 2.3.3 above, time-optimal com- 
SO mand profiles for systems with poles and zeros contain a 

pulse train followed by a tail. For systems that have only 
poles and no zeros, the tail is not required. As a result of this 
simpler command structure, the constraint equations for 
systems that contain only poles are far less complex than 

ss those for the more general case. Due to this simplicity, these 
reduced equations often prove useful for deriving quick 
solutions for many kinds of systems. For example, many 
systems can be modeled accurately using solely denomina- 
tor dynamics. When this is the case, the reduced equations 

60 should be used to derive the time-optimal command profile. 
Additionally, in some systems, such as ones with a high 
degree of dynamic uncertainty, the presence of a tail in the 
input command might be undesirable. In these cases, the 
system numerator dynamics can be ignored during com- 

65 mand derivation to produce a command profile with only a 
pulse train and no tail. This section will proceed by first 
presenting an expression for a candidate command profile 
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for a system with only poles. Based on this expression, the 
reduced form of the three problem constraints will be 
outlined, and an implementation and solution of these equa- 
tions will be provided. 
3.4.1 The Candidate Command Profile Equation 

F~~ a system with only poles, the time-optimal command 
will consist of a pulse train, Consequently, the analytic 
expression to represent this family of commands is simply 

where the notation is the same as in equation 3.18. For a 
system with poles all having the same multiplicity, qT, this 
equation can be evaluated once for every value of qi, where 
qi=l, 2, . . . , qT, to impose all of the necessary dynamics 

5 cancellation constraints. For systems with poles of different 
multiplicities, the Matlab code in Table 3.4 can be imple- 
mented to impose the required dynamics cancellation con- 
straints. 

(3.39) 10 TABLE 3.4 

Matlab code to implement the dynamics cancellation constraints 
for systems with just poles. 

% Given the vectors, s, a, and t defined according to 
% equations 3.6 through 3.10, this code calculates the 
% set of dvnamics cancellation constraints for svstems 

where the notation is the same as defined for equation 3.1. 
Similarly, taking the Laplace Transform of this expression 15 
yields the result % with just poles and returns the result in the vector 

% dc-constr. Any time-optimal command must necessarily 
% yield a value of zero for each of these constraints. 
% This code also requires the multiplicities of 
% each system pole to be stored in the vector q. 

E = exp(-s*t); 
for qi = l:max(q), 

1 "  (3.40) 
~ ( s )  = -E a,e-"J. 

20 dc-constr = [ 1; 
J=o 

3.4.2 The Dynamics Cancellation Constraint 
Following a similar approach as in section 3.2.1, the 

equations that describe the time-optimal command profile 

R = E(find(q>=qi),:)*(T^ (qi-l))*a; 
dc-constr = [dc-constr; R]; 

end; 

can be used to derive constraints that ensure rest-to-rest 25 
motion in the system output. This derivation relies on the 
fact the time-optimal COmmand must have zeros at the 
locations of the system poles. Without going into the details 
of this derivation, the resulting reduced form of the dynam- 3o eral expressions in equations 3.19 and 3.36: 
ics cancellation constraint equations is presented below. 
3.4.2.1 Dynamics Cancellation Constraint Equations for 
Systems with No Repeated Roots 

Using the same notation as in equation 3.5, the dynamics 
cancellation constraint for linear systems with only nonre- 
peated denominator dynamics can be stated as 

3.4.3 me Boundary Condition Constraint 
The boundary condition constraints for systems with only 

denominator dynamics remain largely the Same as the gen- 

t,=O, (3.45) 

and 

(3.46) 

(3.41) 

The only difference in these equations is the evaluation of 
40 the integral of the time-optimal command profile. As dis- 

cussed in Appendix B attached hereto, since this command 

integral can be evaluated and expressed more expeditiously. 
3.4.4 me Actuator Limit Constraint 

As mentioned previously, for the case of a time-optimal 

(3,42) 
command profile that contains no tail, the actuator limits are 
enforced by properly selecting the pulse train amplitudes to 

where exp( ) is the element-by-element exponential. This meet, but not exceed, the given actuator limits. Since time- 
matrix expression yields a vector of constraint values with optimal commands for systems with only poles contain only 
one value for every system pole. Not only is this expression SO a pulse train, no additional equations are required to enforce 
computationally simple, but it can be expressed with a single the actuator limit constraint. 
line of Matlab code. 3.5 A Note on Nonminimum-Phase Zeros 
3.4.2.2 Dynamics Cancellation Constraint Equations for For systems with zeros, the procedure outlined above 
Systems with Repeated Roots produces a command with a tail made up of components at 

For systems with repeated poles, the reduced form of the 55 the locations of the system zeros. When these zeros are 
dynamics cancellation constraint takes on a slightly different nonminimum phase, the resulting tail of the optimal com- 
form: mand will be unstable by nature, as shown in FIG. 20. As a 

result, at some finite time, the optimal command designed 
for a system with nonminimum-phase zeros will exceed the 

60 prescribed actuator limits. By the original problem statement 
for the time-optimal control problem, solutions for com- 
mand profiles that exceed the actuator limits are not allowed. 

where this equation is evaluated at the value of every system profile contains only a pulse train and no tail, its analytic 
Pole, PO for i= l ,  2, . . . 3 m. Furthermore, by using the vector 
definitions in equations 3.6 through 3.10, this constraint can 
be expressed in a compact matrix notation: 45 

exp(-st)a=O, 

(3.43) 
~ a J r ~ ~ ' e ? J  = O .  

[J 'o 1 ls=Pi 

Consequently, it can be argued that the tail of any time- 
optimal command cannot contain any components from the 

Given this rationale, the question then becomes whether 

For a repeated pole of multiplicity qT, this expression must 
be evaluated qT times, once for every qi=l, 2, . . . , qT. In 
matrix notation, this equation can be written as 65 system nonminimum-phase zeros. 

exp(-st)fiq'-l)a=o, (3.44) the dynamics of system nonminimum phase zeros can be 
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leveraged in any other way to reduce the system response required about three system features. First a linear system 
time. It is known from the dynamics cancellation constraint model is required to identify the system poles and zeros, 
that incoTorating any  ance celled dynamics into the corn- Second, the actuator limits must be specified, and, last, the 
mand profile will either increase the time-length of the desired system output response must be known, From this 
command or cause unwanted system residual vibration. information, a time-optimal command can be created by Consequently, it can be argued that, outside of direct pole- 

that can be added to the command profile to for optimization routine to search the solution space. Since 
the nonminimum-phase zeros, The time-optimal command, these equations are algebraic, solutions can be found rapidly 
therefore, for a system with nonminimum-phase zeros is and reliably using a computer. Additionally, by using the 
identical to the time-optimal command for the equivalent lo simple matrix notation suggested in this chapter, implemen- 
system with identical  steady-state gain and the tation can be equally streamlined. 

cancellation, there are no additional dynamic properties enumerating the constraint equations and an 

TABLE 3.5 

Summary of the governing equations for the time-optimal control 
of systems with both poles and zeros. 

Eauation 

describing the u(t) = C a J l ( t - t J )  + C c J e 4 ( t ~ t n ) l ( t - t n )  command 
profile. J=O ]=I 

Boundary to = 0 
Condition 
Constraints 

t=co 

Actuator Limit 
Constraint 

urnin 5 qai1(t) 5 urnax 

nonminimum-phase zeros removed. For example, consider a 
system with a transfer function that contains a nonminimum- 
phase zero, zl: 

where the values of zl, z2, pl, and p2 are all positive. Now, 
by removing the nonminimum-phase zeros from this transfer 
function while preserving its DC gain, a new transfer 
function can be created: 

Following the rationale outlined in this section, the time- 
optimal command for this modified system is substantially 
identical to the time optimal command for the system in 
equation 3.47. Therefore, as a general practice, for systems 
with nonminimum-phase zeros, time-optimal commands 
can be derived effectively simply by ignoring any 
nonminimum-phase numerator dynamics. 
3.6 Summary 

This section has outlined an approach for deriving time- 
optimal commands for linear systems. As part of this 
approach, a set of governing equations has been presented 
for defining the structure of the optimal command profile 
and specifying the problem constraints. These equations are 
summarized in Table 3.5 and Table 3.6 for the general 
solution case and the specific case of systems with only 
poles. In order to implement these equations, knowledge is 

TABLE 3.6 
3s 

Summary of the governing equations for the time-optimal 
control of systems with just poles. 

Eauation 

4 aJ'ir - LJ' 

Dynamics 
Cancellation a J t ~ ~ l e ? J  = 0 

45 Constraints [J"o jl,,, 
Boundary to = 0 
Condition 
Constraints dy = lim( - 

i-0 E 
N(s) \ 

so 
Actuator Limit none required 
Constraint 

ss 4 Examples of Time-Optimal Commands for Simple Sys- 
tems 

Section 3 above outlined the general procedure and nec- 
essary equations to derive time-optimal commands for any 
SISO linear system in accordance with the present inven- 
tion. In order to illuminate how this approach can be applied 

6o to real systems, several simple examples will be considered 
here. This section begins with a look at three very simple 
systems with only denominator dynamics. For each of these 
three systems, the constraint equations will be used to derive 
analytical solutions for the time-optimal command profiles. 

65 Although these solutions are very simple and straightfor- 
ward to derive, this will clarify the details of the solution 
approach provided by the invention and highlight key fea- 



US 6,694,196 B2 
41 

tures of time-optimal command profiles for linear systems. 
After this look at commands for systems with only poles, an 
analytic solution will be provided for a system with two 
poles and one zero. This solution will illustrate the form of 
the constraint equations as well as the resulting command 
profiles for systems with both poles and zeros. Since analytic 
solutions for time-optimal commands are generally avail- 
able only for simple systems, section 4.5 of this section 
looks at command profiles for a more complicated spring- 
mass system derived using numerical optimization. 
4.1 A System with One Rigid-Body Pole 

FIG. 21a shows a mechanical system having a single 
rigid-body pole as shown in FIG. 21b. This system has the 
transfer function 

1 G(s) = -, ms (4.1) 

In this problem, it is desired to transition the mass from its 
initial velocity to a specified final velocity as quickly as 
possible using a bounded force input. Although this is a 
simple problem, a formal approach will be taken to illustrate 
the procedure for deriving time-optimal commands. 

Step 1: Select a Candidate Command Profile 
As discussed in section 2.3.1 above, the Bang-Bang 

Principle dictates that the time-optimal command profile 
must always saturate the system actuators. Furthermore, for 
this system, it can be seen that a single actuator pulse of 
finite duration can be used to transition the mass to the 
desired final velocity. Based on this understanding, the 
time-optimal command profile can be constructed, as shown 
FIG. 21c. Using the command profile equation outlined in 
Table 3.6, the parametric equation describing the time- 
optimal command profile for this system can be written as 

F(t)=F,,J (t-to)-F,A-t1) ( 4 4  

Step 2: Impose the Problem Constraints 
As equation 4.2 illustrates, the magnitude of the time- 

optimal command is completely specified by the given 
actuator limits. The remaining unknowns, therefore, are the 
switch times. In order to find values for these unknowns, the 
problem constraints must be met. Since the actuator limits 
are already met by the chosen candidate command profile, 
only the dynamics cancellation constraint and the boundary 
conditions must be imposed. 

To satisfy the dynamics cancellation requirement, the 
equation in Table 3.6 can be invoked to yield the following 
expression: 

(F,,e~"*o-F,,e~"'l)I,_o=O. (4.3) 

This equation easily reduces to 

F,,,-F,,=O. (4.4) 

This equation is a statement of the fact that the final value 
of the time-optimal command for this system must be zero. 
Since the amplitudes of the time-optimal command were 
already selected to meet this condition, the result is trivial. 

In addition to the dynamics cancellation constraint, the 
two boundary condition constraints must also be imposed: 
the first one sets the initial time of the command, and the 
second ensures that the command delivers the system to the 
desired final velocity. As in Table 3.6, these constraints can 
be stated as follows: 

to=o, (4.5) 

S 

10 

1s 

20 

2s 

30 

3s  

40 

4s 

so 

5s 

60 

65 

42 
and 

1 1 
m m .  

dv = - ' F(r)dr = - . F,,,=(r1 - rO)r 
(4.6) 

where dv is the desired change in velocity of the system 
response. 

Step 3: Solve Analytically 
By combining equations 4.5 and 4.6 the following result 

can be reached for the value of the final command switch 
time, t,: 

With this equation, the time-optimal command is completely 
specified for the system with one rigid-body pole. FIG. 22 
illustrates the time-optimal command 30 and response 31 for 
this system, where m=l kg, the desired change in velocity is 
0.5 mis, and the actuator limits are 21 N. 
4.2 A System with One Real Pole 

FIG. 23a shows a system with one real pole, as illustrated 
in FIG. 23b, and can be described by the transfer function 

1 (4.8) G(s) = ~ 

m s c b '  

In this system, it is desired to change the velocity of the mass 
by a specified amount as quickly as possible. The identical 
procedure that was used in the first example will also be used 
for this system to derive the time-optimal command. 

Step 1: Select a Candidate Command Profile 
The first step in creating the candidate command profile is 

to specify the amplitude and the number of switches. For the 
system in FIG. 23a, it can be reasoned that the time-optimal 
command requires two switches, one to turn the actuator 
full-on while the mass is accelerating, and one to set the 
actuators to the level required to maintain the desired final 
velocity. Such a command profile is illustrated FIG. 23c, and 
has the equation 

F(t)=F,,xl(t-to)+(F~~-F,,)l (t-tl), (4.9) 

where F, is the final steady-state command level required to 
effect the desired change, dv, in the system output. 

Step 2: Impose the Problem Constraints 
As in the rigid-body case, the switch times of the optimal 

command can now be found from (1) the dynamics cancel- 
lation constraint and (2) the boundary condition constraint. 
In the first instance, given that the system pole is located at 
s=-bim, the equation in Table 3.6 yields 

(F,,e~"*o+(F~~-F,,)e~"'l)I,_~,,,=O. (4.10) 

Evaluating this expression at the value of the system pole 
produces the constraint equation: 

Second, from the boundary conditions specified in the 
problem, two additional constraint equations can be formu- 
lated: 

to=o, (4.12) 
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(4.13) 

44 
and 

wn = E, and wd = w n G .  
b 

< =  ~ 

2&' 
1 1 

d v = - . F ( t )  =- .F, .  
b It=- b 

5 
Now, from the dynamics cancellation constraint equation, 
we know that, for the two system poles Note that, since the given system has no rigid-body poles, 

the input command does not need to be integrated to impose 
the second boundary condition. (F,,e~"*o+(F,~~-F,.3e-511+(F~~-F,~~)e-5*z)l,=_gw,+wd~=0, 

Step 3: Solve Analytically lo and 
Therefore, with equations (4.11) through (4.13), the time- 

optimal sequence is completely specified; equation (4.13) 
can be used to find the value for F,,, and equations (4.11) and 
(4.12) can be combined to solve for t,: 

By substituting the given value of s at each of the pole 
,< locations into these equations, it can be found that both 
I d  

equations yield the same result. However, by constraining 
the real and imaginary parts of the resulting expressions to 
equal zero, two equations can be formed: 

(4.14) 

F,,ecwn*o cos(wdto)+ . . . (~ , , , -~ , , )ec~n"  cos(wdtl)+ . . . ( F ~ ~ -  
F,,,)ecwnrz COS(W,~,)=O, (4.19) FIG. 24 illustrates response 34 of a system with one real pole 2o 

to step command 32, and FIG. 25 illustrates the response 36 and 
of such a system to time-optimal command 35. For the 
system used in these plots, m = l  kg, b = l  kgis, the desired 
change in velocity is 0.5 mis, and the actuator limits are 21 ~c 

-F,,ecwn*o sin(wdto)- . . . ( ~ , , , - ~ , , ~ ) e c ~ ~ '  sin(wdtl)- . . . ( F ~ ~ -  
F,,,)ecwnrz sin(w,t,)=O. (4.20) 

i d  

N. & expected, with the time-optimal command, the settling 
time of the system response is reduced to about 0.7 seconds 
from about 4 seconds for the step response. 

These two equations are the final form of the dynamics 
cancellation constraint for a system with a Pair of complex 
poles. 

From the boundary condition equations in Table 3.6, two 
additional constraints can be formed: 

4.3 A System with a Pair of Complex Poles 
As a third illustration of the procedure for deriving 30 

time-optimal commands, the system in FIG. 26u, which has to=o, (4.21) 

and the transfer function 

1 1 (4.22) 1 (4.15) 
d x  = . F(r)  I = . F,, G(s) = ~ 3s ms2 + bs + k '  

t=m 

will be considered. The plot for this transfer function is 
shown in FIG. 26b. In this system, it is desired to change the 
position of the mass and bring it to rest as quickly as possible 40 
using an input force command. 

where dx is the desired change in position of the mass, 
Step 3: solve Analytically 
~i~~~ equations (4.19) through (4,22), the time-optimal 

command profile is completely specified, and values for the 
optimal switch times, t, and t,, can be found by solving the 
constraint equations. In general, these constraint equations 
must be solved numerically using an approach such as the 

45 one described in section 6 below. However, for the zero- 
damping case, an analytic solution is available: 

Step 1: Select a Candidate Command Profile 
~ ~ l l ~ ~ i ~ ~  the Same procedure as in the two previous 

cases, the candidate time-optimal force profile shown in 
FIG. 26c can be represented by the equation 

F(t)=F,,,1(t-to)+(F,,,-F,,)1(t-tl)+(F,,-F,,,)1(t-t,), (4.16) 

where F, is the final steady state force required to effect the 
desired change in position, dx. 

(4.23) 

Fmax(Fmn - Fm,) ' 

(4.24) 

I Fmn(Fm, - FsJ + 0.5F: - F , k  t ,  = -acos 

Fm,(Fmn - FsJ I ' Fmn(Fm, - FsJ + 0.5F: Step 2: Impose the Problem Constraints r2 = -acos 

In order to find the values of the switch times in this 
command profile, the dynamics cancellation requirement 
and boundary conditions can be used to form the necessary ss 
constraint equations. First, the locations of the system poles 
can be specified as 

FIG. 27 illustrates a response 39 for a system with a pair 
of complex poles to step command 37, and FIG. 28 illus- 
trates a response 41 for such a system to time-optimal 
command 40. For these plots, k = l  Nin, the natural frequency 
of the system is 2x radisec, the damping ratio is 0.1, the 

60 desired change in position is 0.5 m, and the actuator limits 
are 21 N. From these results, it can be seen that the settling 
time of the system response can be reduced from about 6 
seconds for the step response, to about 0.2 seconds for the 
time-optimal response. 

sl=-cw,+w,i, 

and 

s,=-cw,--W,i, (4.17) 

where t; is the damping ratio, o, is the natural frequency, and 65 4.4 A System with One Zero and Two Rigid-Body Poles 
od is the damped natural frequency of the given second- As the fourth example for deriving time-optimal 
order system: commands, a system with one zero and two rigid-body poles 
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will be considered. One possible physical representation of 
this system is a single mass with an input force profile with 
a derivative feedforward term, as shown in FIG. 29a. From 
this block diagram, the following transfer function can be 

Now, with the dynamics cancellation constraints formulated, 
the boundary conditions can be imposed. The first boundary 
condition, as before, is trivial: 

derived: 5 to=o. (4.29) 

X ( s )  s +  K 
U ( s )  ms2 ' 

G(s) = - = 
(4.25) The second boundary condition, as stated in Table 3.5, is a 

bit more complicated since it requires evaluating the double 
integral of the optimal command profile: 

10 
the plot for which is shown in FIG. 29b. In this system, it is 
desired to derive the input command profile, u(t), that will 
change the position of the mass by a desired amount, dx, and 
bring it to rest as quickly as possible. Unlike the three 
previous examples, this system will illustrate how solutions 15 where dx is the desired change in the position of the mass in 
can be derived for systems with numerator dynamics as well the system. In order to find an analytic solution for the 
as repeated roots. Also, in order to simplify the derivation time-optimal command, the integral in this equation must be 
calculations, actual values for some of the system param- evaluated analytically for the given expression for u(t) in 
eters will be substituted into the constraint equations. The equation 4.26. This can be done by following a strategy 
values are as follows: u,,,=l, umL,=-1, K=2, m=l ,  and 2o similar to the one outlined in Appendix B attached hereto. 
dx=l.  Alternately, as discussed in section 3.2.2, this boundary 

condition can be enforced by evaluating the following 

(4.30) 
d x  = K .  m (JJu(r )dr)  I t=co , 

Step 1: Select a Candidate Command Profile 
shown in FIG, 29c, the candidate time-optimal corn- general expression L'Hospital's 

mand profile for a system with two poles and two zeros will 
have a pulse train followed by a tail. Following the guide- 25 

train will have three switches, including the first and last. 
Furthermore, the tail of the command will have the same 
time constant as the system zero, at s=-K, and an initial 
amplitude of c,. Given this command construction and the 30 

(4.31) 
d x  = llm G(s) i; a J e ~ S T J  + 2, lines outlined in section 2.3.3, we can assume that the pulse S-10 [ [ J F O  J=l s - - z J  

F~~ the system at hand, this expression reduces to 

specified actuator limits, u,,, and u,,,, an equation for the 
time-optimal profile, u(t), can be written as follows: 

s + K  
d x  = l imp 

s-10 ms2 " '  

(4.32) 

In this equation, the only unknowns are the switch times, to, 
t,, and t,, and the initial amplitude of the command tail, c,. 
By forming and solving the constraint equations, and ana- which can be further simp1ified to 

s + K  
lytic result for these values can be reached. 40 

Step 2: Impose the Problem Constraints d x  = li~:( T) 
(4.33) 

;: 
urn,e-st2 + e-%I s . 

u,,e-S?O + (Urn" - u,,)e-"l - ['( 
Since this system has both poles and zeros, the complete 

form of the time-optimal constraint equations, as summa- 
rized in Table 3.5, must be employed. For the dynamics 
cancellation constraint, since this system has two repeated 45 

be enforced twice at s=O, once with the pole multiplicity 
value, qL, equal to one and again with q, equal to two. 
Performing the substitution for the first pole with q,=l yields 
the following result: 

rigid-body poles, the dynamics cancellation equation must s + K ]  

Now, the first limit in this expression is easy to evaluate. The 
50 second limit, however, must be evaluated using L'Hospital's 

Rule since it is indeterminate of the form (010). In order 
simplify the notation in this derivation, values for system 
parameters will be substituted into this expression. 
Specifically, using the values: u,,,=l, umL,=-1, and, from 

55 the first boundary condition, to=O, equation 4.33 can be 

(4.27) 
urnaxe sTo + (urn, - u,,,)e-S~I - 

urnne-s9 + e-s9 cI - CI K 
( S + K ] ] ~ , = , = ~  rewritten as 

s + K  1 (4.34) dx=Fli(m) .lim[-(1 -2e-"I + M S T 2  + e ~ S T 2 ~ I p  
s-10 s2 s :K) '  Similarly, for the second pole, qi=2, the resulting constraint 

equation is: 60 

[umirrroe~~~0 + (urn" - u,,,,)rle-s~I - urn,r2e+2 + (4.28) Evaluating the first limit in this equation results in 
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Now, from L’Hospital’s Rule, it can be stated that, if G,(s) 
and G,(s) are zero at s=O, then 

(4.36) 

In order to apply this formula, we must first make the 
following statements: 

(4.37) GI (s) = 1 - 2KSTI + lKST2 + K S T 2  cI L, and 
s + K  

G2(s)=s2. (4.38) 

Now, with these definitions, applying L’Hospital’s Rule is 
straightforward. Note that, since the expression for G,(s) 
contains an s2 term, L’Hospital’s Rule must be applied twice 
to reach a determinate result. Performing this task, namely 
taking the second derivative of the expressions for Gl(s) and 
G,(s) and substituting the value s=O, yields the following 
result: 

This is the final form of the second boundary condition 
constraint for the system with one real zero and two rigid- 
body poles. 

Given the dynamics cancellation constraint equations, 
4.27 and 4.28, and the boundary condition constraint 
equations, 4.29 and 4.39, the only equation that needs to be 
formed is the actuator limits constraint. As in Table 3.5, this 
expression can be stated as 

urn,, S U r a d ( t ) S U m a r .  (4.40) 

Now, as illustrated in FIG. 29c, given that the maximum 
value of the command tail is defined to be c,, this equation 
reduces to 

u,,, S C I  S Umc (4.41) 

With this expression, the constraint equations for the time- 
optimal command are complete. 

Step 3: Solve Analytically 
In order to minimize the notational complexity of the 

solution approach, we will first substitute values for the 
system parameters into the constraint equations. 
Specifically, for the dynamics cancellation constraints in 
equations 4.27 and 4.28, substituting the known values 
u,,=l, umLfi=-l, K=2, and, from equation 4.29, t,=O, and 
evaluating at s=O yields 

(4.42) 
1 - 2 +  1 +[cl - 2) = 0, and 

CI  (4.43) 
2 

2tl - t2 + - = 0. 

From this result, it can be seen that the first constraint is 
always zero. As was the case for the example in section 4.1, 
the dynamics cancellation constraint for the first rigid-body 
pole in a system states simply that the sum of the pulse train 
amplitudes must be zero. Since the amplitude of the candi- 
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48 
date command profile was already selected to meet this 
condition, equation 4.42 is automatically satisfied. From the 
second dynamics cancellation constraint, however, we can 
form an expression for t,: 

t2  CI (4.44) 
t l = - - -  

2 4 ’  

Now, from the boundary conditions constraint, equation 
4.39, substituting the same system parameter values as well 
as m=l  and dx=l,  produces the result 

(4.45) 1 = -2$+t ; -  “’ - t  2CI. 

From this equation, we can then substitute the expression for 
t, in equation 4.44 and simplify to yield 

(4.46) 4 - CIt2  -[$ + c1 + 2 j  = 0 

Solving this equation for t, results in 

CI ad- (4.47) 
t2  = - + - c: + 2Cl + 4 .  2 -  2 

In order to minimize the length of the time-optimal 
command, we need to find the smallest value of t, that 
satisfies equation 4.47. Also, from the actuator limits 
constraint, equation 4.41, we must have a value of c, such 
that 

-1Sc1S. (4.48) 

By plotting the possible values oft, over this range of values 
for c,, it can be found that t, is a minimum when c,=-1. 
From this result, this optimal value of c, can be substituted 
into equation 4.47 to produce 

l a  (4.47) 
t2  = -- 2 -  + -a 2 = 0.725, and-  1.725 seconds. 

Now, since t, must be greater than zero, it can be concluded 
that the optimal value for t, is 0.725 seconds. Also, by using 
these values in equation 4.44, the optimal value for t, can be 
found to be 0.613 seconds. 

FIG. 30 illustrates the time-optimal command profile 42 
resulting from this derivation and the corresponding system 
response 44. For comparison purposes, FIG. 31 illustrates 
the response 45 of the same system to a pulse command 46 
designed to produce the same gross motion in the system 
output. This pulse command was created using only knowl- 
edge about the system rigid-body behavior. As the figure 
illustrates, when the zero dynamics are taken into consid- 
eration to design the command profile, the system response 
time can be cut in half. 
4.5 A Simple Spring-Mass System 

The four examples presented above all illustrated the 
procedure and the form of the governing equations for 
deriving time-optimal commands. These examples were 
selected since they were simple enough to allow for analytic 
solutions that revealed important features about the nature of 
time-optimal commands. In general, analytic solutions are 
only available for very simple systems. For most systems, a 
numerical optimization approach must be employed to solve 
the time-optimal constraint equations. This section looks at 
a more complicated system and how time-optimal com- 
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mands can be derived using this optimization approach. 
Specifically, the system shown in FIG. 32a will be consid- 
ered. This system consists of two masses with one flexible 
mode, one real mode and one rigid-body mode, and the 
transfer function from the saecified force inaut to the c 

a =  

( m l k + m 2 k +  blb2)s+kbl) 

a =  
15 For the purposes of this example, the following values will 

be used for the system parameters: m,=l kg, m,=2 kg, b,=l 

position output also has a pair of complex zeros. This system 
might be a good descriptor of any vehicle or automated 
machine with a flexible aaaendane. The transfer function. 

- 1  (4.52) 

-2 

2 . 
-2 
1 

50 

(4.51) 

must be in the pulse train is three, including the first and last, 
as discussed in section 2.3.3. However, as a good initial 
guess for the number of switches that will be required in the 
actual time-optimal command for the given system, a good 
rule of thumb is to select one more switch than the number 

L 

(4.57) 

of system poles. Since the specified system has four poles, 
the candidate time-optimal command in FIG. 3 2 ~  has a puke 55 where a is the initial amplitude of the command tail, as 
train with five switches. The general equation for a time- shown in FIG, 32c, and 4 is its phase, With this expression, 
optimal Command Profile for a system with Poles and zeros it can be seen that the only unknown variables in equation 
is listed in Table 3.5. For the case where the command has 4.50 that are required to describe the time-optimal command 
five switches, n=4, and two zeros, r=2, this expression can profile are the switch times, t, and the tail parameters, a and 
be rewritten as 60 4. 

Step 2: Impose the Problem Constraints 
4 2 (4.50) Given that the only unknown parameters of the-time- 

optimal command are the switch times, t, and the variables 
that make up the tail coefficients, c, the problem constraints 

65 can be formed to guide the search for optimal solutions of 
these values. The first constraint that needs to be imposed is 
the dynamics cancellation constraint. As derived in section 

F(r) =E a J l ( r - r J ) + E  ~ ~ e ' ~ ' ~ ~ ~ 4 ' l ( r - r ~ ) .  
J=O J=I 

From the given system actuator limits, the pulse train 
amplitudes in this equation can be specified as follows: 
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3.2.1.1, these equations can be expressed in convenient 
matrix notation for systems without repeated roots as 

will yield a set of four constraints, one for both the rigid- 
body and real system pole, and one for the both the real and 
imaginary part of the equation for the complex pole. Equa- 
tions 4.61 and 4.63 are the problem boundary conditions. 

s The first is trivial to impose and the second requires the 
evaluation of the integral of the command profile. This 

(4,s9) integral can be performed most efficiently using the analytic 
solution presented in Appendix B. Last, equations 4.64 and 

The vector definitions for a, z, t, and are given in equations 4.65 are the actuator limit constraints. During the solution 
4.52,4.54,4.55, and 4.57, respectively, and, from the values 10 Process, these equations must be used to calculate the Profile 
of the system poles in Table 4.1, the vector can be defined of the command tail and ensure that it does not exceed the 
as specified actuator limits. 

Using a standard optimization process, such as GAMS 
[219] or the ones found in the Matlab Optimization Toolbox 

IS [218], solutions can be found for the time-optimal command 
profile that satisfies the problem constraints. Typically, these 
processes rely on an initial guess for the command switch 
times, t, and tail coefficients, c, and then proceed to search 

As discussed previously, since the dynamics cancellation through the solution space of the constraint equations until 
equations for each pole in a complex pair are identical, only 20 a time-optimal solution is found. In general, as discussed in 
one of the complex poles needs to be included in the vector greater detail in section 6, initial guesses are easy to make 
S. based on intuition or the system dynamics. Also, since all of 

In order to impose the boundary condition constraint for the constraint equations in this problem can be expressed 
this problem, the two equations from Table 3.5 can be algebraically, little computation is required to perform this 
applied: 2s optimization. Although solution times typically depend on 

the quality of the initial guess and the available computing 
t,=o (4.61) resources, solution times for systems of moderate complex- 

ity are on the order of seconds. For the spring-mass system 
d~ = lim(-). N ( s )  ( b ( r ) d r ) l  . in this example, a time-optimal command profile was found 

s-0 D(s) t=co 30 in less than three seconds using a 150 MHz desktop work- 
station. 

ex-(-st)a+M. *exp(-st,J=O, (4.s8) 

where 

M=( 1 .i(l - (1 .is).)).. 

0 (4,60) 

s = [  1'1; [ -0.37 1. 
-0.92 + 1.37i 

(4.62) 

In the second equation, given the desired system output 
motion, dx, of 0.5 m, and that the limit of the system transfer 
function without the rigid-body is unity, the final equation 
for the boundary condition constraint becomes: 

O.S=l.(JF(t)dt)l*=,,. (4.63) 

For the third and final constraint that needs to be enforced 
for the time-optimal control problem, the actuator limit 
constraint can be written as 

F,,, sF*ad@) sF,,X> (4.64) 

As a second step in the process of solving for time- 
optimal commands, a verification scheme is highly valuable. 
In particular, since optimization processes can often return 

3s local minima rather than the time-optimal global minimum, 
a verification scheme can prove useful if it can identify 
time-optimal solutions. As discussed in greater detail in 
section 6, by using the conditions of Pontryagin's Minimum 
Principle, a straightforward verification process can be con- 

40 structed to guarantee that the commands delivered by the 
optimization process are indeed optimal. 

FIG. 33 illustrates the time-optimal command solution 48 
and system response 47 that results from a numerical 
optimization of the constraint equations in this example. As 

4s this solution indicates, the resulting time-optimal force 
command delivers the system from its initial position to its 
final position in under two seconds. Notice that the pulse 

where F,,(t) is the time-response of the command tail. From 
the expression for the time-optimal command profile in 
equation 4.50, an expression for this tail can be written as 

F (t)=(. eG("4)+C er2(r-r4) (4,6s) train in this command has only three switches. Even though 
the original candidate command profile contained five 

This expression can be calculated during the solution of the SO switches, the optimization routine successfully reduced the 
constraint equations to make sure the actuator limits are number of switches by two to the optimal level. 
never exceeded. FIGS. 34a to 34d compare the time-optimal command 

Step, 3: Solve and Verify and response for the spring-mass system to the performance 
The final step in deriving the time-optimal command of three other command profiles. The first plot in FIG. 34a 

profile for the simple spring-mass system is to solve the ss illustrates the system response 49 to a simple pulse com- 
constraint equations and verify the result. Since the con- mand 50 designed to meet the same actuator limits and 
straint equations for this system are too complex to be solved produce the same amount of displacement in the system 
analytically, a numerical optimization routine must be used. output. As this plot indicates, due to the real and complex 
A routine, such as the one described in chapter 6, will take system denominator dynamics, the system reaches its final 
the vector of values for the system poles, s,  and zeros, z, as 60 value in response to the pulse after about nine seconds. The 
well as the pulse-train amplitudes, a, and search for the second plot in FIG. 34b depicts the system response 51 to a 
shortest possible set of switch times, t, and tail coefficients, time-optimal negative input shaper 52. As discussed in 
c, that satisfy the constraint equations. In order to evaluate section 2.4.4, time-optimal commands can be created using 
the constraints for this problem, equations 4.58, 4.59, 4.61, the input shaping constraint equations. The resulting com- 
4.63, 4.64, and 4.65 must be used. Specifically, equations 65 mand profiles are designed to produce point-to-point motion 
4.58 and 4.59 are the matrix equations for the dynamics in the system output without exciting unwanted vibration in 
cancellation requirement. Upon evaluation, these equations the system flexible modes. Since the flexibility in this system 

*or1 1 2 )l(t-L). 
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does not dominate the overall dynamic response, the result in unacceptable performance upon implementation. In 
response of the system to the time-optimal input shaper order to address this issue, a strategy can be formulated for 
shows no improvement over the pulse command. In the third deriving an input command that is robust to uncertainties in 
plot in FIG. 34c, a time-optimal input command 54 was system dynamics. This strategy relies on the same solution 
designed for the equivalent spring-mass system with all of s framework outlined in previous chapters but incorporates 
the numerator dynamics removed. Consequently, the result- additional problem constraints to enhance command robust- 
ing command profile consists of a pulse train without a tail. ness. Before this strategy can be presented, however, we 
When applied to the spring-mass system in this example, must first be clear about the definition of robustness. 
this command delivers the system response 55 to its final A time-optimal command that is not robust to uncertain 
value in slightly under four seconds. Comparing this i o  system dynamics will often deliver unacceptable perfor- 
response 55 to the response 56 to the full time-optimal mance when the system behaves differently than the model 
command 57 in FIG. 34d, it can be seen that, by designing predicts. Typically, this performance degradation is mea- 
the time-optimal command profile using both the system sured in terms of the residual response of the system output. 
numerator and denominator dynamics, the time of system As illustrated in FIG. 35, residual response is a measure of 
response can be dramatically reduced. For the current is the difference between the ideal system response and the 
example, this reduction is by about a factor of two; the actual behavior. In the ideal case, a time-optimal command 
amount of reduction that would be seen in other systems will transition a system from its initial state to its exact final 
depends on the amount of contribution the numerator state and keep it there. However, when faced with model 
dynamics make to the overall system response. discrepancies, this time-optimal command will always result 
5 Creating Time-Efficient Commands with Additional Con- 20 in a nonzero amount of residual response around the desired 
straints system output value. 

In the preceding sections, an approach for deriving time- In order to characterize the influence of modeling uncer- 
optimal commands for any type of linear system was pre- tainties on unwanted system residual response, consider 
sented. This approach provides a straightforward and effec- FIG. 36. As this figure suggests, a linear model can be 
tive procedure for identifying the bounded command profile zs represented as a collection of poles and zeros in the Laplace 
that will produce the fastest possible response in a given domain. When a system displays behavior somewhat differ- 
system. In many time-critical applications, the optimal com- ent than the model, this can be manifested in one way as a 
mands that result from this methodology can be highly difference in the actual locations of the system poles and 
valuable for maximizing system performance. However, in zeros. The larger the distance between the modeled and 
other systems that do not require such rapid response, 30 actual system poles and zeros, the greater the amount of 
time-optimal command profiles may be undesirable. For dynamic uncertainty in the system. When a time-optimal 
example, in systems with a large degree of dynamic command that was designed for the system model is applied 
uncertainty, time-optimal commands may excite unwanted to the actual system, these discrepancies can result in output 
residual vibration due to discrepancies between the system behavior with excessive residual response. 
model and actual behavior. Additionally, because of their 3s Given this understanding, one can imagine that a possible 
bang-bang nature, time-optimal commands may result in method for understanding the influence of dynamic uncer- 
excessive fuel usage or heavy operating loads in certain tainties on system performance is to vary the locations of the 
classes of systems. In order to address these issues, new system poles and zeros and catalog the resulting amount of 
constraints can be incorporated into the solution methodol- residual response in the system output. A command that is 
ogy to derive commands with more practical properties. 40 robust to dynamic uncertainty will demonstrate little per- 
These commands, although not strictly time-optimal, can formance degradation over changes in the system dynamics, 
deliver time-efficient system behavior while accommodating and a nonrobust command will show sharp changes. Using 
other important system performance metrics. this approach, the locations of each system pole and zero can 

The purpose of this section is to show how the solution be varied from their nominal values to measure the level of 
framework developed in section 3 can be expanded to 4s robustness in the given command to changes in system 
include more practical system constraints. In order to dynamics. Of course, in order to create a complete picture of 
accomplish this, two extensions to the basic solution method this relationship, the locations of the poles and zeros would 
will be considered: first, strategies will be presented for have to be varied in the two-dimensions of the s-plane. 
deriving time-efficient commands that are robust to uncer- Specifically, each pole and zero could be varied in both 
tainty in the system model, and second, methods will be SO frequency and damping to produce a two-dimensional mea- 
considered for limiting the length of the tail on optimal sure of the command robustness. Since the system residual 
command profiles. Following these two specific cases, sug- response typically demonstrates similar behavior with varia- 
gestions will be made for incorporating additional problem tions in both of these directions, changing the system poles 
constraints into the general solution framework. This dis- and zeros in one dimension is usually adequate for charac- 
cussion will illustrate that the solution methodology pre- ss terizing the robustness of the input command. Traditionally, 
sented herein is not only effective at deriving time-optimal command robustness has been measured by varying the 
command profiles but can also be extended easily to derive natural frequency of the system pole or zero. As illustrated 
other types of more practical time-efficient commands. in FIG. 37, this corresponds to moving system poles and 
5.1 Designing Commands with Enhanced Robustness to zeros along lines radial from the origin of the s-plane and 
System Uncertainty 60 plotting the resulting amplitude of residual response in the 

When modeling a physical system, designers attempt to system output. Since rigid-body dynamics in a given system 
create a mathematical representation that captures all impor- are relatively easy to characterize, this robustness measure is 
tant aspects of system operation. Unfortunately, due to such typically performed with only the nonzero system poles and 
factors as time-varying dynamics and nonlinear behavior, zeros. 
discrepancies always exist between the model and the actual 65 FIGS. 38 and 39 depict some typical robustness plots. For 
system. As a result of these discrepancies, time-optimal each of these plots, the system residual response amplitude 
commands designed using model parameters can sometimes is plotted versus frequency. Given an input command 
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profile, one of these plots can be constructed for every 
nonzero pole and zero in the system assuming all other 
system dynamics are exact. Typically, the residual response 
is measured as the maximum deviation in the system 
residual from the desired value as a percentage of the total 
rigid-body motion of the system output. This residual per- 
centage is plotted against the variation in the natural fre- 
quency of system pole or zero around its nominal value. As 
these plots illustrate, at the point where the system pole or 
zero is exactly equal to its modeled value, the residual 
vibration in the system response is zero. In some cases, this 
frequency axis is normalized so the nominal or modeled 
frequency has a value of one. As the two plots in FIGS. 38 
and 39 illustrate, a curve that exhibits a flatter or lower shape 
around the nominal frequency value will have better robust- 
ness to system uncertainty than one with a steeper profile. 
Since the curve in each of these plots is a measure of the 
insensitivity that the command profile shows to dynamic 
variation, these diagrams are often called insensitivity plots. 

In order to construct an insensitivity or robustness curve, 
the residual response amplitude of a system must be calcu- 
lated for a range of different values for the locations of the 
system poles and zeros. While possible to perform using 
numerical simulation, this approach is computationally 
intensive and time consuming. Abetter approach is to use an 
analytic solution for the residual response of a system to a 
command profile. Fortunately, as presented in Appendix A, 
a general analytic solution is available for the residual 
system response to a command profile with a pulse train and 
a tail. Although notationally complex, this result allows for 
easy calculation of the residual response amplitude as a 
function of changing system dynamics. 

With a clear definition of robustness and an approach for 
constructing plots to measure it, the remainder of this section 
looks at possible strategies for improving the robustness of 
time-optimal commands to variations in system dynamics. 
In this discussion, enhancing robustness to changes in sys- 
tem poles will first be considered followed by a look at 
improving robustness for system zeros. From these insights, 
time-efficient commands with improved robustness will be 
constructed for a simple spring-mass system to demonstrate 
the value of this technique. 
5.1.1 Robustness to Variations in System Poles 

As described above, in order to improve the robustness of 
time-optimal commands in the face of uncertainties in the 
system denominator dynamics, the insensitivity curve for 
the command must be flattened around the modeled modes. 
This flattening is achieved by reducing the residual vibration 
amplitude in the system response around the frequencies of 
the system response. In Appendix A, a derivation of the 
system response to a time-optimal command profile revealed 
that the residual response contribution of the nonzero poles 
could be separated from the overall system response. The 
resulting equation from Appendix A, which describes the 
residual response amplitude due to solely a system pole, pi, 
is 

for all tzt,. The notation in this equation is fully defined in 
Appendix A, but for the sake of clarity, a brief description is 
included here: 
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R,=residue of system pole pL, 
q,=multiplicity of system pole pL, 
a,=pulse train amplitudes, 
t,=pulse train switch times, 
cl=tail coefficients, 
Q,,=special residue defined in Appendix A, 
naumber  of switches in the command pulse train exclud- 

r=number of system zeros. 
ing the first, and 

From this equation, the robustness curve for a given com- 
mand profile, described by a], tl, and cl, can be plotted by 
calculating the maximum y,,(t) over a range of frequency 
values for p,. Therefore, in order to improve the robustness 
of the command profile, it is required to reduce the value of 
y,(t) over the frequencies near the nominal value of p,. From 
this equation, it can be seen that, in order to reduce the value 
of y,(t) many things can be done. One possible approach for 
improving command robustness is to constrain the pulse- 
train amplitudes, a], to limit the amplitude of the residual 
response. Similarly, the tail coefficients, cl, might also be 
able to be constrained in some manner to improve command 
robustness to variations in system poles. In general, when 
faced with these many alternatives, we must remember that 
we are looking for a solution that has enhanced robustness 
but is still as close to time-optimal as possible. A traditional 
approach for balancing these tradeoffs is to constrain the 
slope of the robustness curve. Originally applied to increase 
robustness in the input shaping technique [97], this approach 
has been used by many researchers [68, 81, 83, 95, 2071. 
Although not time-optimal by definition, the kinds of com- 
mand profiles resulting from this approach represent a 
special class of solutions that have an excellent combination 
of good robustness and short system response times. These 
commands are often called robust, time-optimal commands. 

In addition to identifying a useful class of robust, time- 
optimal solutions, the approach suggested in the preceding 
paragraph is easy to implement. Specifically, these kinds of 
robust commands can be derived by following the exact 
procedure for deriving time-optimal commands, as outlined 
in section 3, and adding one additional constraint equation 
for each uncertain system pole. This equation must enforce 
the condition that the slope of the robustness or insensitivity 
curve be zero at the location of the nominal system pole. 
This concept can be expressed mathematically for system 
pole, PL, as 

where y,,(t) can be calculated as in equation 5.1, and pi* is 
the modeled value of pi. As noted in section 2.4.4 and [207], 
enforcing this constraint for a given system pole, pi, is 
identical to deriving the time-optimal command for an 
equivalent system with an additional pole at s=pi. In other 
words, for a system that has a single pole at s=pi, enforcing 
the robustness constraint in equation 5.2 can be achieved 
simply by deriving the time-optimal command for a different 
system that includes a double pole at s=pi. Given this fact, 
the derivation of robust, time-optimal commands for a given 
system is as easy as deriving the time-optimal command for 
a similar system that contains an additional pole for every 
system mode with a significant degree of uncertainty. 
Furthermore, as discussed in [97], command robustness can 
be increased arbitrarily by taking additional derivatives of 
yp,(t) with respect to pi. As one might suspect, these addi- 
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tional constraints are identical to the constraints for the command profiles are longer in time length, but have some- 
time-optimal command for a system with multiple poles at what better robustness to variations in system zeros as well 
the location pi, where one additional pole is added for each as a shorter tail. 
derivative of YPl(t>. With each additional robustness In terms of the pole-zero cancellation argument, the 
constraint, the resulting COmmand Profiles become longer in s method that was used to design commands to be robust to 
length but deliver less residual response in the face of variations in system poles was to design the command for a 
uncertainties in the system poles. similar system that included additional poles. The result of 
5.1.2 Robustness to Variations in System Zeros this was a command profile that contained multiple zeros at 

As discussed in the Preceding section, a simple insight the locations of each uncertain system pole. Carrying this 
about the nature of time-optimal commands for systems with analogy to systems with uncertain zeros, one might try to 
repeated Poles led to a straightforward and effective place extra poles in the command at the same location of the 
approach for improving the robustness of C O ~ X U I ~ S  for system zeros. As may be obvious, this strategy only intro- 
sys tems with uncertain denominator  dynamics.  duces extra dynamics into the system that will increase the 
Unfortunately, these Same insights cannot be extended to amount of residual response. Consequently, the only option 
system zeros. In order to explain this Point, consider the IS for increasing the robustness of an optimal command to 
equation from Appendix A that describes the contribution of variations in system is to limit the amplitude of the tail 
the system zeros to the system residual response: coefficients, cj. If necessary, these coefficients can be 

reduced all the way to zero to produce a longer command 
with no tail that has infinite robustness to uncertainties in 

20 system zeros. This approach will be discussed in more detail 
in section 5.2, which presents methods for limiting com- 
mand tail length. 
5.1.3 Examples of Robust, Time-Optimal Commands 

rn (5.3) 
y,(r) = C ~ ( R , Q , ( , , + ~ ,  + ~)e~; ( ' - ' n )  

,=I 

for all tzt,, where the notation is the same as described 
above, and This section presents some examples of robust, time- 

KEconstant resulting from the partial fraction expansion 2s optimal commands that were designed using the approach 
outlined in this section. Specifically, command profiles were 

zj*=modeled value of system pole zj, and designed with enhanced robustness to system denominator 
mdhe  number of system poles. dynamics by applying the exact procedure outlined in sec- 
was the for the system poles, we can first attempt to tion 3 for deriving time-optimal commands to a similar 

improve the robustness of the command to variations in 30 system with additional poles. As discussed above, com- 
system by taking the derivative of equation 5.3 and mands with improved robustness to uncertain system zeros 
setting it to zero at the locations of the system zeros. can be derived by limiting the COmmand tail length. 
Specifically, we must enforce the equation Although not presented here, a discussion of this technique 

and examples of its performance will be given in the 
(5,4) 35 following section. For all of the results presented here, the 

simple spring-mass system shown in FIG. 32a will be used. 
The list of dynamics values for that system is repeated in 
Table 5.1 below. 

of G(s), 

d 
-Y,(o = o ,  
dzJ  zJ1=z; 

where zj* is the modeled value of each system zero, zj. Now, 
from equation 5.3 and its derivation in Appendix A, it can be 40 
seen that the only term in the expression for yzJt) that 
depends on zj is R,. Since Ri is a residue of the system 

TABLE 5.1 

Summary of the dynamics in the simple spring-mass system. 

model, it is linearly dependent on zj, and as a result rigid-body pole: s = o  
real pole: s = -0.37 

time constant, t, = 2.73 sec. 

frequency = 0.26 Hz 
damping ratio = 0.56 
s = -0.20 r 0.98i 
frequency = 0.16 Hz 
damping ratio = 0.20 

d (5 .5)  45 complex poles: s = -0.92 r 1.37i -y  (r)  =constant in zJ. 
dz ,  zJ 

complex zeros: 
Therefore, the only way to set this expression to zero at 
zj=zj* is to set it completely to zero such as by constraining SO 
the values of the tail coefficients, cj, to be zero. In this 
circumstance, the resulting optimal command profile would FIGS. 40a to 40d illustrate the time-optimal command for 
contain no tail and have infinite robustness to uncertainties the spring-mass system, as derived in section 4.5, and its 
in the system zeros. corresponding robustness or insensitivity curves. For each of 

As a more gradual approach for improving command ss the insensitivity curves, the amount of residual vibration as 
insensitivity to system zeros, one can reconsider the expres- a percentage of the total rigid-body motion of the system, 0.5 
sion for the residual response due to the system zeros in m, is plotted versus the frequency of each pole and zero. 
equation 5.3. As discussed previously, apart from constrain- Each of these plots assumes that all system dynamics, other 
ing the slope of the insensitivity curve, the robustness of a than the pole or zero under consideration, are modeled 
command profile can be enhanced by limiting the amplitude 60 perfectly. The first insensitivity curve in FIG. 40b maps the 
of the residual response due to deviations in system zeros insensitivity of the time-optimal command to variations in 
from their nominal values. From equation 5.3, it can be seen the system real pole. As expected, when the frequency of the 
that, for a given system with specified values for Ri, Qijk, K, system pole is identical to its modeled value, f=l/(2xtC)= 
and zj*, the only way to reduce the amplitude of yz$t) is to 0.0582 Hz, the amount of residual vibration is zero. In the 
decrease the value of the tail coefficients cj. As discussed in 65 second and third insensitivity curves in FIGS. 40c and 40d, 
more detail in section 5.2, constraints can be imposed easily respectively, similar behavior is demonstrated for variations 
to limit the value of the tail coefficients. The resulting in the system complex poles and complex zeros. 
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By creating a new system with one additional pole at each 
of the complex poles in the spring-mass system, the proce- 

a new time-optimal command. This time-optimal command, 
when applied to the original spring-mass system, can be 

( 5  6) 
uta,l(t) = ~ c J e ' J ' T ~ + " ' l ( t - t n ) r  dure for deriving time-optimal commands was used to create 

J=I 

used to deliver time-efficient performance with improved 
robustness to uncertainties in the system complex mode. 

for tzt,, where c1 are the tail coefficients, z1 are the modeled 
values for the system zeros, and r is the number of system 

This robust, time-optimal command profile and the corre- zeros. from this equation, the Only way to limit the 
length of the tail is to limit the value of the coefficients, cl. 

i o  One possible approach for imposing this constraint is to 
place a limit on the amount of time it takes for a command 
tail to within a certain specified envelope, F~~ 
example, if it is desired to have the tail settle to within 5% 
of the actuator limits, uhm, by a time tf seconds after t,, the 
following equation can be enforced: 

sponding system response is shown in the plot of FIG. 41a. 
As this result illustrates, the robust, time-optimal command 
can deliver better robustness at the price of increasing the 
system response time by about a factor of two. Since this 
command was designed to be robust only to variations in the 
complex pole, the insensitivity curve for the complex pole, 
shown in FIG. 41c, shows greatly enhanced robustness. As 

has zero slope and zero value at the nominal pole frequency. 
For the real pole and the complex zero (see FIGS. 41b and 
41d, respectively), on the other hand, the robust, time- 20 
optimal command only demonstrates slightly improved 
robustness. Since the command profile was not designed 

In order to create a time-efficient command profile with 

system can be created with a double pole at each of these 
poles locations. When the time-optimal command is derived 

enforced by the robustness constraint equations, this curve ( 5  7) 
cJedJWnJTf 5 0 05ul,,, 

J=I 

where -t;,o, is the real component of the system zero, zl. 
This equation constrains the sum of the envelopes that 

within a given level in a specified amount of time. Since this 

parameters, cl, it can be easily incorporated into the solution 
framework outlined in section 3 of this document. 
Specifically, by appending equation 5.7 to the three other 

with these dynamics in mind, this result is not surprising, bound the time-response of the tail components to settle 

robustness to both the real and complex system poles, a new 2s constraint equation is expressed in terms Of the command 

for this new system and to the Original spring-mass problem constraints that time-optimality, namely the 
system, it effect the desired system Output behavior 30 dynamics cancellation, boundary conditions, and actuator 
with greater insensitivity to variations in the system denomi- limit constraints, the general solution procedure can be used 
nator dynamics. This robust, time-optimal command Profile to create time-efficient commands with a tail length tailored 
and the resulting system response is illustrated in FIG. 42a. to the specific application at hand, 
As this result demonstrates, in order to make the command FIG. 43a illustrates some of the command solutions that 
profile robust to variations in both the real and complex 3s were derived using this tail-length constraint for the same 
mode, the system response time increases by about a factor spring-mass system of FIG. 32a. In particular, FIGS. 43a to 
of three over the time-optimal command. As the insensitivity 43d compare the time-optimal command, in FIG. 43a, to 
curves in FIGS. 42b, 42c and 42d illustrate, however, this three other commands with differing tail lengths. In FIG. 
command has much improved robustness for both system 43b, the tail length was constrained to settle to within five 
poles. Not surprisingly, the insensitivity curve for the system 40 percent of the actuator limits in twelve seconds. As this 
zero shows little improvement. command profile and the resulting system response 

illustrate, a command with a smaller tail can be created at the 5.2 Designing Commands with a Limited Tail Length expense of lengthening the system response time. 
Additionally, this command also contains two more switches 

response time can be greatly reduced by designing a time- 4s than the time-optimal profile. Since the presence of zeros in 
optimal command with a tail. This tail excites the system at a system can reduce the number of switches required in the 
the frequency ofthe system zeros while keeping the system time-optimal command, when the influence of these zeros is 
output at rest at its desired final value. This extra degree of lessened by reducing the tail length, it is not surprising to see 
flexibility in the solution space of the time-optimal com- the number of command switches increase. The plot in FIG. 
mand profile allows for shorter command lengths that SO 43c illustrates the command profile that resulted from a six 
improve the system's speed of response. In many second time limit on the length of the tail. As expected, this 
applications, it is undesirable to have a tail that drives a command has a tail of lower amplitude and length but a 
system after the output has reached its desired final value. longer Pulse train. In the last Plot of FIG. 434 the tail 
Furthermore, if the frequencies of the system zeros are not COefficients were Constrained to be zero. Recalling the 
known exactly, this tail will problematic residual ss example from section 4.5, this command profile corresponds 
response in the system output, order to avoid this to the time-optimal control for an equivalent system with the 
situation, it is important to have a command derivation zeros removed. This last result illustrates that if a command 

model, remove the zeros while keeping the same steady- limited. This section presents an approach that can be used 
60 state gain, and use the solution procedure from section 3 of to this end as well as a demonstration of its performance on this document to derive a time-optimal command profile. a simple system. The resulting time-optimal command for the augmented 

As a necessary condition for maintaining the system system will be the shortest possible command that can 
output at its final value, the only acceptable Profile for the deliver the actual system from its initial to its final value 
tail of a time-optimal command is a h e a r  combination of 65 without the presence of a tail. 
the initial condition response at the components of the FIGS. 44, 45 and 46 illustrate the insensitivity curves of 
system zeros. In other words, the four commands in FIGS. 43a to 43d to variations in the 

For systems that contain both poles and zeros, the system 

scheme that allows the length of the command tail to be with no is desired, a designer can take a given system 
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system dynamics. From the curves in FIG. 44 and FIG. 45, commands. As this figure depicts, the procedure begins with 
it can be seen that reducing the tail length of a command a given linear, time-invariant system and a set of problem 
profile influences the robustness to uncertainties in system specifications. From this point, the remaining solution steps 
denominator dynamics in no appreciable manner. In FIG. can be categorized into the three basic solution stages that 
46, however, and as discussed in section 5.1.2, by reducing 5 surface throughout this document: (1) select a candidate 
the tail length of the optimal command profiles, the robust- command profile in step S4701, (2) impose the problem 
ness to uncertainties in system zeros can be enhanced. As the constraints in step S4702, and (3) solve and verify in step 
curve for the command with no tail illustrates, infinite S4703. 
insensitivity to variations in system zeros can be achieved if In the first stage of this procedure in step S4701, the given 

system model and problem specifications are used to iden- the tail is eliminated altogether. 
5.3 Other Constraints tify parameters which describe a candidate optimal com- 

This section has illustrated that the solution framework mand profile. In particular, the system actuator limits can be 
presented in this document is not simply an approach for used to designate values for the command pulse train 
finding time-optimal command profiles. Instead, it can be amplitudes and any zeros can be identified from the model 
viewed as an expandable framework capable of incorporat- and included as parameters for the command tail. For the 
ing many different kinds of constraints to enrich command command switch times and tail coefficients, since they are 
performance. For example, in systems that have limited fuel, unknown prior to optimization, and initial guess must be 
designers may with to place constraints on the fuel usage of made for each of their values. In the case of the tail 
a command profile. This can often be accomplished by coefficients, an initial value of zero is not a bad place to start. 
creating a constraint that penalizes the amount of time that For the command switch times, however, initial estimates 
the actuators are saturated. Similarly, in some systems that 20 are somewhat more critical. In this case, the first guess 
require gentle yet fast motion, deflection limiting constraints which must be submitted is the number of switches that the 
can be incorporated to limit the internal loads and resulting candidate command must contain. As outlined in section 
machine deflection during operation. Lastly, in systems 2.3.3, the minimum number of switches, not including the 
where unmodeled modes may be excited by bang-bang first and last, that any command must have is equal to 
command profiles, a constraint can be imposed to keep the zs (n-1)-r, where n is the number of system poles and r is the 

10 . 

amplitudes of the steps in the command pulse train to be 
greater than zero. The staircase commands that result from 
this solution approach will be identical to commands derived 
using the input shaping technique and can be used to achieve 
robust and rapid motion in many systems. 
6 Solving for and Verifying Time-Optimal Commands 

To this point, we have presented a general solution 
approach for the time-optimal control problem and illus- 
trated methods for extending this technique for deriving a 
wider class of time-efficient commands. This methodology 

number of system zeros. For a system with no complex 
modes, the upper bound on the number of switches is exactly 
(n-1). In general, in order to select the number of switches 
to include in the initial guess, it is better to select more 

30 switches than the optimal command will require. The reason 
for this is that, when an optimization routine has too few 
switches in a candidate command, there will be no viable 
solution that satisfies the problem constraints. However, if 
the candidate command has extra switch times, a good 

35 optimization strategy can typically merge the redundant 
relies on formulating a compact and complete set of con- command switches to create an optimal command with the 
straint equations that can be solved to find optimal command correct number of switch times. As a starting point, (n-1) is 
solutions. For most systems, this solution step must be typically a good initial guess for the number of command 
accomplished using an optimization routine to search switches. For systems with complex modes and long move 
through the set of possible command solutions. This section 40 distances, the designer may want to consider increasing this 
is devoted to discussing one possible process for numeri- value by one or two. 
cally searching for time-optimal and time-efficient com- Once an initial number of switches is selected, initial 
mand profiles. Furthermore, since numerical approaches can estimates for the value of each switch time must be made. 
sometimes return non-optimal solutions, a process is also This step, in many cases, relies on the intuition of the 
discussed in this chapter for verifying the optimality of 45 designer to select reasonable values given the system param- 
command solutions. This combination of an efficient s o h -  eters. Fortunately, for systems of small to moderate 
tion search routine and verification process provides a complexity, optimization processes are typically forgiving 
powerful tool for identifying optimal commands for linear when faced with poor initial guesses. For the examples in 
systems. Following the individual discussion of these two this document, initial guesses were typically derived by 
solution components, some general statements will be made SO using a technique from input shaping. In particular, the 
about the performance of these processes and their effec- approach outlined in [114] was used to create non-time- 
tiveness at deriving time-optimal and time-efficient com- optimal bang-bang commands that satisfied the identical 
mand profiles. problem constraints. The values for these non-optimal 
6.1 Optimization Process to Find Time-Optimal and Time- switch times were then used as initial guesses for creating 
Efficient Commands ss time-optimal and time-efficient commands. For many 

For linear systems that contain more than one or two systems, this approach worked very well, however, for some 
poles, time-optimal and time-efficient solutions must be more complex systems, different initial guesses were 
derived numerically using an optimization process. In required. One effective approach for proposing initial 
general, as discussed in section 3, since the fundamental guesses for complex problems is to derive commands for 
constraint equations for this problem can be expressed 60 simplified versions of the same system. By constructing 
algebraically in a simple and compact form, numerical commands of increasing complexity, the switch times from 
optimization of these constraints proves to be fast and each solution can be used to enlighten the initial guesses for 
reliable. This section presents a possible process that can be each successive system. By capturing the logic of this 
used to generate optimal command solutions using a numeri- approach and translating it into a formal procedure, it seems 
cal optimization process. 65 likely that a technique can be developed for creating reliable 

FIG. 47 illustrates a computer-executable process for initial guesses that fully automate the command solution 
numerically identifying time-optimal and time-efficient process. 
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The second stage in the solution procedure depicted in 
step S4702 is to impose the problem constraints. Discussed 
thoroughly in previous sections, this step is as simple as 
encoding the general expressions derived in section 3. Also, 
for systems with problem constraints beyond the basic 
time-optimal equations, additional expressions can be 
appended to this list as described in section 5. For the 
process used to solve the examples in this document, an 
efficient matrix notation, described in section 3, was 
employed to code the general constraint equations. Given 
the simplicity of the resulting expressions, this task can be 
achieved with little effort. 

The third and final stage of the solution procedure, in step 
S4703, is to solve for the optimal command solution and 
verify the result. By enlisting the help of a commercial 
optimization package such as the Matlab Optimization Tool- 
box [215,218] or GAMS [219], the first part of this stage is 
easy to achieve. Specifically, such an optimization process 
can be used to find the set of command switch times and tail 
coefficients that satisfy all of the constraint equations as well 
as minimize the time-length of the command. For the 
examples in this document, a constrained nonlinear optimi- 
zation routine from the Matlab Optimization Toolbox was 
employed. This process relies on a Sequential Quadratic 
Programming method to search for optimal solutions. Since 
this and similar optimization approaches may return local 
solutions rather than global optimal solutions, a verification 
stage to the solution approach can be very valuable. Such a 
verification scheme, which is discussed in detail in the 
following section, was developed and implemented to check 
the validity of time-optimal command solutions. This 
scheme relies on Pontryagin’s Minimum Principle to outline 
a set of necessary and sufficient conditions that the time- 
optimal command must satisfy. For every command solution 
that is returned by the optimization routine, these conditions 
can be invoked to verify its optimality. If they are satisfied, 
then the command is guaranteed to be the unique time 
optimal solution for the given problem. If not, then the 
solution process can be rerun with a different initial guess 
until the optimal command profile is found. 

In order to streamline the creation of time-optimal and 
time-efficient command profiles for various systems, the 
graphical user interface to the solution code shown in FIG. 
48 was constructed. This interface takes a given linear 
system model and lists all of the system poles and zeros. 
From this point, the designer can specify a number of 
options such as the exact problem specifications, the desired 
robustness at each system pole and zero, and the desired 
length of the command tail. If desired, upon creation of the 
command profile, different plots can be displayed demon- 
strating various aspects of the command performance. 
6.2 Verifying Optimality Using Pontryagin’s Minimum 
Principle 

As mentioned above, an approach for verifying the time- 
optimality of bang-bang commands can be constructed 
from the conditions outlined in Pontryagin’s Minimum 
Principle. This section builds on prior approaches and 
describes in detail how they can be applied to the solution 
methodology outlined in the previous section. This section 
proceeds by presenting first a brief review Pontryagin’s 
Minimum Principle followed by a general five-step proce- 
dure for applying this principle to verify time-optimality. 
6.2.1 A Review of Pontryagin’s Minimum Principle 

Pontryagin’s Minimum Principle has been applied widely 
to solve time-optimal problems for both linear and nonlinear 
systems. This section will begin with a presentation of the 
principle for the more general nonlinear case and then 

64 
explain how it can be simplified for linear systems. Note 
that, for the equations in this section, the notation ( )* 
indicates that the value in the parenthesis is that of the 
time-optimal solution, and the notation ( )I* indicates that 

s the value in the parenthesis is evaluated using time-optimal 
values. 

The general form of Pontryagin’s Minimum Principle for 
the time-optimal control problem can be stated as follows. 
Given a controllable system, 

10 
x’=f(x, 4, (6.1) 

where 

1s x=x(t)=state vector, and 
u=u(t)=control vector, 

the control vector, u(t), that will transition the system from 
a fixed initial state, xo, to a fixed final state, x,, in minimum 
time must necessarily satisfy the following conditions: 

20 1. The Canonical Equations: 

a H  (6.3) costate equation p’ = -- I , where 
a x  I 

2s 

(6.4) 
H Harmltonian= p ! L ( x ,  u). 2 ,=I 

30 
m is the number of system states, and p, and f, are the i-th 
elements of the vectors p and f, respectively. 
2. Minimization of the Hamiltonian: 

For all admissible controls (i.e. controls that remain 
35 within the actuator limits), u(t), 

H(x*,p*, u* )  5 H(x*,p*, u). ( 6 . 9  

In other words, there is no control input, u(t), other than the 
optimal control, u(t)*, that will yield a lower value of the 

3. Value of the Hamiltonian: 

t,* is the time length of the optimal control input, 

40 Hamiltonian, H. 

For all values o f t  in the interval from to=O to t=t,*, where 

H(t)  * =H(t, *) * =O. (6.6) 

Given this general form of Pontryagin’s Minimum Principle 
for time-optimal commands, the conditions can be further 
simplified by considering only linear, time-invariant sys- 

4s 

50 tems. More specifically, given a system of the form 

x’=Ax+Bu, (6.7) 

where 

ss x=x(t)=state vector, and 
u=u(t)=control vector, where 

A and B are constant matrices that describe a completely 
controllable system, then the time-optimal control problem 

6o is to find the control, u(t), that will satisfy the following two 
conditions in minimum time: (1) it must remain within 
actuator limits, 

~ m , n 5 4 5 % a x >  (6.8) 

65 and (2) it must transition the system from the known initial 
state, xo at t=O, to a desired fixed final state, X,. The reduced 
form of Pontryagin’s Minimum Principle states that the 



US 6,694,196 B2 

optimal control, u(t)*, that solves this problem must neces- 
sarily satisfy the following three conditions: 
1. The Canonical Equations: 

a H  
= Ax' + Bu' 

10 

2. Minimization of the Hamiltonian: 
For all admissible controls, u(t), 

H(x*,p*, u* )  5 H(x*,p*, u). (6.11) 

1s 
Now, since 

H=I+P~~=I+P%x+P~Bu, (6.12) 

this condition becomes 
20 

i + p * % ~ * + p * ~ ~ ~ * ~ i + p * ~ h * + p * ~ ~ ~  (6.13) 

for all admissible u(t) on the interval from to to t,*. It can be 
seen that this relation will be true when 

u(t)*=umcn, for q(t)*>O, 2s  

and 

u(t)*=umax, for q(t)*<O, 

where q(t)* is called the switching function and is defined as 30 

q(t) *=p(t) * T ~ = ~ T p ( t )  * . (6.14) 

3. Value of the Hamiltonian: 
3s  For all values o f t  in the interval from to to t,*, 

H=I+P*~Ax*+P*~Bu*=o. (6.15) 

and normal. If not, then the conditions in Pontryagin's 
Minimum Principle do not guarantee that a time-optimal 
solution will exist or be unique. 

Step S4902: If the time-optimal command is designed 
correctly, it will deliver the system output from its initial 
state to the desired final state. This can be verified by 
solving or simulating the state equation, equation 6.9, in 
condition 1. 

Step S4903: In order to satisfy the second condition of 
Pontryagin's Minimum Principle, namely that the Hamil- 
tonian must be minimized over the time length of the 
optimal command, the value of the function p(t)TBu(t) 
must be minimized over the time length of the command. 
Therefore, in order to be optimal, u(t) must be at the 
minimum actuator value when the switching function, 
p(t)TB, is greater than zero and the maximum actuator 
value when p(t)TB is less than zero. Also, since p(t)TB is 
a smooth function, it must be equal to zero at the exact 
locations of the switch times of the proposed optimal 
command. Now, in order to calculate the switching 
function, the value of p(t) must first be determined. This 
can be done by solving the costate equation, equation 
6.10, in condition 1 to produce the expression 

p(t)=e-Ar?", (6.16) 

where p, is the initial value of the costate vector. This 
result can be substituted into the expression for switching 
function, q(t), as in equation 6.14, to yield 

q(t)=BTee-Ar%p,. (6.17) 

Since the value of po corresponding to the optimal solu- 
tion is unknown, this equation cannot be used to calculate 
the switching function. However, since we know that this 
function must be zero at the locations of the command 
switch times, the proposed optimal command will only be 
optimal if 

In addition to outlining the three conditions for optimality 
q(t)=BTCA rzJpip,=O, (6.18) stated above, Pontryagin's Minimum Principle also asserts 

that, if the system described by A and B is stable, and both 40 where tj are the values of the switch times in the candidate 
the initial state, Xo, and the final state, Xd, are natural command, excluding to and t,. From this result, it can be 
equilibrium states of the system, then a time-optimal control Seen that this expression can be evaluated for every switch 
will always exist. Furthermore, if the final state, xd, is not a tirne and the set of equations can be solved to 
natural equilibrium state but can be reached by an admis- find all initial costate vectors, Po, that satisfy these equa- 
sible control, then a time-optimal control will also always 45 tions, If no initial costate vectors exist that satisfy this set 
exist. If in addition to being controllable, the given system of equations, then the proposed command is not time- 
is also normal (i.e. the system is controllable from every optimal, 
input), then the time-optimal control, if it exists, is also Step S4904: Once a set of initial costate vectors that satisfy 
unique. Therefore, as a summary of the scope of PontrYa- equation 6.18 has been identified, the one which corre- 
gin's Minimum Principle, for linear, time-invariant systems SO sponds to the unique time-optimal command solution 
that are normal, stable and have a desired change of state that must be isolated, Condition 3 in pontryagin's ~ i ~ i ~ ~ ~  
can be effected by an admissible control, the time-optimal principle can be used as the first metric for assessing the 
control exists, is unique, and must necessarily satisfy con- optimality of these initial costate vectors, A in equation 
ditions 1, 2, and 3. 6.15, this condition asserts that the optimal command 
6.2.2 Procedure for Verifying Time-Optimality Using 5s must in a Hamiltonian that is Over the tirne 
Pontryagin's Minimum Principle length of the command. This can be verified by calculat- 

A outlined above, PontrYagin's Minimum Principle ing the Hamiltonian for each initial costate vector. Note 
establishes a set of necessary and sufficient conditions that however that equation 6.18 can only be used to determine 
a time-optimal command must satisfy. While these condi- the direction of the initial costate vectors, not the mag- 
tions do not suggest a straightforward way to derive optimal 60 nitude, A a each candidate initial costate vector 
COmmnd Profiles, they do lend insight into a simple Pro- can also be scaled by an arbitrary constant and still satisfy 
cedure that can be used for verifying the OPtimalitY of equation 6.18. Given this, it can be seen from the expres- 
commands created using other methods. This verification sion for the Hamiltonian in equation 6.15 that, in order to 
procedure is illustrated in FIG. 49 and described in detail yield a Hamiltonian that is zero, the following relation 
below. 6s must hold: 
Step S4901: The first step for checking optimality is to 

verify that a given linear, time-invariant system is stable p*Th*+p*TBu*=constant. (6.19) 
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If this expression is satisfied by any of the candidate initial For systems that are more complicated than these, finding 
costate vectors, their magnitude can be scaled appropri- time-optimal solutions can be tedious and unreliable. With 
ately to also satisfy equation 6.15. If any of the initial greater attention to numerical conditioning and better initial 
costate vectors do not satisfy this expression, they cannot estimates, this problem may be solvable. However, since 
be optimal and must be eliminated from consideration. s time-optimal commands typically have little energy at 

Step S4905: The final step in verifying the optimality of a higher system modes, commands designed for fewer than 
command profile is to use the initial costate vectors that five system modes often prove to be more than adequate for 
fulfilled step 4 to calculate a switching function, as in delivering the desired performance upon implementation. 
equation 6.14. In order to be optimal, the resulting switch- 7 Experimental Results 
ing function must be zero at only the values of the i o  Using the general solution process outlined in the previ- 
command switch times. If the switching function has a ous chapter, time-optimal and time-efficient commands can 
fewer or greater number of values where it is zero, it be easily derived for a wide range of linear systems. As the 
cannot be optimal. If a nontrivial solution exists that examples in section 4 attest, the commands derived using 
satisfies this condition, then it is guaranteed to be the this approach work effectively on linear system models. In 
unique time-optimal solution. is order to truly demonstrate the effectiveness of this 
The foregoing five-step verification procedure can be technique, however, implementation on hardware is 

applied to validate time-optimal commands for linear, time- required. In order to accomplish this, several experiments 
invariant systems, and as a result, it proves to be a valuable were run on a mechanical testbed designed for the Middeck 
companion to any command solution process. The useful- Active Control Experiment. Originally constructed for a 
ness of this approach does not end there, however, since this 20 Space Shuttle flight experiment, this hardware was designed 
approach can also be applied to robust, time-optimal com- to be representative of a highly flexible space satellite. 
mands and commands with tail-length constraints. For the Consequently, the structure contains a lightly damped fun- 
case of robust, time-optimal commands, section 5 reveals damental bending frequency below 2 Hz and four dominant 
that the robust, time-optimal command for a given system is flexible modes below 10 Hz. Because of these complex 
equivalent to the time-optimal command for a similar sys- zs system dynamics, evaluating command profiles as well as 
tem with additional poles at the locations of the uncertain control designs on this testbed is in some ways a trial by fire. 
system modes. Following this reasoning, it can be seen that However, if these command profiles can display acceptable 
the verification scheme can also be applied in this case to performance on this experimental platform, then they can 
ensure that the robust, time-optimal command is indeed the likely be implemented with much success on many other 
time-optimal command for the augmented system model. 

For commands that have tail length constraints, this This section proceeds by first presenting an overview of 
scheme can be used as well. Specifically, as described above, the MACE experiment, including a discussion of the experi- 
Pontryagin’s Minimum Principle only places restrictions on ment goals and research efforts. Following this description, 
the bang-bang portion of the optimal command profile. For experimental results will be presented for the implementa- 
commands that contain a tail, typically the pulse train of the 3s tion of time-optimal and time-efficient commands on the 
command can be shortened due to the additional flexibility MACE hardware. From these experimental results, it will be 
in the allowable final state of the system. For a specified demonstrated that the command profiles derived using the 
system final state, Pontryagin’s Minimum Principle can approach in this document can be effectively applied to real 
identify the unique time-optimal command that will deliver physical systems. 
the system there, but it makes no claims on what this optimal 40 7.1 The MACE Experiment 
final state should be. By relying on the command solution The purpose of MACE is to develop and verify a set of 
scheme in section 6.1 to identify what the optimal final techniques that can be used to give designers of spacecraft, 
system state should be, the verification scheme can then be which cannot be tested adequately on the ground, confidence 
used to guarantee that the command pulse train is indeed in eventual on-orbit performance. To achieve this objective, 
optimal for delivering the system to this final state. 4s the MACE hardware, as shown in FIG. 50, was flown aboard 
6.3 A Statement on the Performance of the Solution the space shuttle Endeavour in March of 1995. Using this 
Approach experimental platform, three main tasks were performed to 

By combining a straightforward solution methodology investigate modeling and control design in a zero-gravity 
with a verification scheme, a hybrid approach can be created environment. First, controllers and shaped inputs, which 
that can reliably deliver time-optimal and time-efficient SO were designed prior to flight using ground-based modeling 
solutions for linear systems. Since the governing constraint efforts, were implemented. Second, a system identification 
equations in this approach are algebraic by nature, solutions was performed on-orbit and the resulting ID data was 
for many systems can be reached quickly and reliably. down-linked and used to formulate new controllers and 
Additionally, by employing a computationally efficient veri- shaped inputs. Last, these new controllers and inputs were 
fication scheme, these solutions can be guaranteed to be ss up-linked during the mission and implemented on the 
optimal. The exact amount of time required to reach soh-  MACE hardware. A more detailed overview of the MACE 
tions using this procedure depends on both the system project is available in [22&222]. 
complexity as well as the quality of initial guesses for the 7.1.1 The MACE Hardware 
command parameters. For systems that have fewer than The MACE test article was designed to be representative 
around five poles, optimal commands can typically be found 60 of a typical precision-controlled, high payload-mass- 
within a few seconds. In most cases, the solution process fraction spacecraft, such as an Earth-observing satellite, with 
delivers and verifies the solution on the first iteration. For multiple independent scanning or pointing instruments. As a 
more complex systems, such as ones that contain five to result, the MACE hardware, as shown in FIG. 50, consists 
fifteen poles, solution times are very much related to the of a five-foot-long flexible bus with a gimbal at each end. 
accuracy of the initial guess. In the best case, solutions can 65 Actuated by direct-drive DC torque motors, each of the two 
be found immediately, and in the worst case, solutions could gimbals can move its payload around two perpendicular 
require dozens of iterations to locate the optimal solution. axes. The MACE bus is constructed from four tubular 

30 kinds of systems. 
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polycarbonate struts, one of which contains piezoelectric into a state-space system model. During the MACE mission, 
material to actuate bending strain in the structure. In addition this process was applied to on-orbit data to create a highly 
to these actuators, a reaction-wheel assembly is located in accurate 0-g models which were used to design some of the 
the center of the MACE structure to provide attitude control controllers and command profiles implemented during the 
of the test article. This assembly is comprised of three s flight. The results of these redesigned experiments were used 
orthogonally mounted inertia wheels driven by DC servo to understand the value of on-orbit system identification for 
motors. maximizing 0-g performance. 

In order to closely monitor open- and closed-loop The success of MACE was evaluated in part on its ability 
performance, the test article is outfitted with a variety of to exhibit high-performance structural control in a zero- 
sensors. Specifically, each gimbal axis has a laser rotary i o  gravity environment. Reaching this goal depended not only 
encoder to measure the angle of the gimbal relative to the on accurate 0-g models but also on control-synthesis tech- 
bus. Also, a two-axis rate-gyro platform is mounted on the niques that were robust to errors in these models. To address 
payload arm of the primary gimbal while a three-axis this issue, modern MIMO robust-control processes, such as 
rate-gyro platform measures bus rotation at the reaction- Sensitivity Weighted Linear Quadratic Gaussian (LQG) and 
wheel assembly. Last, eight pairs of strain gages are is Multiple Model (MM) control, were implemented during the 
mounted on the bus links, two per strut, to monitor the MACE mission. The performance of these controllers was 
vertical and horizontal bending strains in the structure. measured by their ability to isolate the primary gimbal from 

All electronics for collecting sensor data and controlling vibrations in the test article excited by the secondary gimbal. 
actuators reside in the MACE Experiment Support Module More detail on the control techniques used on MACE can be 
(ESM). In addition to harboring a DSP-based real-time 20 found in [229-2331, and an overview of the closed-loop 
control computer to implement control processes, the ESM mission results is presented in [234]. 
contains analog servos for the reaction wheels, rate-gyro In addition to evaluating closed-loop control techniques in 
notch filters, sensor anti-aliasing filters, as well as all data- zero-gravity, the MACE testbed was also used to assess the 
acquisition electronics. Using the DSP board and feedback performance of feedforward control techniques such as input 
from encoder rate signals, all four gimbal motors are con- zs shaping. During the mission, several different types of 
trolled by SISO proportional-integral servos. During time-efficient command profiles were used to execute gim- 
experiments, the control computer is capable of sending bal slewing maneuvers while suppressing system vibration. 
predetermined commands to the gimbal actuators while A detailed account of these experiments and the mission 
simultaneously running a MIMO high-performance control- results can be found in [181, 235, 2361. 
ler. All controllers are run at a 500 Hz sampling rate. 

Both before and after flight, the MACE hardware was A set of experiments was conducted on the MACE test 
ground-tested thoroughly. In an attempt to replicate 0-g article to evaluate the performance of time-optimal and 
behavior in a 1-g environment, the entire structure is sup- time-efficient commands created using the approach out- 
ported on a pneumatic-electric active suspension. This sus- lined in this document. For each of these experiments, the 
pension supports the structure at the bus center and both 3s goal was to slew the MACE gimbal payload over an angle 
ends and is designed to have low-frequency rigid-body of about one degree and bring it to rest as quickly as 
modes well below 1 Hz. possible. To accomplish this task, setpoint commands were 
7.1.2 MACE Modeling and Control sent to the gimbal servo and the resulting gimbal pointing 

The design of high-performance command profiles and angle was measured by a rate gyro. 
controllers for MACE rests heavily on the development of 40 In order to design optimal command profiles for the 
accurate models. Since the exact behavior of the MACE MACE structure, a linear system model was required. As 
structure in 0-g could not be measured prior to flight, a described above, for the original MACE mission, a 156-state 
finite-element model (FEM) to predict the on-orbit behavior linearized FEM model was constructed to describe the test 
was created using ground-based testing of the flight hard- article in 1-g. This model was used to simulate the MACE 
ware. Specifically, a parameter-based FEM was developed 4s gimbal response in all experimental trials. In order to design 
to replicate the behavior of the MACE hardware as sup- time-optimal commands, however, it was first necessary to 
ported by the active suspension in 1-g. The open- and reduce this model. As discussed in section 6.3, bang-bang 
closed-loop behavior of this model was then compared to commands for most systems work effectively when designed 
that of the actual structure in order to refine the model and for only a few dominant system modes. In the case of the 
verify its validity. When the 1-g FEM was sufficiently SO MACE test article, only the first four dominant system 
accurate, the 0-g model was created by removing gravity and modes were considered. Using a balanced model reduction 
the suspension system from the 1-g model. The resulting 0-g process, the 156-state MACE model was reduced to an 
model, which contained 130 states and 13 modes below 20 8-state model. The dynamics of this reduced model, which 
Hz, represented the best available predictor of real on-orbit are summarized in Table 7.1, included four flexible modes 
behavior for MACE. A detailed account of MACE finite- ss and four complex zero pairs. Given values for the important 
element modeling work can be found in [223-2261. system poles and zeros, several types of commands were 

The second aspect of the MACE modeling effort was the designed to effect the desired gimbal slewing angle. 
creation of measurement-based models using actual system The first command profile evaluated on the MACE test- 
identification data. Since these measurement-based models bed was a simple step command. As the results in FIG. 51 
were derived directly from the experimental data, they 60 illustrate, when a step command is sent to the gimbal servo 
proved to be highly accurate predictors of system behavior. to effect the desired change in gimbal angle, substantial 
As a result, they were also used as a baseline from which the lightly damped vibration is excited in the MACE structure 
accuracy of the finite-element models could be measured. In which corrupts the pointing accuracy of the gimbal. As a first 
particular, the measurement-based system-identification to measure to remedy this poor performance, designers often 
be performed on MACE employed the Frequency Domain 65 employ smoothed commands such as splines to minimize 
Observability Range Space Extraction (FORSE) technique, residual vibration. As illustrated in FIG. 52, these commands 
as described in [227,228] to convert frequency-domain data can be effective at reducing problematic vibration but typi- 

30 7.2 Experimental Data 
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cally introduce a substantial lag in the system response. A robustness for these modes. The resulting command profile, 
better approach for eliminating unwanted vibration while as shown in FIG. 57, contains a pulse train with eleven 
ensuring rapid system response is to use the input shaping switches and length of about 0.4 seconds. As desired, the 
technique. In FIG. 53, the simulated and experimental illustrated experimental response to this robust, time- 
gimbal response is shown for a command profile created by 5 optimal command profile shows little residual vibration at 
shaping a step command with an input shaper. The input the end of the command. However, the increased response 
shaper used in this experiment was designed to suppress time required to obtain this measure of robustness undercuts 
vibration at the first four system modes with the minimum the value of this command solution. 
level of robustness to dynamic uncertainty. As the experi- As the experimental results presented in this section 
mental results for this command illustrate, with a system illustrate, system response can be significantly improved 
response time of about 0.6 seconds, input shaping proves over conventional methods when time-optimal commands 

residual vibration. response times showed a substantial decrease when numera- 
tor dynamics were included in the time-optimal command 

15 formulation. Unfortunately, due to poor command robust- 
ness in the presence of many lightly damped system modes, 
these time-optimal commands often excited undesirable 

effective at delivering the gimbal to its final angle with little are employed, For the MACE test article, in particular, the 

TABLE 7.1 

Summarv of the modes used to design the MACE command profiles. 

frequency (E) damping ratio 

MACE poles: 1.55 
3.86 
4.03 
7.43 

MACE zeros: 1.60 
4.52 
7.39 

11.80 

0.04 
0.22 
0.46 
0.03 
0.05 
0.14 
0.04 
0.04 

levels of residual vibration in the system response. To 
address this issue, techniques for enhancing command 
robustness proved effective, but only at the cost of increas- 
ing the system response time. 
8 Conclusions 

This document has presented a general strategy for deriv- 
ing time-optimal and time-efficient commands for linear 

25 systems. As a primary component of this work, this 
approach was applied to the time-optimal control problem 

20 . 

and used to derive commands f o r  a variety of different If speed of system response is not an important perfor- systems. Additionally, by incorporating constraints to mance metric, the input shaping solution might be adequate enhance robustness and limit tail length, it was illustrated for a given system. In time-critical applications, however, 
time-optimal commands must be employed to elicit the 3o that this solution method is an expandable framework that 

mental and simulated system response to a time-optimal insights and conclusions presented in this work are summa- 
command designed for a system with only the first three rized 
flexible modes in the MACE structure. This command was 1. A straightforward three-step procedure has been pre- 

model, and the maximum and minimum amplitudes of the 
time-optimal command were set to plus and minus two 
degrees to correspond with the saturation limits of the 
gimbal motors. As the experimental response to this com- 
mand indicates, the system rise time can be reduced to about 40 
0.4 seconds, but a fair amount of residual vibration still 
remains in the response. Since this residual vibration occurs 
primarily at the frequency of the fourth system mode, 7.43 
Hz, a new time-optimal command can be designed to 
include this mode as well. Shown in FIG. 55, this four-mode 45 
time-optimal command transitions the gimbal to its desired 
final angle in just over 0.4 seconds while eliminating all but 
some small residual vibration in the higher system modes. 

In order to further reduce the response time of the MACE 
gimbal response, time-optimal commands can be designed SO 
for the system zeros as well as poles. As shown in FIG. 56, 
when a time-optimal command is designed for the four pairs 
of complex poles and zeros in Table 7.1, the system rise time 
can be dramatically reduced to about 0.1 seconds. The 
resulting command profile now contains five switches, 5s 
including the first and last, as well as a tail with lightly 
damped vibration at the frequencies of the system zeros. 
Unfortunately, the price that is paid for this rapid system 
response is the undesirably high levels of residual vibration. 
Since this residual vibration is not present in the simulated 60 
response for the 156-state model, it can largely be attributed 
to poor command insensitivity to model inaccuracies. In 
order to improve this condition, the techniques for enhanc- 
ing command robustness discussed in section 5 can be 
enlisted. Specifically, since the residual response in FIG. 56 65 
occurs primarily at the first two system modes, a new 
time-optimal command can be designed with enhanced 

fastest system performance, FIG, 54 illustrates the experi- can accommodate a variety Of performance constraints. The 

designed using the pole locations from the reduced system 35 sented for deriving time-optimal and time-efficient 
commands for any type of linear, SISO system. 

2. BY applying this three-steP approach specifically to the 
time-optimal control problem, four primary steps were 
taken: 
The set of fudamental and general constraint equa- 

tions was derived for the time-optimal control prob- 
lem and expressed in terms of parameters describing 
the optimal command profile. 

A simple and compact notation was formed to express 
the constraint equations and streamline implementa- 
tion. 

By considering the analytic solution for the residual 
response to a time-optimal command, it was dem- 
onstrated that these equations represent the complete 
set of necessary constraints for the time-optimal 
control of a linear system. 

Since these constraint equations are algebraic by 
nature, solutions for time-optimal command profiles 
were found rapidly and reliably. 

3. This three-step solution methodology was illustrated to 
be easily extendible to systems with additional practical 
constraints. In particular, a method for improving the 
robustness of command profiles to both numerator and 
denominator dynamics was presented, and a technique 
for constraining the command tail length was also 
considered. 

4. An optimality verification scheme was developed by 
applying the conditions in Pontryagin’s Minimum Prin- 
ciple. By pairing this scheme with a numerical optimi- 
zation process, a hybrid solution approach was created 
that reliably delivers verifiably time-optimal and time- 
efficient commands. 
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5. By considering several simple examples, the time- 
optimal solution approach was demonstrated to work 
on systems with different combinations of numerator 
and denominator dynamics. As par t  Of  this 
demonstration, four specific analytic solutions for time- s 
optimal commands were derived. 

6. Using the MACE test article, these techniques were 
implemented and validated on a complex piece of 
mechanical hardware. 
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Appendix A 

In this appendix, a general analytic expression is derived 
for the residual response of a linear system to a time-optimal 
or time-efficient command profile. As discussed in section 5 

88 
above, this expression is very useful for characterizing the 
amplitude of residual response that results due to modeling 
uncertainties. Additionally, as will be illustrated at the end of 
this derivation, the terms of this expression can be used to 

s argue that the constraint equations specified in section 3 
above are the minimum necessary set required to bound the 
time-optimal control problem. 
Nomenclature 

Before the derivation begins, we must first define some 
i o  variables and concepts. First, as is the convention in this 

work, the residual response will be derived for the standard 
time-optimal or time-efficient command profile described in 
section 3 and depicted in FIG. 14. This command profile 
consists of a pulse train with a finite number of switches 

is followed by a tail. The term “residual response” itself refers 
to the system behavior after the command pulse train is 
complete. As a general rule, the equations derived here will 
only apply to the system response for times tzt,, where t, 
is the time of the final switch in the command pulse train. 

For all of the steps of the derivation, several variables are 
required to describe the system dynamics and command 
profile. Definitions of these variables, for a given linear 
system and a given time-optimal or time-efficient command 
profile, are summarized below: 

20 

zs System Variables: 
m=the total number of system poles, 
r=the total number of system zeros, 
rbm=the number of system rigid-body modes, 
p,=the system poles, where i=l ,  2, . . . , m, 
qi=the multiplicity of the system poles, where 

zj=the system zeros, where j=1, 2, . . . , r. 

n=the total number of switches in the command pulse 

aj=the amplitude of the steps in the pulse train, where j=O, 

tj=the switch times of the pulse train, where j=O, 1, . . . , 

cj=the coefficients of the exponential terms in the com- 

zj*=the values of the system zeros used to construct the 

As expressed above, the one variable that may need further 
explanation is the pole multiplicity variable, qi. The pole 
multiplicity is a number assigned to every system pole 
indicating the presence and number of repeated system 
poles. For nonrepeated poles, this value is simply 1. For 
repeated poles, the first pole would have qi=l, the second 
pole would have qi=2, the third pole would have qi=3, and 
so on. For example, for a given system with four poles, two 
repeated rigid body poles and a pair of complex poles at 

3o 

i=l ,  2 , .  . . , m, and 

Command Profile Variables: 
35 

train minus one, 

1, . . . ,  n, 

n, 

mand tail, where j=1, 2, . . . , r, and 

command tail, where j=1, 2, . . . , r. 

40 

45 

55 s=l+i, the following values of pi and qi would result: 

pl=O, p2=0, p,=l+i, p4=l-i, and 
ql=l ,  q2=2, q3=1, and q4=1. 

With these variable definitions, we can now be clear about 
60 the nature of the system mathematics and the command 

profile equation. 
Representation of the Command Profile 

As discussed above, this derivation will be concerned 
with input commands that fall into the category of time- 

65 optimal or time-efficient command profiles. As discussed 
above, these types of command profiles typically contain a 
series of pulses or steps followed, in some cases, by an 
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exponentially decaying tail. As originally proposed in sec- 
tion 3, an expression can be created to capture the general 
profile of this family of commands: 

where the terms in this expression are defined above, and 
l(t) is the unit step command. In order to assist the clarity 
of the derivation to follow, the two distinct terms of this 
equation can be separated as follows: 

4=ul(t)+%(t) ,  (A% 

where 

As illustrated throughout this document, with the correct 
parameter values, not only can these equations represent all 
time-optimal command profiles for linear systems, but they 
can also capture the form of a wide range of time-efficient 
command profiles as well. 
Representation of the System Dynamics 

The derivation presented here will apply to SISO systems 
with any combination of linear dynamics. In general, a linear 
system can be expressed in the form of a SISO transfer 
function as follows: 

where the system variables are defined above and K, is the 
transfer function gain. Using a partial fraction expansion, 
this transfer function can also be expressed as 

(-4.6) G(s) = GI (s) + Gz(s) + . . . + G,(s) + Kz 

where Ri are the residues associated with each system pole 
in the expansion, and K2 is the constant direct term, which 
is nonzero in the case where r=m. Equation A.6 applies only 
for the case when the given system has no repeated roots. If 
a given system does contain repeated roots, the following 
more general expression for the partial fraction expansion 
must be used: 

(-4.7) G(s) = G ~ ( s )  + G ~ ( s )  + ... + G,(s) + K2 

where qi are the pole multiplicities as defined above. Writing 
this expression with a more compact notation results in 
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-continued 

Now, given this general representation for the partial frac- 
tion expansion of a linear system, we can develop a general 
expression for the impulse response and step response of 
G(s). The resulting equations will be composed here since 
they are required in the derivation that follows. 

By taking the inverse Laplace Transform of the given 
transfer function, above, an expression can be created for the 
impulse response, g(t), of the system, G(s): 

g(t)=L~l(G(s)}=gl(t)+gz(t)+ . . . +gm(t)+Kz6(t), ('4.9) 

where 6(t) is the Dirac delta function. This equation can also 
be written as 

Now, in order to find an expression for g,(t), we must take 
the inverse Laplace Transform of the individual terms in 
equation A.7. Performing this task results in the equation 

where, as defined above, qi is the multiplicity of the pole pi. 
Substituting this result into equation A.10 yields the follow- 
ing general expression for the impulse response of a given 
linear system, G(s): 

for t2O. From this result, we can also derive a general 
equation for the step response, h(t), of the given linear 
system by taking the integral of the impulse response. More 
specifically, 

The integral in each of the two terms in this equation will be 
evaluated separately. In the simpler case, the second term of 
this equation can be reduced to: 

(A.14) 
r K z 6 ( r ) d r  = Kzl(r) = Kzr for r t 0. 

J o  

In order to take the integral in the first term of this 
equation, two distinct cases must be considered separately. 
First, we will consider the case when pi=O, and second, we 
will consider when pi#O. In the first of these two cases, a 
general expression for each integral in the summation of 
equation A.13 can be written as: 
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(A .15) 

= qrq. 5 
q! . Substituting the expression for ul(t) from equation A.3 into 

this result yields 
Now, for the case when pi#O, this expression is somewhat 
more complex: (A .24) 

(A .16) 
h,(r) = Y( L ~ q 1 - 1 ) e P ~ ~  dr 

0 (q! - I ) !  1 
Now, since this derivation is only concerned with the system 
residual vibration rather than the complete system response, 

15 we only need to consider the response after the time of the 
final switch in the pulse train, namely t2t,. This assumption 
reduces the complexity of the equations resulting from this 
derivation, of equation ( ~ , 2 4 ) ,  with this 
assumption, the second term becomes: 

k = l  

Although the derivation is not shown here, the reader can 
easily verify this result by evaluating the integral for some 
small values of qi like qi=l or 2. Given that an expression 20 

general result for the step response of the linear system can 
now be constructed by combining equations A.14, A.15, and 
A.16: 

the 

has been derived for all of the integrals in equation A.13, a (A .25) 

25 For the first term in equation A.24, a result can be more 
easily reached if we consider that the expression for ul(t) is 
simply a sum of weighted and shifted step commands. From 
linear system theory, this insight allows us to evaluate the 
convolution in the first term of this equation by constructing 

30 it from a sum of weighted and shifted step responses for each 
of the terms for gl(t). Following this reasoning, the first term 
in equation A.24 becomes 

rbm (A.17) 
h(r) = 1 ~ 1  + 

,=I q! ! 

k = l  

for t2O. Note that the summation in equationA.13 has been 

poles. With this expression, our characterization of the 

system is complete and we can proceed with the derivation 
of the residual response expression. 
Calculating the Residual Response 

specified input command, u(t), the system output response 
can be expressed as 

divided to separate the nonzero poles from the rigid-body 35 (A.26) 

time-response and frequency response of a given linear ,=I 

where h,(t) is the step response of the linear system that has 
40 the impulse response g,(t). Now, combining the results from 

For the given linear system transfer function, G(s), and a equations A.25 and A.26 into equation A.24, we have 

(A.27) 
YI@) = 2 [ aJh! ( r -  r J )  + K 2 C  

(A.18) 4s ,=I 1 J'o 
Y (t)=L-'{G(s) u(s)l, 

where U(s) is the Laplace Transform of the input command, 
or equivalently for t2t,. As presented in equationA.17, the general equation 

for the step response of a linear system was derived previ- 
ously. From the individual terms in this equation, a result for 
the value of the step response terms, h,(t), in equation A.27 
can be formulated. More specifically, for the case when pi is 
a rigid body pole, 

(A,19) 

where g(t) is the system impulse response and '* '  represents 
the convolution operation. Now, from equation A.2, we can 
rewrite equation A.19 as 

Y (t)=s(t)*4> 

(A.28) 

Yl(t)=g@)*Ul(t)> (A.21) and for the case when p, is a nonzero pole, 

(A.29) 
(pI r ) (q i -k )  + (-1)qi . h,(r) = 2 p;, I ePiT [$ ~ ;:!;;: I 1  

Yz(t)=g(t)*%(t)> (A.22) 60 

and u,(t) and u,(t) are defined according to equations A.3 
and A.4. Dividing the problem in this manner allows us to 
consider each of the two terms, yl(t) and y2(t), separately. 
Deriving an Expression for yl(t): 

From the expression for g(t) in A.lO, we can rewrite the 
equation for yl(t) as follows: 

65 Now, substituting these two expressions into equation A.27 
yields the complete general equation for the residual 
response due the command pulse train: 
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(A .37) 

K ~ C  a,, for r t r, 
J=o 

Deriving an Expression for y2(t): 
With a formula found to describe the first component, 

yl(t), of the residual response equation, an expression can 
now be derived for the second part, y2(t). Unlike the 
derivation for yl(t) which was performed wholly in the 
time-domain, the derivation for y2(t) will proceed in the 
frequency domain. Specifically, rewriting the expression for 
y2(t) in equationA.22 in terms of the Laplace Transforms for 
the system, G(s), and the tail of the command profile, U,(s), 
yields 

y,(f)=L-l{G(s) W)I. (A.31) 

Now, from equation A.8, G(s) can be represented as 

(A.32) 

Also, by taking the Laplace Transform of the expression for 
u,(t) in equation A.4 results in 

Substituting equations A.32 and A.33 into equation A.31 
produces the result 

which is equivalent to 

Now, given equation A.4, the second term in the equation 
can be easily rewritten as 

(A.36) 
Kzuz(r) = K z c  ~ , e ' : ( ~ ~ ~ n ) ,  for r t r,,. 

,=I 

or equivalently 

(A .38) 

1s 

where Q,, are the residues of the partial fraction expansion 
of the transfer function with numerator 1 and denominator 
roots pz, q, times, and z,*. For example, in the case where 

20 q,=l, the values for Q,, are 

" r  
L3 

Now, from this partial fraction expansion, we can evaluate 
the inverse Laplace Transform. Performing this task on the 
result in equation A.38 produces 

3s 

(A .39) 

Finally, substituting this result, along with the result in 
equation A.36, into equation A.3.5 yields the following 
expression for y2(t): 

40 

4s  

for tzt,. With this result, the derivation of both yl(t) and 
so y2(t) is complete. All that remains, now, is to combine these 

results to find a general expression for the total residual 
response, y(t). 
Collecting Terms to Find y(t): 

The equation for the residual response of the linear 
5s system, G(s), to the time-optimal or time-efficient command 

profile, y(t), can be constructed by combining the results for 
Y l ( 9  and Yz(t): 

50 
Specifically, using the results from equations A.30 and A.40, 
the following expression can be created: 

For the first term in equation A.3.5, however, we must first 
find a method for taking the inverse Laplace Transform of 

rbm (A .42) 

the expression in braces. This can be done by using a partial 6s 
fraction expansion. Specifically, the quantity in equation 

y ( r )  = [ ,=I 

A.3.5 can be expressed as 
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then this term will be nonzero. Also, this term disappears if 
the system has no zeros. 

From this understanding of the system residual response, 
we can get a better idea of the origins of the problem 

5 constraints for the time-optimal control problem. As dis- 
cussed in section 3, three basic constraints are imposed by 
the time-optimal control problem. The first states that the 
time-optimal command profile must produce rest-to-rest 
motion in the system output. The second states that the 

10 system output must change by a desired amount, dy, and the 
third states that the command profile must not violate the 
actuator limits. This last constraint is easily satisfied by 
selecting command amplitudes that remain within the speci- 
fied system actuator limits. For the first two constraints, 

15 however, detailed equations were derived in section 3 to 
Understanding the Residual Response Equation relate the system output behavior to the parameters describ- 

Equation A.42 can be used to calculate the profile of the ing the input command. These two types of constraints were 
residual response for any SISO, LTI system to any time- named the dynamics cancellation constraint and the bound- 
optimal or time-efficient command input that can be ary condition constraint. From equation A.43, we can get a 
described by equation A.l.  By reorganizing the terms in this 20 better understanding about the origins of these constraints. 
equation, a better understanding can be gained about the First, for the case of the dynamics cancellation constraint, 
contribution of the individual system dynamics to the overall the resulting equations, when satisfied, ensure that the 
residual response. Specifically, by regrouping the terms in system will not have any residual vibration when the final 
the expression above, the following equation can be derived: resting state has been reached. In order for this to be true, 

+ (-1)4! J] + 

I1 15 ( m Q y k ( t -  1 t n ) ( k ~ l ) e p : ( T ~ l n i )  + Q ? i ( q l + ~ ) e z ~ ( T ~ T n )  + 
k = l  

K2i; cJez7(t-tn), for t t t,,. 
,=I 

(A.43) 
(term la) 

(term lb) 

By observing the individual terms in this equation, some both terms 2 and 3 in equation A.43 must be exactly zero. 
statements can be made about the contribution of each. First, 50 For term 3, this condition is satisfied if the values for the 
the three terms la ,  lb ,  and IC, represent the total rigid-body system zeros used in the command profile, zj*, exactly 
motion produced in the system by the given command. In match the actual system zeros, zj. When this occurs, the 
particular, term l a  has a value equal to the total system values of the residues, Ri and Qij(qi+l), and the direct gain, 
rigid-body motion in the cases where there are no system K2, will combine to a value zero. For term 2, although not 
rigid-body modes. When a system does contain rigid-body ss immediately apparent, the bracketed expression is a more 
modes, however, terms l b  and IC become nonzero. Note that complicated form of the dynamics cancellation constraint 
if the system contains no zeros, term IC will be zero since equation from section 3. Therefore, if the dynamics cancel- 
the tail coefficients, cj, will be zero. Term 2 in equation A.43 lation constraint is satisfied, term 2 will go to zero and the 
represents the contribution of the system denominator command profile will not excite any residual vibration. This 
dynamics to the overall residual response. If the specified 60 will be illustrated more clearly in the simple example to 
input command profile does not cancel all of the system follow. 
poles, then this term will be nonzero and describe any The boundary condition constraint in the time-optimal 
response, such as oscillation, around the final system steady- control problem ensures that the command profile will move 
state value. Term 3 in this equation, describes the contribu- the system output by the desired amount, dy. In terms of the 
tion of any system zeros to the residual response. If the tail 65 residual vibration equation, A.43, this constraint is captured 
of a time-optimal or time-efficient command does not drive in terms la ,  lb ,  and IC. In other words, if the command 
the system exactly at the frequencies of the system zeros, profile is designed to satisfy the boundary condition 
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constraint, then terms la ,  lb ,  and IC will be guaranteed to 
sum to the desired value of dy. Setting the value of these 
three terms equal to dy is an equivalent statement to the 
boundary condition constraint outlined in section 3. 

From this analysis of the residual response equation, it is 5 
clear that the set of constraints imposed for the time-optimal 
control problem is the minimum, necessary set required to 
ensure that the residual response behaves as desired. 
Furthermore, as will be illustrated in the example below, 
these constraints represent the simplest expressions that can 10 
be composed to require the system residual response to 
behave accordingly. 
A Simple Example 

In order to gain a better understanding of the relationship 
between the time-optimal problem constraints derived in 
section three and their impact on the system residual 
response, consider the simple system 

1s 

where p1#p2. From the variable definitions at the beginning 
of this Appendix, the following values can be assigned: 
rbm=0, m=2, r=l ,  ql=l ,  and q2=1. Also, assuming that the 2s 
time-optimal command profile for this system will have a 
pulse train with two switches, not including the first, then 
n=2. Now, by taking the partial fraction expansion of the 
system transfer function, the following values can be found 
for the residues and the direct gain: 30 

, and K2 = 0 
P 2  - Z I  , R2=-  
P 2  - PI 

RI - 
PI - P 2  

3s 
Also, by taking the partial fraction expansion of the transfer 
function with numerator 1 and denominator roots pi and zj*, 
values for the following terms can be found 

Therefore, substituting these values and expressions into the 
general equation for the system residual response in equa- 45 
tion A.43 yields: 

5s 

60 or equivalently 

(A.46) Z I  

PI P 2  
y ( t )  = - ~ (ao + al + a2)  + . . . 

98 
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From this equation, it can be seen that, if a time-optimal 
command profile is designed using a value for zl* that is 
identical to the actual system zero of zl, then the last term 
in this expression disappears. Recalling the previous 
discussion, the first term in this equation represents the total 
system output rigid-body motion. It is an equivalent state- 
ment to the boundary condition constraint, and if satisfied, it 
will exactly equal dy, the desired system output transition. 
Finally, the second and third term in this equation describe 
any system residual vibration excited by the command pulse 
train. In order to satisfy the time-optimal control problem, 
these terms must be equal to zero. Fortunately, referring to 
the constraint equations in section 3, it can be seen that, if 
that the dynamics cancellation constraints are satisfied, the 
expression in parenthesis in both terms must be equal to 
zero. More specifically, the parenthetical expression in term 
2 is the dynamics cancellation constraint for the first system 
pole, and the parenthetical expression in term 3 is the 
dynamics cancellation constraint for the second system pole. 
From this reasoning, it can be better seen that the constraint 
equations posed in the time-optimal control problem in 
section 3 correspond to the minimum set of necessary 
conditions that need to be enforced to ensure proper behav- 
ior in the system output response. 

Appendix B 
As discussed in section 3, the boundary condition con- 

straint for the time-optimal control problem requires that the 
integral of the command profile be evaluated. For systems 
that contain multiple rigid-body modes, this integral needs 
to be evaluated multiple times. This appendix presents the 
derivation of an expression that can be used to evaluate the 
integral of the command profile analytically. Unlike numeri- 
cal integration methods, this analytic integral allows for 
rapid calculation of the boundary condition constraint and 
provides a result that is exact. The derivation will proceed by 
considering the integral of the two command components 
separately. First the analytic integral for the command pulse 
train will be considered followed by the integral of the 
command tail. 
The Analytic Integral of the Command Pulse Train 

As discussed in section 3, the general equation for the 
pulse train of a time-optimal or time-eficient command can 
be expressed as 

,=O 

Now, in order to calculate the analytic integral of this 
expression, we will only consider the value of the integral at 
the specified switch times, tj. For example, for the given 
command profile, a vector can be constructed with one 
element for each switch. Each element represents the value 
of the command or its integral at the corresponding switch 



u0 = 

10 

The first value of this vector corresponds to the initial 

zero. The second element corresponds to the value of the 
amplitude of the command pulse train slightly before the 
switch time t,. The third element corresponds to the com- 1s 
mand amplitude value just before the switch time t,, and so 

command amplitude, which will be assumed to be always dt = 

uoo - 0  (B.2) evaluate the integral of the command pulse train any number 
UOI a0 s of times. Since this formula is most easily expressed in 
u02 = a0 +a1 . vector form, let us first define some useful vectors. To 

capture the values for the time spacing from one switch time ~ u 0 3 -  ~ a o + a l + a ~  

P.3 

u: = 

2 s  

On. this prdtocol, a vector can-be con- Also, another useful vector can be defined which represents structed for the first integral of the command pulse train: the values of the various integrals of the command Drofile 

- 0  

u,o 

U,I  , 

%-I)  ~ 

where the initial value for the first integral of the command 
is assumed to be zero. For each element in this vector, the 
integral is calculated by evaluating the integral from one 
switch to the next and adding the result to the integral over 
all of the previous switches. Following this pattern, a similar 
vector can be constructed for the second integral of the 
command pulse train: 

I 0 

where n is the number of switch times in the pulse train. 
Now, given these vector definitions, the following formulas 

30 can be created to define the integral of the command pulse 
train at the values of the switch times. For the first integral 
of the command pulse train, another way to express equation 
B.3 is 

ul=cumsum(uo. *dt), 63.7) 

where uo is defined according to equation B.2 and the 
operator, * represents the element-by-element multiplication 
of the two vectors. Also, the cumsum( ) function in this 
equation performs the task of adding to each vector element 
all of the previous elements in the vector. Following this 
precedent, an expression for the second integral of the pulse 
train can be written as 

P.8) I 1 
4s u2 = cumsum( ,u0. dr + u;. dt , 

where the ( )' operation defines the square of each vector 
element. This equation for the second integral of the com- 

50 mand profile delivers the same result as the expression in 
equation B.4. Following the same approach, similar expres- 
sions can be formed for additional integrals of the command 
pulse train: 

(E .9) 

(E .lo) 

ss u3=cumsum 

u4 = cumsum 
( m u o . * d t 4 + - u ; . * d r 3 + . . .  1 1 

2 . 3  
60 

and so on. To reiterate, each of these vectors, ui, represents 
the values of the i-th integral of the command pulse train at 
each switch time in the command. The value of the i-th 

65 integral of the entire pulse train is available in the last 
element of ui. Conveniently, the form of the equations 
derived above allows for easy implementation in a matrix 

I 1 
u22 + u12(f3 - t 2 )  + ,(a0 + al + a2)(t3 - t212 I 

Again, this vector assumes an initial value for the second 
integral of the command to be zero, and each subsequent 
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algebra programming environment such as Matlab. Listed in 
Table B.l  is a computer-executable implementation of these 
equations to calculate the integral of a command pulse train 
any number of times. Since this code relies on the fast matrix 
and vector operations performed in Matlab, these integrals 
can be calculated very rapidly. Additionally, due to the 
compact notation, very few lines of code are required to 
perform this calculation. 

TABLE B.l 

Matlab code to calculate the integral of the command pulse train 

% Given two row vectors, one containing the pulse train 
% amplitudes, a, and switch times, t, the following code can 
% be used to evaluate the integral of the pulse train 
% intnum times. This code assumes that the initial command 
% value and the initial value of all its integrals are 
% zero. The result of this integral over the entire length 
% of the pulse train is returned in the variable result. 
% Initialize the matrix storing the integrated result. 
% Each row, ii, of this matrix contains the ii-th integral 
% of the command at every switch time except the first. 
U = cumsum(a); 
Utemp = U; 
n = length(a); 
% Now perform the integration loop with one loop for each 
% order of integration. 
for ii = l:intnum, 

if ii==l, Utemp = cumsum(U.*dT); else 
Utemp = cumsum(sum(U.*dT)); end; 
U = [U; [0 Utemp(1:n-l)]]; 
dT = [(l/(ii+l)) * dT(1,:) .* dt; dT]; 

end; 
result = Utemp(n); 

The Analytic Integral of the Command Tail 
With an expression derived to calculate the integral of the 

pulse-train portion of the optimal command, all that remains 
is to derive a similar expression for the tail. This derivation 
can begin by considering the general equation for the tail of 
a time-optimal or time-efficient command: 

Since we are concerned now with calculating the integral of 
this equation only for times tzt,, we can simplify this 
expression to: 

102 
grating equation B.12, an equation for the first integral of the 
tail, ul(t), can be calculated to be 

= i; +constant 
,=I 

10 

The initial condition in equation B.13 can be used to derive 
an expression for the constant in this equation. Performing 
this task yields 

1s (E .lS) 
constant = u10 - 5. 

,=I ' J  

Therefore, combining this result with equation B.17 pro- 
duces the final expression for the first integral of the com- 
mand tail: 

20 

(E .19) 

Following a similar procedure, this task can also be per- 
formed for the second integral of the command tail, u2(t), to 

30 derive the result 

uz(t)=J J u(t)dt=J u,(t)dt 

40 
where uz0 is the initial condition from equation B.14. 
Similarly, the third integral of the tail, u3(t), can be 
expressed as 

J = I  

so 
In order to calculate a general analytic expression for the 
multiple integral of this equation, we must first specify the 
initial conditions of the integration. More specifically, 

(E .14) 

(E .15) 

Now, to get a better understanding of the form of a general 
expression for the n-th integral of the tail equation, let us 
consider the first few integrals of command tail. By inte- 

(B.16) 

(B.17) 

5s 

(E .21) 

Now, following the pattern suggested by these results, a 
general expression for the n-th integral of the command tail 
can be formulated as follows: 

60 

(E .22) 
u,(r) = J(n)u(r)dr 

65 
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the result is exact. From this result, it is clear that the integral 
for any time-optimal or time-efficient command can be 
evaluated quickly and easily. Employing these expressions 
to impose the boundary condition constraint in the time- 

s optimal control problem will similarly reveal that this 
approach is highly effective for deriving time-optimal and 
time-efficient command profiles. 

... What is claimed is: 
lo 1. Amethod of determining an input command profile for 

a dynamic system that can be modeled as a linear system, the 
input command profile for transitioning an output of the 
dynamic system from one state to another state, the method 
comprising the steps of  

...L c/ezJT. 
m F 1 0  1 -2 :]?-I + 

d 
J=I J=I 

As indicated in Table B.2. this eauation can be imalemented 15 
easily into a r matrix algebra programming environment, 
such as Matlab, to rapidly calculate the integral of the 
command tail anv number of times. In order to aerform this 

identifying characteristics of the dynamic system; 
selecting a command profile which defines an input to the 

integration, however, a final time for the integration must 
first be specified. Since the value of this final time has no 20 
influence over the amount of computation required, it can be 
selected to be sufficiently large enough to let the command 
settle to its final steady-state value. 

dynamic system based on the characteristics identified 
in the identifying step, the command profile comprising 
one or more pulses which rise and fall at switch times 
and the command profile being useable with substan- 
tially any dynamic system that can be modeled as a 
linear system; 

imposing a plurality of constraints on the dynamic 
system, at least one of the constraints being defined in 
terms of the switch times; and 

determining the switch times for the input to the dynamic 
system based on the command profile and the plurality 
of constraints. 

2. A method according to claim 1, wherein the character- 
istics identified in the identifying step relate to poles and 

3. Amethod according to claim 1, wherein the plurality of 
constraints include a dynamics cancellation constraint which 
specifies that the input moves the dynamic system from a 
first state to a second state such that the dynamic system 
remains substantially at the second state. 

4. Amethod according to claim 1, wherein the plurality of 
constraints include boundary condition constraints, the 
boundary condition constraints including an initial time of 

4s the input and a specified change “dy” in the output of the 
system. 

condition constraints are based on the following equations: 

TABLE B.2 2s 

Matlab code to calculate the integral of the command tail. 

% Given two row vectors, one containing the tail coefficients, 

% the tail of a time-optimal or time-efficient command 
% intnum times. The result of this integral over from the 

% variable result. The initial conditions are specified in 
% the initial condition vector ic, which should have as many 

% polynomial in ‘t’ with as many terms as there are integrations 
% plus an additional term containing a sum of exponentials. 

for ii = 0:intnum-1, 

% c, and one containing the values of the tail exponents, L,  

% the following code can be used to evaluate the integral of 30 

% start of the tail to the final time, tf, is returned in the 

3s zeros of the dynamic system. % elements as the desired number of integrations, intnum. 
% The time integral of a sum of exponentials consists of a 

coefs = [ 1; 

40 
n = intnum - ii; 
coefs = [coefs (l/fact(ii))*(ic(n) - sum(c./(z. ~ n)))]; 

end; 
coefs = fliplr(coefs); 
result = polyval(coefs,tf) + sum((c./(z. intnum)).*exp(z*tf)); 

The Analytic Integral of the Entire Command 
With the expressions derived in this appendix, it is pos- 

efficient command pulse train and tail. In order to obtain a 
value for the integral of the entire command, the separate 

combined as follows. First, using the code in Table B.l ,  for 
example, the integral of a given command pulse train can be 
calculated from the initial time to the final command switch 
time. This result can then be used as an initial condition to 
calculate the integral of the command tail. The value reached 5s 

sible to calculate the integral Of the time-optimal or time- 5 ,  A method according to claim 4, wherein the boundary 

expressions for the two different tail components can be SO t,=O 

dy = l i i ( ~ ) ( J ” ” ) u ~ r ~ d r ] l  t=co , 

by this calculation will represent the value of the command 
integral from the start of the command to a specified final 
time. For multiple integrals, the code to integrate the com- 
mand pulse train can be used once for every desired integral. 
The resulting values can be used as an initial condition 
vector for the integration of the command tail. 

Since the equations derived in this appendix are compact 
and can be expressed in matrix form, they can be imple- 
mented easily as computer-executable code. Because this 
code is based on an analytic solution to the integral of the 
command profile, calculation is much faster than a standard 
numerical integration. Also, unlike a numerical integration, 

where u(t) represents the command profile, N(s) repre- 
sents at least a part of a numerator of a transfer function 
of the system, D(s) represents at least a part of a 
denominator of the transfer function of the system, and 
“rbp” corresponds to rigid body poles in the system. 

6. Amethod according to claim 1, wherein the plurality of 
constraints include an actuator limit constraint, the actuator 
limit constraint corresponding to limits in the system which 
keep the input within limits of the actuator. 
7. A method according to claim 1, wherein the determin- 

ing step comprises determining the switch times based on: 
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(i) a command profile, u(t), comprising: 

where “a;’ represents an amplitude of pulses in the 
function, “ti’ represents switch times for the pulses, 
“c-” represents coefficients of exponential terms in a tail 
o f  the command profile, “zi’ represents zeros in the 10 
system, “n” represents a total number of switches 
excluding a first switch, and “r” represents a number of 
zeros in the system, 

(ii) a dynamics cancellation constraint comprising: 
1s 

where “pi)’ represents system poles, and “qi)’ represents a 
multiplicity of each system pole “pi)’, and (ii) the 
boundary condition constraints comprise: 

to=o 

aJf:“,-l) -s1 
where N(s) represents at least a part of numerator of a 

transfer function of the system, D(s) represents at least 
a part of denominator of the transfer function of the 
system, and “rbp” corresponds to rigid body poles in 
the system. 

11. Amethod according to claim 1, further comprising the 
step of verifying optimality of the input which includes the 
switch times determined in the determining step. 

12. A method according to claim 11, wherein the opti- 
mality of the input which includes the switch times deter- 
mined in the determining step is verified based on Pontrya- 
gin’s Minimum Principle. 

13. An apparatus which determines an input command 
3o profile for a dynamic system that can be monitored as a 

linear system, the input command profile for transitioning an 
output of the dynamic system from one state to another state, 

a memory which stores computer-executable process 

a processor which executes the process steps stored in the 
memory so as (i) to identify characteristics of the 
dynamic system, (ii) to select a command profile which 
defines an input to the dynamic system based on 
identified characteristics, the command profile corn- 
prising one or more pulses which rise and fall at switch 
times and the command profile being useable with 
substantially any dynamic system that can be modeled 
as a linear system, (iii) to impose a plurality of con- 
straints on the dynamic system, at least one of the 
constraints being defined in terms of the switch times, 
and (iv) to determine the switch times for the input to 
the dynamic system based on the command profile and 
the plurality of constraints. 

14, ~n apparatus according to claim 13, wherein the 
characteristics identified by the processor relate to poles and 

15, ~n apparatus according to claim 13, wherein the 
plurality of constraints include a dynamics cancellation 

ss constraint which specifies that the input moves the dynamic 
system from a first state to a second state such that the 
dynamic system remains substantially at rest at the second 
state. 

16. An apparatus according to claim 15, wherein the 
60 command profile includes a tail following the one or more 

pulses; and wherein the dynamics cancellation constraint is 
based on the following equation: 

e J +  

J=O 

20 
‘J‘J ( q , - k ) ] j l  = 0, e-snL [‘Jt?-’’ ‘2 ( P q l ( k ) ) ( S t n  

s=p,  
J=I k = l  

where ‘‘p,” represents system poles, ‘‘q,” represents a 2s 
multiplicity of each system pole “p,”, and where fl is 
defined as follows: 

Bl(~)=~,~=~=o,~~~Bq,(~)=Bq,~l(~)+(~-~)Bq,~l(~-~), 

(iii) boundary condition constraints comprising: 

to=o the apparatus comprising: 

dy = !I( =)(J(rbp)u(t)  d t  LINESUBt = oil, 3s steps; and i 
where N(s) represents at least a part of a numerator of 
a transfer function of the system, D(s) represents at 
least a part of a denominator of the transfer function of 40 
the system, and “rbp” corresponds to rigid body poles 
in the system, and 

(iv) an actuator limit constraint comprising: 

urn,, %,&)~Urnar> 4s 

where u,,, represents a minimum value of the input, 
utaLl(t) represents a value of a tail of the input at time 
t , and u,, represents a maximum value of the input. 

8. A method according to claim 7, wherein the switch so 
times are determined using an optimization algorithm. 

9. A method according to claim 1, wherein, in a case that 
the identifying step identifies that the dynamic system 
contains Poles Only and no zeros, 6) the command Profile 
comprises: 

“ > >  

of the dynamic system, 

,-” 

where “a,” represents an amplitude of pulses in the 
command profile, “t,” represents switch times for the 
pulses, and (ii) the plurality of constraints include only 
a dynamics cancellation constraint and boundary con- 

10. A method according to claim 9, wherein (i) the 

a p - 1 )  -st dition constraints. J J  e ’ +  

dynamics cancellation constraint comprises: 



US 6,694,196 B2 
107 

-continued 
108 

-continued 

5 

where “a;’ represents an amplitude of pulses in the 
command profile, “ti’ represents switch times for the 
pulses, “c;’ represents coefficients of exponential terms 
in the tail, “z;’ represents zeros in the system, “n” 
represents a total number of switches excluding a first 
switch, “r” represents a number of zeros in the system, 
“pi)’ represents system poles, “qi)’ represents a multi- 
plicity of each system pole “pi)’, and where fl is defined IS 
as follows: 

Bl(k)=l,k=l=o,k~lBq,(k)=Bq,~l(k)+(k-1)Bq,~l(k-l). 

17. An apparatus according to claim 13, wherein the 20 
plurality of constraints include boundary condition 
constraints, the boundary condition constraints including an 
initial time of the input and a specified change “dy” in the 
output of the system. 

boundary condition constraints are based on the following 
equations: 

18. An apparatus according to claim 17, wherein the 25 

where “p,” represents system poles, “9,” represents a 
multiplicity of each system pole “p,”, and where fl is 
defined as follows: 

Bl(k)=l,k=l=o,k#~Bq,(k)=Bq,~l(k)+(k-l)Bq,~l(k-l), 

(iii) boundary condition constraints comprising: 

to = 0 

N ( s )  YbP) 

dy = s-0 l im(-)[r  D(s) u(r)dr 

where N(s) represents at least a part of a numerator of 
a transfer function of the system, D(s) represents at 
least a part of a denominator of the transfer function of 
the system, and “rbp” corresponds to rigid body poles 
in the system, and 

(iv) an actuator limit constraint comprising: 

urn,, %,&)~Urnar> 

where umin represents a minimum value of the input, 
utail(t) represents a value of a tail of the input at time 
t , and u,,, represents a maximum value of the input. 

21. An apparatus according to claim 20, wherein the 
“ > >  

30 
t,=O 

dy = 1 i m / ~ ) [ J ‘ ” ) u ( r ) ~ r  , _ _  - 
s-0 D(s) ]It=- switch times are determined using an optimization algo- 

rithm. 
22. An apparatus according to claim 13, wherein, in a case 

that the identifying step identifies that the dynamic system 
contains poles only and no zeros, (i) the command profile 
comprises: 

35 
where u(t> represents the COmmand Profile, N(s) repre- 

sents at least a Part of a numerator of a transfer function 
of the system, D(s) represents at least a part of a 
denominator of the transfer function of the system, and 
“rbp” corresponds to rigid body poles in the system. 

19. An apparatus according to claim 13, wherein the 
plurality of constraints include an actuator limit constraint, 
the actuator limit constraint corresponding to limits in the 
system which keep the input within limits of the actuator. 

processor determines the switch times based on: 

40 
U ( r )  = aJl(r - r J ) ,  

J=O 

where “a,” represents an amplitude of pulses in the 
command profile, “t,” represents switch times for the 
pulses, and (ii) the plurality of constraints include only 
a dynamics cancellation constraint and boundary con- 
dition constraints. 

23. An apparatus according to claim 22, wherein (i) the 

20. An apparatus according to claim 13, wherein the 45 

(i) a command profile, u(t), comprising: 

u(r) = aJl(r - r,) + cJe‘J‘T~T”’l(r - rn) ,  50 dynamics cancellation constraint comprises: 
J=O J=I 

where “ai’ represents an amplitude of pulses in the 
function, “ti’ represents switch times for the pulses, 55 
“c;’ represents coefficients of exponential terms in a tail 
of the command profile, “zi’ represents zeros in the 
system, “n” represents a total number of switches 
excluding a first switch, and “r” represents a number of 
zeros in the system, 60 

(ii) a dynamics cancellation constraint comprising: 

65 

where “pi)’ represents system poles, and “qi)’ represents a 
multiplicity of each system pole “pi)’, and (ii) the 
boundary condition constraints comprise: 

to = 0 

where N(s) represents at least a part of a numerator of a 
transfer function of the system, D(s) represents at least 
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a part of a denominator of the transfer function of the 
system, and “rbp” corresponds to rigid body poles in 
the system. 

24. An apparatus according to claim 13, wherein the 
command profile further comprises, after a last one of the 
one or more pulses, a tail which trails off to a constant value; 

wherein the length of the tail is limited by limiting values 

26. An apparatus according to claim 25, wherein the 
of coefficients “cl”. 

values of the coefficients “c1” are limited by: 

and cJe+nJ+ 5 XUI, ,  

wherein the plurality of constraints comprise insensitivity J=I 

constraints that include a constraint which limits a 
where “ulrm” defines an actuator limit, “X’  defines a 

percentage relative to limit ulrm within which the tail 
settles, and t;pnl define a real component of zeros “z” 
within the system. 

27. An apparatus according to claim 13, further compris- 
ing the step of verifying optimality of the input which 
includes the switch times determined by the processor. 

28. An apparatus according to claim 27, wherein the 
optimality of the input which includes the switch times 
determined in the determining step is verified based on 
Pontryagin’s Minimum Principle. 

length of the tail. 
25. An apparatus according to claim 24, wherein the tail lo 

is defined by a function uCaLl(t) which comprises: 

7 (T-TSUBn) 

&a,l(f) = cJezJ K f  - f n ) ,  

J=I 1s . 

where “c1” represents coefficients of exponential terms in 
the tail, “z1” represents zeros in the system, “n” repre- 
sents a total number of switches excluding a first 
switch, and “r” represents a number of zeros in the 20 

system; and * * * * *  


