
United States Patent
Nathan

[i l l Patent Number: 4,644,488
[45] Date of Patent: Feb. 17, 1987

PIPELINE ACTIVE FILTER UTILIZING A
BOOTH TYPE MULTIPLIER

Inventor: Robert Nathan, Pasadena, Calif.

Assignee: California Institute of Technology,

Appl. NO.: 541,124
Filed: Oct. 12, 1983
Int. (3.4 G06F 7/38; G06F 7/52
U.S. Cl. 364/724; 364/736;

364/757; 382/49
Field of Search 364/754, 757, 760, 728,

364/724, 604, 736; 382/49

Pasadena, Calif.

References Cited
U.S. PATENT DOCUMENTS

3,270,188 8/1966 Ares 235/181
3,849,760 11/1974 Endou et al. 340A46.3 H
3,961,172 6/1976 Hutcheon 235/181
3,995,270 11/1976 Perry et al. 328/116

4,156,914 5/1979 Westell 364/515
4,161,033 7/1979 Martinson 364/728

4,128,890 12/1978 Irwin et al. 364/724
4,153,938 5/1979 Ghest et al. 364/757

4,168,530 9/1979 Gajski et al. 364/760
4,218,752 8/1980 Hewes et al. 364/825
4,238,833 12/1980 Ghest et al. 364/760
4,244,029 1/1981 Hogan et al. 364/728
4,267,580 VI981 Bond et al. 364/824
4,313,170 1/1982 Lewis et al. 364/517
4,314,348 2/1982 Carr 364/604
4,328,426 5/1982 D’Ortenzio 250/578
4,370,726 1/1983 Caracappa 364/604
4,489,393 12/1984 Kawahara et al. 364/754

4,538,239 8/1985 Magar 364/754
4,490,805 12/1984 Tamura 364/728

OTHER PUBLICATIONS
Bakis, R. et al., “Pipelined Convolver for Two-Dimen-

=PI-I

sional Images,” IBM Technical Disclosure Bulletin, vol.
14, No. 2, Jul. 1971.
Ranganath, J. S. et al., Multiple Image Registration Using
Correlation of Adjacent Pixels, Conference Proceedings
of IEEE, Apr. 1982.
Mathematical Approach to Computational Networks,
Danny Cohen Information Sciences Institute, U.S.C.
ISI/RR-78-73 ARPA Order No. 2223, Nov. 1978.
A 16 Bit LSI Digital Multiplier, Thesis by Rodney Tak
Masumoto for the Degree of Electrical Engineer, Cali-
fornia Institute of Technology, 5/18/78.

Primary Examiner-James D. Thomas
Assistant Examiner-Dale M. Shaw
Attorney, Agent, or Firm-Freilich, Hornbaker, Rosen &
F e m an d e z

[571 ABSTRACT
Multiplier units of the modified Booth decoder and
carry-save adder/full adder combination are used to
implement a pipeline active filter wherein pixel data is
processed sequentially, and each pixel need only be
accessed once and multiplied by a predetermined num-
ber of weights simultaneously, one multiplier unit for
each weight. Each multiplier unit uses only one row of
carry-save adders, and the results are shifted to less
significant multiplier positions and one row of full ad-
ders to add the carry to the sum in order to provide the
correct binary number for the product Wp. The full
adder is also used to add this product Wp to the sum of
products ZWp from preceding multiply units. If m x m
multiplier units are pipelined, the system would be capa-
ble of processing a kernel array of mXm weighting
factors.

8 Claims, 14 Drawing Figures

U.S. Patent Feb. 17,1987 Sheet 1 of 10 4,644,488

PIXEL
INPUT

FIG. I
PRIOR ART

FIG. 2a
PRIOR ART

FIG. 2b
PRIOR ART

ADD

2x

IX

,SUB

2x

I X

U.S. Patent Feb. 17,1987 Sheet 2 of 10 4,644,488

ADD

Wn-1
2x

Wn
I X

-FIG. 2c
PRIOR ART

FIG. 2d
PRIOR ART

Urns. Patent Feb. 17,1987 Sheet 3 of 10 4,644,488

X . L+

T -
X

X
1

FIG. 3 a
PRIOR ART

US. Patent Feb. 17,1987 Sheet 4 of 10 4,644,488

PRIOR ART

FIG. 4
PRIOR ART

U.S. Patent Feb. 17,1987 Sheet 5 of 10 4,644,488

STORE

LESS
SIGNIFICANT
DIGIT 1

FULL
ADDER cb

MORE
SIGN1 FlCANT
DIGIT

FIG. 5

U.S. Patent Feb. 17,1987 Sheet 6 of 10 4,644,488

L

r

U.S. Patent Feb. 17,1987 Sheet 7 of 10 4,644,488

CWP c

FIG. 7

U.S. Patent Feb. 17,1987 Sheet 8 of 10 4,644,488

I
40 9

I
I
I
I
I
I
l a

I
I
I
I
I I I

I
I
I
I
I
I
I
I
I
I
I

4%
I
I
I
I
I
I
I
I
I
I
I
I

8
/

I

I

Pi

/

FIG. 8

U.S. Patent Feb. 17,1987 Sheet 9 of 10 4,644,488

X/+

,

I
I
I
I
I
I 40
I
I
I
I
I
I
I
I

I
I
I
I

50 7

4 1

, Pi+n

I,

FgT Pi +mn

LINE ‘L

DELAY
42

Pi +2n -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIG. 9

U.S. Patent Feb. 17,1987 Sheet 10 of 10 4,644,488

m52 PROCESSOR

54 7

v:
3 m

I
I
I

BUFFER
INTER-

5 9 j L q 3 5 x 3 5 I'"
I FILTER v w

GEN.

FIG. IO

4,644,488
1

PIPELINE ACTIVE FILTER UTILIZING A BOOTH
TYPE MULTIF’LIER

ORIGIN O F INVENTION
The invention described herein was made in the per-

formance of work under a NASA contract and is sub-
ject to the provisions of Section 305 of the National
Aeronautics and Space Act of 1958, Public Law 85-568
(72 Stat. 435; 42 USC 2457).

BACKGROUND OF THE INVENTION
This invention relates to a pipeline active filter of the

type commonly used as a convolver or correlator for
image enhancement, data filtering, correlation, pattern
extraction, Synthetic Aperture Radar (SAR) data pro-
cessing, and the like.

These applications for an active filter can all use the
same general group of convolution operations, namely
summation of the weighted values of an input data
stream of picture elements (pixels) representing (usu-
ally) a two-dimensional image. Weighting is accom-
plished by multiplying each pixel value by a set of 35 by
35 weighting factors, for example, to create a new out-
put value for each pixel.

In conventional processing, using a standard digital
computer, or an array processor, the data are processed
sequentially, using a repetition of multiplication and
summation operations on each pixel value. Thus, on an
image of lo00 by lo00 pixels, filtered by a 35 by 35
weight mask (a realistic requirement), the data must be
accessed and multiplied looOx IOOOX 35 X 35 times, to
produce one full image. This amount of processing is
obviously very slow and expensive, and thus greatly
limits application of the convolution processing. When
compared to the speed of acquisition of the data, even
from a spacecraft transmitting slow-scan television
frames, the disparity is seen to be great.

One solution is to provide more than one multiplier,
and to process the data in a pipeline fashion, thereby
arranging to hold the input data stream access require-
ments to a minimum. If the process were embodied in
dedicated VLSI hardware, rather than in software
(computer program), this solution could be more
readily accomplished, and produced in quantities at a
reasonable cost. In processing a lo00 by lo00 pixel
image by a kernel of 35 by 35 weights, each pixel need
only be accessed once and multiplied by all weights
simultaneously, with the result that the entire image
processing operation requires only lo00 by lo00 succes-
sive accesses-a saving of 1225 to one. (For two-dimen-
sional convolution the incoming pixels are delayed for
one image line length between each row of the kernel).

One approach suggested by Professor Carver Mead
of California Institute of Technology to the present
invention is to use the modular algorithm described by
Danny Cohen, “Mathematical Approach to Computa-
tional Networks,” Information Sciences Institute,
U.S.C. ISILRR-78-73 ARPA Order No. 2223, Novem-
ber 1978. That algorithm is diagrammed in FIG. 1. The
pixel data (typically 8 bits per pixel) is input at x for
multiplication by weights W1, W2, W3 and W4. Each
section adds the new product (temporary product) with
the output sum, S , of the previous section, indicated by
a plus sign in a circle. The product sum from the previ-
ous section is passed through a unit time delay Z. Note
that no delays are needed in the “upper” line.

5

10

15

20

25

30

35

40

45

50

55

60

65

In a digital processor, multiplication is carried out by
a succession of additions, and when carried out in a
digital computer using binary arithmetic, carry opera-
tions usually take up most of the operating time. Conse-
quently much effort has gone into the design of addi-
tion/carry algorithms and circuits to reduce the carry
time in digital processors. The need to propagate the
carry can be made to occur less frequently than the
remaining internal addition operations if some additions
are carried out with carry-save operations so that only
one carry-propagate operation occurs per several addi-
tion operations. The digital processor will then be more
efficient.

A suitable logic design for the multipliers is shown in
FIGS. 2u and 2c which can be implemented in VLSI
chips as described by Rodney T. Masumoto in a thesis
for an Electrical Engineer degree at California Institute
of Technology, May 18, 1978. The logic design imple-
ments the special case of ternary multiplication often
referred to as a modified Booth algorithm summarized
in the following truth table, wherein the columns
headed Yj+ 1, Yjand Yi- 1 represent three successive bits
of a multiplier, and the respective notations 1 X and 2 X
mean one times and two times a multiplicand.

BOOTH ALGORITHM TRUTH TABLE
Y;ri Y Yi-i ADD SUB 1X 2X

0 0 0 1 0 0 0 ADDZERO
0 0 1 1 0 1 0 ADDlX
0 1 0 I 0 1 0 ADDIX
0 1 1 1 0 0 1 ADD2X
1 0 0 0 1 0 1 SUB2X
1 0 1 D 1 1 0 SUBlX
1 1 0 0 1 1 0 SUBlX
I 1 1 0 1 0 0 SUBZERO

The column on the right is an interpretation of the
operation to be executed in view of the outputs in the
four columns headed ADD, SUB, 1 X and 2 X .

A constant shift of two bits of the multiplier Y occurs
between examinations of the multiplier bit sets Yi+ 1. Yj,
Yj- 1. After each shift, the logic looks at the present two
multiplier bits Yjand Yj+ 1 and the previous bit Yj- 1. (In
conventional multipliers, the multiplier bits are exam-
ined one at a time). The multiplication action controlled
by the logic diagram of FIG. 2u through the logic dia-
gram of FIG. 2c allows merely shifting or not shifting
under 2 x or 1 X control, and inverting oLnot inverting
under ADD or SUB control, the multiplicand bit to be
added in a carry-save adder shown in FIG. 3a before
examining the next bits of the multiplier (pixel).

The logic circuit for decoding the set of three multi-
plier (pixel) bits shown in FIG. 2u may be implemented
with FET NOR gates as shown in FIG. 2b. The logic
requires an exclusive-OR gate 1 to form the command
1 X =Yj@Yj-l, add or subtract the multiplicand, de-
pending on whether Yj+l is a bit 0 or a bit l, and an
exclusive-OR gate 2 followed by an AND function gate
3 to form the command 2X =e,$yi_)(Yi+~$Yi) add
or subtract twice the multiplicand, depending on
whether Yi+l is a bit 0 or a bit 1. The logic symbols
employed are conventional, with a small circle at the
output signifying an inverting logic element.

It should be noted that if a pixel is to be multiplied by
a set of weights simultaneously by an array of multipli-
ers using the modified Booth decoder, only one decoder
is required, but a separate shifter/-inverter circuit is
required for each weight. Such a circuit defined by the

4,644,48 8
3 4

logic diagram in FIG. 2c can be implemented with FET adders and one final adder with carry propagation, a
devices as shown in FIG. 2d. full adder. The present invention utilizes only one car-

The advantage of the circuits in FIGS. 26 and 2d is ry-save adder for forming a product by successive addi-
that they can be implemented with n-MOS integrated tions of the multiplicand without carry propagation,
circuit techniques for a very large scale integrated 5 and a full adder to assimilate the separately stored carry
(VLSI) circuit, together with the carry-save adder of with the sum for a binary number sometimes referred to
FIG. 3, but the main advantage of this modified Booth hereinafter as a “temporary The full adder is
decoder and shiftedinverter for multiplication, as used then used a second time to add this temporary product
in the present invention, is that it substantially reduces to a sum ofproducts, thus allowing successive products
the number of addition operations, and the time re- 10 to be summed in pipeline multiplying units while pro-
quired for those operations. That is because carrys are cessing a stream of data, such as pixels in successive saved until a final product sum is to be formed in a full lines of a stored frame of pixels, adder, at which time carry propagation is allowed while The carry-save adder as used in this invention accepts the next pixel is being multiplied by the same weight.
FIG. 4 illustrates a full adder which can be imple- 15 three
merited with n-MOS integrated circuit techniques as

An entire array of multiplier/adder circuits tends to

the local binary Product x, a carry signal
ci+l from the next more significant adder, and a sum
signal from the second next more significant digit carry- described by Masumoto, supra.

defeat the desire for providing many multipliers in a have been calculated during the previous clock cycle so
small area, but if each of the multipliers uses only one 2o that in the logic diagram of FIG. 3a the inputs Ciand Si
row of adders in the add-shift manner of the modified for the outputs s o and c o are actually c i+ 1 and si+z- In
Booth algorithm, much space is saved, and the opera- contrast, a full adder immediately adds the carry that is
tion will still be much faster than a conventional corn- produced to the sum of its next more significant neigh-
puter process. This speed is made possible by a carry- bor to Produce the correct number.
save adder at each multiplier position implemented as 25 Since the correct Product must ultimately be Pro-
shown in FIG. 3 and described by Masumoto, supra. duced, both carry-save adders and full adders are re-
The following is the truth table of the carry-save adder. quired by the present invention, but as just noted above,

only one carry-save adder and one full adder is needed
for each product binary digit so a unit to multiply an

3o 8-bit pixel with a 16-bit weight requires an array of 25
multipliers (24 bits+carry), or for a truncated product, Si X Ci so c o

0 0 0 0 0 a lesser number, such as 22, each multiplier being com-
prised of a common modified Booth decoder, shifter- 0 0 1 1 0

0 1 0 1 0
0 1 1 0 1 inverter, carry-save adder and full adder. These multi-
1 0 0 1 0 35 plier units use a triple bit examination approach to re-

duce multiply/add operations (and circuits) to half of 1 0 1 0 1
1 1 0 0 1
1 1 1 1 1 the conventional equivalent. Together with the reduced

ratio of carry operations to sum operations, this oper-
ates to make the process quite fast in this active filter.

SUMMARY OF THE INVENTION

units of the modified Booth decoder and carry-save
adder/full adder combination are used to implement a

45 pipeline active filter wherein data elements are pro-

accessed once to be multiplied by a number of weights
simultaneously, one multiply unit for each weight. Each

Save adder si+z, respectively, where the carry and sum

While the truth table of the carry-save (half) adder is
identical to that of a full adder, there are subtle circuit 40

carries; a carry-save adder defers the carry propagation
to the next adder cycle. Thus, there is no carry assimila-
tion delay.

FIG. 3b illustrates a conventional logic diagram of an

trates an equivalent logic diagram using only NOR
gates which, although it requires gates, can be

and operational differences. A full adder propagates In accordance with the present invention, multiply

adder that uses two exclusive-NOR gates, FIG. 4 31~s- sequentiallyp and each need Only be

implemented more easily with n-MOS integrated circuit a modified Booth decoder and Only
techniques. Both of these may be used to implement a 50 one row of carry-save adders9 and the results are trans-

multiply unit

carry-save adder or a full adder. The difference is ferred to less significant multiplier positions for addition
in how they are used. a carry-save adder, the carry in subsequent operations for multiplication of bits of the
and sum outputs C, and So are both saved in storage element by weight. Each carry-save adder thus accepts
devices, and the carry is not propagated. Instead, both a sum signa1 and a carry Signa1 from more significant bit
the carry and sum are added to a new bit, indicated as x 55 multiplier positions without having to add the carry
in FIG. 3b, during a following bit mu~tip~ication cycle. signal it receives to obtain the correct sum. Each multi-
In a full adder shown in FIG. 4, there is only one out- plier one row of f d l adders to add the C W to the
put, SO. The carry, C,, is not an output of the adder; sum in order to provide the correct binary number, Wp,
instead it is an internal signal that is propagated as ci to for the product, and to also add the product to a sum of
a stage of higher order. The carry from the next lower 60 products XWp from preceding pipelined multiply units.
adder is shown as Ciin FIG. 4. The other two inputs, S l[f mXm multiplier units are pipelined, the system
and C, are stored sum and carry bits from a carry-save would be capable of processing a kernel array of m >< m
adder. weighting factors.

Both the carry-save adder and the full adder thus BRIEF DESCRIPTION OF THE DRAWINGS implemented in VLSI chips are used by Masumoto, 65
supra, differently. In a 16 by 16 bit multiplier accumula- FIG. 1 illustrates a prior-art finite impulse response
tor using a modified Booth decoder to sum successive filter for multiplying pixels in sequence by a set of
products, Masumoto uses eight cascaded carry-save weights W1 through W4.

4.644,488
5

FIG. 2u is a logic diagram of a prior-art modified
Booth algorithm useful in implementing a multiplier for
the present invention.

FIG. 2b is an FET circuit diagram for VLSI imple-
mentation of the logic diagram of FIG. 2u.

FIG. 2c is a logic diagram for a shifterhverter useful
with a modified Booth decoder for implementing a
multiplier for the present invention.

FIG. 2d is an FET circuit diagram for VLSI imple-
mentation of the logic diagram of FIG. 2c.

FIG. 3a is a VLSI circuit diagram of a prior-art car-
ry-save adder useful in implementing the present inven-
tion, and FIG. 3b is a logic diagram of that adder.

FIG. 4 is a logic diagram of a prior-art full adder
useful in implementing the present invention.

FIG. 5 illustrates the organization of an array of mul-
tipliers comprised of a common modified Booth de-
coder and a row of shifterhnverters (SA), one SA for
each multiplier with one of a row of carry-save adders
and one of a row of full adders for successive multipli-
cation of pixels by a weight in accordance with the
present invention.

FIG. 6 is a timing diagram for the operation of the
array of multipliers of FIG. 5.

FIG. 7 illustrates schematically the manner in which
five arrays of multipliers are organized for five weights
on one VLSI chip.

FIG. 8 illustrates schematically the manner in which
the chip of FIG. 7 is combined with six more chips for
simultaneously multiplying pixels by 35 weights in a
one-dimensional image processor (filter).

FIG. 9 illustrates the manner in which a plurality of
one-dimensional image processing filters as shown in
FIG. 8 are combined to form a 35 by 35 dimensional
image processor (filter).

FIG. 10 illustrates the manner in which a 35 by 35
filter shown in FIG. 9 may be used in a system to pro-
cess pixel data.

DESCRIPTION OF PREFERRED
EMBODIMENTS

A multiply unit for a pipeline active filter will now be
described with reference to FIG. 5 and timing diagram
shown in FIG. 6. Subsequent figures will show that for
a specific embodiment, it is contemplated that 8-bit
pixels will be multiplied by a kernel of 35 by 35 weights.
This requires one multiply unit for each weight. Assum-
ing a 16 bit weight, the product wll consist of 24 bits
plus a carry. However, where the accuracy of the less
significant bits are not required, the product may be
truncated, such as to 22 bits. The multiply unit must
then have one bit multiplier for each bit of the product.

Shown in FIG. 5 are just three multipliers of a multi-
ply unit. The center one is for the i-th bit, and adjacent
ones for the less significant bit, i- 1, and the moresignif-
icant bit i + 1. Each multiplier utilizes a common modi-
fied Booth decoder (figs. &, 2b), and is comprised of a
shiftedinverter, carry-save adder and full adder, all of
which have been described by Masumoto, supra, incor-
porated herein by reference, but it should be understood
that these prior-art components are being used herein
only as examples of conventional components, instead
of others that could be used, to illustrate the best mode
contemplated for practicing the invention, which is
with VLSI technology like that contemplated by
Masumoto for his 16 X 16 multiplier/accumulator.

The multiply unit (multiplier/accumulator) of
Masumoto differs in organization from the present in-

6
vention. It requires eight rows of carry-save adders and
one row of full adders, as noted hereinbefore. Thus,
while specific prior-art circuits have been disclosed by
Masumoto for a preferred VLSI implementation of this

5 invention, it should be understood that this invention
resides in the organization of a modified Booth decoder
and a single row of each of (1) shifterdinverters (SA)
responsive to the decoder, (2) carry-save adders, and (3)
full adders to form a multiply unit, and in the use of a

10 plurality of such multiply units to form a pipeline active
filter, and not in the circuits per se. Thus, the novel
organization consists of a row of multipliers (a decoder,
shifterdinverters and carry-save adders), one multiplier
for each bit of the product, so interconnected that carry

15 propagation is not required in this preliminary multipli-
cation, and a single row of full adders, one for each
multiplier stage, which will propagate the carries neces-
sary for a temporary product, Wp, of the weight, W,
and pixel, p. The row of full adders is used again to form

20 the sum of the product with the accumulated sum BWp
from a previous multiply unit.

FIG. 7 shows five such multiply units which, as will
be appreciated, can conveniently be formed on a single
chip 30. Each multiply unit is represented by a rectangle

25 21 divided into two parts, a first part 21a comprised, as
shown in FIG. 5, of a row of shifterdinverters 11 with
carry-save adders 12, and sum and carry storage devices
13, 14, and a second part 21b comprised, as shown in
FIG. 5, of a row of full adders 15 with storage devices

30 16,17 to store bits of temporary products Wp and accu-
mulated sum of products ZWp. Each multiply unit
receives a 16-bit weight, W, and an 8-bit pixel, p, to
produce a truncated 22-bit product added to the accu-
mulated sum of products ZWp from preceding multiply

FIG. 8 shows seven such multiply chips 30 arranged
to multiply each of a succession of pixels by a set of
weights W1 through W35 prestored in the chips to form
a pipeline active filter 40. FIG. 9 shows how 35 such

40 active filters 40 may be connected to the train of pixels
through line delays 42 to form a filter 50 used to multi-
ply the succession of pixels by a kernel of 35 by 35
weights. Note that as the products Wp are formed, they
are added to products of previous multiply units in each

45 line of pixels, and that the accumulated sum of products
for each line is added to the accumulated sum of prod-
ucts of the next line so that the final pixels are weighted
by the 35 by 35 kernel of predetermined weights.

And finally, FIG. 10 illustrates how the 35 by 35
50 pipeline active filter is connected to a data processor 52

35 units.

55

60

65

through a bus 54 and interface 55 to accept pixel data,
multiply it by the 35 by 35 kernel, and return the filtered
pixel data to the data processor through a bus interface
unit 56. A buffer 57 is provided between the pipelied
active filter 50 and the input bus interface 55 to store at
least a significant fraction of frame of pixels for filtering.
A buffer 58 is similarly provided between the pipelined
active filter and the return bus interface 56. Control
lines through which the data processor supervises the
system are indicated by dotted lines. The system is syn-
chronized by a local clock generator 59, and the pipe-
lined active filter itself is controlled by a sequence con-
trol unit 60 for carrying out the necessary operations in
the multiply units of the filter as will be more fully
described with reference to FIGS. 5 and 6. Although
shown in FIG. 10 as a single control unit for all chips
having five multiply units, it is preferred to duplicate
the sequence control unit on each chip as shown in FIG.

7
4,644,488

7 by a block 60 labeled control timing logic. The se-
quence control function is implemented with a sequence
step counter. Distributed sequence control then mini-
mizes the number of input pins required for each chip.
With that overview, the structure and operation of one
multiplier for the i-th and adjacent stages of a multiply
unit will now be described with reference to FIGS. 5
and 6.

The i-th bit of the multiplier (weight W) is prestored
in one stage of a shift register 10, of which only three
stages (Wi-1, W; and W;+ 1) are shown. Loading this
register is indicated to be from left to right, Le., from the
less significant stage to the more significant stage. Once
loaded with the prescribed weight, processing of pixel
data may commence.

The 8-bit pixels, p, are received by a modified Booth
decoder 20 common to five multiply units, as shown in
FIG. 7, but shown in FIG. 5 as though dedicated to just
one multiply unit of which only three of twenty-two
stages are shown. The output of the decoder is a set of
four signals, namely 1 X ,2 X , ADD (+) and SUB(-),
as explained with reference to FIG. 2a and 26. Each
multiplier includes its own shifter/inverter @/I) circuit
11 responsive to those four signals, as explained with
reference to FIGS. 2c and 2d. Each multiplier has two
weight bits as inputs, one from the stage i-1 of the
register 10 of less significance, and one from the stage i
of the register 10 of the same significance. The shifter-

-. . /inverter will select bit W;- 1 or Wi, according to
whether 2 x or 1 x is true, and invert the bit according
to whether it is to be added or subtracted (complement-
ing and adding) which depends upon whether ADD or
SUB is true. The 2X and 1 X control distributed from
the decoder 20 to each shiftedinverter is indicated by
circled 2 x and 1 X in the inputs to the shiftedinverter
of the i-th stage. The ADD and SUB control is similarly

. distributed, though not otherwise indicated in FIG. 5,
to all other stages of the multiply unit. The selected bit
Wi- 1 or Wi is then added or subtracted (by addition of
the complement) in the associated carry-save adder 12

The resulting sum bit, S , is temporarily stored in a
bistable device 13 shown with the next less significant
stage of the register 10 for convenience, and any carry
bit, C, is temporarily stored in a bistable circuit 14
shown directly below the carry-save adder of the i-th
stage. Note that the sum store device associated with
the more significant stage i + l is shown below the i-th
stage, but that its output is an input not to the i-th carry-
save adder, but to the next less significant bit carry-save
adder, while the carry of the i-th stage is fed from bista-
ble circuit 14 directly to the next less significant bit
carry-save adder. All of this carry-save add and store
takes place during a first mode of operation indicated by
a circled 1 in the connecting lines of FIG. 5, and a
circled 1 in the timing diagram of FIG. 6.

This first mode lasts for five cycles of the system
clock in order to process all digit bits of a pixel. In the
sixth cycle of the Clock, which initiates a second mode
indicated by a circled 2 in the connecting lines of FIG.
5, and a circled 2 in the timing diagram of FIG. 6, the
sum and carry of each multiplier stage is loaded into the
full adder 15 associated with the less significant stage.
Each half cycle of the clock is a step in the sequence
controlled by the control unit 60 (FIG. lo), keeping in
mind that the &bit pixel (multiplier in the modified
Booth algorithm) requires five passes to decode in
groups of three as follows:

- shown in FIG. 3.

Pass 1 0 p1 p2
Pass 2 p2 p3 p4
Pass 3 Pa PS Ph

5 Pass 4 P6 P l P8
Pass 5 P8 0 0

In the first pass, the first two bits of the multiplier ap-
pear in place for modified Booth decoding. Then shift-

lo ing two bits at a time, it takes four more passes for all
eight bits to be processed. The weights (multiplicands)
are loaded before processing starts, and are held for the
duration of the image frame processing, although
weights could be altered during processing, if desired.

After five clock cycles, processing an 8-bit pixel
through the multiplier is complete. In order that the
results (saved sum and carry) can be added, the second
mode is initiated by the first half of the sixth clock per-

2o iod at the beginning of mode 2 identified by a circled 2
in FIG. 6. The second mode is comprised of two phases,
an a phase which extends through the fust clock pulse
period after the next start pulse, and a following f l phase
which extends from the end of a for three clock cycles,

25 which is to say for more than half the period remaining
before the next start pulse. The a phase may be made as
long as necessary to await the start pulse when the next
pixel is available. In practice, this hold period may be
reduced to zero for very fast VLSI circuits.

As just noted there are two phases in this second
mode. The operations to be completed in the first phase
are identified by a circled a in the lines connecting the
sum and carry of each multiplier stage to the full adder
15 of the next less significant stage, and connecting the

35 sum output of the full adder to a device 16 for storing a
temporary product, Wp. This first phase operation is
identified in FIG. 6 also by a circled a. Note that only
the carry from the next more significant stage is stored
in an input storage device of the adder. This occurs at

40 the center of the sixth clock pulse, as indicated by the
waveform labeled “load full adder” in FIG. 6. While
both the sum and carry bits could be stored, in practice
it is not necessary to store either one since addition
begins immediately, and the temporary product Wp is

45 loaded into the storage device 16 as indicated by the
waveform labeled “‘load Wp into 16” in FIG. 6. The
reason the carry is loaded into the input storage device
is only because it is necessary to later store the sum of
products bit, BWp, in storage device 17, and that stor-

50 age device is used to multiplex between first the carry of
the next more significant stage, and then the sum of
products, BWp.

The carry and sum are added in each full adder dur-
ing the a phase of the second mode to the temporary

55 product, Wp, from device 16, and the sum, Wp, is
stored in the device 16. All of this takes place in the
period between the middle of the first clock pulse cycle
of mode 2, to the end of one clock pulse cycle after the
next start pulse. This is sufficient time to propagate the

60 carries in forming the temporary product. Thus, the
operation taking place during a long pulse period la-
beled “load Wp into 16” is to perform the first addition
in the full adder. The addition is of the sum and carry
bits saved during mode 1. The temporary product, Wp,

65 is indicated as an input to the full adder 15 by a circled
f lo in the connection shown in FIG. 5. The next start
pulse loads the next pixel into the decoder 20 for pro-
cessing, and the mode 1 sequence is repeated for the

l5

3o

4,644,488
9

next pixel. Meantime, the temporary product, Wp, is
"shifted" (gated) into the full adder as an input labeled
/30 in FIG. 5. This occurs in the middle of the second
clock pulse period after a start pulse. At the end of that
second pulse period, the preceding sum of products
ZWp from storage device 17 is loaded as input 61 into
the input storage of the adder to start the second addi-
tion of Po to pi. The output indicated as p2 in FIG. 5 is
then held in storage device 17. Because a new sum of
products is being stored (from a preceding multiply
unit), it is necessary to store the old sum of products
(input to the full adder) in the input storage device of
the full adder to free the storage device 17 for the new
sum of products (input p2 from the preceding multiply
unit).
Thus, while the next pixel is being processed through

five passes in the carry-save adder, the full adder adds
the temDorarv Droduct stored in device 16 to the old

5

10

15

1 1 .

sum of products ZWp previously stored in a storage
device 17 to form a new sum of products ZWp. The old 20
sum of products is identified by a circled /31 in the con-
nection from the storage device 17 to the full adder 15,
and new one is identified by a circled p2 at the output of
the full adder 15, which forms the sum /30+/31=/32
where Po is the temporary product sum Wp formed by 25
adding the bits transferred to the full adder, and from
the full adder to the storage device 16 during the a
phase of the second mode. The new sum of this multiply
unit is then stored in the device 17 of the next multiply
unit in succession. While reference has been made to 30
only one stage, it should be understood that in this ex-
emplary embodiment there are 22 stages in each multi-
ply unit operating in parallel.

In summary, the first mode forms the sum and carry
bits of a new temporary product, Wp, while a second 35
mode forms the temporary product and adds it to the
accumulated sum of products, ZWp from a preceding
multiply unit. These two modes overlap from one pixel
to the next, which is to say that while the second mode
for one pixel is being completed, the first mode for the 40
next pixel is started and completed. The second mode
has two phases, a first a phase during which the product
sum produced by the multiplying unit is formed and
saved in the storage device 16. Operations of the first
phase are identified in FIGS. 5 and 6 by a circled a and 45
they are for addition of the sum and carry of the next
more significant carry-save adder, thus forming a tem-
porary product sum, identified in FIGS. 5 and 6 by a
circled Po, and a second p phase to form a new product
sum ZWp identified in FIG. 5 by a circled /32 from the 50
addition of the temporary product Wp to an old sum of
products ZWp stored in the device 17 from the preced-
ing multiplying unit, and identified in FIG. 5 by a cir-
cled 01.

The description of FIG. 5 began with reference to
just the i-th stage of a 22 bit multiply unit, it being un-
derstood that, in this exemplary embodiment, there are
five 22 bit multiply units on a chip operating with a
single multiplier decoder 20, as shown in FIG. 7. But in
the end it became convenient to speak of the sum ZWp
of the products of the entire multiply unit as formed by
the array of full adders (stages) which have carry prop-
agation between them. Since this full adder is used in
this way while the next pixel is being processed, there is
sufficient time for the full adder to propagate the
carries, first in forming the new temporary product Wp
during the indefinite hold period shown in FIG. 6, and
then in forming the new sum of products ZWp shown as

55

60

65

10
/32 going out of the timing diagram at the lower right of
FIG. 6. That sum of products ZWp is introduced into
the next pipelined multiply unit shown in FIG. 7, as
indicated by the circled ,!32 in the connecting lines in
FIG. 5. This is all under the sequence control of the
control unit 60 (FIG. 10) which generates the signals
shown in the timing diagram of FIG. 6 to effect the
control described with reference to FIGS. 5 and 6. The
sequence of steps, one step for each half cycle of the
clock, are as follows:

FIRST MODE-(initiated by START pulse)
1. 8-bit pixel loaded into decoder register (not shown

in FIGS. 2a and 26). Enter P,(=O), PI, P2 in decoder
proper. Multiply by adding or subtracting 1 x or 2 x
weight bits as determined by decoder, and latch de-
coder output. 2. Prior carry and sum blocked, and zero
inserted into carry-save adder. Generate sum and carry
and store in devices 13 and 14. Enter Pz, P3 and P4 in
decoder proper.

3. Pz, P3, P4 shifted into decoder proper. Shift carry
and sum of carry-save adders.

4. Multiply by adding or subtracting 1 x or 2 x
weight bits as determined by decoder and add prior
carry from next more significant stage and sum from
second more significant stage.

5. and 6. Repeat steps 3 and 4 with P4, P5 and P6.
7 and 8. Repeat steps 3 and 4 with P6, P7 and Ps.
9 and 10. Repeat steps 3 and 4 with Pg, P9(=O) and

PlO(=O).

SECOND MODE
12 through 2'. Complete a connections in FIG. 5 for

storage of sum and carry from carry-save adder of next
more significant stage. Hold through next START
pulse. Generate temporary product sum by adding sum
and carry from carry-save adder of next more signifi-
cant stage, with full propagation of carries, and store
temporary product sum in device 16.

1 '. START pulse generated to commence multiplica-
tion of next pixel by steps 1-10 above.

2'. Continue to hold temporary product from step 12.
3'. Enter temporary product from storage device 16

to full adder.
4' through 8'. Generate the new sum of products

XW, by adding content of device 16 to content of de-
vice 17, after first transferring content of device 17 to
input storage of full adder 15 to temporary product sum
in device 16 to output a new sum of products ZWpfrom
full adder.

9'. Hold new sum of products, and continue to hold
until the second clock pulse after the next START
pulse.

Although particular embodiments of the invention
have been described and illustrated herein, it is recog-
nized that modifications and variations may readily
occur to those skilled in the art. Consequently, it is
intended that the claims be interpreted to cover such
modifications and variations.

What is claimed is:
1. A pipeline active filter wherein a succession of

n-bit data elements are processed sequentially, and each
n-bit element need only be accessed once to be multi-
plied by a number of weights, comprising:

a plurality of multiply units having a modified Booth
decoder means for decoding three bits of each
element at a time in increasing order of significance
with one bit overlap, and generating commands to

4.644.488
11

add or subtract the weight, or zero, and to multiply
the weight by 1 or 2 when it is added or subtracted,
and a plurality of multiplier stages, one multiplier
stage for each bit of the weight, each multiplier
stage comprising;

inverterhhifter means for shifting or not shifting by
one bit position the bit of the weight to be added or
subtracted, thereby multiplying the weight by one
or by two, and inverting or not inverting the bit of
the weight, thereby adding the weight or forming
the complement for subtraction of the weight by
addition,

a carry-save means for adding or subtracting zero or
the weight multiplied by one or the weight multi-
plied by two without propagation of carries, all in
response to said modified Booth decoder means,
each time shifting the sum of partial products rela-
tive to the weight so that the weight is added to
successively higher orders of the partial products
being accumulated without propagation of carries,

storage means for the sum and carry bits of each
carry-save means for transfer of the sum bit to
second less significant carry-save means, and of the
carry bit to the next less significant carry-save
means during multiplication of successive bits of
the element by addition of the weight, and for
storing the sum and carry bits of the last partial
product generated after multiplication by the last
bit of the element, and

a full-adder means for adding said final sum and carry
of the next more significant stage to form a tempo-
rary product, and thereafter for adding said tempo-
rary product to an old sum of products from a
preceding multiply unit to form a new sum of prod-
ucts as an output to the next multiply unit.

2. A pipelined active filter as defined in claim 1, in-
cluding a number of sets of multiply units connected in
cascade, each set with separate modified Booth decoder
means for decoding pixels in sequence, and including
line delay means between decoders, whereby the sum of
products of said data elements multiplied by said
weights in said sets of multiply units to multiply each of
said elements by a kernel of weights, said kernel consist-
ing of a number of weights equal to the number of multi-
ply units in a set and an additional number of weights
equal to the number of sets.
3. A pipeline active filter for image data processing

having a number M X N of like multiply units connected
in cascade in sets with the sum of products out of one set
connected as an input to the next set for producing a
sum of M X N image elements multiplied by M X N
weights, where M is the number of image elements in a
line of N lines of a two dimensional image, each of said
multiplying units for a given weight comprising:

means for storing a multiplier W having a plurality of
bits,

means for accessing each multiplicand in sequence for
multiplication by said multiplier,

modified Booth decoder means for determining the
operation to be performed for multiplication of
successive bits of said multiplicand by multiplier
bits, and

multiplying means responsive to said modified Booth
decoder means and said multiplier storing means,
for forming the product of said multiplicand and
said multiplier as a sum of partial products without
propagation of carries until a final sum is formed as
the product, said multiplying means comprising;

,

12 I -.
I ~~

a row of carry-save adders, one adder for each bit W;
of said multiplier for forming the sum and carry
bits of bit multiplication without propagation and
addition of carries between adders, but with shift-
ing of sum and carry bits of each partial product
relative to said bits of said multiplier,

a shifterhnverter for each carry-save adder respon-
sive to said modified Booth encoder for adding or
subtracting by adding the complement of a bit Wi
or W;- 1 in said carry-save adder in forming a sum
and carry,

means for temporarily storing said sum and carry bits
from carry-save adders between steps of successive
processing of multiplicand bits,

a row of full adders, one full adder for each multipli-
cand bit, adding all said sum and carries stored in
said temporary storing means after the last of said
multiplicand bits have been processed through said
modified Booth decoder, whereby a product is
formed with a row of carry-save adders, one per
multiplicand bit, without the need for carry propa-
gation in forming partial products,

5

10

l5

2o

means for storing said product temporarily,
control means for adding a temporary product stored

in said temporary product storage means with a
sum of products from a preceding multiply unit of
a set, or preceding set, to form a new sum of prod-
ucts input to the next succeeding multiply unit of a
set, or the next set, and

means for delaying successive elements by one line
between groups of M multiplying units set to form
a two-dimensional convolution of elements.

4. A pipeline active filter for image data processing as
35 defined in claim 3 wherein said multiplicand is com-

prised of m bits, and said modified Booth decoder sam-
ples and decodes three multiplicand bits at a time, start-
ing with 0 and the first two multiplicand bits, and there-
after shifting two bit positions and examining three bits

40 during each successive multiply cycle for n cycles,
where n is a minimum number of cycles necessary for
said modified Booth decoder to thus process all multi-
plicand bits and said carry-save adder to perform carry-
save addition operations, and wherein said full adder

45 performs two carry propagate additions following each
of n cycles, whereby all sum and carry bits for multipli-
cation of the next element by a weight are formed and
temporarily stored in n cycles, while a product is
formed by addition of previous partial product sum and

5 0 carry bits and said product thus formed is added to a
previous sum of products to form a new sum of prod-
.ucts.

5. In a multiplier wherein multiplicands are processed
sequentially, each multiplicand having a plurality of

means for storing a multiplier W having a plurality of
bits,

means for accessing each multiplicand in sequence for
multiplication by said multiplier,

modified Booth decoder means for determining the
operation to be performed for multiplication of
successive bits of said multiplicand by multiplier
bits, and

multiplying means responsive to said modified Booth
decoder means and said multiplier storing means
for forming sum and carry bits of partial products
of said multiplicand and said multiplier without
propagation of carries until a final addition of said

25

3o

55 bits, the combination of:

6 0

65

4,644,488
13 14

sum and carry bits is formed as the product, said
multiplying means comprising;
a row of carry-save adders, one adder for each bit

Wi of said multiplier for forming the sum and
carry bits of bit multiplication without propaga- 5
tion and addition of cames between adders, but
with shifting of said sum and carry bits relative
to said bits of said multiplier,

a shiftedinverter for each carry-save adder respon-
sive to said modified Booth encoder for adding 10
or subtracting by adding the complement of a bit
Wior Wi- 1 in .said carry-save adder in forming a
sum and carry,

means for temporarily storing said sum and carry
bib from
successive processing of multiplicand bits, and

a row of full adders, one full adder for each multi-
plicand bit, adding all =id sum and carries stored
in said temporary storing means after the last of

through said modified Booth decoder, whereby
a product is formed with a row of carry-save
adders sum of partial products, without the need

ucts.

multiplying means responsive to said modified Booth
decoder means and said multiplier storing means
for forming partial products of said multiplicand
and said multiplier without propagation of carries
until a final addition is performed as the product,
said multiplying means comprising;

a row of carry-save adders, one adder for each bit Wi
of said multiplier for forming the sum and carry
bits of bit multiplication without propagation and
addition of carries between adders, but with shift-
ing of said sum and carry bits relative to said bits of
said multiplier,

a shifterhnverter for each carry-save adder respon-
sive to said modified Booth encoder for adding or
subtracting by adding the complement of a bit Wi
or Wi- 1 in said carry-save adder in forming a sum
and carry,

means for temporarily storing said sum and carry bits
from carry-save adders between steps of successive

a row of full adders, one full adder for each multipli-
cand bit, adding all said sum and carries stored in
said temporary storing means after the last of said
multiplicand bits have been processed through said

formed with just one row of carry-save adders sum
of partial products, without the need for carry
propagation in forming partial products,

adders between steps of 15

said multiplicand bits have been processed 2o processing Of multiplicand bits,

for carry propagation in forming Partial prod- 25 modified Booth decoder, whereby a product is
6. The combination of claim 5 including means for

storing temporarily said product produced by said full
adder, and for storing a Previous means for storing said product temporarily, and
sum Of products, and for using 30 control means for adding a temporary product stored

in said temporary product storage means with a said full adder to form a new sum of products by adding
a product just formed to said previous sum of products sum of products from a preceding multiply unit of
while said multiplying means processes bits of a suc- a set, or preceding set, to form a new sum of prod-
ceeding multiplicand, whereby a plurality of multipli- ucts input to the next succeeding multiply unit of a
cands may be multiplied by a multiplier to form a sum of 35 set, or the next set.
products. 8. A pipeline processor as defined in claim 7 wherein
7. A pipelhe processor for image elements having a said multiplicand is comprised of m bits, and said modi-

number Of like multiplying Units connected in cascade in fied Booth decoder samples and decodes three multipli-
sets with the sum Of products Out Of one set connected cand bits at a time, starting with 0 and the first two
as an input to the next set,.and including means for 40 multiplicand bits, and thereafter shifting two bit posi-
delaying successive lines of image elements applied as tions and examining three bits during each successive
multiplicands to said multiplying units in sets by the multiply cycle for n cycles, where n is a minimum num-
number of elements in an image row, each multiply unit ber of cycles necessary for said modified Booth decoder
having means for accessing each element only once for to process all multiplicand bits and said carry-save
a set of weights by each of successive elements, said 45 adder to perform carry-save addition operations, and
multiplying means for each weight comprising: wherein said full adder performs the first of said two

carry propagate additions following each of n cycles,
whereby all sum and carry bits for a multiplication are
formed and temporarily stored in n cycles, while a sum

50 of previous sum and carry bits are added to form a
temporary product and a temporary product is added to
a previous sum of products to form a new sum of prod-
ucts with propagation of carries.

means for storing a multiplier W having a plurality of
bits,

means for accessing each multiplicand in sequence for
multiplication by said multiplier,

modified Booth decoder means for determining the
operation to be performed for multiplication of
successive bits of said multiplicand by multiplier
bits, and * * * * *

55

60

65

