Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.
POLYMIDAZOLES VIA AROMATIC NUCLEOPHILIC DISPLACEMENT

ORIGIN OF THE INVENTION

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to structural resins and in particular to new polyimidazoles formed from the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds, whereby economically produced, high molecular weight polyimidazoles useful as adhesives, coatings, films, membranes, moldings, and composite matrices are obtained.

2. Description of the Related Art

Polyimidazoles (PI) are heterocyclic polymers which were synthesized by the reaction of a bis(phenyl-a-diketone) with an aromatic dialdehyde in the presence of ammonia as represented below:

\[
\text{Ph-C-C-Ar-C-C-Ph} + \text{OHC-R-CHO} \rightarrow \text{NH}_2\text{OOCCH}_3\text{solvent}
\]

where Ar is a divalent aromatic radical such as

\[
\text{Ph} \quad \text{Ph} \\
\text{Ph} \quad \text{Ph}
\]

R is a divalent aromatic radical which may be

\[
\text{Ph} \quad \text{Ph} \\
\text{Ph} \quad \text{Ph}
\]

The synthesis and characterization of PI was first described in 1967 [V. B. Krieg and G. Manecke, Die Makromolekulare Chemie, 108, 210 (1967)]. The polymers were of relatively low molecular weight, and only a few physical properties were determined. PI prepared by the reaction of bis(phenyl-a-diketone) with aromatic dialdehydes in the presence of ammonia generally are of low molecular weight, presumably due to side reactions. Therefore, there are relatively few reports concerning the preparation and characterization of these materials.

5,066,811

SUMMARY OF THE INVENTION

The present invention constitutes new compositions of matter and a new process to prepare polyimidazoles (PI). It concerns new PI, novel monomers, and the process for preparing the same.

Another object of the present invention is to provide several new di(hydroxyphenyl)imidazole monomers.

According to the present invention the foregoing and additional objects are obtained by synthesizing PI by the nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides. The inherent viscosities (η_{inh}) of the PI ranged from 0.24 to 1.38 dL/g, and the glass transition temperatures (T_g) ranged from 230°C to 318°C. Thermogravimetric analysis showed no weight loss occurring below 300°C in air or nitrogen with a five percent weight loss occurring at about 400°C in air and at about 495°C in nitrogen.

The PI is a polyimidazole having the general structural formula:

\[
\text{Ar} - \text{N} - \text{N} - \text{Ar} - \text{O} - \text{O}_7
\]

wherein the substitution of oxygen is selected from the group consisting of meta meta, para para, and para meta; wherein Ar is a radical selected from the group consisting of:

\[
\text{Ar} \quad \text{Ar} \\
\text{Ar} \quad \text{Ar}
\]

wherein R is selected from the group consisting of: H, CH₃, CF₃, CH₂CH₃, OCH₃.
wherein Z is a radical selected from the group consisting of: CF₃, F, Cl, Br, I, CH₃, OCH₃, CH₂CH₃, NO₂, and Ph; and

(b) wherein Ar' is selected from the group consisting of:

wherein G is not a substituent or is a substituent selected from the group consisting of: CH₂, O, S, C=O, and SO₂; wherein X is a radical selected from the group consisting of:

where R can be H, CH₂CH₃, OCH₃, CH₃, CF₃.
where \(Z \) can be \(\text{CH}_3, \text{CF}_3, \text{OCH}_3, \text{Ph}, \text{NO}_2, \text{I}, \text{Cl}, \text{Br}, \text{F}, \) and \(\text{CH}_2\text{CH}_3 \). The catenation of the hydroxy group may be meta meta, para para, or meta para.

The general reaction sequence for the preparation of the di(hydroxyphenyl)imidazoles prepared from dialdehydes is represented in Equation (2).

\[
\text{OHC-Ar-CHO} + 2 \xrightarrow{1) \text{NH}_4\text{OOCCH}_3 \atop 2) \text{HBr/CH}_3\text{COOH}} \text{C-C-C-OCCH}_3
\]

Where \(G \) is nil, \(\text{CH}_2, \text{O, S, C=O, SO}_2 \). The catenation of the hydroxy group may be meta meta, para para or meta para.

The general reaction sequence for the synthesis of PI is represented below:
Where Y can be Cl, F, or NO_2
where R can be H, CH_3, CH_2CH_3, OCH_3, CF_3

Where Z can be CH_3, CF_3, OCH_3, Ph, NO_2, I, Cl, Br, F, CH_2CH_3, etc.
Where Ar' can be F, CH_2CH_3, etc.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Having generally described the invention, a more complete understanding thereof can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only and do not limit the invention.

EXAMPLES

Example 1

The following example illustrates the reaction sequence for the synthesis of a polyimidazole where R is a phenyl group and X is terephthaloyl and Y is F (see Equation (3)).

Monomer Synthesis

4,5-Bis(4-hydroxyphenyl)-2-phenylimidazole

Into a one liter three neck round bottom flask equipped with a mechanical stirrer, thermometer, nitrogen inlet and reflux condenser was placed 4,4'-dimethoxybenzil (13.53 g, 0.05 mol) and acetic acid (300 ml). The mixture was stirred with heating to give a yellow solution. Ammonium acetate (68.0 g, 0.88 mol) and benzaldehyde (26.0 g, 0.25 mol) were added along with additional acetic acid (100 ml). The solution was heated to reflux (about 120° C.) overnight under nitrogen. The orange solution was cooled and poured into water to give an off-white precipitate which was collected, washed repeatedly with water and dried at 125° C. Yield was 17.5 g (98%) of white solid. Recrystallization
from ethanol/water (3:1) gave 15.8 g (89%) of white crystals, m.p. 198°-200° C.

4,5-Bis(4-methoxyphenyl)-2-phenylimidazole (15.8 g, 0.044 mol) was placed in a 250 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen inlet, moisture trap and reflux condenser and hydrogen bromide gas trap along with acetic acid (75 ml) and 47-49% aqueous hydrogen bromide solution (130 ml). The mixture was heated to reflux for 16 hours, cooled, poured into water to give a white solid, which was neutralized with sodium hydroxide, collected, washed with water and dried at 100° C. Yield was 13.7 g of white solid. Recrystallization from ethanol/water (3:1) gave 11.5 g (79%) of white crystals, m.p. 327°-330° C.

Polyimide Synthesis

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>Example 2</td>
<td>Example 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1

POLYMER CHARACTERIZATION

<table>
<thead>
<tr>
<th>POLYMER</th>
<th>X</th>
<th>INHERENT<sup>1</sup> VISCOSITY, dL/g</th>
<th>GLASS TRANSITION<sup>2</sup> TEMPERATURE, °C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>O</td>
<td>0.24</td>
<td>318</td>
</tr>
<tr>
<td>P2</td>
<td>SO₂</td>
<td>0.41</td>
<td>277</td>
</tr>
<tr>
<td>P3</td>
<td>CO</td>
<td>0.61</td>
<td>259</td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td>0.53</td>
<td>258</td>
</tr>
<tr>
<td>P5</td>
<td></td>
<td>0.40</td>
<td>248</td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td>0.89</td>
<td>248</td>
</tr>
<tr>
<td>P7</td>
<td></td>
<td>0.49</td>
<td>239</td>
</tr>
<tr>
<td>P8</td>
<td></td>
<td>0.58</td>
<td>231</td>
</tr>
<tr>
<td>P9</td>
<td></td>
<td>0.64</td>
<td>230</td>
</tr>
<tr>
<td>P10</td>
<td></td>
<td>0.55</td>
<td>230</td>
</tr>
</tbody>
</table>

TABLE 2

THIN FILM PROPERTIES¹

<table>
<thead>
<tr>
<th>POLYMER</th>
<th>TEST TEMP., °C.</th>
<th>TENSILE STRENGTH, KSI</th>
<th>TENSILE MODULUS, KSI</th>
<th>ELONG., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>25</td>
<td>13.3</td>
<td>405.2</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>9.5</td>
<td>400.0</td>
<td>3.4</td>
</tr>
<tr>
<td>P6</td>
<td>25</td>
<td>14.2</td>
<td>407.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>8.2</td>
<td>306.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>6.6</td>
<td>273.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

TABLE 2-continued

<table>
<thead>
<tr>
<th>POLYMER</th>
<th>TEST TEMP., °C.</th>
<th>TENSILE STRENGTH, KSI</th>
<th>TENSILE MODULUS, KSI</th>
<th>ELONG., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>P7</td>
<td>25</td>
<td>13.8</td>
<td>390.0</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>8.4</td>
<td>285.0</td>
<td>6.2</td>
</tr>
<tr>
<td>P10</td>
<td>25</td>
<td>12.0</td>
<td>362.4</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>8.3</td>
<td>336.4</td>
<td>3.8</td>
</tr>
</tbody>
</table>

¹Tested according to ASTM D882, average of four specimens per test condition.
TABLE 3

ADHESIVE PROPERTIES

<table>
<thead>
<tr>
<th>BONDING CONDITIONS</th>
<th>TEST TEMP., °C</th>
<th>T/E TENSILE STRENGTH, PSI</th>
<th>FAILURE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>300°C, 100 PSI, 1 HR</td>
<td>23</td>
<td>4660</td>
<td>50% COHESIVE</td>
</tr>
<tr>
<td>300°C, 200 PSI, 1 HR</td>
<td>25</td>
<td>4120</td>
<td>20% COHESIVE</td>
</tr>
<tr>
<td>"</td>
<td>93</td>
<td>3800</td>
<td>30% COHESIVE</td>
</tr>
<tr>
<td>"</td>
<td>177</td>
<td>3700</td>
<td>40% COHESIVE</td>
</tr>
</tbody>
</table>

*Tested according to ASTM D1002, average of four specimens per test. Inherent viscosity of polymer 0.57 dl/g, glass transition temperature 245°C.

What is new and desired to be secured by letters patent of the United States is:

1. A polyimidazole having the general structural formula:

 \[
 \begin{align*}
 &X - O - O - Ar - O - Z \\
 &N - N
 \end{align*}
 \]

 wherein the substitution of oxygen is selected from the group consisting of meta, meta, para, and para meta, wherein Ar is a radical selected from the group consisting of:

 \[
 \begin{align*}
 &\text{H, CH}_3, \text{CF}_3, \text{CH}_2\text{CH}_3, \text{OCH}_3, \\
 &\text{CF}_3, \text{F}, \text{Cl}, \text{Br}, \text{I, CH}_3, \text{OCH}_3, \text{CH}_2\text{CH}_3, \text{NO}_2, \\
 &\text{and Ph; and}
 \end{align*}
 \]

 wherein Z is a radical selected from the group consisting of:

 \[
 \begin{align*}
 &\text{R, CH}_3, \text{CF}_3, \text{CH}_2\text{CH}_3, \text{OCH}_3, \\
 &\text{CF}_3, \text{F}, \text{Cl}, \text{Br}, \text{I, CH}_3, \text{OCH}_3, \text{CH}_2\text{CH}_3, \text{NO}_2, \\
 &\text{and Ph; and}
 \end{align*}
 \]

 wherein Ar' is selected from the group consisting of:

 \[
 \begin{align*}
 &\text{H, CH}_3, \text{CF}_3, \text{CH}_2\text{CH}_3, \text{OCH}_3, \\
 &\text{CF}_3, \text{F}, \text{Cl}, \text{Br}, \text{I, CH}_3, \text{OCH}_3, \text{CH}_2\text{CH}_3, \text{NO}_2, \\
 &\text{and Ph; and}
 \end{align*}
 \]

 wherein G is a bond or is a substituent selected from the group consisting of:

 \[
 \begin{align*}
 &\text{CH}_3, \text{O, S, C=O, and SO}_2; \\
 &\text{wherein X is a radical selected from the group consisting of:}
 \end{align*}
 \]
and wherein \(n \) is an integer between 4 and 100.

2. The polyimidazole of claim 1, wherein \(\text{Ar} \) is a radical of the structure:

\[
\begin{array}{c}
\text{N} \\
\text{R}
\end{array}
\]

and wherein \(\text{R} \) is a phenyl group.

3. The polyimidazole of claim 2, wherein \(X \) is selected from the group consisting of:

\[
\begin{array}{c}
\text{O} \\
\text{SO}_2 \\
\text{C} \\
\text{O}
\end{array}
\]

4. The polyimidazole of claim 1, wherein \(\text{Ar} \) is a radical of the structure:

and wherein \(\text{Ar} \) is 1,4-phenylene.

5. The polyimidazole of claim 4, wherein \(X \) is isophthaloyl.

6. A di(hydroxyphenyl)imidazole having the general structure:

\[
\begin{array}{c}
\text{O} \\
\text{O} \\
\text{OH}
\end{array}
\]

wherein the catenation of the hydroxy radicals is selected from the group consisting of meta meta, para para, or para meta; wherein \(\text{Ar} \) is selected from the group consisting:
wherein **R** is selected from the group consisting of: H, CF₃, CH₃, CH₂CH₃, OCH₃,

and wherein **G** is a bond or is a substituent selected from the group consisting of: CH₂, O, S, C=O, and SO₂.

7. The di(hydroxyphenyl)imidazole of claim 6, wherein **Ar** has the general structure:

8. The di(hydroxyphenyl)imidazole of claim 6, wherein **Ar** has the general structure:

wherein **Z** is a radical selected from the group consisting of: CF₃, F, Cl, Br, I, CH₃, OCH₃, CH₂CH₃, NO₂, and Ph; and

and wherein **Ar′** is selected from the group consisting of:

and wherein **Ar′** is 1,4-phenylene.