The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.
OTHER PUBLICATIONS

FIG. 1
Fig. 10B
Fig. 11
Fig. 13

Maltose Elution

Imidazole Elution

Biodyne Elution

Soluble Fraction

Induced

Uninduced

^ 83 kDa > ^ 62 kDa > ^ 47.5 kDa > ^ 32.5 kDa > ^ 25 kDa
Fig. 14

Blot developed with SA-HRP

E. coli extract

MBP-SBP

Total protein stain

E. coli extract

MBP-SBP

Marker

205 120 84 52 36 30 22
Fig. 15
STREPTAVIDIN-BINDING PEPTIDES AND USES THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 10/004,381, filed Oct. 31, 2001 now U.S. Pat. No. 6,841,359, which claims benefit from U.S. Provisional Application No. 60/244,541, filed Oct. 31, 2000, hereby incorporated by reference.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was funded by grant number R01GM53956 from the National Institutes of Health and grant number NCC-2-1069 from NASA. The government may have certain rights in the invention.

BACKGROUND OF THE INVENTION

In general, the invention features novel compounds and methods for purifying or detecting proteins of interest. Determining the enzymatic activity, binding specificity, or three-dimensional structure of a protein often requires the purification of the protein from a complex mixture of other components, such as compounds present in a cell lysate or in vitro translation extract. With the number of known proteins increasing dramatically as a result of whole genome sequencing projects, it has become crucial to find alternatives to traditional, time-consuming monoclonal antibody production for generating affinity reagents for the detection and purification of proteins. In addition, purifying a novel protein using traditional column chromatography methods often requires much trial and error to develop a purification protocol that results in the recovery of the protein in high yield and purity.

Thus, purification methods are needed that may be generally applied to proteins of interest, that utilize inexpensive reagents, and that result in highly purified protein without requiring multiple chromatography steps.

SUMMARY OF THE INVENTION

The purpose of the present invention is to provide improved reagents for the purification, detection, or quantitation of proteins of interest. In particular, the high affinity, streptavidin-binding peptides of the present invention may be used as affinity tags for the purification of fusion proteins containing proteins of interest.

Accordingly, in a first aspect, the invention provides a peptide which binds streptavidin with a dissociation constant less than 10 μM (that is, binds streptavidin more tightly than a K₆₅ of 10 μM) and which is not disulfide bonded or cyclized. Preferably, the dissociation constant is equal to or less than 5 μM, 1 μM, 100 nM, 50 nM, 25 nM, 10 nM, or even 5 nM. In one preferred embodiment, the dissociation constant is less than 10 μM, 5 μM, 1 μM, 100 nM, 50 nM, or 25 nM; and greater than 0.01 nM, 0.1 nM, 1 nM, 5 nM, or 10 nM. In another preferred embodiment, the value of the dissociation constant is contained in one of the following ranges: 5 μM to 1 μM, 1 μM to 100 nM, 1 μM to 100 nM, 100 nM to 50 nM, 50 nM to 25 nM, 25 nM to 10 nM, 10 nM to 5 nM, 5 nM to 1 nM, or 5 nM to 0.1 nM, inclusive.

In a related aspect, the invention provides a peptide which binds streptavidin with a dissociation constant less than 10 μM. The amino acid sequence of the peptide does not contain an HPQ, HPM, HPN, or HQP motif. Preferably, the dissociation constant is equal to or less than 5 μM, 1 μM, 100 nM, 50 nM, 25 nM, 10 nM, or 5 nM. In one preferred embodiment, the dissociation constant is less than 10 μM, 5 μM, 1 μM, 100 nM, 50 nM, or 25 nM; and greater than 0.01 nM, 0.1 nM, 1 nM, 5 nM, or 10 nM. In another preferred embodiment, the value of the dissociation constant is contained in one of the following ranges: 5 μM to 1 μM, 1 μM to 100 nM, 1 μM to 100 nM, 100 nM to 50 nM, 50 nM to 25 nM, 25 nM to 10 nM, 10 nM to 5 nM, 5 nM to 1 nM, or 5 nM to 0.1 nM, inclusive.

In another related aspect, the invention provides a peptide which binds streptavidin with a dissociation constant less than 23 nM, 10 nM, or 5 nM. In one preferred embodiment, the peptide is disulfide bonded or cyclized. In another preferred embodiment, the dissociation constant is less than 23 nM, 10 nM, or 5 nM; and greater than 0.01 nM, 0.1 nM, or 1 nM. In another preferred embodiment, the value of the dissociation constant is contained in one of the following ranges: 20 nM to 10 nM, 10 nM to 5 nM, 5 nM to 1 nM, or 5 nM to 0.1 nM, inclusive.

In other related aspects, the invention provides nucleic acids encoding the peptides of the present invention, and vectors that include such nucleic acids.

In addition, standard gene fusion techniques may be used to generate fusion nucleic acids that encode fusion proteins which include a peptide of the present invention and a protein of interest. The fusion proteins may be purified, detected, or quantified based on the high affinity of the peptides for streptavidin.

Accordingly, in one such aspect, the invention provides a fusion protein including a protein of interest covalently linked to one of the following peptides: (a) a peptide which binds streptavidin with a dissociation constant less than 10 μM and which is not disulfide bonded or cyclized, (b) a peptide which binds streptavidin with a dissociation constant less than 10 μM and which does not contain an HPQ, HPM, HPN, or HQP motif, or (c) a peptide which binds streptavidin with a dissociation constant less than 23 nM. In preferred embodiments, the peptide is attached to the amino-terminus or the carboxy-terminus of the protein of interest, or the peptide is positioned between the amino and carboxy-termini of the protein of interest. Preferably, the peptide is linked to the protein of interest by a linker which includes a protease-sensitive site.

In related aspects, the invention provides nucleic acids encoding the fusion proteins of the present invention, and vectors that include these fusion nucleic acids.

In addition, the invention provides a method of producing a fusion protein of the present invention. This method includes transfecting a vector having a nucleic acid sequence encoding the fusion protein into a suitable host cell and culturing the host cell under conditions appropriate for expression of the fusion protein.

The fusion proteins described herein may be used in methods for purifying proteins of interest from samples. Such a method involves expressing the protein of interest as a fusion protein covalently linked to one of the following peptides: (a) a peptide which binds streptavidin with a dissociation constant less than 10 μM and which is not disulfide bonded or cyclized, (b) a peptide which binds streptavidin with a dissociation constant less than 10 μM and which does not contain an HPQ, HPM, HPN, or HQP motif, or (c) a peptide which binds streptavidin with a dissociation constant less than 23 nM. A sample containing the fusion protein is contacted with streptavidin under conditions that...
allow complex formation between the fusion protein and streptavidin. The complex is isolated, and the fusion protein is recovered from the complex, thereby purifying the protein of interest from the sample. In one preferred embodiment, the protein of interest is recovered from the fusion protein by cleaving the streptavidin-binding peptide from the fusion protein.

In yet another aspect, the invention provides a method of detecting the presence of a fusion protein of the present invention in a sample. This method includes (a) contacting the sample with streptavidin or a streptavidin-containing compound under conditions that allow complex formation between the fusion protein and either streptavidin or the streptavidin-containing compound; (b) isolating the complex, and (c) detecting the presence of streptavidin or the streptavidin-containing compound in the complex or following recovery from the complex. The presence of streptavidin or the streptavidin-containing compound indicates the presence of the fusion protein in the sample. Preferably, step (c) also involves measuring the amount of streptavidin or the streptavidin-containing compound in the complex or following recovery from the complex. The amount of fusion protein in the sample is correlated with, and may be calculated from, the measured amount of streptavidin. For example, for a fusion protein containing a peptide that binds one molecule of streptavidin per molecule of peptide, the amount of fusion protein in the sample is predicted to be approximately the same as the amount of streptavidin measured. In one preferred embodiment, the amount of streptavidin is determined using Western or ELISA analysis with an antibody that reacts with streptavidin or that reacts with a compound that is covalently linked to streptavidin. In another preferred embodiment, streptavidin is covalently linked to an enzyme, radiolabel, fluorescent label, or other detectable group, and the amount of streptavidin is determined using standard techniques based on a characteristic of the detectable group such as its enzyme activity, radioactivity, or fluorescence.

In another aspect, the invention features a method of determining the affinity of a compound of interest for a target molecule. The method includes incubating a solution containing the compound of interest with a detectable group and the target molecule. The solution is contacted with a target molecule. The method includes incubating a solution having a compound of interest with a detectable group and a free target molecule under conditions that allow complex formation between the compound of interest and the free target molecule. The solution is contacted with a target molecule immobilized on a solid support such as a microtitre plate, a bead, or the matrix of a spin-filter column. In another embodiment, the compound of interest that is bound to the immobilized target molecule is separated from the compound of interest that is not bound to the immobilized target molecule by centrifugation, for example, by spin-filtration or ultracentrifugation. In still other preferred embodiments, the target is a small molecule such as streptavidin, a streptavidin fusion protein, streptavidin covalently bound to an enzyme (e.g., horseradish peroxidase or alkaline phosphatase), or a ligand. The compound of interest may be a peptide that binds streptavidin, or may be a fusion protein that includes a peptide that binds streptavidin and a protein of interest. In other embodiments, the compound of interest may be labeled with a detectable group, such as a radiolabel, a fluorescent molecule, or an enzyme.

In preferred embodiments of various aspects of the invention, the amino acid sequence of the peptide includes at least 10, 25, 50, 75, or 100 consecutive amino acids or consists of between 5 and 150, 10 and 100, 20 and 75, or 30 and 50 amino acids, inclusive, of any one of SEQ ID Nos. 1–29 or 35. Preferably, the amino acid sequence of the peptide includes an LPQ, QPQ, EPQ, HPA, HDP, or HPL motif. In other preferred embodiments, the amino acid sequence includes any one of SEQ ID Nos. 1–29 or 35. In still other preferred embodiments, the peptide has an amino acid sequence that is at least 20, 30, 40, 50, 60, 70, 80, 90, 95, or 100% identical to any one of SEQ ID Nos. 1–29 or 35.

It is also contemplated that the affinity of the peptides of the present invention for streptavidin may be increased by incorporating disulfide bonds into, or cyclizing, the peptides. By constraining the peptides, the amount of disorder inherent in the peptides (i.e., entropy) decreases, and thus binding of these peptides to streptavidin may require less energy. It is also contemplated that the three-dimensional structure of the peptides of the present invention may be determined experimentally or modeled based on the known structure of streptavidin and used to determine possible modifications to the peptides that may further improve their affinity for streptavidin.

As used herein, by “nucleic acid” is meant a sequence of two or more covalently bonded naturally-occurring or modified deoxyribonucleotides or ribonucleotides.

By “peptide” is meant a sequence of two or more covalently bonded naturally-occurring or modified amino acids. The terms “peptide” and “protein” are used interchangeably herein.

By “covalently linked” is meant covalently bonded or connected through a series of covalent bonds. A group that is covalently linked to a protein may be attached to the amino-terminus, carboxy-terminus, between the amino- and carboxy-termini, or to a side chain of an amino acid in the protein.

By “streptavidin” is meant any streptavidin molecule or fragment thereof or any protein that has an amino acid sequence that is at least 80, 90, 95, or 100% identical to a streptavidin molecule or fragment thereof (see, for example, Haeuptle et al. J. Biol. Chem. 258: 305, 1983). A preferred fragment of streptavidin is “core” streptavidin, which is a proteolytic cleavage product of streptavidin (Bayer et al. Biochem. J. 259,369–376, 1989). Preferably, a streptavidin molecule or fragment thereof is capable of binding biotin or any other streptavidin-binding molecule. Streptavidin or a streptavidin fragment may be modified chemically or through gene fusion technology or protein synthesis so that it is covalently linked to an enzyme, radiolabel, fluorescent label, or other detectable group. These detectable groups may be used to determine the presence or location of a
streptavidin-bound fusion protein in a cell or sample to or quantify the amount of a streptavidin-bound fusion protein, using standard methods.

By a "streptavidin-containing compound" is meant any compound that includes streptavidin covalently bound to another molecule. These compounds may, for example, be conjugated to streptavidin through gene fusion technology or protein synthesis and may, for example, be covalently linked to an enzyme, such as horseradish peroxidase or alkaline phosphatase, a fluorescent group, a radiolabel, or any other detectable group.

By “free target molecule” is meant a target molecule that is not bound to a solid support.

By “cyclized” is meant nonlinear. A peptide may be cyclized by the formation of a covalent bond between the N-terminal amino group of the peptide or the side-chain of a residue and the C-terminal carboxyl group or the side-chain of a residue. For example, a peptide lactam may be formed by the cyclization between the N-terminal amino group or an amino group of an amino acid side-chain and the C-terminal carboxyl group or a carboxyl or amide containing side-chain. Other possible cyclizations include the formation of a thioether by the reaction of a thiol group in a cysteine side-chain with the N-terminal amino group, C-terminal carboxyl group, or the side-chain of another amino acid. A disulfide bond may also be formed between two cysteine residues. As used herein, a “non-cyclized peptide” is a linear peptide that does not have any of the above cyclizations.

By “dissociation constant” is meant the dissociation constant for binding streptavidin as measured using the electrophoretic mobility shift assay described herein. By “less than” a particular dissociation constant is meant capable of binding streptavidin more tightly than the strength of binding represented by a particular dissociation constant.

By “purifying” is meant separating a compound, for example, a protein, from other components that naturally accompany it. Typically, a protein is substantially pure when it is at least 50%, by weight, free from proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the protein is at least 75%, more preferably, at least 90%, and most preferably, at least 99%, by weight, pure. In other preferred embodiments, the protein is at least 2, 5, 10, 25, 50, or 100 times as pure as the starting material. Purity may be assayed by any appropriate method, such as polyacrylamide gel electrophoresis, column chromatography, optical density, HPLC analysis, western analysis, or ELISA (see, for example, Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 2000).

By “recovered from the complex” is meant physically separated from the complex of streptavidin and the peptide protein. For example the streptavidin-bound fusion protein may be incubated under conditions that reduce the affinity of the fusion protein for streptavidin (i.e., at low or high salt concentrations or at low or high pH values) or incubated in the presence of molecules that compete with the fusion protein for binding streptavidin. Preferably, either the fusion protein or the streptavidin that has been released from the complex is isolated using standard procedures, such as column chromatography, polyacrylamide gel electrophoresis, HPLC, or western analysis.

The present invention provides a number of advantages related to the detection and purification of proteins of interest. For example, because the present methods do not require the generation of an antibody or other affinity reagent that is specific for each protein of interest, these methods may be universally applied to any protein. In addition, if desired, the streptavidin-binding peptide may be connected to the protein of interest through a protease cleavable linker, allowing removal of the peptide after purification of the fusion protein.

Using the methods described herein, purification of a fusion protein based on its affinity for streptavidin has allowed the isolation of the fusion protein in significantly higher purity than that obtained using a hexahistidine affinity tag or maltose-binding protein affinity tag. Moreover, streptavidin is an inexpensive reagent that may be purchased unmodified or covalently labeled with a detectable group (such as FITC-streptavidin or alkaline phosphatase-conjugated streptavidin) or with a chromatography matrix (such as streptavidin-agarose). The availability of these reagents simplifies methods for detecting and purifying the fusion proteins of the present invention.

In addition, the streptavidin binding peptide-tag are particularly useful when intermediate amounts of protein (~10–500 µg) need to be produced and purified in a high throughput manner. For example, highly parallel purification protocols may be performed in 96-well plates using streptavidin-derivatized magnetic beads and streptavidin binding peptide-tagged proteins expressed in E. coli or in coupled in vitro transcription/translation reactions. This facilitates purification, for example, for proteomics applications in which hundreds of purified proteins need to be generated and purified in parallel.

Other features and advantages of the invention will be apparent from the following detailed description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic illustration of an in vitro selection process according to the invention, showing the structure of the library and the selection scheme. Members of the DNA library have, from the 5' to 3' end, a T7 RNA polymerase promoter (T7), a tobacco mosaic virus translation enhancer (TMV), a start codon (ATG), a 3' random amino acids, a hexahistidine tag (H6), and a specific region (Const). FIG. 1B is a picture of an SDS-PAGE gel of samples from the library at different stages of preparation. The first lane shows the result of translating the mRNA display template with 35S-methionine. Most of the counts represent free peptide (free pep), but a significant amount of mRNA-peptide covalent fusions are also present (mRNA-pep). There is also another band that is independent of added template (NS, non-specific), and some counts remain in the gel well. The band corresponding to the mRNA-peptide can be shifted to a position slightly higher than that for the free peptide by treatment with RNase A. The remaining lanes show the result of successive oligo-dT and Ni-NTA purifications, and finally reverse transcription (RT).

FIG. 2A is a bar graph showing the fraction of 35S counts from the displayed peptides that bound to streptavidin and eluted with biotin, at each round of selection. FIG. 2B is a graph showing the elution profile for the peptide library generated from the output of the seventh round of selection in FIG. 2A. The first fraction represents the flow-through. Biotin was added at the point indicated. The plot compares the binding of the intact, reverse-transcribed, displayed peptides (mRNA-pep), the same sample treated with RNase A, and the RNase-treated sample applied to a streptavidin column pre-saturated with biotin (excess biotin was washed away prior to exposing the library to the matrix).
FIG. 3 is a list of the sequences of 20 clones from the seventh round of selection (SEQ ID Nos.: 1–20). The “+” column indicates the number of times each sequence was observed. The HPQ sequence is in bold type. Non-random sequences at the termini are underlined. The six C-terminalmost residues are not shown.

FIG. 4A is a picture of a native gel showing an electrophoretic mobility shift (EMSA) analysis demonstrating the binding of four different DNA-tagged peptides to streptavidin. The migration of each clone is shown in the absence (−) and presence (+) of 1 μM streptavidin. Some of the clones show multiple bands, presumably representing different conformations. The arrows show the position of the gel well, which often contains a fraction of the counts. FIG. 4B is a picture of a native gel showing the titration of the full-length clone SB19 with streptavidin. The streptavidin concentration in each lane, from left to right, is: 3.8, 6.6, 10, 15, 23, 35, and 61 nM. FIG. 4C is a curve fit of the data shown in FIG. 4B (the fraction of peptide bound could not be accurately determined for the point with the lowest concentration of streptavidin). Assuming that the peptide is homogenous and 100% active, the data from this experiment give a Kd of 10 nM for the binding of peptide SB19 to streptavidin.

FIG. 5 is a list of the sequences of truncation mutants of peptide SB19 (SEQ ID Nos.: 21–29). The full-length (FL), C-terminal deleted (C1–C4), N-terminal deleted (N1–N3), and point mutated (M1) peptide sequences are shown. The “% binding” refers to the performance of these peptides in the streptavidin binding column-binding assay.

FIG. 6A is the nucleotide sequence of the plasmid used for expression of a fusion protein containing a streptavidin-binding peptide (SEQ ID No.: 37). FIG. 6B is the amino acid sequence of the encoded protein (SEQ ID No.: 38) which contains, from the amino- to carboxy-terminus, maltose-binding protein, a streptavidin-binding peptide (SEQ ID No.: 35, FIG. 7A), a hexahistidine tag, and another peptide called 2rl8-19dN. FIG. 6C is the amino acid sequence of 2rl8-19dN (SEQ ID No.: 39).

FIG. 7A is the amino acid sequence of the streptavidin-binding peptide (SEQ ID No.: 35) used as an affinity tag for the purification of the fusion protein listed in FIG. 6B. This peptide contains the first 38 amino acids of the SB19-C4 peptide (FIG. 5). FIG. 7B is a picture of an SDS-PAGE gel showing the purity of the fusion protein after elution from the streptavidin column (lane 2) compared to the purity of the E. coli lysate that was applied to the column (lane 1).

FIGS. 8A–8F are schematic illustrations of the pre-selection method. FIG. 8A is an illustration of an mRNA display template terminating in puromycin in which the tobacco mosaic virus translation enhancer sequence (TMV), the initiating methionine codon (AUG), and the sections of the open reading frame encoding the two protein affinity tags (FLAG and His₆) are labeled. FIG. 8B is an illustration of an mRNA display template that is free of frameshifs and premature stop codons and thus encodes a full-length protein containing both affinity tags. FIG. 8C illustrates an mRNA display template that has initiated internally and displays the corresponding truncated protein lacking the N-terminal FLAG tag. FIG. 8D shows an mRNA display template that has a deletion in its open reading frame and thus displays the corresponding frameshifted protein lacking the C-terminal His₆ tag. FIG. 8E illustrates the reverse transcription of the mRNA display template from FIG. 8D that was purified based on the presence of both protein affinity tags in the encoded protein. FIG. 8F shows the cleavage sites for Type IIS restriction enzymes which are encoded in each cassette.

Ligation of pre-selected cassettes which have been cleaved with these enzymes yields the full-length DNA library.

FIG. 9A is the polynucleotide sequence of the vector encoding a fusion protein containing maltose-binding protein, a streptavidin-binding peptide (SEQ ID No.: 35, FIG. 7A), and a hexahistidine tag. FIG. 9B is an amino acid sequence of the encoded fusion protein. The sequence of the streptavidin-binding peptide which contains the first 38 amino acids of the SB19-C4 peptide is underlined.

FIG. 10A is a graph of a Biacore (Surface Plasmon Resonance) response units over various lengths of time for the dissociation of streptavidin from the fusion protein listed in FIG. 9B immobilized on a biacore chip. For line “a,” the streptavidin concentration is 23 μM; for line “b,” the concentration is 11.5 μM, and for line “c,” the concentration is 5.75 μM. This data was used to calculate an upper limit of 2x10⁻⁹/Ms for the dissociation rate, Koff. FIG. 10B is a graph showing the association and subsequent dissociation of streptavidin from the immobilized fusion protein. For lines “a” through “c,” the streptavidin concentrations are 1.6, 0.8, 0.4, 0.2, 0.1, and 0.05 μM, respectively. This data was used to calculate an association rate, k₅, of 5x10⁷/Ms.

FIG. 11 is a map of the pTAG2K vector indicating the order of the domains in the multiply-tagged fusion protein it encodes.

FIG. 12 is a graph showing a Kd determination of the streptavidin binding peptides-streptavidin interaction using the Spin-filter Binding Inhibition Assay (SBIA). The labeled streptavidin binding peptide-tagged peptide was incubated with a range of streptavidin concentrations and the amount not complexed was then determined after a short incubation with immobilized streptavidin. This analysis gave a Kd of 2.5 nM for the interaction of the streptavidin binding peptide sequence with streptavidin.

FIG. 13 is a purity assay for a single-step purification of streptavidin binding peptide-tagged (multiply-tagged) protein from lysed cells. Purity is compared to samples processed upon the basis of the His-tag or the maltose-binding protein sequences contained in the same protein. Lanes 1 and 2 show lysed E. coli prior to and after IPTG-induction, respectively. Lane 3 shows the soluble fraction of E. coli lysate in streptavidin-binding buffer. Lanes 4 through 6 show approximately equal amounts of purified proteins from the elution fractions of the streptavidin binding peptide-tag purification, the His-tag purification, and the maltose-binding protein purification, respectively.

FIG. 14 illustrates a detection of a streptavidin binding peptide-tagged protein with streptavidin-derivatized horseradish peroxidase. The left-hand panel shows the Coomassie Brilliant Blue staining of an SDS-Tricine PAGE gel of the purified streptavidin binding peptide-tagged (multiply-tagged) protein and an E. coli extract. These same samples were also run on a different portion of the same gel and then transferred to a nitrocellulose membrane. The right-hand panel shows the result of the probing of this membrane with streptavidin-derivatized horseradish peroxidase. The only observed signal is for the streptavidin binding peptide-tagged protein, with no staining of other proteins in the extract.

FIG. 15 is a graph showing a Kd determination of a streptavidin binding peptide-streptavidin interaction. The y axis shows the fraction of surface-bound peptide that is competed by the free streptavidin. This analysis gave a Kd of 2.4 nM for the interaction of the streptavidin binding peptide sequence with streptavidin.
DETAILED DESCRIPTION

The present methods stem from the discovery of peptides that have unusually high affinities for streptavidin (K_d of less than 10 µM). These peptides were selected from a library of randomized, non-constrained peptides using the mRNA display method. The high affinity of the selected peptides was particularly surprising, given the fact that non-constrained linear peptide libraries generally do not yield high affinity ligands to proteins, except in cases where the protein normally functions in peptide recognition (Clarkton et al., Trends Biotech 12:173–184 (1994); Katz, Annu. Rev. Biophys. Biomol. Struct. 26:27–45, 1997).

Many other peptides with high affinity for streptavidin may be isolated using the mRNA display method or any other selection method, such as ribosome display (Roberts, Curr. Opin. Chem. Biol. 3(3):268–73, 1999), or phage display (U.S. Pat. No. 5,821,047).

The binding characteristics of exemplary selected streptavidin-binding peptides are described in Table 1, and the sequences of these peptides are listed in FIG. 3. The first column of Table 1 lists the peptide name (SB1-SB20). For comparison, a non-selected sequence with two HPQ motifs spaced by 19 residues (called “non-selected”) is listed in row one. SB19-C4 is a truncation mutant of peptide SB19, described below. The peptides are grouped according to the number of HPQ and similar tripeptide motifs they possess. The second column shows the number of tripeptide motifs in each peptide, and the number of amino acid residues separating them. The third column represents the percentage of peptide binding and specifically eluting from a streptavidin column. This percentage ranged from 8.3% to as high as 88% for the selected peptides, compared to only 0.16% for the control, non-selected peptide with two HPQ motifs.

The fourth column shows the K_d, when known, for the interaction between streptavidin and the peptides, as measured in the EMSA assay described herein. The standard deviation in the K_d is shown in the fifth column, based on the number of independent measurements (n, shown in parentheses). The dissociation constant ranged from 110 nM for peptide SB5 to 4.8 nM for peptides SB2.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>% binding and eluting</th>
<th>K_d (nM)</th>
<th>Standard deviation (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB1</td>
<td>HPQ 19 HPQ</td>
<td>0.16</td>
<td>50</td>
</tr>
<tr>
<td>SB2</td>
<td>HPQ 19 HPQ</td>
<td>48</td>
<td>4.8</td>
</tr>
<tr>
<td>SB3</td>
<td>HPQ 23 HPQ</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SB4</td>
<td>HPQ 43 HPQ</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>SB5</td>
<td>HPQ 52 HPQ</td>
<td>72</td>
<td>110</td>
</tr>
<tr>
<td>SB6</td>
<td>HPQ 4 HPQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB7</td>
<td>HPQ 7 HPQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB8</td>
<td>HPQ 12 HPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB9</td>
<td>HPQ 12 HP</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>SB10</td>
<td>HPQ 21 QPQ</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SB11</td>
<td>HPQ 26 HPA</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>SB12</td>
<td>HPQ 30 EQP</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>SB13</td>
<td>HPQ 32 EQP</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>SB14</td>
<td>HPQ 43 HPL</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>SB15</td>
<td>QPQ 50 HPQ</td>
<td>44</td>
<td>92</td>
</tr>
<tr>
<td>SB16</td>
<td>HPQ 74 LQP</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

To further characterize the binding of the selected peptides to streptavidin, truncation mutants for peptide SB19 were constructed to determine which regions were necessary for high affinity streptavidin-binding (FIG. 5). Deletion of up to 56 residues had no observable effect on the binding strength. For example, peptide SB19-C4 retained only the first 38 residues from the selected construct (plus the C-terminal sequence MMGGGCY, SEQ ID No.: 36) and had a dissociation constant of 4.9 nM for streptavidin (Table 1). In contrast, N-terminal truncation mutations (N1–N3) resulted in a lower percentage of the encoded peptide specifically eluting from the streptavidin column (0.058 to 69% for the truncation mutants compared to 85% for full length SB19). These results suggested that the determinants for binding streptavidin were spread throughout the N-terminal 38 residues of the SB19 peptide.

High affinity streptavidin-binding peptides, such as those shown in Table 1, have a number of uses. For example, these peptides may be used for protein purification by expressing a protein of interest as a fusion protein joined to one or more of the streptavidin-binding peptides of the invention. In one such purification method, a sample containing the fusion protein is incubated with immobilized streptavidin. Proteins with no or weak affinity for streptavidin are washed away, and the fusion protein is then selectively eluted from the streptavidin matrix by addition of a biotin analog, another streptavidin-binding peptide, or any compound that competes with the fusion protein for binding to the matrix. Alternatively, the fusion protein may be eluted from the matrix by increasing or decreasing the pH of the buffer applied to the matrix.

As described in detail below, this general protocol was used in a one-step purification of a fusion protein containing a streptavidin-binding peptide from an E. coli extract, resulting in a high yield of very pure protein. This fusion protein contained the first 38 amino acids of the SB19-C4 peptide, which due to its small size was not expected to affect the three-dimensional structure or activity of the covalently-linked protein of interest. Purification of fusion proteins containing other streptavidin-binding peptides of the present invention may be performed similarly.

In addition, various modifications of the above purification protocol would be apparent to one skilled in the art (see, for example, Ausubel et al., supra), and such modifications are included in the invention. In particular, use of the streptavidin-binding peptides as affinity tags is desirable for high throughput protein production and purification. For example, purification of fusion proteins in a multi-well format may be conducted using magnetic streptavidin beads that are washed and eluted robotically. The methods of the present invention may also be adapted to purify fusion proteins from in vitro translation mixtures or from other extracts, such as those from prokaryotic, yeast, insect, or mammalian systems.
mammalian cells, using standard techniques. If necessary, avidin may be added to the extract to bind any free biotin in the extract before contacting a sample from the extract with streptavidin. Allowing any free biotin to bind avidin may prevent biotin from competing with the streptavidin-binding peptides for binding to streptavidin.

If desired, the presence of a fusion protein of the invention in a sample may be detected by incubating the fusion protein with streptavidin (i.e., unlabeled streptavidin or streptavidin that is labeled with a detectable group) under conditions that allow streptavidin to bind the fusion protein. Preferably, the unbound streptavidin is separated from the streptavidin-bound fusion protein. Then, the streptavidin that is bound to the fusion protein is detected. Alternatively, the streptavidin bound to the fusion protein is physically separated from the fusion protein and then detected, using standard methods. For example, to detect streptavidin that is bound to the fusion protein or that has been separated from the fusion protein, Western or ELISA analysis may be performed using an antibody that reacts with streptavidin or that reacts with a compound that is covalently linked to streptavidin. If streptavidin is covalently linked to an enzyme, radiolabel, fluorescent label, or other detectable group, the amount of streptavidin may be determined using standard techniques based on a characteristic of the detectable group such as its enzyme activity, radioactivity, or fluorescence (see, for example, Ausubel et al., supra). Alternatively, streptavidin may be contacted with a streptavidin-binding compound that is covalently linked to an enzyme, radiolabel, fluorescent label, or other detectable group, and the detectable group may be assayed as described herein.

We have also developed an improved method to generate synthetic DNA libraries encoding full-length proteins, which may be used in a variety of selection methods to isolate proteins with desired binding affinities or activities. The generation of libraries of proteins containing a desired number of amino acids is often limited by the number of internal initiation events that result in truncated proteins and the number of frameshifts that result in premature stop codons or the removal of desired stop codons. For example, during solid phase DNA synthesis, insertions and deletions which cause frameshifts may occur due to imperfect coupling and capping efficiencies. In addition, the random regions in DNA templates may encode stop codons, resulting in premature truncation of the encoded protein. To address these problems, we have developed a method in which small DNA cassettes are synthesized, and an in vitro selection using the mRNA display technology is performed to enrich the library of DNA cassettes for sequences encoding two protein affinity tags. These DNA cassettes lack frameshifts and premature stop codons. The selected DNA cassettes are then cleaved with restriction enzymes and ligated to generate the full-length DNA library (FIGS. 8A-8F) (Cho et al., J. Mol. Biol. 297:309-319, 2000).

In one preferred embodiment of this method, mRNA display templates that contain a translation enhancer sequence operably-linked to an open reading frame and that terminate in puromycin are generated as described previously (Cho et al., supra). The open reading frame encodes two different protein affinity tags, such as a FLAG tag and a hexahistidine tag. Preferably, one of the tags is located at the amino-terminus of the encoded peptide, and the other tag is located at the carboxy-terminus. The mRNA display templates are then reverse transcribed and the cDNA is amplified by PCR. The amplified cDNA is then ligated to a vector and transfected into cells to express the fusion protein. After puromycin selection, the puromycin-resistant clones are isolated, and the sequences encoding the fusion protein are sequenced. The sequences encoding the fusion protein are then used to generate full-length DNA templates, which may be used in a variety of selection methods to isolate proteins with desired binding affinities or activities.

Contrast, templates that contain frameshifts or premature stop codons encode peptides without the C-terminal affinity tag (FIG. 8D). Additionally, mRNA display templates that initiate internally produce peptides without the N-terminal affinity tag (FIG. 8C). The library of mRNA displayed peptides is enriched for peptides containing both affinity tags by purification of the mRNA displayed peptides based on the presence of these tags (see, for example, Ausubel et al., supra). For example, the mRNA displayed peptides may be applied to a matrix designed to bind peptides containing one of the affinity tags, and the mRNA display peptides without the affinity tag are washed away. The mRNA display peptides containing the affinity tag are then eluted and applied to a second matrix designed to bind the other affinity tag.

The mRNA display peptides recovered from this purification step are enriched for members containing both affinity tags and thus for full-length peptides. These mRNA displayed peptides are reverse transcribed to generate double-stranded DNA. The amplified DNA is then cleaved by restriction enzymes. Preferably, this restriction digestion removes the sequences encoding the affinity tags from the DNA cassettes. The cleaved DNA cassettes are then ligated to generate the full-length DNA templates.

The experiments described above were carried out as follows.

Generation of a Streptavidin-Binding Peptide Library

The mRNA display method for selecting peptides or proteins of interest takes advantage of the translation-terminating antibiotic puromycin, which functions by entering the A site of ribosomes and forming a covalent bond with the nascent peptide. By covalently attaching puromycin to the 3' end of an mRNA, a covalent link between a polypeptide and its encoding message can be achieved in situ during in vitro translation (Roberts et al., Curr. Opin. Struct. Biol. 9:521-529, 1999; Liu et al., Methods Enzymol. 318:268-293, 2000). These mRNA-peptide fusions can then be purified and subjected to in vitro selection, yielding the isolation of novel peptide ligands.

A DNA library encoding polyepitopes of 108 amino acids was synthesized as described (Cho et al., supra). The library consisted of short cassettes concatenated together. Each cassette encoded a random peptide with a pattern of polar versus non-polar amino acid side chains compatible with forming an amphipathic alpha-helix or beta-strand (Cho et al., supra). The random region was 88 amino acids long, followed by a C-terminal invariant region containing a hexahistidine tag (FIG. 1A).

The library had a complexity of 2.4 x 10^14 at the DNA level. It was transcribed using T7 RNA polymerase (FIG. 1A), after which a "linker" oligonucleotide was added to the 3' end using T4 DNA ligase as described (Liu et al., supra; Cho et al., supra). The linker consisted of a 21 nucleotide long DNA stretch, followed by a polyethylene glycol linker, followed by the sequence 5'-dC-dC-puromycin (Liu et al., supra).

This puromycin-terminated mRNA was translated in vitro, using the Ambion (Austin, Tex.) in vitro translation kit under standard conditions for capped mRNA. The 10 mL reaction mixture was supplemented with 2 mCi 35S-methionine and a total methionine concentration of 10 μM. The reaction mixture also included 300 mM of the library of puromycin-linked mRNA molecules. After 1 hour at 30°C, MgCl₂ and KCl were added to 20 and 710 mM, respectively, and the reaction mixture was further incubated at room temperature for five minutes to increase the yield of dis-
played peptides. This in vitro translation produced 1.2×10^{14} polypeptides linked via the puromycin moiety to their encoding mRNAs.

These mRNA displayed peptides were then purified on oligo-dT cellulose (which binds to the oligo-dA sequence in the linker) to remove polypeptides not fused to mRNA. For this purification procedure, the reaction mixture was diluted 10-fold into oligo-dT-binding buffer (1 M NaCl, 50 mM HEPES, 10 mM EDTA, 0.25% Triton X-100, and 5 mM 2-mercaptoethanol at pH 7.9) and 80 mg oligo-dT cellulose (type 7, Amersham-Pharmacia, Piscataway, N.J.) and incubated with agitation at 4°C for 30 minutes. The mixture was applied to a column (Poly-Prep chromatography column, Biorad, Hercules, Calif.), drained, washed with 10 mL oligo-dT-binding buffer, washed with 10 mL oligo-dT-wash buffer (300 mM NaCl, 20 mM HEPES, 1 mM EDTA, 0.25% Triton X-100, and 5 mM 2-mercaptoethanol at pH 7.9), and washed with 1 mL of 0.5x oligo-dT-wash buffer. The mRNA-displayed peptides were eluted with 4.5 mL water plus 5 mM 2-mercaptoethanol into tubes containing Triton X-100 and bovine serum albumin (BSA, New England Biolabs, Beverly, Mass.) at final concentrations of 0.15% and 15 μg/mL, respectively.

The mRNA-displayed peptides that eluted from the oligo-dT cellulose column were further purified on Ni-NTA agarose, which binds to the hexahistidine tags on the polypeptides, to remove any mRNA not fused to polypeptides. The eluted fractions from the oligo-dT cellulose purification were exposed to 0.5 mL Ni-NTA-agarose (Qiagen, Valencia, Calif.) in Ni-binding buffer (6 M guanidine chloride, 0.5 M NaCl, 100 mM sodium phosphate, 10 mM Tris(hydroxymethyl)aminomethane, 0.1% Triton X-100, 5 mM 2-mercaptoethanol, 4 μg/mL RNA (Boehringer-Mannheim, Indianapolis, Ind.), and 5 μg/mL BSA at pH 8.0) and incubated for 30 minutes at room temperature. The matrix was then drained, washed with 12 column volumes Ni-binding buffer, and eluted with the same buffer plus 100 mM imidazole. Eluted fractions were combined and de-salted using two successive NAP columns (Amersham-Pharmacia, Piscataway, N.J.) equilibrated in 1 mM Tris(hydroxymethyl)aminomethane, 0.01% Triton X-100, 50 mM EDTA, 0.5 mM 2-mercaptoethanol, 0.1% RNase (Boehringer-Mannheim, Indianapolis, Ind.), and 50 μg/mL BSA at pH 7.6).

The mRNA portion was then reverse transcribed using Superscript II (Gibco BRL, Rockville, Md.) according to the manufacturers instructions, except that the mRNA concentration was about 5 nM and the enzyme concentration was 1 U/μL. To ensure a high yield in the reaction, a mixture of two primers was used: 1 μM of “splint” from the splinted ligation (Cho et al., supra), and 1 μM of the 3’ PCR primer. After 30 minutes at 42°C, the temperature of the reaction mixture was raised to 50°C for 2 minutes, and then cooled over 5 minutes to room temperature to allow gradual peptide folding. Finally, the contents were de-salted using NAP columns and subjected to scintillation counting. By comparing the 35S counts of the purified, reverse transcribed mRNA-peptide fusions to the 35S-methionine stock and taking into consideration the total methionine concentration in the translation reaction (10 μM), the number of displayed peptides in this sample was determined to be 6.7×10^{12}. This number also represents the complexity of the library, since it contained virtually no redundancy (the complexity of puromycin-linker template used in the translation exceeds the number of recovered displayed peptides by a factor of about 35).

Samples from the synthesis and purification of the mRNA displayed peptides were run on an SDS-PAGE gel, as shown in FIG. IB.

Selection of Streptavidin-Binding Peptides

For selection of peptides with high affinity for streptavidin, the above mRNA displayed peptide library was incubated with immobilized streptavidin (Ultralink immobilized streptavidin plus, about 4 mg/mL; Pierce, Rockford, Ill.) in streptavidin-binding buffer under reducing conditions (40 mM Tris(hydroxymethyl)aminomethane, 300 mM KCl, 2 mM EDTA, 0.1% Triton X-100, 5 mM 2-mercaptoethanol, 100 μg/mL BSA, and 1 μg/mL tRNA at pH 7.4). The amount of gel used was 0.5 mL in a total volume of 5.5 mL. After incubating for 20 minutes at room temperature, the contents were loaded onto a disposable chromatography column, drained, washed with 14 column volumes of streptavidin-binding buffer, and eluted with five successive aliquots, at 10 minutes intervals, of streptavidin-binding buffer plus 2 mM D-biotin (Sigma, St. Louis, Mo.) (FIG. IA). The fraction of the library that survived this purification was 0.08%. Elution fractions were combined, de-salted on NAP columns, and then PCR-amplified to regenerate the double-stranded DNA library using the described conditions and primers in a 8 mL reaction mixture (Cho et al., supra).

This concluded the first round of selection, and the remaining six rounds followed the same protocol except that the translation was scaled down 10-fold, and the number of column volumes for washing the streptavidin column was increased (32 volumes for round 2; 40 volumes for rounds 3, 4 and 6; and 25 volumes for rounds 5 and 7). The streptavidin-binding selection for rounds 5 and 7 was performed directly on the streptavidin-column eluate from the preceding selection rounds, without intervening amplification (the biotin was removed by three successive passages through NAP columns). PCR products amplified after the seventh selection round were cloned using the TOPO TA cloning kit (Invitrogen, Carlsbad, Calif.), following the manufacturer’s protocol. The fraction of the library that bound and eluted from the streptavidin column increased in each round, reaching 61% at round seven (FIG. 2A).

Characterization of the Selected Library

The eluate from the seventh round of selection was amplified by PCR. The resulting PCR DNA was used to synthesize a library of displayed peptides to confirm that the displayed peptides, rather than the RNA or DNA portion of the library constructs, were responsible for the interaction with streptavidin. Treatment of the library with RNase A did not reduce the extent of binding/elution from the matrix (FIG. 2B). Also, biotin-saturated streptavidin showed no binding to the peptide library (FIG. 2B). These results demonstrated that the interaction of the selected peptides with the streptavidin matrix was specific for the unligated protein, rather than for any other component of the matrix.

Sequence Analysis of Selected Peptides

Thirty-three randomly chosen clones from the PCR DNA from round seven were chosen for sequencing. Twenty different sequences were observed (FIG. 3). Surprisingly, all 20 sequences were frame-shifted from the intended frame (frame 1) to frame 3 by deletion of two nucleotides or addition of one nucleotide. The designed pattern of polar and non-polar residues was therefore discarded, leaving an unpatterned, essentially random sequence. Prior to the selection, about half of the library members were in frame 1 throughout their entire open reading frames (Cho et al., supra). Frame 3 appears to have been enriched over frame 1.
due to the increased frequency of the sequence HPQ. Frame 1 has a low incidence (1:45,000 library members) of the sequence HPQ due to the designed polar/non-polar pattern. By contrast, frame 3 had a much higher expected incidence of the HPQ sequence (1:64), similar in frequency to that of a library of the same length and with equal mixtures of all four nucleotides at each position (1:193). Also, frame 3 was rich in histidine, thus allowing retention on the Ni-NTA column. The Ni-NTA purification protocol was intended to eliminate library mRNA molecules not displaying peptide, but was not performed under sufficiently stringent conditions so as to eliminate peptides with small numbers of histidines. Frame 2 had a high incidence of stop codons.

Nineteen of the 20 clones had at least one HPQ motif, and five clones contained two such motifs (Table 1). The clones were organized according to the number of times the HPQ and related tripeptide motifs occur (Table 1). The number of amino acids between the two motifs, when present, ranged from four to 74.

Binding Affinities of Peptides

To rapidly assay each of the 20 selected peptides to determine their affinity for streptavidin, a new method for preparing, tagging and purifying the peptides was employed. For generation of the DNA-tagged peptides, plasmids containing single inserts were used as templates for PCR-amplification using the same 5' PCR primer as described for the library construction (Cho et al., supra), and a new 3' primer (5'-ATAGCCGGTGCCAAGCTTGcAGccGccA-GACCAGT-3'; SEQ ID No. 30) which altered the 3' RNA sequence to ACUGGCUGCGCUGCAAGCCUCGCCGCGCCCAUGG- GCACCGGCUAU (SEQ ID No. 31). This sequence was designed to anneal to the photo-crosslinking linker, which has the sequence TAGCGGGTGcATCC-purumycin-3', in which the underlined bases are 3'-methoxy nucleotides and the remaining 10 bases are deoxynucleotides (the oligonucleotide was synthesized using reagents from Glen Research, Sterling, Va.). The new primer changed the constant C-terminal peptide sequence from WSGGCHEHHHHHHSAA (SEQ ID No. 32) to WSGGCCLGTGY (SEQ ID No. 33), of which the last three amino acids may not be translated because they are annealed to the linker. Each DNA template was transcribed and gel purified as described (Cho et al., supra), and then incubated with the psoralen linker under the following conditions: 2 mM mRNA, 4 mM linker, 50 mM Tris(hydroxymethyl)aminomethane, 200 mM KCl, and 10 mM spermidine at pH 7.4 and 70°C for 2 minutes, and then cooled to 4°C over 5 minutes. Samples were then placed in the cold room in a 96 well plate (50 μL/well), one inch above which was suspended a UV lamp (366 nm, Ultraviolet Products, Inc., San Gabriel, Calif., model number UVL-21) for 15 minutes. Then, the reactions mixtures were de-salted using a G-50 Sephadex spin column (Bioernger Mannheim, Indianapolis, Ind.). The translation/display reactions and oligo-DT purification were carried out as above. Finally, RNase A (200 ng/ml, 10 minutes, room temperature) was added to degrade the mRNA, leaving peptides fused to a short DNA oligonucleotide. Complete degradation was confirmed by SDS-PAGE analysis.

The resulting purified DNA-tagged peptides (DTP) were analyzed in a streptavidin column-binding assay, in which ~500 pM 35S-labeled DTP were mixed with 50 μL of the streptavidin matrix in streptavidin-binding buffer, in a total volume of 300 μL, and incubated for 10 minutes at room temperature with agitation. Then, the contents were loaded onto a chromatography column. The column was drained and washed with 80 column volumes of streptavidin-binding buffer, and then eluted with three consecutive aliquots (3 column volumes each) of streptavidin-binding buffer plus 2 mM biotin over a 15 minute period. All fractions (flow-through, washes, elutions, and irreversibly bound counts) were analyzed by scintillation counting to determine the fraction of DTP that bound streptavidin and eluted with biotin (Table 1). The non-selected clone in which two HPQ motifs (separated by 19 amino acids) were introduced encoded the sequence MDEAHPQAGPVQADARIVQQQA ---LQHHPQGDRRMSGGCKLGTGY (SEQ ID No. 34), in which the underlined portions are identical the HPQ regions of clone SB2.

The results of this analysis are shown in Table 1. For comparison, two HPQ motifs, separated by 19 residues, were introduced into a control, unselected member of the library. The low percentage of this control peptide that specifically eluted from the streptavidin column (0.16%) indicated that the presence of two HPQ motifs was not sufficient for high affinity binding. In contrast, a greater percentage of the selected peptides (8.3 to 88%) was retained on the column during the washing step and then specifically eluted with biotin.

The dissociation constants of the selected peptides for streptavidin were measured using an electrophoretic mobility shift assay (EMSA). In this assay, DTP’s were incubated with varying amounts of pure streptavidin (Pierce ImmunoPure Streptavidin, Rockford, Ill.) in streptavidin-binding buffer plus 5% glycerol to increase the density of the solution so that it could collect at the bottom of the gel well. After incubating at room temperature for 20 minutes, the reactions mixtures were moved into the cold room, where they remained for 10 minutes before being carefully loaded onto a 10% polyacrylamide:bisacrylamide (37.5:1, National Diagnostics, Atlanta, Ga.) gel (thickness 0.7 mm, height 16 cm, width 18 cm, containing 2X TBE, 0.1% Triton X-100 and 5% glycerol). The gel, which had been pre-run for 30 minutes at 13 watts, and the running buffer were pre-cooled to 4°C. Then, the gel was run in the cold room at 13 watts, which increased the temperature of the gel to about 20°C. The gel was run for 45 to 120 minutes, depending on the mobility of the particular DTP. Then, the gel was fixed in 10% acetic acid and 10% methanol for 15 minutes, transferred to electrophoresis paper (Ahlstrom, Mt. Holly Springs, Pa.), dried, and analyzed using a PhosphorImager (Molecular Dynamics, Sunnyvale, Calif.).
either no shift or poorly defined bands, suggesting that the lifetime of these complexes was too short for detection using this method. We chose five of the most well behaved clones and quantitatively examined their mobility shifts in response to a range of streptavidin concentrations. An example of a streptavidin titration experiment for peptide SB19 is shown in FIG. 4B, and the data is graphed in FIG. 4C. The dissociation constants for the clones ranged from 110 nM to less than 5 nM (Table 1). These surprisingly high affinities were comparable to those for monoclonal antibody-antigen interactions, demonstrating that even random, non-constrained peptide libraries can be a source of avid ligands to proteins that do not normally function in peptide binding.

Dissection of Clone SB19

Clone SB19 possessed only one HPQ motif, bound to 85% in the column binding assay, and had a K_D for streptavidin of 10 nM (Table 1). A series of C-terminal truncation constructs (C1–C4) were constructed and assayed in the streptavidin column-binding assay (FIG. 5). C-terminal truncation analysis of clone SB19 was performed using standard methods by amplifying the clone with the original 5’ primer and a series of 3’ primers that truncated the sequence at various positions and also replaced two codons (encoding Asp and Trp) in the C-terminal constant region with methionine codons to increase the 35S-incorporation. Analogous primers were used for the N-terminal truncation analysis, except that no change was made in the N-terminal constant sequence.

Deletion of up to 56 residues had no observable effect on the binding strength. Peptide SB19-C4 retained only the first 38 residues from the selected construct (plus the C-terminal MMSGGCKLG sequence, SEQ ID No. 36). Mutating the HPQ motif to HGA reduced the activity by three orders of magnitude (compare construct C4 to M1). Results from the N-terminal truncation constructs (N1–N3) suggested that binding determinants were spread throughout the N-terminal 38 residues of peptide SB19. Of the peptides tested, SB19-C4 was therefore the minimal peptide retaining full activity in this assay. EMSA analysis of peptide SB19-C4 (as translated) suggested that binding determinants were spread throughout the N-terminal sequence of the peptide. Of the peptides tested, SB19-C4 was therefore the minimal peptide retaining full activity in this assay. EMSA analysis of peptide SB19-C4 confirmed high affinity streptavidin-binding, but a fraction (13%) of the peptide was inactive even at streptavidin concentrations $>$1 μM. The majority (87%), however, had an apparent K_D of 4.9 nM after correction for the amount of inactive peptide.

Purification of Fusion Protein Containing Streptavidin-Binding Peptide

A fusion protein containing the first 38 amino acids of the SB19-C4 streptavidin-binding peptide (FIG. 7A) was expressed in *E. coli* and then purified from the cell lysate. For the expression of the fusion protein, BL21 (DE3) cells were transformed with a plasmid containing a Maltose Binding Protein–Streptavidin-Binding Peptide–His-Protein of Interest insert (FIG. 11) which encodes a fusion protein containing, from the amino- to carboxy-terminus, maltose-binding protein, the first 38 residues of the SB19-C4 sequence, a hexahistidine tag, and another peptide called 2r18-19DN (FIGS. 6A–6C). This insert was constructed using standard molecular biology techniques (see, for example, Ausubel et al., supra). Each of these domains of the fusion protein is separated by a few amino acids to allow proper folding of the domains.

A kanamycin-resistant colony was selected and grown overnight in 10 ml LB media with 50 mg/liter kanamycin at 37°C. This starter culture was diluted 100-fold into 1000 ml LB with 50 mg/liter kanamycin, and the culture was grown at 37°C to OD$_600$ of 1.6–1.8 at 37°C. Expression of the fusion protein was induced by addition of 1 mM IPTG, and the culture was grown for another two hours. The cells were pelleted by centrifugation at 3000–5000 g for 20 minutes. The pelleted cells were resuspended in 1 mM EDTA and MBP buffer (10 mM HEPES, pH 7.0, 0.25% w/w Triton X-100, and 10 mM BME at pH 7.4) and frozen slowly at -20°C overnight. The sample was thawed in the morning and sonicated on ice. The cell lysate was obtained by collection of the supernatant after centrifugation at 14,000 g for 20 minutes at 4°C.

To purify the fusion protein, the cell lysate was applied to a column containing immobilized streptavidin, with a capacity of about 1 mg/ml, that had been washed with eight column volumes of MBP buffer. The fusion protein was eluted with MBP buffer containing 2 mM biotin. Samples of the cell lysate and eluted protein were analyzed by SDS-PAGE on an 8% gel (FIG. 7B). The lane containing the purified protein had a band of the expected size. No other bands were observed, except for a faint band of slightly higher mobility (FIG. 7B). This band was probably a degradation product of the fusion protein that was missing a few amino acids from either the amino- or carboxy-terminus but retained the streptavidin-binding peptide and thus retained the ability to bind the streptavidin column. Thirty percent of the fusion protein loaded onto a column containing immobilized streptavidin was recovered after washing the column with 12 column volumes of MBP buffer. Thus, the high affinity of the fusion protein for streptavidin allowed extensive washing of the column to remove contaminating proteins, while retaining a significant amount of the desired fusion protein.

More stringent conditions eliminated the contaminating protein of higher molecular weight. The soluble fraction of lysed induced cells was prepared in Streptavidin-binding buffer (SBB: 300 mM KCl, 40 mM Tris(hydroxymethyl)amino methane, 5 mM 2-mercaptoethanol, 2 mM EDTA, 0.1% Triton-X 100, pH 7.4) as described above. This sample (e.g., 79 mg net weight cells in 1 ml SBB) was applied directly to the immobilized streptavidin matrix (e.g., column volume 100 μl; Ultralink Immobilized Streptavidin Plus, Pierce, Rockford Ill.) and then incubated at 4°C for 30 minutes.

The matrix was then washed with 40 column volumes of SBB and then eluted with 3 successive 2 column volume aliquots of SBB containing 2 mM biotin for 10 minutes each. Samples of each of the lysed uninduced and lysed induced cells, the soluble fraction, and the elution fraction were then analyzed on an 8% SDS-Tricine PAGE gel, and was stained with Coomassie Brilliant Blue. In a typical experiment, 1 ml of the soluble fraction of lysed induced cells was loaded onto 0.1 ml of the affinity matrix. Purification using the His-tag was also carried out in an analogous manner to the streptavidin binding peptide-tag procedure with the same amounts of cells and in the same volumes. The soluble fraction was prepared in His-tag binding buffer (300 mM NaCl, 50 mM sodium phosphate, 0.25% Triton X-100, 10 mM imidazole, pH 8.0). The sample was analyzed directly to Ni-column (Ni-NTA, Qiagen, Valencia Calif.) and then incubated at 4°C for 30 minutes.

The matrix was then washed with 40 column volumes of the same buffer containing 20 mM imidazole and then eluted with 3 successive 2 column volume aliquots of the same buffer containing 250 mM imidazole for 10 minutes each. Samples were analyzed as described above.

Purification using the maltose-binding protein sequence was carried out in an analogous manner to the streptavidin
binding peptide-tag procedure with the same amounts of cells and in the same volumes. The soluble fraction was prepared in maltose-binding protein binding buffer (200 mM KCl, 20 mM HEPES, 10 mM 2-mercaptoethanol, 0.25% Triton X-100, pH 7.4). The sample was applied directly to the amylose column (New England Biolabs, Beverly Mass.) and then incubated at 4°C, for 30 minutes. The matrix was then washed with 40 column volumes of the same buffer and then eluted with 3 successive 2 column volume aliquots of the same buffer containing 10 mM maltose for 10 minutes each.

For detection, ten pico moles of the loaded and eluted samples from the immobilized streptavidin column, the Ni-column, and the amylose column was loaded onto a 12% SDS-PAGE gel. In the adjacent lane, a whole bacterial extract from BL21 (DE3) cells was loaded. The whole cell extract was prepared by growing the cells to saturation in LB, removing the media by centrifugation, and resuspending them in 10% of the original culture volume with the SDS-PAGE protein-loading buffer. Six microliters of this extract was run on the gel. These two samples and a molecular weight marker were run side by side on the gel in duplicate. After running the gel, it was stained with Coomassie Brilliant Blue.

This gel is shown in FIG. 13. A band of the correct size was purified using each of the three columns. Purification on immobilized streptavidin gave the highest purity sample. No other bands were visible by Coomassie Brilliant Blue-stained SDS-PAGE gel analysis. At least one impurity was detected in the Ni-NTA-purified sample, and several contaminants were apparent in the amylose-purified sample. These results suggest that the streptavidin binding peptide-tag provides superior purity after a single purification step from lysed induced cells.

Detection of Fusion Proteins Containing Streptavidin Binding Peptides Using Streptavidin-Derived Reagents

Recombinant proteins containing streptavidin affinity tags may also be detected using reagents that bind to these affinity tags. A wide range of streptavidin-derivatized reagents is commercially available, and as a consequence the streptavidin binding peptide-tag provides a versatile detection tool. To demonstrate the utility of this interaction, an experiment was performed in which a recombinant protein was probed with streptavidin-derivatized horseradish peroxidase.

In this experiment the multiply-tagged protein was purified on the streptavidin column. The purified protein and an E. coli cell lysate were electrophoresed in adjacent lanes of a SDS-Tricine PAGE gel as described above. The protein on the gel was transferred to nitrocellulose (Trans-blot transfer medium, 0.2 μm, Biorad catalog number 162-0112) at 10 V for 30 minutes using the manufacturer’s instructions (Trans-blot semi-dry transfer cell, Biorad catalog number 170-3940). Efficient protein transfer was confirmed by the presence of the pre-stained molecular weight markers on the nitrocellulose.

After transfer, the nitrocellulose was incubated in TBS (25 mM Tris/HCl, 138 mM NaCl, 2.68 mM KCl, pH 7.4) plus 0.05% Polyoxyethylene-sorbitan monolaurate (Tween-20) and 3% BSA for 1 hour at room temperature. The blot was then briefly rinsed with the same buffer without BSA, and then a streptavidin-derivatized horseradish peroxidase conjugate (Amersham-Pharmacia, product number RPN1231) was added at a 1,000-fold dilution in TBS/0.05% Tween-20/3% BSA, and allowed to incubate for 1 hour at room temperature. The blot was then washed 3 times with TBS/0.05% Tween-20, and then one time with TBS. The HRP substrate (3,3′,5,5′-tetramethylbenzidene, Promega catalog number W4121) was then added according to the manufacturer’s instructions, and the blot was developed for approximately 1 minute.

These results are shown in FIG. 14. The streptavidin binding peptide-tagged protein is readily observed, and no proteins from the E. coli lysate are labeled, thus indicating the specificity of this interaction. Streptavidin-derivatized horseshed peroxidase and other streptavidin-derivatized reagents therefore provide many alternative methods of detecting streptavidin binding peptide-tagged proteins on membranes, plates, tissue sections, etc.

Yield of Fusion Proteins Containing Streptavidin-Binding Peptides

When scaling up protein expression to one milligram and above, the capacity and expense of the affinity matrix often begins to become important. To measure the capacity of the three matrices described above for their respective tag sequences, each matrix was overloaded with the multiply-tagged protein. Cells over-expressing this protein were split into three aliquots and re-suspended in different buffers according to the matrix that was to be used. The sample applied to immobilized streptavidin was extracted into streptavidin-binding buffer, and the samples for the other two purifications were extracted into the buffers recommended by the manufacturers of the two matrices, as described above.

The amount of protein in the flow-throughs, washes, and elution fractions was measured using the Bradford assay. We confirmed that each column was overloaded by observing the multiply-tagged protein in the flow-through fractions from each column. Purification using Ni-NTA agarose (His-tag/imidazole) yielded 12 mg of protein per ml of matrix. The amyllose column yielded 4.4 mg of protein per ml of matrix. The immobilized streptavidin column yielded 0.5 mg of protein per ml of matrix (0.52 mg/ml with a standard deviation of 0.07 mg/ml, n=4). The overall capacity of immobilized streptavidin for the streptavidin binding peptide-tag was therefore lower than that of the Ni-NTA agarose or amyllose matrices for their respective tags, but significantly greater than that of immobilized antibody matrices for purifying proteins upon the basis of epitope tags.

Biacore Analysis of the Affinity of a Fusion Protein for Streptavidin

The SB19-C4 streptavidin-binding fusion protein was expressed and purified from E. coli. This fusion protein contained, from the amino- to carboxy-terminus, maltose-binding protein, the first 38 amino acids of the SB19-C4 sequence, and a hexahistidine tag (FIG. 9A, SEQ ID No. 41). The plasmid (FIG. 9A, SEQ ID No. 40) encoding this fusion protein was constructed using standard molecular biology techniques and used to express the fusion protein in E. coli, as described above. This fusion protein was purified from the E. coli extract using amyllose resin to bind the maltose-binding protein portion of the fusion protein and then Ni-NTA resin to bind the hexahistidine tag.

To measure the affinity of the fusion protein for streptavidin, the fusion protein was immobilized on a Biacore chip through the crosslinking of free amino groups in the fusion protein to the biacore chip. Buffer containing streptavidin was washed over the chip, allowing streptavidin to bind the immobilized fusion protein (FIG. 10B). This resulted in an increase in the biacore response units which are proportional to the amount of streptavidin adhering to the biacore chip.
Then buffer without streptavidin was washed over the chip, and the biacore response units decreased as streptavidin dissociated from the immobilized fusion protein (FIGS. 10A and 10B). To measure the association rate for the binding of streptavidin to the fusion protein, streptavidin concentrations of 1.6, 0.8, 0.4, 0.2, 0.1, or 0.05 μM, (lines “a” to “f” in FIG. 10B, respectively) were washed over the biacore chip. The buffer also contained 40 mM Tris(hydroxymethyl) aminomethane, 300 mM KCl, 2 mM EDTA, 0.1% w/v Triton X-100, and 5 mM 2-mercaptoethanol at pH 7.4. This data was used to calculate an association rate, kₐ, of 5×10⁴ M/s, as described previously (BIACORE X Instrument Handbook, version AA, Biacore AB, Uppsala Sweden, 1997). To measure the dissociation rate, a pulse of 23, 11.5, or 5.75 μM streptavidin in the buffer described above was administered, and then buffer without streptavidin was washed over the chip (FIG. 10A). This data was used to calculate an upper limit of 2×10⁻³ S⁻¹ for the dissociation rate, kₜ (BIACORE X Instrument Handbook, supra). Based on these calculated association and dissociation rates, the dissociation constant, Kₜ, for the binding of streptavidin by this fusion protein was less than 40 nM. This result confirms the high affinity binding of the SB19-C4 peptide for streptavidin that was observed in the streptavidin-column binding assay and the EMSA assay (Table 1). Additionally, this result demonstrates that this peptide maintains its high affinity for streptavidin when expressed as part of a fusion protein.

Spin-Filter Binding Inhibition Assay Analysis of the Affinity of a Fusion Protein for Streptavidin

To measure the Kₜ of the peptide described above, a second and more general method, termed a Spin-filter Binding Inhibition Assay (SBIA), was also utilized. This method is especially appropriate for cases in which numerous proteins or peptides are derived from in vitro selection techniques using immobilized targets such as phage display (Smith, G. P. et al. Chem. Rev. 97:391–410, 1997), mRNA display (Roberts et al. Proc. Natl. Acad. Sci. USA 94:12297–12302, 1997; Liu et al. Methods Enzymol. 318: 268–293, 2000; Keefe et al. Current Protocols in Molecular Biology 2001; Keefe et al. Nature 410:715–718, 2001) or ribosome display (Jermutus et al.Curr. Opin. Biotechnol. 9:391–410, 1998). The principal benefit of this method is that it allows the affinities and specificities of interacting proteins to be assayed before investing the time required to over-express and purify them in the quantities required for conventional affinity determinations.

In general, SBIA utilizes low concentrations (≈Kₜ) of ³⁵S-labeled peptide bound to a cell-free translation system. The labeled protein is exposed to the bead-immobilized target (in this case immobilized streptavidin), and then the flow-through is collected by centrifugation in a 0.2 μm Durapore® spin-filter. The fraction of counts that pass through the filter (and therefore did not bind to the column) indicates the fraction of labeled peptide that did not bind to the matrix. To determine the affinity of the interaction, the labeled protein is first exposed to a range of concentrations of non-immobilized target. After this mixture has reached equilibrium, it is briefly (1 minute) exposed to the bead-immobilized target, and then spin-filtered as above. The initial incubation with the soluble target will compete with the binding of the radio-labeled protein to the immobilized target. The amount of inhibition is directly related to the fraction of labeled protein that was bound to the free target before this mixture was exposed to the immobilized target. By plotting the immobilized target-binding inhibition against the concentration of the free target, the Kₜ can easily be derived.

Because this titration is based on the interaction of the protein with the free (not immobilized) target, it may be more accurate than methods that quantify peptide binding to immobilized targets. However, SBIA may underestimate the affinity if there is significant dissociation of the complex during the brief incubation with immobilized target. The Kₜ corresponds to the concentration of free target that half-inhibits the binding to the immobilized target. As long as the concentration of the labeled binder is significantly lower than the Kₜ, the concentration of free target may be approximated as the total concentration of added target. This method may be generally useful for the determination of Kₜ values for protein-protein, protein-peptide, and protein-small molecule complexes.

To measure the Kₜ of the SB19-C4 peptide, this peptide was fused to a FLAG-tag (streptavidin binding peptide-FLAG) (Wilson et al. Proc. Natl. Acad. Sci. USA 98:3750-3755, 2001). Streptavidin binding peptide-FLAG was then translated in the presence of ³⁵S-labeled methionine by in vitro translation in reticulocyte lysate according to the manufacturer’s instructions (Red Nova, Novagen, Madison, Wis.) using a template concentration of 400 nM, 1 mM extra MgCl₂ and 100 mM extra KCl. This mixture was then purified successively upon the basis of the FLAG-tag and then the His-tag (using the manufacturer’s instructions; denaturing conditions were used for the Ni-NTA purification). The resultant purified peptide was then dialyzed into streptavidin-binding buffer (SBB: 300 mM KCl, 40 mM Tris(hydroxymethyl) aminomethane, 5 mM 2-mercaptoethanol, 2 mM EDTA, 0.1% w/v Triton-X 100, pH 7.4). The peptide was then diluted into the same buffer and mixed with a range of different streptavidin concentrations to give a set of 50 μl samples in which the SB19-FLAG peptide was at 200 pM and the streptavidin concentration ranged from 30 pM to 1 μM. Each of these samples was then incubated for 2 hours at 0°C and then subsequently incubated for 1 minute with 10 μl samples of the washed and dried immobilized streptavidin matrix (Ultralink Immobilized Streptavidin Plus, Pierce, Rockford III.). The flow-throughs were then immediately collected by centrifugation in a 0.2 μm Durapore® spin-filter (Millipore, Bedford Mass.), and these were counted in a scintillation counter. These data were iteratively fitted to the following equation y=b+s(Kₜ/x) in which y was the number of radioactive decompositions detected per minute in each flow-through, Kₜ is the dissociation constant of the complex, x was the concentration of free streptavidin, b was the number of counts per minute not competent to bind the matrix under the assay conditions, and c was the number of counts per minute competent to bind the matrix under the assay conditions. Kₜ, b, and c were iteratively determined using the program Deltagraph 4.0 (SPSS, Chicago III.).

In this experiment, the binding of labeled streptavidin binding peptide-tagged peptide was inhibited by pre-incubation with free streptavidin (FIG. 12). In this experiment 48% of the counts bound to immobilized streptavidin in the 1 minute slurry incubation in the absence of free streptavidin competitor, and this binding was completely inhibited by high concentrations (>100 nM) of streptavidin. Analysis of the binding curve gave a Kₜ of 2.5 nM, which compared very favorably with the Kₜ determined by other methods. For example, the same peptide was purified on a FLAG-affinity matrix, then bound to streptavidin immobilized on a microtiter plate. The labeled streptavidin binding peptide-
tagged peptide was incubated with a range of streptavidin concentrations for 1 hour before being transferred to a streptavidin-coated plate and incubated for five minutes. The labeled peptide not bound to the plate was pipetted off. The binding affinity was measured by competition with varying concentrations of streptavidin. Analysis of the binding curve gave a Kd of 2.4±0.1 nM. (FIG. 15)(2.4 nM; Wilson et al. Proc. Natl. Acad. Sci. USA 98:3750–3755, 2001). The streptavidin binding peptide-tag therefore bound to streptavidin with a ~5,000-fold higher affinity than does the Strep-tag II (Schmidt et al. J. Mol. Biol. 255:753–66, 1996). This higher affinity accounts for the fact that, after extensive washing (with 80 column volumes), the yield of retained peptide using the streptavidin binding peptide-tag was 2,200-fold higher than the yield using the Strep-tag II (Wilson et al. Proc. Natl. Acad. Sci. USA 98:3750–3755, 2001). Both the streptavidin binding peptide-tag and the Strep-tag II contain the tripeptide motif HPQ, but the flanking sequence in the streptavidin binding peptide-tag presumably provides additional favorable contacts with streptavidin.

Other Embodiments

From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

All publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent publication or patent application was specifically and individually indicated to be incorporated by reference.
Ala His Gln Val Asp Gly Arg Leu Leu Leu Gln His His Pro Gln Gly
65 70 75 80
Asp Arg Leu Leu Gln Gln Pro Gln His Pro Leu Leu Leu Val Trp
85 90 95
Arg Leu Pro Pro Ser
100
<210> SEQ ID NO 3
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE:
Met Thr Arg Arg Pro Thr Ala Ser Ser Ser Ser Cys Val Arg His Leu
1 5 10 15
Leu Leu Arg Gln Gly Glu His His Gln Ala Leu Glu Asp Arg Asp
20 25 30
Lys Ala Arg His Val Arg Leu Val Gly Asp Val Val Leu Gly
35 40 45
Gly Leu Asp Arg Leu Ala Arg Ala Arg His Ala Leu His Pro Gln
50 55 60
Ala Gly Leu Val His Leu Pro Leu His Gly Asp Leu Gly Gly His
65 70 75 80
Leu Arg Leu Val Leu Glu Ala His Pro Gln Gly Asp Arg Leu Gly Leu
85 90 95
Ala Val His His His
100
<210> SEQ ID NO 4
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE:
Met Asp Glu Lys Thr His Trp Gly Ile Ser Thr Trp Arg Gly Glu Pro
1 5 10 15
Leu Leu His His Pro Gln Ala Gly Arg Leu Pro Leu Asp Arg Arg Arg
20 25 30
Ala Arg His Arg Arg Ile Leu Gly Ala Gln Gly Gly Gly Val Asp His
35 40 45
Gly Leu Arg Leu Glu Leu Asp His Arg Pro Leu Val Pro Asp
50 55 60
His His Pro Gln Arg Gln Pro Leu Gln Arg Gly Asp Leu Pro Gln Val
65 70 75 80
Val Pro Leu Val Arg Leu Arg Ala His Val Val Leu Gly Leu Gly Leu
85 90 95
Ala Ala Ala Thr Ile Thr
100
<210> SEQ ID NO 5
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 5

Met Asp Glu Lys Thr His Trp Val Asn Val Tyr His Pro Gln Gly Asp
 1 5 10 15
Leu Leu Val Arg Gly His Gly His Asp Val Glu Ala Leu His Asp Gln
 20 25 30 35
Gly Leu His Gln Leu Asp Leu Val Gly Pro Pro Glu Val Val
 40 45 50
Arg Ala Leu Arg Gly Val Leu Gly Gly Leu Arg Arg Leu Pro
 55 60 65 70
Leu Asp His Pro Gln Gly Glu Ala Leu Asp Gln Ala Arg Gln Arg Pro
 75 80 85 90
Gln His Leu Leu Glu Leu His Arg Ala Leu Pro Pro Ala Leu Val
 95 100 105 110
Trp Arg Leu Pro Pro Ser

<210> SEQ ID NO 6
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 6

Met Asp Glu Lys Thr His Trp Leu Asn Asn Phe Glu Glu Leu Leu Ala
 1 5 10 15
Arg Leu Asp Gly Leu Arg Glu Gly Glu Asp His Pro Leu Val Leu Arg
 20 25 30 35
His His Pro Gln Gly Asp Gly Leu Asp Gln Pro Leu Gly Arg His
 40 45 50 55
Arg Ala Leu Asp Gly Val Arg Gly Asp Arg Pro Leu Asp Gln
 60 65 70 75 80 85 90 95 100
Cys Gly Cys His His His

<210> SEQ ID NO 7
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 7

Met Asp Glu Lys Thr His Trp Phe Gly Thr Leu Asn Asn Phe Glu Glu Leu Leu Ala
 1 5 10 15
His His Pro Gln Gly Asp Gly Leu Asp Gln Pro Leu Gly Arg His
 20 25 30 35
Arg Ala Leu Asp Gly Val Arg Gly Asp Arg Pro Leu Asp Gln
 40 45 50 55 60 65 70 75 80 85 90 95 100
Cys Gly Cys His His His

Met Asp Glu Lys Thr His Trp Phe Gly Thr Leu Asn Asn Phe Pro Thr
 1 5 10 15
His His Pro Gln Gly Asp Gly Leu Asp Gln Pro Leu Gly Arg His
 20 25 30 35
Met Asn Leu Ser Leu Asn His Trp Leu Ser Ser Gly His Pro Asp Gly
 40 45 50 55 60 65 70 75 80 85 90 95 100
Asp Asp Gly Val Val Gly Ala Leu Arg Leu Gly Gln His Glu His
 95 100 105 110 115 120 125 130 135 140 145 150 155 160

Arg Arg Leu Ala Gln Arg Arg Ala Aas Arg His Arg Gln Leu Val Trp
85 90 95
Arg Leu Pro Pro Ser
100

SEQ ID NO: 8
LENGTH: 102
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: selected peptide

SEQUENCE:
Met Asp Glu Lys Thr His Cys Thr Ile Glu Leu Asn Phe Ser Phe Thr
1 5 10 15
His Trp Lys Leu His His Pro Gln Gly Asp Ala Leu Leu Asp Asp
20 25 30
Gly Val Arg Pro His His Leu Ala Aas Gln Gly Gly Gly Leu Asp
35 40 45
Gln Gly Leu Gly His Arg Arg Val Val Ala Glu Leu Ala Arg
50 55 60
Arg Asp Pro Glu Val Leu Gly Leu Val Arg His Arg Gly Leu
65 70 75 80
Val Pro Arg Leu Arg His Gly Gly Arg His Ala Glu Pro Leu Val
85 90 95
Trp Arg Leu Pro Pro Ser
100

SEQ ID NO: 9
LENGTH: 102
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: selected peptide

SEQUENCE:
Met Asp Glu Lys Thr His Cys Thr Ile Glu Leu Asn Phe Ser Phe Thr
1 5 10 15
His Trp Lys Leu His His Pro Gln Gly Asp Ala Leu Leu Asp Asp
20 25 30
Gly Val Arg Pro His His Leu Ala Aas Gln Gly Gly Gly Leu Asp
35 40 45
Gln Gly Leu Gly His Arg Arg Val Val Ala Glu Leu Ala Arg
50 55 60
Arg Asp Pro Glu Val Leu Gly Leu Val Arg His Arg Gly Leu
65 70 75 80
Val Pro Arg Leu Arg His Gly Gly Arg His Ala Glu Pro Leu Val
85 90 95
Trp Arg Leu Pro Pro Ser
100

SEQ ID NO: 10
LENGTH: 103
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: selected peptide

SEQUENCE:
Met Asp Glu Lys Thr His Trp His Glu Arg Ala Gln Glu Leu Val Gly
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>2</td>
<td>His</td>
<td>Asp</td>
<td>His</td>
<td>Pro</td>
</tr>
<tr>
<td>3</td>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>His</td>
</tr>
<tr>
<td>4</td>
<td>Arg</td>
<td>Gly</td>
<td>Arg</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Arg</td>
<td>Gly</td>
<td>His</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gly Pro Arg Pro Leu Arg Gly Leu Val His Glu Arg Gly His Gln Pro

Gln Pro Leu Ala Gly Arg Val Glu Glu Ala Asp Gly Gly Leu Leu Arg

Asp Gly Gly Glu Leu Glu Pro Leu Val Arg Glu Gly Glu Asp His

Leu Glu Pro Leu Asp Glu Leu Asp Ala Gly Pro Arg Gly Leu Val

Trp Arg Leu Pro His His

<210> SEQ ID NO 11
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 11

Met Asp Glu Lys Thr His Trp His Glu Arg Val His His Leu Ala Asp

Gly Leu Glu Gln His Pro Gln Gly Gln Arg Arg Pro Leu Val Glu Arg

His Arg Gln Val Pro Arg Gly Leu Val Arg Glu Gln His Gly

Leu Pro Leu Glu His Pro Ala Gly Val His Val Ile Arg Leu His Gln

Gly Asp Asp Arg Val Asp Gly Leu Val Asp Gly His Gly Arg Asp

Val Arg Gly Leu Glu Arg Glu Val Gly Asp Gly Pro His Arg Leu Val

Trp Arg Leu Pro Pro Ser

<210> SEQ ID NO 12
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 12

Met Asp Lys Asp Pro Leu Leu Glu Glu Leu Glu Leu Arg Glu Arg

Leu Val His His Pro Gln Gly Leu Leu Pro Leu Arg Gly Gln Val

Gly His Asp Ala Glu Arg Leu Gly Ala Glu Val Asp Asp Leu Arg Gly

Gly Leu Leu Asp Glu Pro Gln Arg Ala Val Ala Gly Leu His His Val

Pro His Arg Val Gly Gln Arg Leu Val His Glu Val Arg Glu Leu Aep

Glu Gly Leu Leu Asp Gln Arg Asp Asp Leu Arg Gly Leu Val Trp

Arg Leu Pro Pro Ser 100

<210> SEQ ID NO 13
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 13
Met Glu Arg Glu Asp Pro Leu Asp Glu Gln Leu Arg Glu Leu Arg Glu 1 5 10 15
Ala Leu Val Asp His Pro Gln Gly Gly Ala Gln Ala Leu His Arg His 20 25 30
Asp Gly Glu His Val Pro Leu Arg Arg Val Gln His Arg Leu Gln 35 40 45
Pro Gly Leu Gln His Leu Glu Pro Leu Gln His Leu Glu Leu Gly 50 55 60
Glu Leu Gln Ala Arg Leu Gln Pro Leu Ala Gly Glu His Glu Arg Leu 65 70 75 80
Gly Ala Gly Leu Gln Arg Val Pro Gly His Gln Gly Arg Arg Leu Val 85 90 95
Trp Arg Leu Pro Pro Ser 100

<210> SEQ ID NO 14
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 14
Met Asp Glu Lys Thr His Arg Thr Leu Ser Val Ser Leu Ser Phe Asn 1 5 10 15
Asp Trp Leu Gly Gln Thr Cys Trp Arg Leu Val Gln Gly Leu 20 25 30
His Gly His Pro Gln Gly Leu Val Arg Glu His Glu Val Asp Leu 35 40 45
Pro Leu Ala Glu Glu Val Gin Val Val Gly Ala Arg Leu Gly Asp 50 55 60
Val Gln Pro Gly Gly Gly Leu Leu His Arg Ala Gin Arg Val Asp 65 70 75 80
His Pro Leu Pro Asp His Ala Gin Val Leu Gly Arg Leu Val Trp 85 90 95
Arg Leu Pro Pro Ser 100

<210> SEQ ID NO 15
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 15
Met Asp Glu Lys Thr His Trp Leu Glu Asp Leu Lys Gly Val Leu Lys 1 5 10 15
Asp Cys Leu Lys Asp Leu Met Asp Phe Thr Lys Asp Cys Arg Ser Pro
<210> SEQ ID NO 18
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 18

Met Asp Glu Lys Thr His Cys Ala Val Asn Val Val Gly Leu Thr
1 5 10 15
His Trp Cys His Arg Val Ala His Leu Gln Pro Leu Asp Pro His Pro
20 25 30
Gln Gly Asp His Leu Arg Leu Glu Pro Leu Gly His Ala Leu Val Asp
35 40 45
Pro Leu Val Gln Gln Val Glu Glu Val Val Arg Pro Leu Gln Leu Asp
50 55 60
Val Gly Val Glu Arg Val Ala Leu Val Glu Gln Val Ala Glu Val Gly
65 70 75 80
Glu Gly Leu Asp His Glu Ala Gly Gln Ala His Gly Ala Leu Val Trp
85 90 95
Arg Leu Pro Pro Ser
100

<210> SEQ ID NO 19
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 19

Met Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
20 25 30
Gln Gly Glu Arg Glu Pro Leu Val Gln Glu Val Glu Asp Val Asp Glu
35 40 45
Gly Leu Val Gln Asp His Gly Val Val Ala Gly Leu Leu Asp Pro
50 55 60
Val Gly Leu Leu Thr Asp Trp Phe Lys Lys Phe Lys Asn Val Ser
65 70 75 80
Lys Asp Cys Lys Met Thr Phe Tyr Leu Glu Met Tyr Asp Trp Ser Gly
85 90 95
Gly Cys His His His
100

<210> SEQ ID NO 20
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide

<400> SEQUENCE: 20

Met Asp Glu Lys Thr His Cys Lys Leu Asn Phe Lys Val Asn Ile Ala
1 5 10 15
Asp Trp Leu Ala Glu Phe His Gly Gly Gly Gln Gly Leu Leu Gly Arg
20 25 30
Arg Asp Gly Val Val Gln Arg Leu Val Asp Gly Val Gln Glu Arg Val
Glu Arg Leu Asp Arg Asp Pro Gly Leu Gly Asp Leu Arg Leu Glu Leu
50 55 60
His His Arg Aasp His Arg Leu Arg Gly Gly Glu His Leu Arg
65 70 75 80
Asp His Pro Leu Glu Pro Asp His Leu Val Val Gly Gly Leu Val
85 90 95
Trp Arg Leu Pro Pro Ser
100

<210> SEQ ID NO: 21
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 21
Met Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
20 25 30
Gln Gly Gln Arg Glu Pro Leu Val Gln Glu Val Glu Asp Val Asp Glu
35 40 45
Gly Leu Val Gln Asp Leu His Gly Val Val Ala Gly Leu Leu Asp Pro
50 55 60
Val Glu Lys Leu Leu Thr Asp Trp Phe Lys Lys Phe Lys Asn Val Ser
65 70 75 80
Lys Asp Cys Lys Met Thr Phe Tyr Leu Glu Met Tyr Asp Trp Ser Gly
85 90 95
Gly Cys Lys Leu Gly
100

<210> SEQ ID NO: 22
<211> LENGTH: 89
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 22
Met Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
20 25 30
Gln Gly Gln Arg Glu Pro Leu Val Gln Glu Val Glu Asp Val Asp Glu
35 40 45
Gly Leu Val Gln Asp Leu His Gly Val Val Ala Gly Leu Leu Asp Pro
50 55 60
Val Glu Lys Leu Leu Thr Asp Trp Phe Lys Lys Phe Lys Asn Val Ser
65 70 75 80
Lys Asp Cys Lys Met Thr Phe Tyr Leu Glu Met Tyr Asp Trp Ser Gly
85 90 95
Met Met Ser Gly Cys Lys Leu Gly
100

<210> SEQ ID NO: 23
<211> LENGTH: 75
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
OTHER INFORMATION: selected peptide

SEQUENCE:

Met Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
20 25 30
Gln Gly Gln Arg Glu Pro Leu Val Glu Gln Glu Val Glu Asp Val Asp Glu
35 40 45
Gly Leu Val Gln Asp Leu His Gly Val Val Gly Leu Leu Asp Pro
50 55 60
Val Glu Met Met Ser Gly Gly Cys Lys Leu Gly
65 70 75

SEQ ID NO
LENGTH: 61
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: selected peptide

SEQUENCE:

Met Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
20 25 30
Gln Gly Gln Arg Glu Pro Leu Val Glu Gln Glu Val Glu Asp Val Asp Glu
35 40 45
Gly Leu Val Gln Met Met Ser Gly Gly Cys Lys Leu Gly
50 55 60

SEQ ID NO 25
LENGTH: 47
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: selected peptide

SEQUENCE:

Met Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Gly
20 25 30
Ala Gly Gln Arg Glu Pro Leu Val Glu Gln Glu Val Glu Asp Val Asp Glu
35 40 45
Gly Leu Val Gln Met Met Ser Gly Gly Cys Lys Leu Gly
50 55 60

SEQ ID NO 26
LENGTH: 47
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: selected peptide

SEQUENCE:

Met Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Gly
20 25 30
Ala Gly Gln Arg Glu Pro Met Met Ser Gly Gly Cys Lys Leu Gly
35 40 45
<210> SEQ ID NO 27
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 27
Met Asp Gly His Val Val Glu Leu Ala Gly Leu Glu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro Gln Gly Gln Arg Glu Pro Met Met Ser Gly Gly Cys Lys Leu Gly
1 5 10 15 20 25 30

<210> SEQ ID NO 28
<211> LENGTH: 89
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 28
Met Asp Glu Gly Leu Ala Gly Leu Glu Gin Leu Arg Ala Arg Leu Glu His His Pro Gln Gly Gln Arg Glu Pro Leu Val Gin Glu Val Glu Asp Val Asp Gly Leu Val Gln Asp Leu His Gly Val Val Ala Gly Leu Leu Asp Pro Val Glu Lys Leu Leu Thr Asp Trp Phe Lys Phe Lys Aan Val Ser Lys Asp Cys Lys Met Thr Phe Tyr Leu Glu Met Tyr Asp Trp Ser Gly Gly Cys Lys Leu Gly
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

<210> SEQ ID NO 29
<211> LENGTH: 29
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 29
Met Glu Leu Glu Gin Leu Arg Ala Arg Leu Glu His His Pro Gln Gly Glu Arg Glu Pro Met Met Ser Gly Gly Cys Lys Leu Gly
1 5 10 15 20 25

<210> SEQ ID NO 30
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 30
atagccggtg ccaagcttgc agccgccaga ccagt

<210> SEQ ID NO 31
<211> LENGTH: 35
<212> TYPE: DNA
<210> SEQ ID NO 32
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 32
Trp Ser Gly Gly Cys His His His His His His Ser Ser Ala
1 5 10

<210> SEQ ID NO 33
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: designed peptide
<400> SEQUENCE: 33
Trp Ser Gly Gly Cys Lys Leu Gly Thr Gly Tyr
1 5 10

<210> SEQ ID NO 34
<211> LENGTH: 44
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: designed peptide
<400> SEQUENCE: 34
Met Asp Glu Ala His Pro Gln Ala Gly Pro Val Asp Gln Ala Asp Ala
1 5 10 15
Arg Leu Val Gln Gly Ala Leu Gln His Pro Gln Gly Asp Arg
20 25 30
Met Met Ser Gly Gly Cys Lys Leu Gly Thr Gly Tyr
35 40

<210> SEQ ID NO 35
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: selected peptide
<400> SEQUENCE: 35
Met Asp Glu Lys Thr Gly Thr Gly His Val Val Glu Gly
1 5 10 15
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
20 25 30
Gln Gly Gln Arg Glu Pro
35

<210> SEQ ID NO 36
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: designed peptide
<400> SEQUENCE: 36
Met Met Ser Gly Gly Cys Lys Leu Gly
1 5

<210> SEQ ID NO 37
<211> LENGTH: 6688
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: plasmid

<400> SEQUENCE: 37
atcggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa
60
ggggttatgc tagttattgc ttcagctcct gctcagcttca gcttcagcttca ttcagcttca ttcagcttca
120
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
180
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
240
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
300
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
360
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
420
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
480
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
540
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
600
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
660
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
720
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
780
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
840
ctcatttgc cagcgcctgt gctcagcttca gctcagcttca gctcagcttca gctcagcttca gctcagcttca
900
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
960
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1020
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1080
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1140
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1200
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1260
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1320
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1380
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1440
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1500
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1560
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1620
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1680
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1740
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1800
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1860
ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca ttcagcttca
1920
cattccttc gcgcccgtg ctaaccgccc tcaaaacctc actggtctgc ttcctaatgc 1980
agagctcaca taaagcagag cgctcaagct cccagccgca tcgaagctgc ccaaaaacctt 2040
cggagtgatg cagctgacaag cggagacaaag aacggtgag cgtgaacaca 2100
gtaccttt gagtattgag cagcgttacc ggtctctcttc atcagacggg ttggcctgtg 2160
gtgaacacgc ccgacgcgctt tctgagaaaa aagcggagc agaggtagcc 2220
gatcgtgctt accgtccaaag cagcgtgcag ctgctttgcttg tgcgctgatt 2280
atctgacag ccattcctcc tctgccctcg ccgctcctaag ctagctgctgctg 2340
aatctcagc ccatttcccct ggtgcctctt gttggttgcgg gcgttaaccag 2400
gtgaagctgc cccgctcctc ggcgcgtttc cttggaccaat ccggtctctc 2460
attattccta aggctgtcctt gctcttcrgg gatgggtgctg cggttacgct 2520
cgggtattt cgtgctgact tggcctgtcag gtggaacgct ggtggtgctg 2580
gcgttgcgg tggctggtttg cggcggtattt gtctgtgctgctg ctggtggttgc 2640
ttcggttgcg gccagctcgct tctgggatca ccaccttttg cacgagtttt 2700
tattttttc ccggagcagc tcgagatcag gatgggttgg cgggtctcttc 2760
gtgacgcgg cctgcggggc cggctccggc ggcgcctcgg cggaccgggg 2820
gttgggtctt cagttattca gcaggggttg ctctcttcctc gcgcgtctgc 2880
gtgggtgagc attgctgctg ccgcgtcag ggtggtgtgg gcgttcaccag 2940
cggaggttcc cggttacgac cttctctattt gcgcgtcattt ctgggttggc 3000
tttctccgc ggctgtgctg ctggtggttgc gcgttacggt gcgttgcgtg 3060
gatgggtggc caagcggctg ctcacgccga gcggcctcgcc gcgttacgcg 3120
cggctctgct gccgggtgtg ccggctggct gtcggtgttg cgcgtcctct 3180
cgggctctt cgcgtttacc cggttgcctg cggctggctg gcgttacgct 3240
gggtgtgttg tcgtgtggtc gcggggtgtg gcgttacgct gcgttacgcc 3300
tctctgtgtct gcggtgtttct cggggttttt gcggtgtttct gcgttacgtt 3360
tggcgcggt tggcggcggg ggcggtgttt gcggtgtttct gcgttacgct 3420
cggggtttc gggcggctg gcggctggct gcggggtttc gcgttacgct 3480
gggtgtttct gcggtgtttct gcgttacgct gcgttacgct gcgttacgct 3540
tggtgtggtc gcgggtgttt gcggtgtttct gcggtgtttct gcgttacgct 3600
tcgggtgttt gcggtgtttct gcggtgtttct gcggtgtttct gcgttacgct 3660
tccgggtgtt gggtgtttct gcggtgtttct gcggtgtttct gcgttacgct 3720
cagctgttat ccaggtgactt gcgcgtggtt gcgttgcgtt gcgttacgct 3780
acgggtgtt ccaggtgactt gcgcgtggtt gcgttgcgtt gcgttacgct 3840
acgggtgtt ccaggtgactt gcgcgtggtt gcgttgcgtt gcgttacgct 3900
acgggtgtt ccaggtgactt gcgcgtggtt gcgttgcgtt gcgttacgct 3960
tcgctgtgtct ccgctgtgtct ccgctgtgtct ccgctgtgtct ccgctgtgtct 4020
tcgggtgttt gcggtgtttct gcggtgtttct gcggtgtttct gcgttacgct 4080
acgggtgtt ccaggtgactt gcgcgtggtt gcgttgcgtt gcgttacgct 4140
tcgggtgttt gcggtgtttct gcggtgtttct gcggtgtttct gcgttacgct 4200
acgggtgtt ccaggtgactt gcgcgtggtt gcgttgcgtt gcgttacgct 4260
-continued

tggcgggtgt cggggcgcag ccatgaccca gtcacgtagc gatagcggag tgtatactgg 4320
cttactatag cgccagcta gacatgtaga ctaagagtcg accataatat cyggtgaaa 4380
taacgacag atgcgtaagg aagaaanaccc gaaatagcgg ctctgccct ctctccctca 4440
cgagcgctgt gcgggtgacgc gacgagcaaa atcagctac gtaaaagcgc 4500
tataacggtt atcagctgaa ctcagggata acgcagggaa gaaactatgc gcaaaaagcc 4560
agccgaagaag ccaggcagtt aaaaaagccg cgggtgaaa taccgcacag atgcgtaagg 4620
gctgactcgct gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg 4680
tagaattgta cccctgcacag atgcgtaagg agaaaatacc gcatcaggcg ctcttccgct 4740
tgacgctcac cggtaacgcc gtcgtaagat ccaggttcgc gacgacaggc tataaagata 4800
gctcaagcgt taggtactct agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc 4860
gcagtaac gccggtaagc tcccctggaa ctcctccgta ctcttccgct gcgctctcct 4920
gctcaagcgt taggtactct agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc 4980
gcagtaac gccggtaagc tcccctggaa ctcctccgta ctcttccgct gcgctctcct 5040
gcagtaac gccggtaagc tcccctggaa ctcctccgta ctcttccgct gcgctctcct 5100
gcagtaac gccggtaagc tcccctggaa ctcctccgta ctcttccgct gcgctctcct 5160
gcagtaac gccggtaagc tcccctggaa ctcctccgta ctcttccgct gcgctctcct 5220
gcagtaac gccggtaagc tcccctggaa ctcctccgta ctcttccgct gcgctctcct 5280
ttcagtaagat ccaggttcgc gacgacaggc tataaagata cccctgcacag atgcgtaagg 5340
tgcgctctgc tgcgctctgc tgtactggta ccttgctttt gctgccgtca 5400
tgcgctctgc tgcgctctgc tgtactggta ccttgctttt gctgccgtca 5460
tgcgctctgc tgcgctctgc tgtactggta ccttgctttt gctgccgtca 5520
tgcgctctgc tgcgctctgc tgtactggta ccttgctttt gctgccgtca 5580
tgcgctctgc tgcgctctgc tgtactggta ccttgctttt gctgccgtca 5640
attgcgagat gccgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 5700
cgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 5760
cgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 5820
cgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 5880
cgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 5940
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 5990
cgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 6050
cgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 6110
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6170
cgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg gcgctgatg 6230
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6290
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6350
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6410
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6470
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6530
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6590
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6650
ccagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt gcagcgggt 6710

<210> SEQ ID NO 38
<211> LENGTH: 479
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Designed protein
<400> SEQUENCE: 38

Met Gly Ile Glu Glu Gly Lys Leu Val Ile Trp Ile Asn Gly Asp Lys
1 5 10 15
Gly Tyr Asn Gly Leu Ala Glu Val Gly Lys Phe Glu Lys Asp Thr
20 25 30
Gly Ile Lys Val Thr Val Glu His Pro Asp Lys Leu Glu Glu Lys Phe
35 40 45
Pro Gln Val Ala Ala Thr Gly Asp Gly Pro Asp Ile Ile Phe Trp Ala
50 55 60
His Asp Arg Phe Gly Gly Tyr Ala Glu Ser Gly Leu Ala Glu Ile
65 70 75 80
Thr Pro Asp Lys Ala Phe Glu Asp Lys Leu Tyr Pro Phe Thr Trp Asp
85 90 95
Ala Val Arg Tyr Asn Gly Leu Ile Ala Tyr Pro Ile Ala Val Glu
100 105 110
Ala Leu Ser Leu Ile Tyr Asn Lys Asp Leu Leu Pro Asn Pro Pro Lys
115 120 125
Thr Trp Glu Glu Ile Pro Ala Leu Asp Lys Leu Lys Ala Lys Gly
130 135 140
Lys Ser Ala Leu Met Phe Asn Leu Glu Glu Pro Tyr Phe Thr Trp Pro
145 150 155 160
Leu Ile Ala Ala Asp Gly Gly Tyr Ala Phe Lys Tyr Asp Ile Lys Asp Val
165 170 175
Tyr Asp Ile Lys Asp Val Gly Val Asp Asn Ala Gly Ala Lys Ala Gly
180 185 190
Leu Thr Phe Leu Val Asp Leu Ile Lys Asn His Met Asn Ala Asp
195 200 205
Thr Asp Tyr Ser Ile Ala Glu Ala Ala Phe Asn Lys Gly Glu Thr Ala
210 215 220
Met Thr Ile Asn Gly Pro Trp Ala Trp Ser Asn Ile Asp Thr Ser Lys
225 230 235 240
Val Asn Tyr Gly Val Thr Val Leu Pro Thr Phe Lys Gly Glu Pro Ser
245 250 255
Lys Pro Phe Val Gly Val Leu Ser Ala Gly Ile Asn Ala Ala Ser Pro
260 265 270
Asn Lys Glu Leu Ala Lys Phe Leu Glu Asn Tyr Leu Leu Thr Asp
275 280 285
Glu Gly Leu Glu Ala Val Asn Lys Asp Lys Pro Leu Gly Ala Val Ala
290 295 300
Leu Lys Ser Tyr Glu Glu Leu Ala Lys Asp Pro Arg Ile Ala Ala
305 310 315 320
Thr Met Glu Asn Ala Glu Lys Glu Gly Ile Met Pro Asn Ile Pro Gin
325 330 335
Met Ser Ala Phe Thr Tyr Ala Val Arg Thr Ala Val Ile Asn Ala Ala
340 345 350
Ser Gly Arg Glu Ala Leu Asp Ala Asp Ala Gln Thr Asn 355 360 365
Ser Ser Ser Gly Ser Gly Ser Gly Met Asp Glu Lys Thr Thr Gly 370 375 380
Trp Arg Gly Gly His Val Val Glu Leu Ala Gly Gly Leu Glu Gln 385 390 395 400
Leu Arg Ala Arg Leu Glu His Pro Glu Gly Glu Arg Ala Glu Pro Gly 405 410 415
Ser Gly His His His Glu Phe Leu Val Pro Arg Gly Ser 420 425 430
Met Asp Pro Cys Val Lys Cys Val Ala Pro Arg Aen Trp Lys Val 435 440 445
Lys Asn Lys His Leu Arg Ile Tyr Aen Met Cys Lys Thr Cys Phe Aen 450 455 460
Aen Ser Ile Asp Ile Gly Asp Asp Thr Tyr His Gly His Asp Aen 465 470 475

<210> SEQ ID NO 39
<211> LENGTH: 47
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE: OTHER INFORMATION: Selected peptide
<400> SEQUENCE: 39
Met Asp Pro Cys Val Lys Cys Val Ala Pro Arg Aen Trp Lys Val 1 5 10 15
Lys Asn Lys His Leu Arg Ile Tyr Aen Met Cys Lys Thr Cys Phe Aen 20 25 30 35 40
Aen Ser Ile Asp Ile Gly Asp Asp Thr Tyr His Gly His Asp Aen 45 46 47 48

<210> SEQ ID NO 40
<211> LENGTH: 6544
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: OTHER INFORMATION: plasmid
<400> SEQUENCE: 40
atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa 60
ggggtatatg tggatatgc ttcagcttctc cttctgccttc ttctgccttc 120
tgcttccttc cgcttccttc gcggcttcct cggcttcctc cggcttcctc 180
ggggtatatg tggatatgc ttcagcttctc cttctgccttc ttctgccttc 240
ggggtatatg tggatatgc ttcagcttctc cttctgccttc ttctgccttc 300
cagaagtcgt cagctttgct cggacgttct cagtctctct cggacgttct cggacgttct 360
cggcgcgct gggttgcttc ttcagcttct cggacgttct cggacgttct cggacgttct 420
cggcgcgct gggttgcttc ttcagcttct cggacgttct cggacgttct cggacgttct 480
cggcgcgct gggttgcttc ttcagcttct cggacgttct cggacgttct cggacgttct 540
cggcgcgct gggttgcttc ttcagcttct cggacgttct cggacgttct cggacgttct 600
cggcgcgct gggttgcttc ttcagcttct cggacgttct cggacgttct cggacgttct 660
cggcgcgct gggttgcttc ttcagcttct cggacgttct cggacgttct cggacgttct 720
cggcgcgct gggttgcttc ttcagcttct cggacgttct cggacgttct cggacgttct 780
ccccagggcc gttgatgytc atcgctgttt cgcctttatt aaaggcagct tctgcgatgg agtaatcggt gtctgcattc atgtgtttgt ttttaatcag gtcaaccagg aaggtcagac cccgctttcgc gccagcgtta tccacgccca cgtctttaat gtcgtacttg ccgttttcat acttgaacgc ataacccccg tcagcagcaa tcagcggcca ggtgaagtac ggttcttgca ggttgaacat cagcgcgctc ttacctttcg ctttcagttc tttatccagc gccgggatct cttcccaggt ttttggcggg ttcggcagca gatctttgtt ataaatcagc gataacgctt caacagcgat cgggtaagca atcagcttgc cgttgtaacg tacggcatcc caggtaaacg gatacagctt gtcctggaac gctttgtccg gggtgatttc agccaacagg ccagattgag cgtagccacc aaagcggtcg tgtgcccaga agataatgtc agggccatcg ccagttgccg caacctgtgg gaatttctct tccagtttat ccggatgctc aacggtgact ttaattccgg tatctttctc gaatttctta ccgacttcag cgagaccgtt atagccttta tcgccgttaa tccagattac cagtttacct tcttcgattc ccatggtata tctccttctt aaagttaaac aaaattattt ctagagggga attgttatcc gctcacaatt cccctatagt gagtcgtatt aatttcgcgg gatcgagatc tcgatcctct acgccggacg catcgtggcc ggcatcaccg gcgccacagg tgcggttgct ggcgcctata tcgccgacat caccgatggg gaagatcggg ctcggccactt cgggctcatg agcgcttgtt tcggcgtggg tatggtggca ggccccgtgg ccgggggact gttgggcgcc atctccttgc atgcaccatt ccttgcggcg gcggtgctca acggcctcaa cctactactg ggctgcttcc taatgcagga gtcgcataag ggagagcgtc gagatcccgg acaccatcga atggcgcaaa acctttcgcg gtatggcatg atagcgcccg gaagagagtc aattcagggt ggtgaatgtg aaaccagtaa cgttatacga tgtcgcagag tatgccggtg tctcttatca gaccgtttcc cgcgtggtga accaggccag ccacgtttct gcgaaaacgc gggaaaaagt ggaagcggcg atggcggagc tgaattacat tcccaaccgc gtggcacaac aactggcggg caaacagtcg ttgctgattg gcgttgccac ctccagtctg gccctgcacg cgccgctcgca aattgtcgcg gcgattaaat ctcgcgccga tcaactgggt gccagcgtgg tggtgtcgat ggtagaacga agcggcgtcg aagcctgtaa agcggcggtg cacaatcttc tcgcgcaacg cgtcagtggg ctgatcatta actatccgct ggatgaccag gatgccattg ctgtggaagc tgcctgcact aatgttccgg cgttatttct tgatgtctct gaccagacac ccatcaacag tattattttc tcccatgaag acggtacgcg actgggcgtg gagcatctgg tcgcattggg tcaccagcaa atcgcgctgt tagcgggccc attaagttct gtctcggcgc gtctgcgtct ggctggctgg cataaatatc tcactcgcaa tcaaattcag ccgatagcgg aacgggaagg cgactggagt ggcctgtccg aagggctcaag ggttgccgta ccccaatacg ccacacagtc cccccgcgcg ttggccgatt cattaatgca gctggcacga caggtttccc gactggaaag cgggcagtga gcgcaacgca attaatgtaa gttagctcac tcattaggca cctccacgcg ctgccgctgg cttgagagcc ttcaacccag tcagctcctt ccggtgggcg cggggcatga ctatcgtcgc cgcactatat actgtcttct ttatcatgca 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180
actgttagg caggtgcgag cagcgtcttg ggtaaatttc ggctgagggc ggcttcgctg 3240
 gagcgcacag ctgctgcttg tcgctgcttg gtatttcgctg gggagctgga 3300
 agcctcttgag cgtgctgctt gcggctgctt gcggctgctt gcggctgctt 3360
 ccggctgctg gcggctgctg gcggctgctg gcggctgctg gcggctgctg 3420
 gcggctgctg gcggctgctg gcggctgctg gcggctgctg gcggctgctg 3480
 ccggctgctg gcggctgctg gcggctgctg gcggctgctg gcggctgctg 3540
 ttcgtaaagtt cgggaacgcc ggcgcggctc attgtgttccc gcggctgctg 3600
 cgctggttag gctgtgcttg gcggctgctt gcggctgctt gcggctgctt 3660
 ttgccttggg ctggatttttc ccttcggctg ccggctgctt gcggctgctt 3720
 acaagctcag ctaagcttaa gcgtgtgctg gcggctgctt gcggctgctt 3780
 tcgcttggg gctgtgcttg gcggctgctt gcggctgctt gcggctgctt 3840
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 3900
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 3960
 ccggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4020
 acaagctcag ctaagcttaa gcgtgtgctg gcggctgctt gcggctgctt 4080
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4140
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4200
 atgggtgctg gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4260
 ctaagctcag ctaagcttaa gcgtgtgctg gcggctgctt gcggctgctt 4320
 ggctgtgctg gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4380
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4440
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4500
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4560
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4620
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4680
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4740
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4800
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4860
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4920
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 4980
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5040
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5100
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5160
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5220
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5280
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5340
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5400
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5460
 gcggctgctt gcggctgctt gcggctgctt gcggctgctt gcggctgctt 5520
gaaaatatgg ttgatgctg ccgcaagtgtc ggcggactgc tcgcgccggt tgcattcgat tcctgtttgt
aattgtcct ttaaacagc ttcgctgct acggcaatc acaaatggt
aadgggttg gttgagcag tcgctgctg aaggtggagagt gctgtgctgt gcctgtgctgt
gtctgyaag aattgctaat acttttgcaattctggagg attcagtctg cactctggt
gatttctcct gagtaaactc ccgcaacagc gctcttggcct tcctgtgaag ctgtactygtg
gagtttttactctctaga aacggtttgg atgtggatc ttaacagcga tcgcgtattt cgtctcgctc aggcgcaatc acgaatgaat
aacggtttgg ttgatgcgag tgattttgat gacgagcgta atggctggcc tgttgaacaa
gtctggaaag aaaaatgcataa acttttgcca ttctcaccgg attcagtcgt cactcatggt
gatttctcac ttgataacct tatttttgac gaggggaaat taataggttg tattgatgtt
ggacgagtcg gaatcgcaga ccgataccag gatcttgcca tcctatggaa ctgcctcggt
gagttttctc ccgccgacag ggataaactc ccgcaatc tttaaatc
aaaagagta ccacctgaaa ttgtaaacgt taatattttg ttaaaattcg ccgaaatttt
ttgatgctg cgtagctctt ttataaatc
ttgatgctg cgtagctctt ttataaatc
<210> SEQ ID NO 41
<211> LENGTH: 426
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE: OTHER INFORMATION: designed protein
<400> SEQUENCE: 41
Met Gly Ile Glu Glu Gly Lys Leu Val Ile Trp Ile Asn Gly Asp Lys
1 5 10 15
Gly Tyr Asn Gly Leu Ala Glu Val Gly Lys Phe Glu Lys Asp Thr
20 25 30
Gly Ile Lys Val Thr Val Glu His Pro Asp Lys Leu Glu Glu Lys Phe
35 40 45
Pro Gln Val Ala Ala Thr Gly Asp Gly Pro Asp Ile Ile Phe Trp Ala
50 55 60
His Asp Arg Phe Gly Tyr Ala Gin Ser Gly Leu Leu Ala Glu Ile
65 70 75 80
Thr Pro Asp Lys Ala Phe Gln Asp Lys Leu Tyr Pro Phe Thr Trp Asp
85 90 95
Ala Val Arg Tyr Asn Gly Lys Leu Ile Ala Tyr Pro Ile Ala Val Glu
100 105 110
Ala Leu Ser Leu Ile Tyr Asn Lys Asp Leu Pro Ala Phe Leu Pro Phe
115 120 125
Thr Tyr Glu Ile Pro Ala Leu Asp Lys Leu Lys Ala Lys Gly
127 132 137
Lys Ser Ala Leu Met Phe Asn Leu Gin Glu Pro Tyr Phe Thr Trp Pro
140 145 150 155 160
Leu Ile Ala Ala Asp Gly Gly Tyr Ala Phe Lys Tyr Glu Asn Gly Lys
165 170 175
1
What is claimed is:

1. A purified nucleic acid encoding a peptide that binds streptavidin with a dissociation constant less than 10 nM and comprises an amino acid sequence having at least 80% identity to the first 38 amino acids of SEQ ID NO:25, wherein said peptide is not disulfide bonded or cyclized.

2. A purified nucleic acid encoding a peptide that binds streptavidin with a dissociation constant less than 10 nM and comprises an amino acid sequence having at least 80% identity to the first 38 amino acids of SEQ ID NO:25, wherein the amino acid sequence of said peptide does not contain a Histidine-Proline-Glutamine (HPG), Histidine-Proline-Methionine (HPM), Histidine-Proline-Asparagine (HPN), or Histidine-Glutamine-Proline (HPQ) motif.

3. A purified nucleic acid encoding a peptide that binds streptavidin with a dissociation constant less than 23 nM and comprises an amino acid sequence having at least 80% identity to the first 38 amino acids of SEQ ID NO:25.

4. The nucleic acid of claim 1 or 2, wherein said dissociation constant is less than 5 µM.

5. The nucleic acid of claim 1 or 2, wherein said dissociation constant is less than 1 µM.

6. The nucleic acid of claim 5, wherein said dissociation constant is less than 100 nM.

7. The nucleic acid of claim 6, wherein said dissociation constant is less than 50 nM.

8. The nucleic acid of claim 3, wherein said dissociation constant is less than 10 nM.

9. The nucleic acid of claim 8, wherein said dissociation constant is less than 5 nM.

10. The nucleic acid of claim 1, wherein said peptide comprises an amino acid sequence having at least 90% sequence identity to the first 38 amino acids of SEQ ID NO:25.

11. The nucleic acid of claim 10, wherein said peptide comprises an amino acid sequence having at least 95% sequence identity to the first 38 amino acids of SEQ ID NO:25.

12. The nucleic acid of claim 11, wherein said peptide comprises an amino acid sequence of at least the first 38 amino acids of SEQ ID NO:25.

13. The nucleic acid of claim 2, wherein said peptide comprises an amino acid sequence having at least 90% sequence identity to the first 38 amino acids of SEQ ID NO:25.
14. The nucleic acid of claim 2, wherein said peptide comprises an amino acid sequence having at least 95% sequence identity to the first 38 amino acids of SEQ ID NO:25.

15. The nucleic acid of claim 3, wherein said peptide comprises an amino acid sequence having at least 90% sequence identity to the first 38 amino acids of SEQ ID NO:25.

16. The nucleic acid of claim 3, wherein said peptide comprises an amino acid sequence having at least 95% sequence identity to the first 38 amino acids of SEQ ID NO:25.

17. A vector comprising a nucleic acid of any of claims 1–3.

18. A nucleic acid encoding a fusion protein comprising a protein of interest covalently linked to:

(a) a peptide which binds streptavidin with a dissociation constant less than 10 μM and comprises an amino acid sequence having at least 80% identity to the first 38 amino acids of SEQ ID NO:25, wherein said peptide is not disulfide bonded or cyclized;

(b) a peptide which binds streptavidin with a dissociation constant less than 10 μM and comprises an amino acid sequence having at least 80% identity to the first 38 amino acids of SEQ ID NO:25, wherein said peptide does not contain an HPQ, HPM, HPN, or HQP motif; or

(c) a peptide which binds streptavidin with a dissociation constant less than 23 nM and comprises an amino acid sequence having at least 80% identity to the first 38 amino acids of SEQ ID NO:25.

19. The nucleic acid of claim 18, wherein said peptide is attached to the amino terminus or the carboxy terminus of said protein of interest, or wherein said peptide is positioned between the amino and carboxy termini of said protein of interest.

20. The nucleic acid of claim 18, wherein said peptide is linked to said protein of interest by a linker comprising a protease-sensitive site.

21. The nucleic acid of claim 18, wherein said peptide of (a), (b), or (c) comprises an amino acid sequence having at least 95% sequence identity to the first 38 amino acids of SEQ ID NO:25.

22. The nucleic acid of claim 21, wherein said peptide of (a), (b), or (c) comprises an amino acid sequence having at least 95% sequence identity to the first 38 amino acids of SEQ ID NO:25.

23. The nucleic acid of claim 22, wherein said peptide of (a), (b), or (c) comprises an amino acid sequence having at least 95% sequence identity to the first 38 amino acids of SEQ ID NO:25.

25. A method of producing a streptavidin-binding fusion protein, said method comprising the steps of:

(a) expressing in a host cell, a gene encoding a fusion protein of claim 18; and

(b) culturing said host cell under conditions appropriate for production of said fusion protein; and

(c) purifying said fusion protein from said cell.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 4, Line 1, replace “coumpound” with --compound--.

Column 23, Line 7, replace “Kd” with --K_i--.

Signed and Sealed this

Third Day of July, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Delete drawing sheets 1-17, and substitute therefor drawing sheets 1-22. (attached)

Signed and Sealed this

Fourth Day of December, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office
Biotin elution

T7 TMV ATG Random 88 H6 Const

PCR

T7 RNA Pol

5' mRNA 3'

Add 3' linker with puromycin

5' mRNA 3'

Translate and Display

1. Oligo-dT
2. Ni-NTA
3. RT

mRNA

cDNA peptide N

peptide N-term

Fig. 1A
Fig. 1B
Fig. 2A

PERCENT OF COUNTS BINDING TO SA AND ELUTING WITH BIOTIN

SELECTION ROUND

Fig. 2B

PERCENT OF COUNTS BINDING TO SA AND ELUTING WITH BIOTIN

Biotin Added

mRNA-pep
mRNA-pep/RNase
mRNA-pep/RNase/biotin

COLUMN VOLUMES
<table>
<thead>
<tr>
<th>Name</th>
<th>SEQ ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB1</td>
<td>1</td>
</tr>
<tr>
<td>SB2</td>
<td>2</td>
</tr>
<tr>
<td>SB3</td>
<td>3</td>
</tr>
<tr>
<td>SB4</td>
<td>4</td>
</tr>
<tr>
<td>SB5</td>
<td>5</td>
</tr>
<tr>
<td>SB6</td>
<td>6</td>
</tr>
<tr>
<td>SB7</td>
<td>7</td>
</tr>
<tr>
<td>SB8</td>
<td>8</td>
</tr>
<tr>
<td>SB9</td>
<td>9</td>
</tr>
<tr>
<td>SB10</td>
<td>10</td>
</tr>
<tr>
<td>SB11</td>
<td>11</td>
</tr>
<tr>
<td>SB12</td>
<td>12</td>
</tr>
<tr>
<td>SB13</td>
<td>13</td>
</tr>
<tr>
<td>SB14</td>
<td>14</td>
</tr>
<tr>
<td>SB15</td>
<td>15</td>
</tr>
<tr>
<td>SB16</td>
<td>16</td>
</tr>
<tr>
<td>SB17</td>
<td>17</td>
</tr>
<tr>
<td>SB18</td>
<td>18</td>
</tr>
<tr>
<td>SB19</td>
<td>19</td>
</tr>
<tr>
<td>SB20</td>
<td>20</td>
</tr>
<tr>
<td>% binding</td>
<td>SEQ ID NO.</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>PL</td>
<td>NA</td>
</tr>
<tr>
<td>C1</td>
<td>MSGCGKLG 87 22</td>
</tr>
<tr>
<td>C2</td>
<td>MSGCGKLG 88 23</td>
</tr>
<tr>
<td>C3</td>
<td>MSGCGKLG 89 24</td>
</tr>
<tr>
<td>C4</td>
<td>MSGCGKLG 88 25</td>
</tr>
<tr>
<td>H1</td>
<td>MSGCGKLG 0.065 26</td>
</tr>
<tr>
<td>N1</td>
<td>MSGCGKLG 69 27</td>
</tr>
<tr>
<td>N2</td>
<td>MSGCGKLG 30 28</td>
</tr>
<tr>
<td>N3</td>
<td>MSGCGKLG 0.058 29</td>
</tr>
</tbody>
</table>

Fig. 5
Fig. 6A
Fig. 6A (continued)
(SEQ ID No.:38)
MGIEEGLVIWINGDKGYNLAEVGKKEKDTGIKVTVEHPDKLEEKFPQVAATTGDPDIIFWAHDRFGGYAQSCLLAEITPDKAFQDKLYPFTWDARVRNYGKLIAYPIAVEALSILYLNKDDLPNPPKTWEIPALDLKELAKGKSAKMLPQFNPQPYFTWPPLAADGGYAFKYENGGYDIDKDCVGDNAKAGITDFLDILKHMNADTDYIAEFAFNKGETAMTPWAWNSIDTSDK
VNYGTVLPTFKQFSKPFVGLSAGINAAAPNKELAKELFENLLIDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPOQMSAFHYAVRTAVINAAASGRQTVDEALKDAQTNSSGGGSGGMDEKTTGWRGHHVVEGLAGELEQLRARLEHEFQGQRFEGSGHHHEFLVPGRSMDCPCVKCXVAPRNWVKVNHRLIYNMCKTFCNSIDIDDDTYYGHDD

Fig. 6B

(SEQ ID No.:39)
MDPCVKCKVAPRNWKVKNKHLRIYNMCKTFCNSIDIDDDTYYGHDD

Fig. 6C
Fig. 7A

Fig. 7B

```
MDEKTGWRGGHVEGLAGELEQLRARLEHHHPQGQREPM
```

```
Fig. 7A
```

```
Fig. 7B
```
Fig. 8A
RNA: TMV AUG FLAG ORF
Protein: His₆

Fig. 8B
AUG

Fig. 8C
AUG AUG

Fig. 8D
AUG deletion

Nickel purification
anti-FLAG purification

Fig. 8E
RT-PCR
Type IIIS Restriction Enzymes

Fig. 8F
ORF
Fig. 9A (continued)

```
CACTGCGACAGCCACTGTAACAGGAATGAGCGAGACCGGGATGAGATGATGCGGTACAGGATTGTTTCTGAGAATGCTTGGCCT
AATACGCGCTACACTGAGAGCATATTTGATATCTGCTGACTGCTGACAGCTACGTGAGTATTACGCGCAAAAAAGATTGGAG
CTTCTGCTCCTGGAAAAACAAACACCAGCGGTGACTGAGGTTTGTGTTTTTCAGCGAGATGATTACGCGCAAGAATGAGT
GATCTCCAAGAAGACTTCTTCTAATGTTCTGGAACGCTGTACAGGAACAAACTAGGTAATAGAATTTTTGCTAGTTGGGA
ATGAACTAAACTGTCGTGCTTTACATAAACGTAATCAAAGGGGTTATTGAGGCCTATTTCAAGGGAACCTTCTGACTC
CTAGCGCCGCTAATTACGTCAATACCTGGCCGAGAAGACAAACATCCAGGTATACGTTTTATGATGTTAAATTTCTGCTG
GCAACATCTATCGTTAAGGGAAGCCGATGCGCCAGGTGTTTTCTGAAACATGCGAAAAGTACGCTGATGCGCCACTTAG
TGTTACAGATAGACTGTTGCTGCACTAAACTGGCGTTAGGGAATTTGCTGCCCTTCCGGACACATTTTATCCGGACTC
CTGATAGTGCTCAGTGTATACTGCAATCCCGGATCCCGGGAGAAACAGCAATCCAGGTATAGAATATCGTGGATTAGG
GAAATAATTGTGATAGCGCTGCCAGGTCTTCTGGCCCGGTAGTTTCTGATTTCTGTTACTTTTACAGCAG
TCGCTATTTCGCTCCGCTCAGGCAGAAATCGATAAGATACGTTGTTGTGTAGCGAGTGGTTTGATGACGAGTGTA
ATGGCTGCCGCTGTTAAGCAAGTTGCGAAAGAAATGCTATAAACACTTCTCTCCATCTCACCCGATTCGCATCGTCAACATGT
GATTCTCTCAGTTAATACCTTTTATTTTGTGACGGGAAATTAAATGAGTGTTGTAGTGATTGGGAGCGAAGTGCCTGAC
CGATACACGGMCTTTCATCTGGAATGCTGCTGATGAGTTTTTTCTAAGAAATATTCTGAGC
GGATATCACATATTATTTTTTTATGAGGAAAGAAATATAACATAGGTGGTAGGGTACTTCCTGCGAACATTTCCGCGAAG
TTGTAAACGTTTAATTTTTTTTATGAGGAAAGAAATATAACATAGGTGGTAGGGTACTTCCTGCGAACATTTCCGCGAAG
GGCRAATCCTTTATAAATCTGAARAGATAGCAGCGGAAGTGTTGTGTGTGTGTCACGTTGAGCACAGAGAGCTTCAATT
AAAGAACGTGGACTCCAGTCGAAAGGCGAAAAACCGCTATACGGCGATGCGCCACTACTGAGGACTACCCCATATTAT
CAAGTTTTTTGTGAGGTCAGGTCGTAAGAACATCTAATAGCGAACATTTCCGCGAAGAAAGAGCAGCGGTATGCGCTG
AAGCGCGAGGTCGCTGCGAAGAAGGAAGGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG
GCTGCGCTAACCACACACCACCACGCGGCTTTAATGCGCCGCTACAGGGCGCTCCGATTTCCGCA
```
MGIEGVKVIWINGDKGNYLAEVGKKFKEKDKTVEHYPDKE5KFEQVAATGDGD\[IFW\]AHHRG\[G\]Y\[A\]QSGLJLAEI\[T\]PDKAFQDKLYPFTWDARVYNGKLIAYPIAEALSLIYNKDLP\[P\]KKTWE\[E\]I\[P\]ALDKELKALKGKSALMFNLQ\[E\]PYF\[T\]WP\[L\]IAADG\[G\]GYAFKYN\[K\]YDKTDV\[G\]D\[N\]AGAKAG\[T\]V\[L\]D\[K\]LMNK\[M\]NADTDYSIAEA\[F\[N\[K\][G\[E\][T\[A\[M\[T\[I\[C\[P\[W\[A\[W\[N\[S\[I\[D\[T\[S\[K\[V\[N\[Y\[G\[T\[V\[L\[P\[T\[F\[G\[Q\[P\[S\[F\[F\[G\[V\[L\[S\[A\[G\[I\[N\[A\[A\[S\[P\[N\[K\[E\]L\[A\]E\]P\[E\]N\[Y\]L\[L\]T\[D\]E\[G\]L\[E\]A\]V\[N\]K\]D\[K\]P\[L\]G\]A\]V\]A\]L\]K\]S\]Y\]E\]E\]E\]L\]A\]K\]D\]P\]R\]I\[A\]A\]A\]T\]M\]E\P\[A\]Q\]K\[G\]E\]I\[M\]P\]N\]I\]P\]Q\]S\]A\]F\]W\]Y\]A\]V\]R\]T\]A\]V\]I\[N\]A\]A\]S\]G\]R\]Q\]T\]V\]D\]E\]A\]L\]K\]D\]A\]Q\]T\]N\]S\]S\]G\]G\]G\]S\]G\]S\]G\]M\]D\]E\]K\]T\]T\]G\]R\]G\]G\]H\]V\]E\]G\]L\]A\]G\]E\]L\]E\]Q\]L\]R\]A\]R\]L\]E\]H\]H\]P\]Q\]Q\]R\]E\]P\]S\]G\]H\]H\]H\]H\]H\]N\]H\]H\]E\]F

Fig. 9B
Fig. 10A
Fig. 10B
Fig. 11
Proportion of binding inhibited

Fig. 12

[Streptavidin], nM

10,000
1,000
100
10
1

0.1 0.3 0.5 0.7 0.9 1.1
Fig. 13

- Uninduced
- Induced
- Soluble Fraction
- Biotin Elution
- Imidazole Elution
- Maltose Elution
Fig. 15