A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.
OTHER PUBLICATIONS

* cited by examiner
FIG. 3

\[H_2 \rightarrow 2H^+ + 2e^- \quad 2H^+ + 2e^- \rightarrow H_2 \]

FIG. 4

FIG. 5

FIG. 6
PROTON CONDUCTING MEMBRANE USING A SOLID ACID

CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Public Law 96-517 (U.C.C. 202) in which the Contractor has elected to retain title.

FIELD

The present application describes a proton conducting membrane formed using an acid solid in its solid phase. More specifically, the present application teaches a proton conducting membrane, formed using an acid solid mixed with a supporting binder material, that is impermeable to fluids such as gas and water, can operate without hydration, and has high proton conductivity.

BACKGROUND

Proton conducting materials have a number of applications. Proton conducting membranes are widely utilized in devices which use a chemical reaction to produce or store electricity, or use electricity to drive a chemical process. Materials which conduct both protons and electrons (“mixed proton and electron conductors”) are utilized in related applications.

Electrochemical devices depend on the flow of protons, or the flow of both protons and electrons through a proton conducting membrane. Exemplary electrochemical devices include a fuel cell, an electrolysis cell, a hydrogen separation cell, a battery, a supercapacitor, and a membrane reactor. There are other electrochemical devices which also use a proton conducting membrane.

An important use for proton conducting membranes is in fuel cells. Fuel cells are attractive alternatives to combustion engines for the generation of electricity because of their higher efficiency and the lower level of pollutants they produce. A fuel cell generates electricity from the electrochemical reaction of a fuel e.g. methane, methanol, gasoline, or hydrogen, with oxygen normally obtained from air.

There are three common types of fuel cells used at temperatures close to ambient. A direct hydrogen/air fuel cell system stores hydrogen and then delivers it to the fuel cell as needed.

In an indirect hydrogen/air fuel cell, hydrogen is generated on site from a hydrocarbon fuel, cleaned of carbon monoxide (CO), and subsequently fed to the fuel cell.

A direct methanol fuel cell (“DMFC”), feeds methanol/water solution directly to the fuel cell, e.g., without any fuel processing. One type of DMFC has been described, for example, in U.S. Pat. No. 5,559,638. There are various advantages and disadvantages inherent within all three configurations. All are, to a greater or lesser extent, limited by the performance of the proton conducting membrane.

Nafion™, a perfluorinated sulfonic acid polymer, is often used as a membrane material for fuel cells which operate at temperatures close to ambient. Other hydrated polymers have also been used as proton conductive materials. Membranes of modified perfluorinated sulfonic acid polymers, polyhydrocarbon sulfonic acid polymers, and composites thereof are also known. These and related polymers are used in hydrated form. Proton transport occurs by the motion of hydronium ions, H₃O⁺. Water is necessary in order to facilitate proton conduction. Loss of water immediately results in degradation of the conductivity. Moreover, this degradation is irreversible—a simple reintroduction of water to the system does not restore the conductivity. Thus, the electrolyte membranes of these hydrated polymer-based fuel cells must be kept humidified during operation. This introduces a host of balance-of-plant needs for water recirculation and temperature control.

A second limitation derives from the need to maintain water in the membrane. In order to maintain hydration, the temperature of operation cannot exceed 100° C. without cell pressurization. High temperature operation could be desirable, however, to increase catalyst efficiency in generating protons at the anode (in both H₂ and direct methanol fuel cells) and to improve catalyst tolerance to carbon monoxide (“CO”). CO is often present in the fuel that is used in the fuel cells. The CO can poison the precious metal catalysts. This is particularly problematic in indirect hydrogen/air fuel cells for which hydrogen is generated on site. High temperatures also benefit the reduction reaction on the cathode.

Another limitation of hydrated polymer electrolytes occurs in applications in methanol fuel cells. These polymers can be permeable to methanol. Direct transport of the fuel (i.e. methanol) across the membrane to the air cathode results in losses in efficiency. Alternate proton conducting materials, which do not require humidification, which can be operated at slightly elevated temperatures, and which are impermeable to methanol, are desirable for fuel cell applications.

In the field of hydrogen separation, a proton conducting membrane is utilized to separate hydrogen from other gases such as CO and/or CO₂. Palladium is often used for this application. Palladium is permeable to molecular hydrogen, but not in general to other gases. There are drawbacks to the use of this material. It is expensive and the hydrogen diffusion rate is low. It would be desirable to develop new materials which are less expensive and exhibit higher proton/hydrogen transport rates.

In general, materials utilized in other electrochemical devices such as electrolysis cells, batteries, supercapacitors, etc., include liquid acid electrolytes, which are highly corrosive, and solid polymer proton conductors, which require humidification or exhibit insufficient proton conductivity. High conductivity, high chemical and thermal stability solid membranes with good mechanical properties are desirable for all of these applications.

SUMMARY

The present specification defines a new kind of material for a proton conducting membrane. Specifically, a proton conducting material is formed using an solid acid. The solid acid can be of the general form MₓHₓ(XO₄)ₙ or MₓHₓ(XO₄)ₙ.nH₂O.
where:

M is one or more of the species in the group consisting of Li, Be, Na, Mg, K, Ca, Rb, Sr, Cs, Ba, Ti and NH4+ or Cu;

X is one or more of the species in the group consisting of Si, P, S, As, Se, Te, Cr and Mn; and

a, b, c, n and t are rational numbers.

Solid acids do not rely on the presence of hydronium ions for proton transport, thus they do not require hydration for use as proton conductors.

A preferred solid acid used according to this specification is a solid phase solid acid that exhibits a superprotonic phase, a phase in which the solid has disorder in its crystal structure and a very high proton conductivity.

An embodiment uses a structural binder or matrix material to enhance the mechanical integrity and/or chemical stability of the membrane. That structural binder can be many different kinds of materials in the different embodiments. In particular, the structural binder can be a polymer, a ceramic, or an oxide glass.

Another embodiment uses an electronically conducting material as a matrix. This creates a membrane which conducts both protons and electrons.

The resulting material can be used for a proton conducting material in a device that relies on the flow of protons or the flow of both protons and electrons across a membrane, wherein an “electrochemical” device e.g. a fuel cell, a hydrogen separation membrane, or an electrolysis cell.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary hydrogen/air fuel cell using an solid acid supported by a binder as its proton conducting membrane.

FIG. 2 shows an exemplary direct methanol fuel cell using an solid acid supported by a binder as its proton conducting membrane.

FIG. 3 shows a hydrogen separation membrane for the removal of CO and other gases from hydrogen.

FIG. 4 shows another type of hydrogen separation membrane made of a proton conducting composite; and FIGS. 5 and 6 show a membrane reactor.

DETAILED DESCRIPTION

The present application teaches using an solid acid as a proton conducting membrane.

A solid acid can be of the general form M,H,(XO,),.nH2O, where:

M is one or more of the species in the group consisting of Li, Be, Na, Mg, K, Ca, Rb, Sr, Cs, Ba, Ti and NH4+; X is one or more of the species in the group consisting of Si, P, S, As, Se, Te, Cr and Mn; and a, b, c, n and t are rational numbers; with t preferably being 3 or 4, and where t is zero.

The solid acids used herein are compounds, such as CsHSO4, whose properties are intermediate between those of a normal acid, such as H2SO4, and a normal salt, such as Cs2SO4. In general, the chemical formula of the solid acids of the type used according to the present specification can be written as a combination of the salt and the acid.

In general, solid acids are comprised of oxyanions, for example SO42-, SO3(OH)2-, SeO42-, SeO3(OH), PO43- or AsO43-, etc., which are linked together via O—H . . . O hydrogen bonds. The structure may contain more than one type of XO4 or XO3 group, and may also contain more than one type of M species.

Certain solid acids are solid materials at room temperature. Many different solid acids are contemplated by this specification. One example of a material that can be used as the solid acid is CsHSO4, which is intermediate between Cs2SO4 (a normal salt) and H2SO4 (a normal acid). In this case, the solid acid can be written as 0.5 Cs2SO4*0.5 H2SO4. Another example, using the same salt and the same acid, is 1.5 Cs2SO4*0.5 H2SO4, to give Cs3[H2SO4].

Other examples are:

CsH2PO4, Cs2(HSO4)(H2PO4), Cs2(HSO4), Cs,H2SO4, Cs,H2O, THSO4, CsH2SO4, Cs2(HSO4)(H2PO4), Cs, H+(SeO4)(NH4)(H2PO4), (SO4)2-. Rb,H(SeO4)2, Cs,1.5Li1.5H(SO4)3, Cs2Na(HSO4), TlH3(SeO3)2, CsH2AsO4(NH4)2(H2PO4), (H2AsO4), CsNaH(SO4), CaNaH(SO4)4.

The preferred material for any specific electrochemical device depends on the application. For example, Cs2(HSO4) (H2PO4) may be preferred for electrochemical devices where high conductivity is critical. (NH4)2(H2SO4)3 may be preferred where low cost is critical. CaNaH(SO4)4 may be preferred where chemical stability is critical.

Solid acids have certain characteristics that can be advantageous when used as a proton conducting membrane. The proton transport process does not rely on the motion of hydronium ions, thus solid acids need not be humidified and their conductivity is substantially independent of humidity. Another advantage is that solid acids are generally stable against thermal decomposition at elevated temperatures. The thermal decomposition temperature for some of the solid acids described in this specification, e.g., CsNaH(SO4), can be as high as 350° C. Since solid acids need not be humidified, solid acid based membranes can be operated at elevated temperatures, e.g. temperatures above 100° C.

The conductivity of solid acids may be made purely protonic, or both electronic and protonic depending on the choice of the X element in the chemical formula M,H,(XO,),.nH2O or M2H,(XO,),.nH2O. That is, by using a given amount of a variable valence element such as Cr or Mn for X, the solid acid can be made to conduct electrons as well as protons.

Another advantage is caused by the structure of the solid acids themselves. Since solid acids are dense, inorganic materials, they are impermeable to gases and other fluids that may be present in the electrochemical environment, e.g., gases and hydrocarbon liquids.

The materials are also relatively inexpensive.

This combination of properties: good conductivity in dry environments, conductivity which can be controlled to be either purely protonic conducting or both electron and proton conducting, impermeability to gases and hydrocarbon liquids, serviceability at elevated temperatures, e.g. temperatures over 100° C. and relatively low cost, render solid acids as useful materials for use as membranes in electrochemical devices.

Solid acids exhibit another advantageous property for applications in proton conducting membranes. Under certain conditions of temperature and pressure, the crystal structure of a solid acid can become disordered. Concomitant with this disorder is an high conductivity, as high as 10-2 to 10-4 Ω-1 cm-1. Because of the high proton conductivity of the structurally disordered state, it is known as a superprotonic phase. The proton transport is believed to be facilitated by rapid XO4 or XO3 group reorientations, which occur because of the disorder.
Many solid acids enter a superprotonic state at a temperature between 50 and 150°C, at ambient pressures. The transition into the superprotonic phase may be either sharp or gradual. The superprotonic phase is marked by an increase in conductivity, often by several orders of magnitude. At temperatures above the transition temperature, the solid acid is superprotonic and retains its high proton conductivity until the decomposition or melting temperature is reached.

Solid acids that undergo a superprotonic transition include:

\begin{align*}
\text{Cs}_2\text{H}_2\text{SO}_4\cdot \text{H}_2\text{O}, & \quad \text{Cs}_3\text{H}_2\text{SO}_4\cdot \text{H}_2\text{O}, \\
\text{Cs}_3\text{H}_2\text{SO}_4\cdot \text{H}_2\text{O}, & \quad \text{H}_2\text{SeO}_4, \\
\text{Cs}_3\text{H}_2\text{SO}_4, & \quad \text{Rb}_3\text{H}_2\text{SO}_4, \\
\text{Cs}_3\text{H}_2\text{SO}_4, & \quad \text{Rb}_3\text{H}_2\text{SO}_4, \\
\text{Cs}_3\text{H}_2\text{SO}_4, & \quad \text{Rb}_3\text{H}_2\text{SO}_4.
\end{align*}

The superprotonic phases of solid acids have increased conductivity. An interesting embodiment is a solid acid operated at a temperature above the superprotonic transition temperature, and below the decomposition or melt temperature.

Despite the many advantageous properties of solid acids, problems can be encountered in trying to implement them in electrochemical devices because many solid acids are water soluble. They can also be difficult to process into large area membranes, and they often have poor mechanical properties. Some solid acids, such as CaNaHSeO₄ and other silicates, are not soluble in water.

Because of these difficulties, a disclosed embodiment includes a composite comprised of a solid acid embedded in a supporting matrix. The solid acid part of the composite provides the desired electrochemical activity, whereas the matrix provides mechanical support and also may increase chemical stability. Different materials are contemplated herein for use as the supporting matrix.

In light of the properties of solid acids outlined above, the preferred embodiment is a composite material comprised of a solid acid embedded in a supporting matrix and operated at a slightly elevated temperature. In such a composite, the solid acid is in its superprotonic phase, exhibits high conductivity, and provides the desired electrochemical functions; the support matrix may provide mechanical support, and it may also serve to protect the solid acid from water in the environment. A high temperature of operation can render the solid acid into its superprotonic state. A high temperature of operation can also ensure that any water present in the electrochemical device will be present in the form of steam rather than liquid water, making the H₂O less likely to attack the solid acid.

Hydrogen/Air Fuel Cells

A hydrogen/air fuel cell is shown in FIG. 1, in which the proton conducting membrane is a solid acid/matrix composite of the type described herein. Because the membrane need not be humidified, the fuel cell system can be simpler than one which uses a hydrated polymer membrane. The humidification system normally required for fuel cell utilizing a Nafion or another hydrated polymer is eliminated in FIG. 1. Furthermore, temperature monitoring and control in the solid acid based system does not need to be as tight as in Nafion based fuel cell systems. Because the solid acid based membrane need not be humidified, the fuel cell may be operated at elevated temperatures. High temperatures can enhance the kinetics of the electrochemical reactions. This can result in a fuel cell with very high efficiency.

Another significant advantage of the fuel cell shown in FIG. 2 over state of the art direct methanol fuel cells results from the decreased permeability of the membrane to methanol. In state of the art direct methanol fuel cells, in which Nafion or another hydrated polymer serves as the membrane, methanol cross-over through the polymeric membrane lowers fuel cell efficiencies. The impermeability of a solid acid membrane can improve this efficiency.

Hydrogen Separation Membranes

The Ru/Pt catalyst in a hydrogen/air fuel cell is sensitive to CO poisoning, particularly at temperatures close to ambient. Therefore, in an indirect hydrogen/air fuel cell, the hydrogen produced by the reformer is often cleaned, e.g. CO to below 50 ppm, before it enters the fuel cell for electrochemical reaction.

In FIG. 3, a hydrogen separation membrane is shown for the removal of CO and other gases from hydrogen. The hydrogen separation membrane is made of a mixed proton and electron conducting membrane, as described herein. Hydrogen gas, mixed with other undesirable gases, is introduced onto one side of the membrane. Clean hydrogen gas is extracted from the other side of the membrane.

On the inlet side of the membrane, hydrogen gas is dissociated into H⁺ and e⁻. Because the membrane is both proton conducting and electron conducting, both of these species can migrate through the membrane. However, the membrane is substantially impermeable to other gases and fluids. Hence, CO and other undesirable gases or fluids cannot so migrate. On the outlet side of the membrane, the H⁺ and e⁻ recombine to form hydrogen gas. The overall process is driven by the hydrogen chemical potential gradient, which is high on the inlet side of the membrane and low on the outlet side of the membrane.

Another type of hydrogen separation membrane is shown in FIG. 4. The membrane is made of a proton conducting composite of the type described herein, and is connected to a current source. Hydrogen gas, mixed with other undesirable gases, is introduced onto one side of the membrane and clean hydrogen gas is extracted from the other side of the membrane. Application of a current causes the hydrogen gas to dissociate into H⁺ and e⁻. Because the membrane conducts only protons, these protons are the only species which can migrate through the membrane. The electrons migrate through the current source to the outlet side of the memb-
brane, where the H^+ and e^- recombine to form hydrogen gas. The membrane is substantially impervious to other gases and fluids. Hence, CO and other undesirable gases or fluids cannot migrate through the proton conducting membrane. The overall process is driven by electric current applied via the current source.

Membrane Reactors

In FIG. 5 a membrane reactor is shown, in which a mixed proton and electron conducting membrane of the type described herein is utilized. The general reaction is that reactants A+B react to form products C+D, where D is hydrogen gas. Use of a mixed proton and electron conducting membrane in this reactor can enhance the reaction to give yields that exceed thermodynamic equilibrium values. On the inlet side of the membrane reactor, the reactants form products C+H₂. Under equilibrium conditions, the hydrogen concentration builds up and the forward reaction is slowed. With the use of the mixed hydrogen and electron conducting membrane, the hydrogen is immediately extracted from the reaction region via transport through the membrane, and the forward reaction is enhanced. Examples of reactions in which yield could be enhanced by using such a membrane reactor include (1) the steam reformation of methane (natural gas) to produce syngas: \(CH_4 + H_2O \rightarrow CO + 3H_2 \); (2) the film. The film was cured at 100°C for approximately 2 hours then hot pressed, preferably at a temperature which causes the solid acid to melt and flow, to yield a dense composite membrane.

Another example of a composite membrane comprises a solid acid and a non-polymeric matrix material, such as a ceramic or an oxide glass can be prepared in the following manner. The solid acid is synthesized form aqueous solution containing stoichiometric amounts of Cs₂CO₃ and H₂SO₄. Crystalline CsH₂SO₄ and a small amount (~8 wt %) of the related compound Cs₂H₂(SO₄)₃-xH₂O (which also exhibits superprotonic behavior) were obtained upon introduction of methanol into the solution. Composite membranes of the solid acid and the polyester resin marketed under the name Castoglas by Buehler, Inc. were synthesized by lightly grinding the solid acid and pre-polymer together and then adding the polymerization/crosslinking catalyst. A material with a 50:50 volume ratio was prepared.

The nature of the chemical bonding in solid acids of general formula $M_mH_n(XO)_k \cdot xH_2O$ or $M_mH_n(XO)_k \cdot nH_2O$ where:

- M is one or more of the species in the group consisting of Li, Be, Na, Mg, K, Ca, Rb, Sr, Cs, Ba, Tl and NH₄⁺;
- X is one or more of the species in the group consisting of Si, P, S, As, Se, and Te; and
- a, b, c, and n are rational numbers, and n can be zero.

This effect is termed selective hydrogenation.

The mixed proton and electron conducting membranes described herein provide an advantage over state-of-the-art membranes in that the conductivity is high at temperatures as low as 100°C., and the membranes are relatively inexpensive. Selective hydrogenation at temperatures close to ambient may have particular application in synthesis of pharmaceutically important compounds which cannot withstand high temperatures.

According to a first class of materials, the solid acid is mixed with a supporting structure that is electrochemically unreactive, to form a composite. A first embodiment uses a solid acid mixed with a melt-processable polymer as the supporting matrix structure.

The solid acid (CH₃) was prepared from aqueous solutions containing stoichiometric amounts of Cs₂CO₃ and H₂SO₄. Crystalline CsH₂SO₄ and a small amount (~8 wt %) of the related compound Cs₂H₂(SO₄)₃-xH₂O (which also exhibits superprotonic behavior) were obtained upon introduction of methanol into the solution. Composite membranes of the solid acid and poly(vinylidene fluoride) were prepared by simple melt-processing methods. The two components were lightly ground together then hot-pressed at 180°C and 10 kpsi for 15 minutes. Volume ratios of CH₃:PVDF from 100% CsH₂SO₄ to 100% PVDF were prepared in 10 vol % increments.
example, a portion of the sulfur in CsHSO₄ may be replaced by chromium, which can be present in an oxidation state of anywhere from 2+ to 6+. Similarly, manganese may be introduced on the sulfur site, as this ion exhibits valence states anywhere between 2+ and 7+. Chemical substitution may also be performed with respect to the cesium in a compound such as CsHSO₄. Large ions with variable valence, such as thallium, indium, lead, and tin can be used for these substitutions. The solid acid so modified may be used in an electrochemical device directly, or may be combined with a supporting matrix material as described above.

In the FIG. 1 embodiment, a membrane-electrode assembly (MEA) is prepared from the CHS-PVDF composite film in which the solid acid to polymer volume ratio is 50:50. The electrodes are formed of graphite paper which is impregnated with a complex slurry of platinum powder, PVDF, the solid acid, and Nafion, suspended/dissolved in a water and isopropanol solution. After evaporation of the solvents, the electrodes so prepared are hot-pressed onto the composite membrane. The MEA is placed in a fuel cell test station at 140°C and hydrogen is introduced at the anode and oxygen at the cathode. The open cell voltage (OCV) obtained in this manner was 0.88 V. The same type of MEA may also be used in the FIG. 2 embodiment.

VII. EXAMPLES

Example 1

A Cs based solid acid such as CsHSO₄, CsHSeO₄ or Cs₂H₃(SO₄)₂.xH₂O is ground and mixed with a melt-processable polymer binder, such as poly(vinylidene fluoride), and hot-pressed. The result forms a solid composite membrane which is proton conducting even in dry atmospheres. The composite membrane, being comprised of two components which are substantially impermeable to fluids, may be less permeable than Nafion™.

Example 2

A Cs based solid acid such as Cs₆(HSO₄)₃(H₂PO₄)₄ Cs₆H₃(SO₄)₄.xH₂O or Cs₅(HSO₄)₃(H₂PO₄)₂ or Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅(HSO₄)₃(H₂PO₄)₂ or Cs₅(HSO₄)₃(H₂PO₄)₂ is ground and mixed with a melt-processable polymer binder, such as poly(vinylidene fluoride), and hot-pressed. The result forms a solid composite membrane which is proton conducting even in dry atmospheres. The membrane is also less permeable to fluids than Nafion™.

Example 3

(A NH₄ based solid acid such as (NH₄)₃H(SO₄)₃ or (NH₄)₃H(SO₄)₃ is ground and mixed with a melt-processable polymer binder, such as Crystar 101 thermoplastic, and hot-pressed. The result forms a solid composite membrane which is proton conducting even in dry atmospheres. The membrane is less permeable to fluids than Nafion™ and is also less expensive.

Example 4

An solid acid silicate of general formula MₓHₓSiO₄, such as CaNaHSiO₄, Cs₂H₅SiO₄, (NH₄)₂H₂SiO₄, as used as a membrane. Some of these materials are water insoluble and may have sufficient structural integrity that a binder is not required in some applications.

Example 5

A Cs or NH₄ based solid acid, such as CsHSO₄, Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅H₃(SO₄)₄.xH₂O or (NH₄)₃H(SO₄)₂, is mixed with the prepolymer of a resin such as “castoglas”, a commercial product from Buehler, Inc. The polymerization/crosslinking catalyst is added to the mixture, and a solid composite membrane so formed. The in situ polymerization/crosslinking can lead to a higher impermeability than composites formed by melt-processing.

Example 6

A Cs or NH₄ based solid acid, such as CsHSO₄, Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅H₃(SO₄)₄.xH₂O or (NH₄)₃H(SO₄)₂ is dissolved in water, and added to a suspension of an insoluble polymer such as poly(vinylidene fluoride) suspended in a fluid such as ethanol. The mixture is cast and the liquids (water and ethanol) allow to evaporate. This procedure yields a composite membrane which is proton conducting even in dry atmospheres. The casting step can produce very thin membranes, with thicknesses on the order of one hundred microns.

Example 7

A Cs or NH₄ based solid acid, such as CsHSO₄, Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅H₃(SO₄)₄.xH₂O or (NH₄)₃H(SO₄)₂ is dissolved in water and added to a suspension of an insoluble polymer such as poly(vinylidene fluoride) in a fluid such as ethanol. The mixture is cast and the liquids (water and ethanol) allowed to evaporate. This procedure yields a composite membrane which is proton conducting even in dry atmospheres. The casting step can produce very thin membranes, with thicknesses on the order of one hundred microns.

Example 8

A Cs or NH₄ based solid acid, such as CsHSO₄, Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅H₃(SO₄)₄.xH₂O or (NH₄)₃H(SO₄)₂ is dissolved in water and added to a suspension of an insoluble polymer such as poly(vinylidene fluoride) in a fluid such as ethanol. The mixture is cast and the liquids (water and ethanol) allowed to evaporate. This procedure yields a composite membrane which is proton conducting even in dry atmospheres. The casting step can produce very thin membranes, with thicknesses on the order of one hundred microns.

Example 9

A Cs or NH₄ based solid acid, such as CsHSO₄, Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅H₃(SO₄)₄.xH₂O or (NH₄)₃H(SO₄)₂, is dissolved in water. The solution is introduced into a porous membrane comprised of inert binder such as Teflon™, SiO₂, or Al₂O₃. The water is allowed to evaporate, leaving the solid acid to fill the pores of the binder. The result is a composite membrane which is proton conducting even in dry atmospheres.

Example 10

A Cs or NH₄ based solid acid, such as CsHSO₄, Cs₅(HSO₄)₃(H₂PO₄)₂, Cs₅H₃(SO₄)₄.xH₂O or (NH₄)₃H(SO₄)₂, which is only proton conducting, is ground and mixed with an electronically conducting polymer such as poly(anylene). The composite membrane formed can conduct both protons and electrons.
Example 11

An solid acid silicate of general formula M₂H₂SiO₄₉ such as CaNaHSiO₄, Cs₂H₂SiO₄₉, or Na₂H₂SiO₄₉, is prepared from aqueous solution or by solid state reaction. The powder is then ground and pressed into a thin membrane. The membrane is used in an electrochemical device at a temperature above the superprotonic transition temperature and above 100°C, so that the conductivity of the solid acid is high and any H₂O that may be present in the device exists in the form of steam rather than liquid water.

Example 12

A composite comprised of one or more of the solid acids listed in Table 1 and one or more of inert binders listed in Table 2. If one or more of the components in the composite is electronically conducting, the composite membrane will be capable of conducting both protons and electrons. Electronically conducting substances are indicated.

TABLE 1

<table>
<thead>
<tr>
<th>Solid acid compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsxSiO₄</td>
</tr>
<tr>
<td>Csx(HSO₄)₂</td>
</tr>
<tr>
<td>Csx(H₂O)(H₂SO₄)(H₂P₂O₄)</td>
</tr>
<tr>
<td>Csx(H₂O)(H₂SO₄)</td>
</tr>
<tr>
<td>Csx(H₂SO₄)</td>
</tr>
<tr>
<td>Csx(HSO₄)</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Binder or matrix materials</th>
<th>Ceramic/oxide glass</th>
<th>Metal or semiconductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly(vinylidene fluoride)</td>
<td>SiO₂</td>
<td>Ag⁺*</td>
</tr>
<tr>
<td>poly(dicyclopentadiene)</td>
<td>Al₂O₃</td>
<td>Au⁺*</td>
</tr>
<tr>
<td>poly(tetrafluoroethylene)</td>
<td>MgO</td>
<td>Cu⁺*</td>
</tr>
<tr>
<td>[Teflon]</td>
<td>SiO₂</td>
<td>Si⁺*</td>
</tr>
<tr>
<td>poly(ether-ether ketone)</td>
<td>condorite</td>
<td>Al⁺*</td>
</tr>
<tr>
<td>poly(ether sulfone)</td>
<td>Ni⁺*</td>
<td>Fe⁺*</td>
</tr>
<tr>
<td>Silicones [dimethyl siloxane polymers]</td>
<td>graphite*</td>
<td>Zn⁺*</td>
</tr>
<tr>
<td>poly(pyrrrole)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>poly(aniline)*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*electronically conducting

Other modifications are within the disclosed embodiment. For example, the above has described the materials having a superprotonic transition upon heating. Certain materials may have their superprotonic transition temperature below room temperature. Thus, there may be no apparent superprotonic transition and the material would be disordered at room temperature. These solid acids with structural disorder even prior to heating are also contemplated.
What is claimed is:

1. A proton conducting membrane for use in a fuel cell comprising:
 a solid acid material defined by the chemical formula:
 $$M_nH_m(XO)_t$$
 where M is a cation having a charge from +1 to +2, X is selected from the group consisting of S, Se, P, As, Si and Ge and a, b, c, and t are non-zero integers, wherein the solid acid material exhibits a superprotonic phase such that the solid acid material is capable of conducting protons in a solid state through a superprotonic mechanism, wherein said membrane is in a fuel cell.

2. The proton conducting membrane described in claim 1, wherein the solid acid is CsH,PO,.

3. The proton conducting membrane described in claim 1, wherein the solid acid is RbH,PO,.

4. The proton conducting membrane described in claim 1, wherein the solid acid comprises MH,PO,, wherein M is a cation having a charge from +1 to +2, X is selected from the group consisting of S, Se, P, As, Si and Ge and a, b, c, and t are non-zero integers, wherein the solid acid material is capable of conducting protons in a solid state through a superprotonic mechanism, wherein said membrane is insoluble in a water containing environment and thermally stable at temperatures of at least about 100°C.

5. The proton conducting membrane described in claim 1, wherein the membrane is stable in a hydrated atmosphere.

6. The proton conducting membrane described in claim 1, wherein the membrane is in a fuel cell.

7. The proton conducting membrane described in claim 1, wherein the membrane is operable with a fuel.

8. The proton conducting membrane described in claim 1, wherein the membrane is operable with a gas feed comprising hydrogen, methanol, methane and oxygen.

9. The proton conducting membrane described in claim 1, wherein the membrane is operable with a gas feed comprising hydrogen, methanol, methane and gasoline.

10. The proton conducting membrane described in claim 1, wherein the membrane is operable with a fuel comprising hydrogen, methanol, methane and oxygen.

11. The proton conducting membrane described in claim 1, wherein the membrane is operable with a fuel comprising hydrogen, methanol, methane and gasoline.

12. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with a hydrocarbon fuel.

13. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with a fuel selected from the group consisting of hydrogen, methanol, methane and gasoline.

14. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with a fuel comprising hydrogen, methanol, methane and oxygen.

15. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with a fuel comprising hydrogen, methanol, methane and gasoline.

16. The proton conducting membrane described in claim 1, further comprising an additional separate electrically conducting material.

17. The proton conducting membrane described in claim 1, wherein the conducting material is selected from the group consisting of conducting polymers, metals and an electrically conducting carbon material.

18. The proton conducting membrane described in claim 1, wherein said membrane has a proton conductivity of about 10^{-5} Ω⁻¹ cm⁻¹ or higher at the temperature of utilization.

19. A fuel cell comprising a proton conducting membrane, said proton conducting membrane comprising:
 a solid acid material defined by the chemical formula:
 $$M_nH_m(XO)_t$$
 where X is selected from the group consisting of S, Se, P, As, Si and Ge, and a, b, c, and t are non-zero integers, wherein the solid acid material is capable of conducting protons in a solid state through a superprotonic mechanism, wherein said membrane conducts both protons and electrons.

20. A fuel cell system comprising a proton conducting membrane as described in claim 1, wherein the fuel cell system provides electrical power to an external device.

21. A fuel cell comprising a proton conducting membrane for use in the presence of H₂O, said proton conducting membrane comprising:
 a solid acid material defined by the chemical formula:
 $$M_nH_m(XO)_t$$
 wherein M is a cation having a charge from +1 to +2, X is selected from the group consisting of S, Se, P, As, Si and Ge and a, b, c, and t are non-zero integers, wherein the solid acid material is capable of conducting protons in a solid state through a superprotonic mechanism.

22. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with a fuel.

23. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with a fuel comprising hydrogen, methanol, methane and oxygen.

24. The proton conducting membrane described in claim 1, wherein the oxygen source is ambient air.

25. The proton conducting membrane described in claim 1, wherein the oxygen source is ambient air.

26. The proton conducting membrane described in claim 1, wherein the oxygen source is ambient air.

27. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with a gas feed comprising hydrogen and oxygen.

28. The proton conducting membrane described in claim 1, wherein the fuel cell is operable with hydrogen and oxygen.

29. The proton conducting membrane described in claim 1, wherein the oxygen source is ambient air.

30. The proton conducting membrane described in claim 1, wherein the oxygen source is ambient air.

31. The proton conducting membrane described in claim 1, further comprising a structural binder.

32. A fuel cell comprising a proton conducting membrane, said proton conducting membrane comprising:
 a solid acid material defined by the chemical formula:
 $$M_nH_m(XO)_t$$
 where X is selected from the group consisting of S, Se, P, As, Si and Ge, and a, b, c, and t are non-zero integers, wherein the solid acid material is capable of conducting protons in a solid state through a superprotonic mechanism, wherein said membrane conducts both protons and electrons.

33. The fuel cell described in claim 32, wherein the electrically conducting carbon material is graphite.
34. A fuel cell comprising a proton conducting membrane for use in the presence of H₂O, said proton conducting membrane comprising:

a solid acid material defined by the chemical formula:

\[M_xH_y(XO_z)_t \]

wherein \(M \) is Cs, X is selected from the group consisting of S, Se, P, As, Si and Ge, and \(a, b, c, \) and \(t \) are non-zero integers, the \(XO \) groups being linked together by hydrogen bonds, and the membrane further comprising

a structural binder forming a membrane with the solid acid material.

35. The proton conducting membrane described in claim 31, wherein the structural binder is selected from the group consisting of polyvinylidene fluoride, polydicyclopentadiene, polytetrafluoroethylene, polyetheretherketone, polyethersulfone, dimethyl siloxane polymers, polypyrrole, polyaniline, SiO₂, Al₂O₃, MgO, cordierite, Ag, Au, Cu, Al, Ni, Fe, Zn, graphite and silicon.

36. The proton conducting membrane described in claim 2, further comprising a structural binder.

37. The proton conducting membrane described in claim 36, wherein the structural binder is selected from the group consisting of graphite, polymers, ceramics, glasses, metals, and mixtures thereof.

38. The proton conducting membrane described in claim 36, wherein the structural binder is selected from the group consisting of polyvinylidene fluoride, polydicyclopentadiene, polytetrafluoroethylene, polyetheretherketone, polyethersulfone, dimethyl siloxane polymers, polypyrrole, polyaniline, SiO₂, Al₂O₃, MgO, cordierite, Ag, Au, Cu, Al, Ni, Fe, Zn, graphite and silicon.

39. The proton conducting membrane described in claim 36, wherein the structural binder comprises SiO₂.

40. The proton conducting membrane described in claim 1, wherein X is a member selected from the group consisting of S, Se, P, and Si.

41. The fuel cell described in claims 19, 21, 32 and 34, wherein X is a member selected from the group consisting of S, Se, P, and Si.

42. The proton conducting membrane described in claim 1, wherein X is a member selected from the group consisting of As and Ge.

43. The fuel cell described in claims 19, 21, 32 and 34, wherein X is a member selected from the group consisting of As and Ge.

* * * * *