Isolated polynucleotide molecules and peptides encoded by these molecules are used in the analysis of human norepinephrine (NE) transporter variants, as well as in diagnostic and therapeutic applications, relating to a human NE transporter polymorphism. By analyzing genomic DNA or amplified cDNA derived from these molecules, one can type the human NE transporter with regard to the human NE transporter polymorphism, for example, in the context of diagnosing and treating NE transport impairments, and disorders associated with NE transport impairments, such as orthostatic intolerance.
OTHER PUBLICATIONS

* cited by examiner
FIG. 2A

FIG. 2B

FIG. 2C

TMD 9 *

hNET LFTFGVTFTSTLLALFCIT
mNET LFTCWVTFTSTLLALFCIT
dNET LFTPAMSTFTSTLLALFCIT
fET AFTPAMSTFTSTLLALLCIT

FIG. 2D

FIG. 2E

FIG. 2F
supine heart rate

upright heart rate

FIG. 3A
supine NE

FIG. 3B
upright NE

FIG. 3C
supine DHPG/NE

FIG. 3D
upright DHPG/NE

FIG. 3E

FIG. 3F
GENETIC MUTATION UNDERLYING ORTHOSTATIC INTOLERANCE AND DIAGNOSTIC AND THERAPEUTIC METHODS RELATING THERETO

CROSS REFERENCE TO RELATED APPLICATIONS

This application is based on and claims priority to U.S. Provisional Application Ser. No. 60/173,682, filed Dec. 29, 1999, and to U.S. Provisional Application Ser. No. 60/175,456, filed Jan. 11, 2000, each of which are herein incorporated by reference in their entirety.

GRANT STATEMENT

This work was supported by NIH grants MH58921, PO1 HL56693 and RR00095, and by NASA grant NAS 9 19483. Thus, the U.S. Government has certain rights in the invention.

TECHNICAL FIELD

The present invention relates to isolated polynucleotide molecules useful for analyzing novel norepinephrine (NE) transporter variants, to peptides encoded by these molecules, and to the diagnostic and therapeutic uses thereof relating to a newly identified NE transporter polymorphism. Among such uses are methods for determining the susceptibility of a subject to orthostatic intolerance based on an analysis of a biological sample from the subject.

Table of Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A457P</td>
<td>alanine to proline amino acid mutation of amino acid 457 of the norepinephrine transporter polypeptide</td>
</tr>
<tr>
<td>ASO</td>
<td>allele-specific oligonucleotide</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>bpm</td>
<td>beats per minute</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>COMT</td>
<td>catechol-O-methyltransferase</td>
</tr>
<tr>
<td>dbp</td>
<td>diastolic blood pressure</td>
</tr>
<tr>
<td>DFPG</td>
<td>dicyclohexyl phthalate</td>
</tr>
<tr>
<td>Epi</td>
<td>epinephrine</td>
</tr>
<tr>
<td>fl</td>
<td>full length</td>
</tr>
<tr>
<td>HAT</td>
<td>hypoxanthine, aminopterin, thymidine</td>
</tr>
<tr>
<td>HR or hr</td>
<td>heart rate</td>
</tr>
<tr>
<td>KDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>KLH</td>
<td>keyhole limpet hemocyanin</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>LAT</td>
<td>ligation activated translation</td>
</tr>
<tr>
<td>LCR</td>
<td>ligase chain reaction</td>
</tr>
<tr>
<td>MAO</td>
<td>monoamine oxidase</td>
</tr>
<tr>
<td>MN</td>
<td>metanephrine</td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimeters of mercury - standard blood pressure unit</td>
</tr>
<tr>
<td>MSNA</td>
<td>muscle sympathetic nerve activity</td>
</tr>
<tr>
<td>NAG</td>
<td>n-acetyl glutamate</td>
</tr>
<tr>
<td>NASA</td>
<td>n-acetyl glutamate</td>
</tr>
<tr>
<td>NE</td>
<td>norepinephrine</td>
</tr>
<tr>
<td>NET</td>
<td>norepinephrine transporter</td>
</tr>
<tr>
<td>NMN</td>
<td>normetanephrine</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NTP</td>
<td>nitroprusside infusion</td>
</tr>
<tr>
<td>OI</td>
<td>orthostatic intolerance</td>
</tr>
<tr>
<td>OLGA</td>
<td>oligonucleotide ligation assays</td>
</tr>
<tr>
<td>PBSTC</td>
<td>peripheral blood stem-cell transplantation</td>
</tr>
<tr>
<td>PE</td>
<td>picogram(s)</td>
</tr>
<tr>
<td>PSTS</td>
<td>postural tachycardia syndrome</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
</tbody>
</table>

BACKGROUND ART

Orthostatic intolerance (OI) is a syndrome characterized by adrenergic symptoms brought on by upright posture. Usually, there is a heart rate increase of at least 30 bpm on standing without significant orthostatic hypotension. Jacob et al., Circulation (1997). Females are disproportionately affected and patients usually present in the second to fourth decade of life. Low et al., Neurology (1995). This dysautonomic syndrome is quite common and may have been first described as Da Costa’s syndrome more than 100 years ago. Jordan et al., Chin J. Physiol (1997); Novak et al., J Aut N Syst (1996); Streten, Orthostatic Disorders of the Circulation: Mechanisms, Manifestations and Treatment (1987). It has been re-recognized over the years as soldiers heart, neurocirculatory asthenia, and mitral valve prolapse syndrome. It also bears many similarities to chronic fatigue syndrome. Because of the prominent feature of orthostatic tachycardia, postural tachycardia syndrome (POTS) is a current popular name. Rosen et al., Am J Med (1982).

These features and their improvement with salt and volume replacement are consistent with hypovolemia and a secondary sympathetic activation. However, most patients are not hypovolemic. Excessive venous pooling with upright posture, hypersensitivity of veins to alpha-adrenergic agonists and decreased autonomic latencies in the lower extremities are consistent with partial autonomic denervation as another mechanism which could cause secondary sympathetic activation. However, increased heart rate, plasma norepinephrine and muscle sympathetic nerve activity (MSNA) even in the supine position coupled with widely oscillating heart rate with upright posture and disparities among heart rate, plasma norepinephrine and MSNA responses to upright tilt are more consistent with fundamentally disordered autonomic regulation. Novak et al., J Aut N Syst (1996); Furlan et al., Circulation (1998); Shannon et al., Circulation (1998); Puddu et al., Am Heart J (1983); Pastermac et al., Am J Med (1982); Coghlan et al., Am J Med (1979).

Thus far, most explanations of the physiological and biochemical abnormalities in OI have focused on alterations in norepinephrine release (i.e., compensatory, excessive, or disordered). Streten et al., J Lab Clin Med (1988); Furlan et al., Circulation (1998); Novak et al., Stroke (1998). An alternative explanation is an abnormality in synaptic norepinephrine clearance. Approximately 80–90% of norepinephrine released into many synapses can be cleared by neuronal re-uptake via the presynaptic norepinephrine transporter (NET), while the remaining 10–20% spills over into the circulation or extraneuronal tissue, as disclosed by Eisler et al., Physiol Rev (1990).

To date, attempts to identify a genetic basis within the NE transporter gene for OI or other NE transport impairment have not been undertaken. It is further noted that drugs inhibiting NET (e.g., cocaine, amphetamines, tricyclic antidepressants) cause features typical of OI (i.e., tachycardia,
orthostatic symptoms, and elevated plasma catecholamines. Thus, exploration of impaired NET function, including exploration of a genetic basis for such impaired NET function, would provide important information about the biological and addictive effects of these drugs.

What is needed, then, is further characterization of the structure of the NE transporter gene generally and in OI patients. Since the NE transporter plays a pivotal role in norepinephrine uptake at the synaptic cleft, further characterization of the structure and role of the NE transporter gene would meet a long-felt need in the art for diagnostic and therapeutic methods associated with NE transporter-mediated biological functions.

SUMMARY OF THE INVENTION

A method of screening for sub-optimal NE transporter-mediated physiological responses function in a subject is disclosed. The method comprises: (a) obtaining a biological sample from the subject; and (b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, the presence of the polymorphism indicating that the susceptibility of the subject to sub-optimal NE-mediated physiological responses. In accordance with a preferred embodiment of the present invention, detection of the polymorphism is employed with respect to determining the susceptibility of a subject to orthostatic intolerance (OI).

Preferably, the polymorphism of the NE transporter polypeptide comprises a G to C transversion in exon 9 of the NE transporter gene. Preferably, the G to C transversion further comprises a change in the triplet code from GCA/GCC/GCG/GCU to CCA/CCC/CCG/CCU, which encodes a NE transporter polypeptide having a proline moiety at amino acid residue 457 instead of an alanine moiety.

Kits and reagents, including oligonucleotides, nucleic acid probes and antibodies suitable for use in carrying out the methods of the present invention and for use in detecting the polypeptides and polynucleotides of the present invention are also disclosed herein. Methods for preparing the polynucleotides and polypeptides of the present invention are also disclosed herein.

In a further embodiment, this invention pertains to diagnostic methods based upon a polymorphism of a NE transporter gene as described herein. Such diagnostic methods include detection of NE transporter deficiencies and disorders related thereto based upon a comparison of NE transporter function related data to data observed in patients having the NE transporter polymorphism disclosed here.

It is therefore an object of the present invention to provide polynucleotide molecules that can be used in analyzing NE transporter genes in vertebrate subjects.

It is also an object of the present invention to provide for the determination of NE transporter genotype in vertebrate subjects and particularly human subjects, based on information obtained through the analysis of nucleic acids, including genomic DNA and cDNA, derived from tissues from the subject.

It is yet another object of the present invention to provide a ready method for determining NE transporter genotype.

It is still a further object of the present invention to provide polypeptide and polynucleotide molecules for use in generating antibodies that distinguish between the different forms of NE transporter which constitute the NE transporter polymorphism.

It is yet a further object of the present invention to provide methods for diagnosing clinical syndromes related to and associated with the NE transporter polymorphism and/or sub-optimal NE transporter function.

Some of the objects of the invention having been stated hereinabove, other objects will become evident as the description proceeds, when taken in connection with the accompanying Drawings and Examples as best described hereinbelow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A–1C depict continuous blood pressure (BP) and heart rate (HR) recordings. Beat-by-beat BP as determined by photoplethysmography and continuous HR recording illustrates spontaneous excursions of up to 50 mmHg and 25 bpm respectively in the proband (FIG. 1A) and her identical twin (FIG. 1B). With tilt (FIG. 1C), BP and HR volatility is intensified.

FIGS. 2A–2F depict evaluation of norepinephrine transporter (NET) mutation. DNA sequencing (FIG. 2A) identified the presence of both C and G nucleotides (arrows) in both the sense and antisense DNA indicating heterozygosity at this locus. This C to G nucleotide change results in an alanine to proline change in amino acid 457 (A457P). FIG. 2B shows the position of the A457P mutation within NET. This mutation occurs in transmembrane domain 9 which is highly conserved among the related murine and bovine NETs and the frog epinephrine transporter (fET) as seen in FIG. 2C. FIG. 2D shows that compared to the wild type NET, the A457P mutation results in significant impairment of NE uptake in transiently transfected Chinese Hamster Ovary cells which is not significantly different from the nonspecific uptake observed in cells transfected with the vector alone. FIGS. 2E and 2F evaluated the presence of the mutant (P) and wild type (A) alleles within the family of the OI proband (arrow).

FIGS. 3A–3F depict supine and upright heart rate and plasma catecholamines in the proband’s family. Heart rate (HR) and plasma concentrations of norepinephrine (NE) and its intraneuronal metabolite dihydroxyphe-nylglycol (DHPG) in family members with (AP) and without (AA) the A457P mutation. Supine HR (FIG. 3A) was similar in AA and AP individuals. Upright HR (FIG. 3B) and NE (FIG. 3D) were significantly greater in AP family members than in AA individuals. Supine NE (FIG. 3C) trended toward higher values in AP individuals but did not reach statistical significance. The ratio of DHPG to NE was significantly lower in AP individuals both supine and upright with impairment of NE uptake (p<0.05). Plasma DHPG/norepinephrine ratio was significantly greater in AA individuals that in AP individuals with both supine and upright postures (FIG. 3E and FIG. 3F).

FIG. 4A is a schematic depicting neuronal metabolism of norepinephrine (NE) in normal conditions.

FIG. 4B is a schematic depicting neuronal metabolism of norepinephrine (NE) in NET deficiency conditions.

DETAILED DESCRIPTION OF THE INVENTION

Orthostatic intolerance (OI) is a common syndrome characterized by lightheadedness, palpitations, fatigue, altered mentation, and a syncope and is often accompanied by postural tachycardia and elevated plasma norepinephrine. Previous studies suggest that heart rate and plasma norepinephrine are elevated out of proportion to increase in sympathetic outflow. The cocaine and antidepressant sensi-
tive L-norepinephrine transporter (NET) is responsible for synaptic norepinephrine inactivation.

As shown in FIG. 4A, under normal conditions exocytotic release of NE from intraneuronal vesicles into the synaptic space where the amine can interact with post-synaptic and pre-synaptic adrenoreceptors (a). Approximately 80% of the synaptic NE is taken up into the neuron by NET. Approximately 20% spills over into the circulation (b). Captured NE is preferentially converted to DHPG by monoamine oxidase (MAO); some is repackaged into synaptic vesicles (c). DHPG diffuses out of the neuron into the circulation (d).

As shown in FIG. 4B, release of NE into the synaptic space is unaffected (e). Because of decreased NET activity, less than 80% of the synaptic NE is taken up into the neuron by NET and the spillover into the circulation is greater than 20%. Also because of decreased NET activity, NE has greater opportunity for interaction with adrenoreceptors (f). Because the reuptake of NE is decreased, DHPG production is decreased (g). Lower DHPG concentration in the neuron results in lower DHPG concentrations in the plasma and, subsequently, a reduced plasma DHPG/NE ratio (h).

Whether abnormal NET function might contribute to the pathophysiology of OI, using a battery of bedside physiological, pharmacological, biochemical, and molecular biological tests was tested. In a proband with significant orthostatic symptoms and tachycardia, the present co-inventors found disproportionately elevated plasma norepinephrine with standing, impaired systemic clearance of infused titrated norepinephrine, impaired tyramine responsiveness, and a dissociation between plasma norepinephrine and DHPG elevation. Analysis of the norepinephrine transporter (SCL6A2, referred to herein as the "NE transporter" or "NET") revealed the proband to be a heterozygote for an inactivating coding mutation in exon 9. Analysis of norepinephrine transport activity produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in function relative to normal. Presence of the mutant allele in the proband’s family segregated with postural tachycardia and alteration in plasma catecholamine homeostasis.

Thus, the present invention pertains to the first identification of a specific genetic defect in OI and to the first identification of a disease linked to a coding alteration in a Na+/Cl− dependent neurotransmitter transporter. The present invention also pertains to the discovery that genetic or acquired deficits in norepinephrine inactivation underlie hyperadrenergic states leading to orthostatic intolerance.

As disclosed herein is the discovery of a polymorphism of the norepinephrine transporter, the transport polypeptide that plays a role in norepinephrine reuptake at the synaptic cleft, among other in vivo roles. Particularly, the polymorphism is characterized by an amino acid substitution, alanine/proline at amino acid 457 in the encoded NE transporter polypeptide.

Also disclosed herein is the observation that a single nucleotide change in the NE transporter gene is responsible for the functional polymorphism of the NET transporter. Particularly, a G to C transversion with exon 9 of the NE transporter gene leads to an A457P change in the encoded NE transporter polypeptide.

In light of these discoveries, manipulation of biological samples derived from vertebrate subjects can be effected to provide for the analysis of NE transporter phenotypes, for the generation of peptides encoded by such nucleic acid molecules, and for diagnostic methods relating to the NE transporter polymorphism. Nucleic acid molecules utilized in these contexts may be amplified, as described below, and generally include RNA, genomic DNA and cDNA derived from RNA.

A. Polynucleotide Screening Techniques

In accordance with one embodiment of the present invention, a method of screening for susceptibility to sub-optimal norepinephrine (NE) transport function resulting in decreased NE clearance in a subject is provided. The method comprising the steps of: (a) obtaining a nucleic acid sample from the subject; and (b) detecting a polymorphism of a norepinephrine transporter ("NE transporter" or "NET") gene in the nucleic acid sample from the subject, the presence of the polymorphism indicating that the susceptibility of the subject to sub-optimal NE transport function, which results in decreased NE transport. In accordance with the present invention, detection of the polymorphism is particularly provided with respect to determining the susceptibility of a subject to orthostatic intolerance (OI).

As used herein, the term “polymorphism” refers to the occurrence of one or more genetically determined alternative sequences or alleles in a population. A polymorphic marker is the locus at which divergence among biological samples can be affected, as described below, and generally include RNA, genomic DNA and cDNA derived from RNA.
from NE transporter exon 9 (the location of the polymorphism of the present invention, GenBank Accession No. x91127, SEQ ID NO:15). The oligonucleotide primers are useful in diagnosis of a subject at risk for impaired or sub-optimal NET function and orthostatic intolerance. The primers direct amplification of a target nucleotide prior to sequencing. These unique NE transporter exon 9 oligonucleotide primers were designed and produced based upon identification of the G to C transversion in exon 9.

In another embodiment of the invention isolated allele specific oligonucleotides (e.g. SEQ ID NOS: 9 & 10) are provided. Sequences substantially similar thereto are also provided in accordance with the present invention. The allele specific oligonucleotides are useful in diagnosis of a subject at risk for impaired or sub-optimal NET function. These unique NE transporter exon 9 oligonucleotide primers were designed and produced based upon identification of the G to C transversion in exon 9.

The terms “substantially complementary to” or “substantially the sequence of” refer to sequences which hybridize to the sequences provided (e.g. SEQ ID NOs: 9 and 10) under stringent conditions and/or sequences having sufficient homology with any of SEQ ID NOs: 9 and 10, such that the allele specific oligonucleotides of the invention hybridize to the sequence. The term “isolated” as used herein includes oligonucleotides substantially free of other nucleic acids, proteins, lipids, carbohydrates or other materials with which they may be associated, such association being either in cellular material or in a synthesis medium. A “target polynucleotide” or “target nucleic acid” refers to the nucleic acid sequence of interest e.g., a NE transporter-encoding polynucleotide. Other primers which can be used for primer hybridization are readily ascertained to those of skill in the art based upon the disclosure herein of the NE transporter polymorphism.

The primers of the invention embrace oligonucleotides of sufficient length and appropriate sequence so as to provide initiation of polymerization on a significant number of nucleic acids in the polymorphic locus (See FIG. 2). Specifically, the term “primer” as used herein refers to a sequence comprising two or more deoxyribonucleotides or ribonucleotides, preferably more than three, and more preferably more than eight and most preferably at least about 20 nucleotides of the NE transporter gene wherein the DNA sequence contains the G to C transversion within to NE transporter exon 9. The allele including guanosine (G) within NE transporter exon 9 is referred to herein as the “NE-a allele”, the “A457 allele”, or the “alanine-encoding allele”. The allele including cytosine (C) within NE transporter exon 9 is referred to herein as the “NE-b allele”, the “P457 allele”, or the “proline-encoding allele”.

An oligonucleotide that distinguishes between the NE-a and the NE-b alleles of the NE transporter gene, wherein the oligonucleotide hybridizes to a portion of the NE transporter gene that includes nucleotide 237 of exon 9 of the NE transporter gene when the nucleotide 237 is cytosine, but does not hybridize with the portion of the NE transporter gene when the nucleotide 237 is guanosine, is also provided in accordance with the present invention. An oligonucleotide that distinguishes between the NET-a and the NET-b alleles of the NET transporter gene, wherein the oligonucleotide hybridizes to a portion of the NET transporter gene that includes nucleotide 237 of exon 9 of the NET transporter gene when the nucleotide 237 is guanosine, but does not hybridize with the portion of the NET transporter gene when the nucleotide 237 is cytosine is also provided in accordance with the present invention. Such oligonucleotides are preferably between ten and thirty bases in length. Such oligonucleotides can optionally further comprise a detectable label.

Environmental conditions conducive to synthesis include the presence of nucleoside triphosphates and an agent for polymerization, such as DNA polymerase, and a suitable temperature and pH. The primer is preferably single stranded for maximum efficiency in amplification, but can be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent for polymerization. The exact length of primer will depend on many factors, including temperature, buffer, and nucleotide composition. The oligonucleotide primer typically contains 12-20 or more nucleotides, although it can contain fewer nucleotides.

Primers of the invention are designed to be “substantially” complementary to each strand of the genomic locus to be amplified. This means that the primers must be sufficiently complementary to hybridize with their respective strands under conditions which allow the agent for polymerization to perform. In other words, the primers should have sufficient complementarity with the 5’ and 3’ sequences flanking the transversion to hybridize therewith and permit amplification of the genomic locus.

Oligonucleotide primers of the invention are employed in the amplification method which is an enzymatic chain reaction that produces exponential quantities of polymorphic locus relative to the number of reaction steps involved. Typically, one primer is complementary to the negative (−) strand of the polymorphic locus and the other is complementary to the positive (+) strand. Annealing the primers to denatured nucleic acid followed by extension with an enzyme, such as the large fragment of DNA polymerase I (Klenow) and nucleotides, results in newly synthesized + and − strands containing the target polymorphic locus sequence. Because these newly synthesized sequences are also templates, repeated cycles of denaturing, primer annealing, and extension results in exponential production of the region (i.e., the target polymorphic locus sequence) defined by the primers. The product of the chain reaction is a discreet nucleic acid duplex with termini corresponding to the ends of the specific primers employed.

The oligonucleotide primers of the invention can be prepared using any suitable method, such as conventional phosphodiester and phosphotriester methods or automated embodiments thereof. In one such automated embodiment, diethylphosphoramidites are used as starting materials and can be synthesized as described by Beaucage et al., Tetra- hedron Letters 22:1859-1862 (1981). One method for synthesizing oligonucleotides on a modified solid support is described in U.S. Pat. No. 4,458,066.

Any nucleic acid specimen, in purified or non-purified form, can be utilized as the starting nucleic acid or acids, providing it contains, or is suspected of containing, a nucleic acid sequence containing the polymorphic locus. Thus, the method can amplify, for example, DNA or RNA, including messenger RNA, wherein DNA or RNA can be single stranded or double stranded. In the event that RNA is to be used as a template, enzymes, and/or conditions optimal for reverse transcribing the template to DNA would be utilized. In addition, a DNA-RNA hybrid which contains one strand of each can be utilized. A mixture of nucleic acids can also be employed, or the nucleic acids produced in a previous amplification reaction herein, using the same or different primers can be so utilized. The specific nucleic acid
The newly synthesized strand and its complementary nucleic acid strand will form a double-stranded molecule under hybridizing conditions described above and this hybrid is used in subsequent steps of the method. In the next step, the newly synthesized double-stranded molecule is subjected to denaturing conditions using any of the procedures described above to provide single-stranded molecules.

The steps of denaturing, annealing, and extension product synthesis can be repeated as often as needed to amplify the reaction. The newly synthesized strand and its complementary nucleic acid strand produce a double-stranded molecule under hybridizing conditions described above and this hybrid is used in subsequent steps of the method. In the next step, the newly synthesized double-stranded molecule is subjected to denaturing conditions using any of the procedures described above to provide single-stranded molecules.
pairs, thermostable polymerase and ligase, and DNA nucleotides to geometrically amplify targeted sequences. A 2-base gap separates the oligo probe pairs, and the RCR fills and joins the gap, mimicking normal DNA repair.

Nucleic acid amplification by strand displacement activation (SDA) utilizes a short primer containing a recognition site for HincII with short overhang on the 5' end which binds to target DNA. A DNA polymerase fills in the part of the primer opposite the overhang with sulfur-containing adenine analogs. HincII is added but only cuts the unmodified DNA strand. A DNA polymerase that lacks 5' exonuclease activity enters at the cite of the nick and begins to polymerize, displacing the initial primer strand downstream and building a new one which serves as more primer.

SDA produces greater than about a 10^7-fold amplification in 2 hours at 37°C. Unlike PCR and LCR, SDA does not require instrumented temperature cycling. Another amplification system useful in the method of the invention is the QB Replicase System. Although PCR is the preferred method of amplification if the invention, these other methods can also be used to amplify the NE transporter locus as described in the method of the invention. Thus, the term “amplification technique” as used herein and in the claims is meant to encompass all the foregoing methods.

In another embodiment of the invention a method is provided for diagnosing or identifying a subject having a predisposition or higher susceptibility to (at risk of) impaired sub-optimal NET function, comprising sequencing a target nucleic acid of a sample from a subject by dideoxy sequencing, preferably following amplification of the target nucleic acid.

In another embodiment of the invention a method is provided for diagnosing a subject having a predisposition or higher susceptibility to (at risk of) impaired sub-optimal NET function, comprising contacting a target nucleic acid of a sample from a subject with a reagent that detects the presence of the NE transporter polymorphism and detecting the reagent.

Another method comprises contacting a target nucleic acid of a sample from a subject with a reagent that detects the presence of the G to C transversion at base 237 within exon 9, and detecting the transversion. A number of hybridization methods are well known to those skilled in the art. Many of them are useful in carrying out the invention.

The materials for use in the method of the invention are ideally suited for the preparation of a diagnostic kit. Such a kit can comprise a carrier being compartmentalized to receive in close confinement one or more containers such as vials, tubes, and the like, each of the container comprising one of the separate elements to be used in the method. For example, one of the containers can comprise a reagent or reagents for amplifying NE transporter DNA, the reagent or reagents comprising the necessary enzyme(s) and oligonucleotide primers for amplifying said target DNA from the subject.

The oligonucleotide primers include primers having a sequence of NET exon 9 selected from the group including, but not limited to: SEQ ID NO:15, or primer sequences substantially complementary or substantially homologous thereto. The target flanking 5' and 3' oligonucleotide sequence of NET exon 9 has substantially the sequence set forth in SEQ ID NO:15, and sequences substantially complementary or homologous thereto. Other oligonucleotide primers for amplifying NE transporter are readily ascertained to those of skill in the art given the disclosure of the present invention presented herein.
porter polypeptide. The terms "NE transporter gene product", "NE transporter protein" and "NE transporter polypeptide" also include analogs of NE transporter molecules which exhibit at least some biological activity in common with native NE transporter gene products. Furthermore, those skilled in the art of mutagenesis will appreciate that other analogs, as yet undisclosed or undiscovered, can be used to construct NE transporter analogs. There is no need for an "NE transporter gene product", "NE transporter protein" or "NE transporter polypeptide" to comprise all, or substantially all of the amino acid sequence of a native NE transporter gene product. Shorter or longer sequences are anticipated to be of use in the invention. Thus, the term "NE transporter gene product" also includes fusion or recombinant NE transporter polypeptides and proteins. Methods of preparing such proteins are described herein.

The terms "NE transporter-encoding polynucleotide", "NE transporter gene", "NE transporter gene sequence" and "NE transporter gene segment" refer to any DNA sequence that is substantially identical to a polynucleotide sequence encoding a NE transporter gene product, NE transporter protein or NE transporter polypeptide as defined above. The terms also refer to RNA, or antisense sequences, compatible with such DNA sequences. A "NE transporter-encoding polynucleotide", "NE transporter gene", "NE transporter gene sequence" and "NE transporter gene segment" can also comprise any combination of associated control sequences. The term "substantially identical", when used to define either a NE transporter gene product or NE transporter amino acid sequence, or a NE transporter gene or NE transporter nucleic acid sequence, means that a particular sequence, for example, a mutant sequence, varies from the sequence of a natural NE transporter by one or more deletions, substitutions, or additions, the net effect of which is to retain at least some of biological activity of NE transporter. Alternatively, DNA analog sequences are "substantially identical" to specific DNA sequences disclosed herein if: (a) the DNA analog sequence is derived from coding regions of the natural NE transporter gene; or (b) the DNA analog sequence is capable of hybridization of DNA sequences of (a) under moderately stringent conditions and which encode biologically active NE transporter gene product; or (c) the DNA sequences are degenerate as a result of the genetic code to the DNA analog sequences defined in (a) and/or (b). Substantially identical analog proteins will be greater than about 60% identical to the corresponding sequence of the native protein. Sequences having lesser degrees of similarity but comparable biological activity are considered to be equivalents. In determining nucleic acid sequences, all subject nucleic acid sequences capable of encoding substantially similar amino acid sequences are considered to be substantially similar to a reference nucleic acid sequence, regardless of differences in codon sequences.

B.1. Percent Similarity

Percent similarity can be determined, for example, by comparing sequence information using the GAP computer program, available from the University of Wisconsin Geneticist Computer Group. The GAP program utilizes the alignment method of Needleman et al., J. Mol. Biol. 48:443 (1970), as revised by Smith et al., Adv. Appl. Math. 2:482 (1981). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e. nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default parameters for the GAP program include: (1) a unitary comparison matrix (containing a value of 1 for identities and 0 for non-identities) of nucleotides and the weighted comparison matrix of Gribskov et al., Nucl. Acids. Res. 14:6745 (1986), as described by Schwartz et al., eds., "Atlas of Protein Sequence and Structure", National Biomedical Research Foundation, pp.357–358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.01 penalty for each symbol and each gap; and (3) no penalty for end gaps. Other comparison techniques are described in the Examples.

The term "homology" describes a mathematically based comparison of sequence similarities which is used to identify genes or proteins with similar functions or motifs. Accordingly, the term "homology" is synonymous with the term "similarity" and "percent similarity" as defined above. Thus, the phrases "substantial homology" or "substantial similarity" have similar meanings.

B.2. Nucleic Acid Sequences

In certain embodiments, the invention concerns the use of NE transporter genes and gene products that include within their respective sequences a sequence which is essentially that of a NE transporter gene, or the corresponding protein. The term "a sequence essentially as that of a NE transporter gene", means that the sequence substantially corresponds to a portion of a NE transporter polypeptide or NE transporter encoding polynucleotide and has relatively few bases or amino acids (whether DNA or protein) which are not identical to those of a NE transporter protein or NE transporter gene, (or a biologically functional equivalent of, when referring to proteins). The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein. Accordingly, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids of a NE transporter protein or NE transporter gene, will be sequences which are "essentially the same".

NE transporter gene products and NE transporter genes which have functionally equivalent codons are also covered by the invention. The term "functionally equivalent codon" is used herein to refer to codons that encode the same amino acid, such as the ACG and AGU codons for serine. Thus, when referring to the sequence examples presented in SEQ ID NO’s:1-4 and 11-14, applicants provide substitution of functionally equivalent codons of Table 1 into the sequence examples of SEQ ID NO’s:1-4 and 11-14. Thus, applicants are in possession of amino acid and nucleic acids sequences which include such substitutions but which are not set forth herein in their entirety for convenience.

Table 1:

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Codons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala A</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys C</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>Asp D</td>
</tr>
<tr>
<td>Glumatic acid</td>
<td>Glu E</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe F</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly G</td>
</tr>
</tbody>
</table>
It will also be understood that amino acid and nucleic acid sequences can include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be essentially as set forth in one or more of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences which can, for example, include various non-coding sequences flanking either the 5' or 3' portions of the coding region or can include various internal sequences, i.e., introns, which are known to occur within genes.

The present invention also encompasses the use of DNA segments which are complementary, or essentially complementary, to the sequences set forth in the specification. Nucleic acid sequences which are "complementary" are those which are base-pairing according to the standard Watson-Crick complementarity rules. As used herein, the term "complementary" segments means nucleic acid sequences which are substantially complementary, as can be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the nucleic acid segment in question under relatively stringent conditions such as those described herein. A particular example of a provided complementary nucleic acid segment is an antisense oligonucleotide.

Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. Stringent temperature conditions will generally include temperatures in excess of 30° C., typically in excess of 37° C., and preferably in excess of 45° C. Stringent salt conditions will ordinarily be less than 1,000 mM, typically less than 500 mM, and preferably less than 200 mM. However, the combination of parameters is much more important than the measure of any single parameter. (See e.g., Wetmur & Davidson, J. Mol. Biol. 31:349-370 (1968)).

Probe sequences can also hybridize specifically to duplex DNA under certain conditions to form triplets or other higher order DNA complexes. The preparation of such probes and suitable hybridization conditions are well known in the art.

As used herein, the term "DNA segment" refers to a DNA molecule which has been isolated free of total genomic DNA of a particular species. Furthermore, a DNA segment encoding a NE transporter polypeptide refers to a DNA segment which contains NE transporter coding sequences, yet is isolated away from, or purified free from, total genomic DNA of a source species, such as Homo sapiens. Included within the term "DNA segment" are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phages, viruses, and the like.

Similarly, a DNA segment comprising an isolated or purified NE transporter gene refers to a DNA segment including NE transporter coding sequences isolated substantially away from other naturally occurring genes or protein encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences and cDNA sequences. "Isolated substantially away from other coding sequences" means that the gene of interest, in this case, the NE transporter gene, forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a NE transporter polypeptide that includes within its amino acid sequence an amino acid sequence of any of SEQ ID NO:s 2, 4, 12 and 14. In other particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence the amino acid sequence of a NE transporter polypeptide corresponding to human tissues.

It will also be understood that this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NO:s 1-4 and 11-14. Recombinant vectors and isolated DNA segments can therefore variously include the NE transporter polypeptide-encoding region itself, include coding regions bearing selected alterations or modifications in the basic coding region, or include encoded larger polypeptides which nevertheless include NE transporter polypeptide-encoding regions or can encode biologically functional equivalent proteins or peptides which have variant amino acid sequences.

In certain embodiments, the invention concerns isolated DNA segments and recombinant vectors which encode a protein or peptide that includes within its amino acid sequence an amino acid sequence essentially as set forth in any of SEQ ID NO:s 2, 4, 12 and 14. Naturally, where the DNA segment or vector encodes a full length NE transporter gene product, the most preferred nucleic acid sequence is that which is essentially as set forth in any of SEQ ID NO:s 1, 3, 11 and 13 and which encode a protein that exhibits NE
nucleic acid fragments can be prepared which include an activity, cross-reacting with an anti-NE transporter antibody, regardless of the length of the coding sequence itself, can be appropriate conditions to direct high level expression of the NOS: 2, 4, 12, and 14, will be sequences which "a sequence in order to examine NE transport activity, or other activity NO: 1, 3, 11, and 13" is used in the same sense as described other embodiments, certain advantages will be gained biologically equivalent amino acids (see Table 1). incorporated herein by reference. The promoters employed port activity, cross-reactivity with an anti-NE transporter otic, or mammalian cells, it will be important to within its amino acid sequence the amino acid sequence of can be in the form of the promoter which is naturally introduced DNA segment in the cell type chosen for expression. The DNA segments Of the present invention encompass constitutive, or inducible, and can be used under the control of a promoter that is not normally associated with a NE transporter gene, e.g., in mammalian cells, as can be obtained by isolating the DNA segments Of the present invention encompass isolated DNA segments and recombinant vectors that encode a protein that includes within its amino acid sequence an amino acid sequence of any of SEQ ID NOs: 2, 4, 12, and 14, will be sequences which "a sequence essentially as set forth in any of SEQ ID NOs: 2, 4, 12, and 14".

In particular embodiments, the invention concerns therapies that use isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence an amino acid sequence of any of SEQ ID NOs: 2, 4, 12, and 14, SEQ ID NOs: 2, 4, 12 and 14 including sequences which are derived from human tissue. In other particular embodiments, the invention concerns isolated DNA sequences and recombinant DNA vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence the amino acid sequence of the NE transporter protein from human hepatic tissue.

In certain other embodiments, the invention concerns isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in any of SEQ ID NOs: 1, 3, 11, and 13. The term “a sequence essentially as set forth in any of SEQ ID NOs: 1, 3, 11, and 13” is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of any of SEQ ID NOs: 1, 3, 11, and 13, respectively, and has relatively few codons which are not identical, or functionally equivalent, to the codons of any of SEQ ID NOs: 1, 3, 11, and 13, respectively, and has relatively few codons which are not identical, or functionally equivalent, to the codons of any of SEQ ID NOs: 1, 3, 11, and 13, respectively. Again, DNA segments which encode gene products exhibiting NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity of the NE transporter gene product will be most preferred. The term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine or serine, and also to refer to codons that encode biologically equivalent amino acids (see Table 1).

The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, can be combined with other DNA sequences, such as promoters, enhancers, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length can vary considerably. It is therefore provided that a nucleic acid fragment of almost any length can be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, nucleic acid fragments can be prepared which include a short stretch complementary to a nucleic acid sequence set for in any of SEQ ID NOs: 1, 3, 11, and 13 respectively, such as about 10 nucleotides, and which are up to 10,000 or 5,000 base pairs in length, with segments of 3,000 being preferred in certain cases. DNA segments with total lengths of about 1,000, 500, 200, 100 and about 50 base pairs in length are also useful.

The DNA segments of the present invention encompass biologically functional equivalent NE transporter proteins and peptides. Such sequences can rise as a consequence of codon redundancy and functional equivalency which are known to occur naturally within nucleic acid sequences and the proteins thus encoded. Alternatively, functionally equivalent proteins or peptides can be created via the application of recombinant DNA technology, in which changes in the protein structure can be engineered, based on considerations of the properties of the amino acids being exchanged, e.g., substitution of Ile and Leu at amino acid 2 in SEQ ID NOs: 11–14. Changes designed by man can be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the protein or to test NE transporter mutants in order to examine NE transport activity, or other activity at the molecular level.

If desired, one can also prepare fusion proteins and peptides, e.g., where the NE transporter coding region is aligned within the same expression unit with other proteins or peptides having desired functions, such as for purification or immunodetection purposes (e.g., proteins which can be purified by affinity detection and enzyme label coding regions, respectively).

Recombinant vectors form important further aspects of the present invention. Particularly useful vectors are those vectors in which the coding portion of the DNA segment is positioned under the control of a promoter. The promoter can be in the form of the promoter which is naturally associated with the NE transporter gene, e.g., in mammalian tissues, as can be obtained by isolating the 5’ non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR technology, in connection with the compositions disclosed herein.

In other embodiments, certain advantages will be gained by positioning the coding DNA segment under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with a NE transporter gene in its natural environment. Such promoters can include promoters isolated from bacterial, viral, eukaryotic, or mammalian cells. Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type chosen for expression. The use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al., 1989, incorporated herein by reference. The promoters employed can be constitutive, or inducible, and can be used under the appropriate conditions to direct high-level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides. Appropriate promoter systems provided for use in high-level expression include, but are not limited to, the vaccinia virus promoter and the baculovirus promoter.

In an alternative embodiment, the present invention provides an expression vector comprising a polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reacting with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. Also preferably, an expression vector of the present invention comprises a polynucleotide that encodes a human NE transporter gene product. More preferably, an
expression vector of the present invention comprises a polynucleotide that encodes a polypeptide comprising an amino acid residue sequence of any of SEQ ID NOs:2, 4, 12 and 14. More preferably, an expression vector of the present invention comprises a polynucleotide comprising the nucleotide base sequence of any of SEQ ID NO:1, 3, 11 and 13.

Even more preferably, an expression vector of the invention comprises a polynucleotide operatively linked to an enhancer-promoter. More preferably still, an expression vector of the invention comprises a polynucleotide operatively linked to a prokaryotic promoter. Alternatively, an expression vector of the present invention comprises a polynucleotide operatively linked to an enhancer-promoter that is a eukaryotic promoter, and the expression vector further comprises a polyadenylation signal that is positioned 3' of the carboxy-terminal amino acid and within a transcriptional unit of the encoded polypeptide.

In yet another embodiment, the present invention provides a recombinant host cell transfected with a polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. SEQ ID NO's: 1-4 and 11-14 set forth nucleotide and amino acid sequences from an exemplary vertebrate, human. Also provided by the present invention are homologous or biologically equivalent polynucleotides and NE transporter polypeptides found in other vertebrates, including bovine, mouse and rat.

Preferably, a recombinant host cell of the present invention is transfected with the polynucleotide that encodes human NE transporter polypeptide. More preferably, a recombinant host cell of the present invention is transfected with the polynucleotide sequence of any of SEQ ID NOs:1, 3, 11 and 13. Even more preferably, a host cell of the invention is a eukaryotic host cell. Still more preferably, a recombinant host cell of the present invention is a vertebrate cell. Preferably, a recombinant host cell of the invention is a mammalian cell.

In another aspect, a recombinant host cell of the present invention is a prokaryotic host cell. Preferably, a recombinant host cell of the invention is a bacterial cell, preferably a strain of *Escherichia coli*. More preferably, a recombinant host cell comprises a polynucleotide under the transcriptional control of regulatory signals functional in the recombinant host cell, wherein the regulatory signals appropriately control expression of the NE transporter polypeptide in a manner to enable all necessary transcriptional and post-transcriptional modification.

In yet another embodiment, the present invention provides a method of preparing a NE transporter polypeptide comprising transfecting a cell with polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reacting with an anti-NE transporter antibody, or other biological activity in accordance with the present invention, to produce a transformed host cell; and maintaining the transformed host cell under biological conditions sufficient for expression of the polypeptide. More preferably, the transformed host cell is a eukaryotic cell. More preferably still, the eukaryotic cell is a vertebrate cell. Alternatively, the host cell is a prokaryotic cell. More preferably, the prokaryotic cell is a bacterial cell of *Escherichia coli*. Even more preferably, a polynucleotide transfected into the transformed cell comprises a nucleotide base sequence of any of SEQ ID NOs:1, 3, 11 and 13. SEQ ID NO's:1-4 and 11-14 set forth nucleotide and amino acid sequences for an exemplary vertebrate, human. Also provided by the present invention are homologues or biologically equivalent NE transporter polynucleotides and polypeptides found in other vertebrates, particularly warm blooded vertebrates, and more particularly bovine, mouse and rat.

As mentioned above, in connection with expression embodiments to prepare recombinant NE transporter proteins and peptides, it is provided that longer DNA segments will most often be used, with DNA segments encoding the entire NE transporter protein, functional domains or cleavage products thereof, being most preferred. However, it will be appreciated that the use of shorter DNA segments to direct the expression of NE transporter peptides or epitopic core regions, such as can be used to generate anti-NE transporter antibodies, also falls within the scope of the invention.

DNA segments which encode peptide antigens from about 15 to about 50 amino acids in length, or more preferably, from about 15 to about 30 amino acids in length are particularly useful. DNA segments encoding peptides will generally have a minimum coding length in the order of about 45 to about 150, or to about 90 nucleotides. DNA segments encoding full length proteins can have a minimum coding length on the order of about 4,500 to about 4,600 nucleotides for a protein in accordance with any of SEQ ID NOs: 2, 4, 12 and 14.

Naturally, the present invention also encompasses DNA segments which are complementary, or essentially complementary, to the sequences set forth in any of SEQ ID NO's: 1, 3, 11 and 13. The terms "complementary" and "essentially complementary" are defined above. Excepting intrinsic or flanking regions, details of which are disclosed graphically in FIG. 2, and allowing for the degeneracy of the genetic code, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of nucleotides which are identical or functionally equivalent to the sequences set forth in any of SEQ ID NO: 2, 4, 12 and 14.

In yet another embodiment, the present invention encompasses DNA segments which are complementary, or essentially complementary, to the sequences set forth in any of SEQ ID NO: 1, 3, 11 and 13. Sequences which are "a sequence essentially as set forth in any of SEQ ID NO's: 1, 3, 11 and 13". Sequences which are essentially the same as those set forth in any of SEQ ID NOs:1, 3, 11 and 13. Sequences which are essentially the same as those set forth in any of SEQ ID NOs:1, 3, 11 and 13 and 13'. Sequences which are essentially the same as those set forth in any of SEQ ID NOs:1, 3, 11 and 13 and 13'. Sequences which are essentially the same as those set forth in any of SEQ ID NOs:1, 3, 11 and 13 can also be functionally defined as sequences which are capable of hybridizing to a nucleic acid segment containing the complement in any of SEQ ID NOs:1, 3, 11 and 13 under relatively stringent conditions. Suitable relatively stringent hybridization conditions are described herein and will be well known to those of skill in the art.

B.3. Biologically Functional Equivalents

As mentioned above, modification and changes can be made in the structure of the NE transporter proteins and peptides described herein and still obtain a molecule having like or otherwise desirable characteristics. For example, certain amino acids can be substituted for other amino acids in a protein structure without appreciable loss of interactive capacity with structures such as, for example, in the nucleus of a cell. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence (or, of course, its underlying DNA coding sequence) and nevertheless obtain a protein with like or even countervailing properties (e.g., antagonistic v. agonistic). Thus, various changes can be made in the sequence of the NE transporter proteins and peptides (or underlying DNA) without appreciable loss of their biological utility or activity.

It is also well understood by the skilled artisan that, inherent in the definition of a biologically functional equiva-
lent protein or peptide, is the concept that there is a limit to the number of changes that can be made within a defined portion of the molecule and still result in a molecule with an acceptable level of equivalent biological activity. Biologically functional equivalent peptides are thus defined herein as those peptides in which certain, not most or all, of the amino acids can be substituted. Of course, a plurality of distinct proteins/peptides with different substitutions can easily be made and used in accordance with the invention.

It is also well understood that where certain residues are shown to be particularly important to the biological or structural properties of a protein or peptide, e.g., residues in active sites, such residues can not generally be exchanged. This is the case in the present invention, where if any changes, for example, in the phosphorylation domains of a NE transporter polypeptide, could result in a loss of an aspect of the utility of the resulting peptide for the present invention.

Amino acid substitutions, such as those which might be employed in modifying the NE transporter proteins and peptides described herein, are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. An analysis of the size, shape and type of the amino acid side-chain substituents reveals that arginine, lysine and histidine are all positively charged residues; that alanine, glycine and serine are all a similar size; and that phenylalanine, tryptophan and tyrosine all have a generally similar shape. Therefore, based upon these considerations, arginine, lysine and histidine; alanine, glycine and serine; and phenylalanine, tryptophan and tyrosine; are defined herein as biologically functional equivalents.

In making such changes, the hydrophobic index of amino acids can be considered. Each amino acid has been assigned a hydrophobic index on the basis of their hydrophobicity and charge characteristics, these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

The importance of the hydrophobic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte & Doolittle, J. Mol. Biol. 157:105–132 (1982), incorporated herein by reference). It is known that certain amino acids can be substituted for other amino acids having a similar hydrophobic index or score and still retain a similar biological activity. In making changes based upon the hydrophobic index, the substitution of amino acids whose hydrophobic indices are within ±2 of the original value is preferred, those which are within ±1 of the original value are particularly preferred, and those within ±0.5 of the original value are even more particularly preferred.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e. with a biological property of the protein. It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent protein.

As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (+0.4); proline (-0.5±1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).

In making changes based upon similar hydrophilicity values, the substitution of amino acids whose hydrophilicity values are within ±2 of the original value is preferred, those which are within ±1 of the original value are particularly preferred, and those within ±0.5 of the original value are even more particularly preferred.

While discussion has focused on functionally equivalent polypeptides arising from amino acid changes, it will be appreciated that these changes can be effected by alteration of the encoding DNA, taking into consideration also that the genetic code is degenerate and that two or more codons can code for the same amino acid.

B.4. Sequence Modification Techniques

Modifications to the NE transporter proteins and peptides described herein can be carried out using techniques such as site directed mutagenesis. Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent proteins or peptides, through specific mutagenesis of the underlying DNA. The technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 30 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

In general, the technique of site-specific mutagenesis is well known in the art as exemplified by publications (e.g., Adelman et al., 1983). As will be appreciated, the technique typically employs a phage vector which exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage (Messing et al., 1981). These phage are readily commercially available and their use is generally well known to those skilled in the art. Double stranded plasmids are also routinely employed in site directed mutagenesis which eliminates the step of transferring the gene of interest from a plasmid to a phage.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart the two strands of a double stranded vector which includes within its sequence a DNA sequence which encodes, for example, a human NE transporter polypeptide. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically, for example by the method of Creaj et al. (1978). This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appro-
priate cells, such as *E. coli* cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

The preparation of sequence variants of the selected gene using site-directed mutagenesis is provided as a means of producing potentially useful NE transporter polypeptide or other species having NE transport activity and is not meant to be limiting as there are other ways in which sequence variants of these peptides can be obtained. For example, recombinant vectors encoding the desired genes can be treated with mutagenic agents to obtain sequence variants (see, e.g., a method described by Eichenlaub, 1979) for the mutagenesis of plasmid DNA using hydroxylamine.

B.5. Other Structural Equivalents

In addition to the NE transporter peptidyl compounds described herein, the inventors also provide that other sterically similar compounds can be formulated to mimic the key portions of the peptide structure. Such compounds can be used in the same manner as the peptides of the invention and hence are also functional equivalents. The generation of a structural functional equivalent can be achieved by the techniques of modeling and chemical design known to those of skill in the art. It will be understood that all such sterically similar constructs fall within the scope of the present invention.

C. Introduction of Gene Products

Where the gene itself is employed to introduce the gene products, a convenient method of introduction will be through the use of a recombinant vector which incorporates the desired gene, together with its associated control sequences. The preparation of recombinant vectors is well known to those of skill in the art and described in many references, such as, for example, Sambrook et al. (1989), specifically incorporated herein by reference.

In vectors, it is understood that the DNA coding sequences to be expressed, in this case those encoding the NE transporter gene products, are positioned adjacent to and under the control of a promoter. It is understood in the art that to bring a coding sequence under the control of such a promoter, one generally positions the 5' end of the transcription initiation site of the transcriptional reading frame of the gene product to be expressed between about 1 and about 50 nucleotides “downstream” of (i.e., 3' of) the chosen promoter. One can also desire to incorporate into the transcriptional unit of the vector an appropriate polyadenylation site (e.g., 5'-AAUAAA-3'), if one was not contained within the original inserted DNA. Typically, these polyA addition sites are placed about 30 to 2000 nucleotides “downstream” of the coding sequence at a position prior to transcription termination.

While use of the control sequences of the specific gene (i.e., a NE transporter promoter for a NE transporter gene) will be preferred, there is no reason why other control sequences could not be employed, so long as they are compatible with the genotype of the cell being treated. Thus, one can mention other useful promoters by way of example, including, e.g., an SV40 early promoter, a long terminal repeat promoter from retrovirus, an actin promoter, a heat shock promoter, a metallothionein promoter, and the like. As is known in the art, a promoter is a region of a DNA molecule typically within about 100 nucleotide pairs in front of (upstream of) the point at which transcription begins (i.e., a transcription start site). That region typically contains several types of DNA sequence elements that are located in similar relative positions in different genes. As used herein, the term “promoter” includes what is referred to in the art as an upstream promoter region, a promoter region or a promoter of a generalized eukaryotic RNA Polymerase II transcription unit.

Another type of discrete transcription regulatory sequence element is an enhancer. An enhancer provides specificity of time, location and expression level for a particular encoding region (e.g., gene). A major function of an enhancer is to increase the level of transcription of a coding sequence in a cell that contains one or more transcription factors that bind to that enhancer. Unlike a promoter, an enhancer can function when located at variable distances from transcription start sites so long as a promoter is present.

As used herein, the phrase “enhancer-promoter” means a composite unit that contains both enhancer and promoter elements. An enhancer-promoter is operatively linked to a coding sequence that encodes at least one gene product. As used herein, the phrase “operatively linked” means that an enhancer-promoter is connected to a coding sequence in such a way that the transcription of that coding sequence is controlled and regulated by that enhancer-promoter. Techniques for operatively linking an enhancer-promoter to a coding sequence are well known in the art. As is also well known in the art, the precise orientation and location relative to a coding sequence whose transcription is controlled, is dependent inter alia upon the specific nature of the enhancer-promoter. Thus, a TATA box minimal promoter is typically located from about 25 to about 30 base pairs upstream of a transcription initiation site and an upstream promoter element is typically located from about 100 to about 200 base pairs upstream of a transcription initiation site. In contrast, an enhancer can be located downstream from the initiation site and can be at a considerable distance from that site.

An enhancer-promoter used in a vector construct of the present invention can be any enhancer-promoter that drives expression in a cell to be transfected. By employing an enhancer-promoter with well-known properties, the level and pattern of gene product expression can be optimized. For introduction of, for example, the human NE transporter gene including allelic variations thereof, it is proposed that one will desire to preferably employ a vector construct that will deliver the desired gene to the affected cells. This will, of course, generally require that the construct be delivered to the targeted cells, for example, mammalian cardiac cells. It is proposed that this can be achieved most preferably by introduction of the desired gene through the use of a viral vector to carry the NE transporter sequence to efficiently infect the cells. These vectors will preferably be an adenoviral, a retroviral, a vaccinia viral vector or adenoviral virus associated virus. These vectors are preferred because they have been successfully used to deliver desired sequences to cells and tend to have a high infection efficiency. Suitable vector-NE transporter gene constructs are adapted for administration as pharmaceutical compositions, as described herein below.

Commonly used viral promoters for expression vectors are derived from polyoma, cytomegalovirus, Adenovirus 2, and Simian Virus 40 (SV40). The early and late promoters of SV40 virus are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication. Smaller or larger SV40 fragments can also be used, provided there is included the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the viral origin of replication. Further, it is also possible, and often desirable, to utilize promoter or control sequences normally associated with the desired gene sequence, provided such control sequences are compatible with the host cell systems.
The origin of replication can be provided by either construction of the vector to include an exogenous origin, such as can be derived from SV40 or other viral (e.g., Polyoma, Adeno, VSV, BPV) source, or can be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.

Where a NE transporter gene itself is employed it will be most convenient to simply use a wild type NE transporter gene directly. Preferably, the NE transporter gene comprises the alanine encoding allele such that amino acid 457 of the encoded polypeptide comprises alanine. Additionally, it is provided that certain regions of a NE transporter gene can be employed exclusively without employing an entire wild type NE transporter gene or an entire allelic variant thereof. It is proposed that it will ultimately be preferable to employ the smallest region needed to modulate NE transport so that one is not introducing unnecessary DNA into cells which receive a NE transporter gene construct. Techniques well known to those of skill in the art, such as the use of restriction enzymes, will allow for the generation of small regions of an enzymatically-modifiable NE transporter gene. The ability of these regions to modulate NE transport can easily be determined by the assays reported in the Examples. In general, techniques for assessing the modulation of NE transport are known in the art.

C.1. Transgenic Animals

It is also within the scope of the present invention to prepare a transgenic non-human animal which expresses a NE transporter gene of the present invention or in which expression of a NE transporter gene is “knocked-out”. The present invention provides transgenic non-human animals that express either the A457 form of NE transporter or the P457 form of NE transporter. A preferred transgenic animal is a mouse.

Techniques for the preparation of transgenic animals are known in the art. Exemplary techniques are described in U.S. Pat. No. 5,489,742 (transgenic rats); U.S. Pat. Nos. 4,736,866, 5,550,316, 5,614,396, 5,625,125 and 5,648,061 (transgenic mice); U.S. Pat. No. 5,573,933 (transgenic pigs); U.S. Pat. No. 5,162,215 (transgenic avian species) and U.S. Pat. No. 5,741,957 (transgenic bovine species), the entire contents of each of which are herein incorporated by reference.

With respect to an exemplary method for the preparation of a transgenic mouse, cloned recombinant or synthetic DNA sequences or DNA segments encoding a NE transporter gene product are injected into fertilized mouse eggs. The injected eggs are implanted in pseudopregnant females and are grown to term to provide transgenic mice whose cells express a NE transporter gene product. Preferably, the injected sequences are constructed having promoter sequences connected so as to express the desired protein in cardiac cells of the transgenic mouse.

C.2. Gene Therapy

NE transporter genes can be used for gene therapy in accordance with the present invention. Exemplary gene therapy methods, including liposomal transfection of nucleic acids into host cells, are described in U.S. Pat. Nos. 5,279,833; 5,286,634; 5,399,346; 5,646,008; 5,651,964; 5,641,484; and 5,643,567, the contents of each of which are herein incorporated by reference.

Preferably, NE transporter gene therapy directed toward modulation of NE transport in a target cell is described. Target cells include but are not limited cardiac cells. In one embodiment, a therapeutic method of the present invention provides a method for modulating of NE transport in a cell comprising the steps of: (a) delivering to the cell an effective amount of a DNA molecule comprising a polynucleotide that encodes a NE transporter polypeptide that modulates NE transport; and (b) maintaining the cell under conditions sufficient for expression of said polypeptide.

Delivery is preferably accomplished by injecting the DNA molecule into the cell. Where the cell is in a subject delivering is preferably administering the DNA molecule into the circulatory system of the subject. In a preferred embodiment, administering comprises the steps of: (a) providing a vehicle that contains the DNA molecule; and (b) administering the vehicle to the subject.

A vehicle is preferably a cell transformed or transfected with the DNA molecule or a transfected cell derived from such a transformed or transfected cell. An exemplary and preferred transformed or transfected cell is a hepatic cell. Means for transforming or transfecting a cell with a DNA molecule of the present invention are set forth above.

Alternatively, the vehicle is a virus or an antibody that specifically infects or immunoreacts with an antigen of the tumor. Retroviruses used to deliver the constructs to the host target tissues generally are viruses in which the 3'-LTR (linear transfer region) has been inactivated. That is, these are enhancerless 3'-LTR’s, often referred to as SIN (self-inactivating viruses) because after productive infection into the host cell, the 3'-LTR is transferred to the 5'-end and both viral LTR’s are inactive with respect to transcriptional activity. A use of these viruses well known to those skilled in the art is to clone genes for which the regulatory elements of the cloned gene are inserted in the space between the two LTR’s. An advantage of a viral infection system is that it allows for a very high level of infection into the appropriate recipient cell.

Antibodies have been used to target and deliver DNA molecules. An N-terminal modified poly-L-lysine (NPLL)-antibody conjugate readily forms a complex with plasmid DNA. A complex of monoclonal antibodies against a cell surface thrombomodulin conjugated with NPLL was used to target a foreign plasmid DNA to an antigen-expressing mouse lung endothelial cell line and mouse lung. Those targeted endothelial cells expressed the product encoded by that foreign DNA.

It is also envisioned that this embodiment of the present invention can be practiced using alternative viral or phage vectors, including retroviral vectors and vaccinia viruses whose genome has been manipulated in alternative ways so as to render the virus non-pathogenic. Methods for creating such a viral mutation are set forth in detail in U.S. Pat. No. 4,769,331, incorporated herein by reference.

By way of specific example, a human NE transporter-encoding polynucleotide or a NE transporter-encoding polynucleotide homolog from another warm-blooded vertebrate is introduced into isolated cardiac cells or other relevant cells. The re-injection of the transgene-carrying cells into the heart or other relevant tissues provides a treatment for susceptibility to impaired NET function, orthostatic intolerance, or other relevant diseases in human and animals.

D. Pharmaceutical Compositions

In a preferred embodiment, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide of the present invention and a physiologically acceptable carrier. More preferably, a pharmaceutical composition comprises a polynucleotide that encodes a biologically active NE transporter polypeptide.

A composition of the present invention is typically administered orally or parenterally in dosage unit formulations.
Among the acceptable vehicles and solvents that can be employed are water, Ringer’s solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono-or di-glycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

Preferred carriers include neutral saline solutions buffered with phosphate, lactate, Tris, and the like. Of course, in the case of a pharmaceutically composition provided in use in gene therapy, one purifies the vector sufficiently to render it essentially free of undesirables contaminants, such as defective interfering adenovirus particles or endotoxins and other pyrogens such that it does not cause any untoward reactions in the individual receiving the vector construct. A preferred means of purifying the vector involves the use of buoyant density gradients, such as cesium chloride gradient centrifugation.

A transfected cell can also serve as a carrier. By way of example, a liver cell can be removed from an organism, transfected with a polynucleotide of the present invention using methods set forth above and then the transfected cell returned to the organism (e.g. injected intra-vascularly).

D.1. Dosages

As used herein, an “effective” dose refers to one that is administered in doses tailored to each individual patient manifesting symptoms of NE transport deficiency sufficient to cause an improvement therein. After review of the disclosure herein of the present invention, one of ordinary skill in the art can tailor the dosages to an individual patient, taking into account the particular formulation and method of administration to be used with the composition as well as patient height, weight, severity of symptoms, and stage of the disorder to be treated.

An effective dose and a therapeutically effective dose are generally synonymous. However, compounds can be administered to patients having reduced symptoms or even administered to patients as a preventative measure. Hence, the composition can be effective in therapeutic treatment even in the absence of symptoms of the disorder.

A unit dose can be administered, for example, 1 to 4 times per day. Most preferably, the unit dose is administered twice a day (BID). The dose depends on the route of administration and the formulation of a composition containing the compound or compounds. Further, it will be appreciated by one of ordinary skill in the art after receiving the disclosure of the present invention that it can be necessary to make routine adjustments or variations to the dosage depending on the combination of agents employed, on the age and weight of the patient, and on the severity of the condition to be treated.

Such adjustments or variations, as well as evaluation of when and how to make such adjustments or variations, are well known to those of ordinary skill in the art of medicine. Evaluation parameters and techniques can vary with the patient and the severity of the disease. Particularly useful evaulative techniques for NE transport include NE clearance, tyramine administration and other standard tests such as are disclosed in the Examples.

D.2. Gene Therapy Vector Construct Dosing

Maximally tolerated dose (MTD) of vector construct when administered directly into the affected tissue is determined. Primary endpoints are: 1) the rate of transduction in abnormal and/or normal cells, 2) the presence and stability of this vector in the systemic circulation and in affected cells, and 3) the nature of the systemic (fever, myalgias) and local (infections, pain) toxicities induced by the vector. A secondary endpoint is the clinical efficacy of the vector construct.

For example, a 4 ml serum-free volume of viral (e.g. adenoviral, retroviral, etc.) vector construct (containing up to 5x10⁷ viral particles in AIM V media) is administered daily per session. During each session, 1 ml of medium containing the appropriate titer of vector construct is injected into 4 regions of the affected tissue for a total of 4 ml per session in a clinical examination room. This is repeated daily for 4 days (4 sessions). This 16 ml total inoculum volume over 4 days is proportionally well below the one safely tolerated by nude mice (0.5 ml/20 g body weight).

Patient evaluation includes history and physical examination prior to initiation of therapy and daily during the 4 day period of vector construct injection. Toxicity grading is done using the ECOG Common Toxicity Criteria. CBC, SMA-20, urinalysis, and conventional studies are performed daily during this period.

D.3. Dose Escalation and MTD

Patients are treated with 3x10⁶ viral particlesx4. Once they have all recovered from all grade 2 or less toxicities (except alopecia), and as long as grade 3-4 toxicity is not encountered, a subsequent dose level is initiated in patients. As one grade 3 or 4 toxicity occurs at a given dose level, a minimum of 6 patients are enrolled at that level. As only 1 of 6 patients has grade 3 or 4 toxicity, dose escalation continues. The MTD of vector construct is defined as the dose where 2 of 6 patients experience grade 3 or 4 toxicity. If 2 of 3, or if 3 of 6 patients experience grade 3 or 4 toxicity, the MTD is defined as the immediately lower dose level.

The following escalation schema is followed: 1) level 1, 3x10⁶ viral particles; 2) level 2, 1x10⁷; 3) level 3, 3x10⁷; 4) level 4, 5x10⁷. Patients with measurable disease are evaluated for a clinical response to vector construct. Histology and local symptoms are followed. NE clearance, tyramine administration and other standard tests such as are disclosed in the Examples are employed.

E. Generation of Antibodies

In still another embodiment, the present invention provides an antibody immunoreactive with a polypeptide or polynucleotide of the present invention. Preferably, an antibody of the invention is a monoclonal antibody. Techniques for preparing and characterizing antibodies are well known in the art (See e.g. Antibodies: A Laboratory Manual, E. Howell and D. Lane, Cold Spring Harbor Laboratory, 1988). More preferred antibodies distinguish between the different forms of NE transporter polypeptides (e.g. SEQ ID Nos:2 and 4) that comprise the NE transporter polymorphism.

Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogen comprising a polypeptide or polynucleotide of the present invention, and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically an animal used for production of anti-antisera is a rabbit, a...
mouse, a rat, a hamster or a guinea pig. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

As is well known in the art, a given polypeptide or polynucleotide can vary in its immunogenicity. It is often necessary therefore to couple the immunogen (e.g., a polypeptide or polynucleotide of the present invention) with a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albums such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers.

Techniques and reagents for conjugating a polypeptide or a polynucleotide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobencenocyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.

As is also well known in the art, immunogenicity to a particular immunogen can be enhanced by the use of non-specific stimulators of the immune response known as adjuvants. Exemplary and preferred adjuvants include complete Freund’s adjuvant, incomplete Freund’s adjuvants and aluminum hydroxide adjuvant.

The amount of immunogen used of the production of polyclonal antibodies varies, inter alia, upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen, e.g. subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal. The production of polyclonal antibodies is monitored by sampling blood of the immunized animal at various points following immunization. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored.

In another aspect, the present invention provides a method of producing an antibody immunoreactive with a NE transporter polypeptide, the method comprising the steps of (a) transfecting recombinant host cells with a polynucleotide that encodes that polypeptide; (b) culturing the host cells under conditions sufficient for expression of the polypeptide; (c) recovering the polypeptide; and (d) preparing antibodies to the polypeptide. Preferably, the NE transporter polypeptide is capable of mediating NE transport, cross-reacting to the polypeptide. Preferably, the NE transporter polypeptide, the method comprising the steps of (a) biosynthesis. Because myeloma cells are tumor cells, they are killed in the salvage pathway because they are killed in the presence of aminopterin, methotrexate, or azaserine.

Myeloma cells lack the salvage pathway of nucleotide biosynthesis. Because myeloma cells are tumor cells, they can be propagated indefinitely in tissue culture, and are thus denominated immortal. Numerous cultured cell lines of myeloma cells from mice and rats, such as murine NS-1 myeloma cells, have been established.

Myeloma cells are combined under conditions appropriate to foster fusion with the normal antibody-producing cells from the spleen of the mouse or rat injected with the antigen/polypeptide of the present invention. Fusion conditions include, for example, the presence of polyethylene glycol. The resulting fused cells are hybridoma cells. Like myeloma cells, hybridoma cells grow indefinitely in culture.

Hybridoma cells are separated from unfused myeloma cells by culturing in a selection medium such as HAT media (hypoxanthine, aminopterin, thymidine). Unfused myeloma cells lack the enzymes necessary to synthesize nucleotides from the salvage pathway because they are killed in the presence of aminopterin, methotrexate, or azaserine. Unfused lymphocytes also do not continue to grow in tissue culture. Thus, only cells that have successfully fused (hybridoma cells) can grow in the selection media.

Each of the surviving hybridoma cells produces a single antibody. These cells are then screened for the production of the specific antibody immunoreactive with an antigen/polypeptide of the present invention. Single cell hybridomas are isolated by limiting dilutions of the hybridomas. The hybridomas are serially diluted many times and, after the dilutions are allowed to grow, the supernatant is tested for the presence of the monoclonal antibody. The clones producing that antibody are then cultured in large amounts to produce an antibody of the present invention in convenient quantity.
By use of a monoclonal antibody of the present invention, specific polypeptides and polynucleotide of the invention can be recognized as antigens, and thus identified. Once identified, those polypeptides and polynucleotide can be isolated and purified by techniques such as antibody-affinity chromatography. In antibody-affinity chromatography, a monoclonal antibody is bound to a solid substrate and exposed to a solution containing the desired antigen. The antigen is removed from the solution through an immunospecific reaction with the bond antibody. The polypeptide or polynucleotide is then easily removed from the substrate and purified.

F. Detection Methods

Alternatively, the present invention provides a method of detecting a polypeptide of the present invention, wherein the method comprises immunoreacting the polypeptides with antibodies prepared according to the methods described above to form antibody-polypeptide conjugates, and detecting the conjugates.

In yet another embodiment, the present invention provides a method of detecting messenger RNA transcripts that encode a polypeptide of the present invention, wherein the method comprises hybridizing the messenger RNA transcripts with polynucleotide sequences that encode the polypeptide to form duplexes; and detecting the duplex. Alternatively, the present invention provides a method of detecting DNA molecules that encode a polypeptide of the present invention, wherein the method comprises hybridizing DNA molecules with a polynucleotide that encodes that polypeptide to form duplexes; and detecting the duplexes.

The detection and screening assays disclosed herein can be also used as a part of a diagnostic method. Human NE transporter-encoding polynucleotides as well as their protein products can be readily used in clinical setting to diagnose susceptibility to orthostatic intolerance and to other heritable NE transporter-related diseases in humans.

F.1. Screening Assays for a Polypeptide of the Present Invention

The present invention provides a method of screening a biological sample for the presence of a NE transporter polypeptide. Preferably, the NE transporter polypeptide possesses NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. A biological sample to be screened can be a biological fluid such as extracellular or intracellular fluid or a cell or tissue extract or homogenate. A biological sample can also be an isolated cell (e.g., in culture) or a collection of cells such as in a tissue sample or histology sample. A tissue sample can be suspended in a liquid medium or fixed onto a solid support such as a microscope slide. Hepatic tissues comprise particularly contemplated tissues.

Preferably, antibodies which distinguish between the A457 NE transporter polypeptide and the P457 NE transporter polypeptide are provided. Such antibodies can comprise polyclonal antibodies but are preferably monoclonal antibodies prepared as described hereinabove.

In accordance with a screening assay method, a biological sample is exposed to an antibody immunoreactive with the polypeptide whose presence is being assayed. Typically, exposure is accomplished by forming an admixture in a liquid medium that contains both the antibody and the candidate polypeptide. Either the antibody or the sample with the polypeptide can be affixed to a solid support (e.g., a column or a microtiter plate).

The biological sample is exposed to the antibody under biological reaction conditions and for a period of time sufficient for antibody-polypeptide conjugate formation. Biological reaction conditions include ionic composition and concentration, temperature, pH and the like. Ionic composition and concentration can range from that of distilled water to a 2 molal solution of NaCl. Preferably, osmolality is from about 100 mosmols/l to about 400 mosmols/l and, more preferably from about 200 mosmols/l to about 300 mosmols/l. Temperature is preferably from 4°C to about 100°C, more preferably from about 15°C to about 50°C and, even more preferably from about 25°C to about 40°C. pH is preferably from about a value of 4.0 to a value of about 9.0, more preferably from about a value of 6.5 to a value of about 8.5 and, even more preferably from about a value of 7.0 to a value of about 7.5. The only limit on biological reaction conditions is that the conditions selected allow for antibody-polypeptide conjugate formation and that the conditions do not adversely affect either the antibody or the polypeptide.

Exposure time will vary inter alia with the biological conditions used, the concentration of antibody and polypeptide and the nature of the sample (e.g., fluid or tissue sample). Techniques for determining exposure time are well known to one of ordinary skill in the art. Typically, where the sample is fluid and the concentration of polypeptide in that sample is about 10^-10M, exposure time is from about 10 minutes to about 200 minutes.

The presence of polypeptide in the sample is detected by detecting the formation and presence of antibody-polypeptide conjugates. Techniques for detecting such antibody-antigen (e.g., receptor polypeptide) conjugates or complexes are well known in the art and include such procedures as centrifugation, affinity chromatography and the like, binding of a secondary antibody to the antibody-candidate receptor complex.

In one embodiment, detection is accomplished by detecting an indicator affixed to the antibody. Exemplary and well known such indicators include radioactive labels (e.g., 32P, 125I, 14C), a second antibody or an enzyme such as horse radish peroxidase. Techniques for affixing indicators to antibodies are well known in the art. Commercial kits are available.

F.2. Screening Assay for Anti-Polypeptide Antibody

In another aspect, the present invention provides a method of screening a biological sample for the presence of antibodies immunoreactive with a NE transporter polypeptide. Optionally, the NE transporter polypeptide has NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention.

In accordance with such a method, a biological sample is exposed to a NE transporter polypeptide under biological conditions and for a period of time sufficient for antibody-polypeptide conjugate formation and the formed conjugates are detected. Autoimmune antibodies associated with acquired impaired NET function are particularly contemplated for detection.

Thus, binding substances comprising a NE transporter polypeptide as described herein have selective binding activity with an antibody epitope (antigen recognition specificity). This binding specificity can be employed for detecting and/or purifying the antibody or fragment thereof. The term "fragment" thus refers any fragment of the antibody, such as Fab and F(ab')2 fragments.

A NE transporter polypeptide is prepared as described herein above. The polypeptide is then conjugated to, or
labeled with, a material that will enable visualization of the presence of the NE transporter polypeptide.

The NE transporter polypeptide can thus be used in a variety of applications to detect antibodies or antibody fragments. For example, fluoresceinated, alkaline phosphatase labeled, peroxidase labeled, or biotinylated NE transporter polypeptides are used in indirect cytochemical assays to detect antibody binding to cells and tissues in histological or flow cytometric assays. Such detection can be used in a variety of research or clinical contexts.

Similarly, immobilized NE transporter polypeptides can be used to precipitate immune complexes in radioimmune and other quantitative immune or antigen capture assays. Such immunoprecipitation assays where immune complexes of radiolabeled antigens are captured on immobilized NE transporter polypeptides of the present invention have wide application in the art.

By way of elaboration, the NE transporter polypeptides are used to detect the presence of antibodies and fragments thereof, in solutions, or on surfaces exposed to antibodies, or fragments thereof, by a variety of techniques. Techniques which are used include: enzyme-linked immunosorbent assay (ELISA), radioimmunassay (RIA), immunoblot analysis, immunofluorescent assay (IFA), immunohistology, immunoelectron microscopy (IEM), and immunoluminescence. Each technique utilizes conjugates including NE transporter polypeptides to visualize the binding of the conjugate to antibody molecules or fragments thereof.

Commonly used conjugates include, but are not limited to, enzymes such as biotin, horseradish peroxidase, alkaline phosphatase (O'Sullivan et al. (1978) FEBS Letters 95:311), acid phosphatase, beta-galactosidase (Ishikawa et al. (1978) Scand. J. Immunol. 8:43) and luciferase; radioisotopes such as 125I, 35S, 14C, and 3H; fluorescent dyes such as fluorescein, rhodamine, dichlorotriazinylaminofluorescein (DTAF; Blakeslee et al., J. Immunol. Meth. 13:320 (1977)), ferritin (Carlsson et al. (1978) Biochem. J. 173:723), fluorescein isothiocyanate (FITC; McKinney et al. (1966) Anal. Biochem. 14:421), sulfonfomadine 101 acid chloride (Texas Red) and tetramethylrhodamine isothiocyanate (TRITC; Amante et al., J. Immunol. Meth. 1:289 (1972)); colloidal gold particles (Horisberger et al., Histochecm. 82:219 (1985)); and the like. Effective procedures for such conjugations are generally conventional, as described by Harlow et al., 1988. Antibodies: a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

The protein conjugate is stored in appropriate buffers until needed. Colloidal gold conjugates can be maintained in Tris-based stabilizing buffer, such as those described in Robinson et al., (1984) Infect. Immun. 46:361-366. For other conjugates, the buffer would preferably be phosphate-buffered saline, pH 7.2 (PBS). However, physiological buffers such as Tris- or borate-buffered saline (TBS or BBS) in pH ranging from 6.5 to 8.0, or non-saline buffers such as acetate, bicarbonates, or citrates within this pH range can be utilized.

When needed to detect the presence of antibodies or fragments thereof in a preparation, the NE transporter polypeptide conjugate can be first diluted in an appropriate buffer. The extent of dilution varies according to the conjugate and sensitivity required, and is normally determined empirically for a given conjugate preparation and detection method. Dilutions typically range from 1:10 to 1:10,000. After dilution the conjugate is incubated with a sample suspected of containing antibodies or fragments thereof. The incubation should proceed for about 15-60 minutes at room temperature, or about 4-16 hours at about 4° C., during which time from one to ten (optimally) NE transporter polypeptide molecules will bind to any antibodies or fragments thereof present. Following incubation, the sample is washed twice for about 5-10 minutes each with dilution buffer or with buffer which is compatible with the visualization conditions (if different). The presence of bound NE transporter polypeptide can then be detected or visualized by chromogenic assay, radioactivity, luminescence, fluorescence, flow cytometry or electron density, as appropriate for the conjugate.

Thus, a method for detecting an antibody or fragment thereof, in a sample suspected of an antibody or fragment thereof, is provided in accordance with the present invention. The method comprises: (a) contacting the sample with a binding substance comprising a NE transporter polypeptide under conditions favorable to binding an antibody or fragment thereof, to the binding substance to form a complex therebetween; and (b) detecting the complex by means of a label conjugated to the binding substance or by means of a labeled reagent that specifically binds to the antibody or fragment thereof, and (ii) detecting the detectable label.

In the detection method of the present invention, the binding substance can be immobilized on a solid substrate. In such case, the detecting step (b) comprises: (i) contacting the complex with a reagent conjugated with a detectable label wherein the reagent specifically binds to the antibody or fragment thereof, and (ii) detecting the detectable label.

In the detection method of the present invention, the binding substance can be conjugated with a detectable label. In such case, the detecting step (b) comprises: (i) separating the complex from unbound labeled binding substance; and (ii) detecting the detectable label which is present in the complex or which is unbound.

The detection method of the present invention can further comprise: (i) contacting the complex with a reagent immobilized on a solid substrate to form immobilized complex thereon wherein the reagent binds the antibody or fragment, present in the complexes; and (ii) separating the immobilized complex from the remaining mixture.

F.3. Screening Assay for Polynucleotide That Encodes a NE Transporter Polypeptide of the Present Invention

A nucleic acid molecule and, particularly a probe molecule, can be used for hybridizing as an oligonucleotide probe to a nucleic acid source suspected of encoding a NE transporter polypeptide of the present invention. Optionally, the NE transporter polypeptide has NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. The probing is usually accomplished by hybridizing the oligonucleotide to a DNA source suspected of possessing a NE transporter gene. In some cases, the probes constitute only a single probe, and in others, the probes constitute a collection of probes based on a certain amino acid sequence or sequences of the polypeptide and account in their diversity for the redundancy inherent in the genetic code.

A suitable source of DNA for probing in this manner is capable of expressing a polypeptide of the present invention and can be a genomic library of a cell line of interest. Alternatively, a source of DNA can include total DNA from the cell line of interest. Once the hybridization method of the invention has identified a candidate DNA segment, one confirms that a positive clone has been obtained by further hybridization, restriction enzyme mapping, sequencing and/or expression and testing.
Alternatively, such DNA molecules can be used in a number of techniques including their use as: (1) diagnostic tools to detect normal and abnormal DNA sequences in DNA derived from patient's cells, such as a NE transporter polymorphism described herein; (2) tools for detecting and isolating other members of the polypeptide family and related polypeptides from a DNA library potentially containing such sequences; (3) primers for hybridizing to related sequences for the purpose of amplifying those sequences; (4) primers for altering native NE transporter DNA sequences; as well as other techniques which rely on the similarity of the DNA sequences to those of the DNA segments herein disclosed.

As set forth above, in certain aspects, DNA sequence information provided by the invention allows for the preparation of relatively short DNA (or RNA) sequences (e.g., probes) that specifically hybridize to encoding sequences of a selected NE transporter gene. In these aspects, nucleic acid probes of an appropriate length are prepared based on a consideration of the encoding sequence for a polypeptide of this invention. The ability of such nucleic acid probes to specifically hybridize to other encoding sequences lend them particular utility in a variety of embodiments. Most importantly, the probes can be used in a variety of assays for detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

To provide certain of the advantages in accordance with the invention, a preferred nucleic acid sequence employed for hybridization studies or assays includes probe sequences that are complementary to at least a 14 to 40 or so long nucleotide stretch of a nucleic acid sequence of the present invention, such as a sequence shown in any of SEQ ID NOs:1, 3, 11 and 13. A size of at least 14 nucleotides in length helps to ensure that the fragment is of sufficient length to form a duplex molecule that is both stable and selective. Molecules having complementary sequences over stretches greater than 14 bases in length are generally preferred, though, to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having gene-complementary stretches of 14 to 20 nucleotides, or even longer where desired. Such fragments can be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR technology of U.S. Pat. No. 4,683,202, herein incorporated by reference, or by introducing selected sequences into recombinant vectors for recombinant production.

Accordingly, a nucleotide sequence of the present invention can be used for its ability to selectively form duplex molecules with complementary stretches of the gene. Depending on the application envisioned, one employs varying conditions of hybridization to achieve varying degrees of selectivity of the probe toward the target sequence. For applications requiring a high degree of selectivity, one typically employs relatively stringent conditions to form the hybrids. For example, one selects relatively low salt and/or high temperature conditions, such as provided by 0.02M-0.15M salt at temperatures of about 20°C to about 50°C, including particularly temperatures of about 25°C, about 37°C, about 45°C, and about 50°C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

In certain embodiments, it is advantageous to employ a nucleic acid sequence of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one likely employs an enzyme tag such as a urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmentally undesirable reagents. In the case of enzyme tags, calorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.

In general, it is envisioned that the hybridization probes described herein are useful both as reagents in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the sample containing test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions depend inter alia on the particular circumstances based on the particular criteria required (depending, for example, on the G+C contents, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantified, via the label.

F.4. Assay Kits

In another aspect, the present invention provides diagnostic assay kits for detecting the presence of a polypeptide of the present invention in biological samples, where the kits comprise a first container containing a first antibody capable of immunoreacting with the polypeptide, with the first antibody present in an amount sufficient to perform at least one assay. Preferably, the assay kits of the invention further comprise a second container containing a second antibody that immunoreacts with the first antibody. More preferably, the antibodies used in the assay kits of the present invention are monoclonal antibodies. Even more preferably, the first antibody is affixed to a solid support. More preferably still, the first and second antibodies comprise an indicator, and, preferably, the indicator is a radioactive label or an enzyme.

The present invention also provides a diagnostic kit for screening agents. Such a kit can contain a polypeptide of the
present invention. The kit can contain reagents for detecting
an interaction between an agent and a receptor of the present
invention. The provided reagent can be radiolabeled. The kit
can contain a known radio labelled agent capable of binding
or interacting with a receptor of the present invention.

In an alternative aspect, the present invention provides
diagnostic assay kits for detecting the presence, in biological
samples, of a polynucleotide that encodes a polypeptide of the
present invention, the kits comprising a first container that
contains a second polynucleotide identical or complementary
to a segment of at least 15 contiguous nucleotide bases of,
as a preferred example, in any of SEQ ID Nos. 1, 3, 11 and 13.

In another embodiment, the present invention provides
diagnostic assay kits for detecting the presence, in a bio-
ological sample, of antibodies immunoreactive with a polypeptide
of the present invention, the kits comprising a first container that
contains a NE transporter polypeptide, that immunoreacts with the antibodies, with the polypeptide
present in an amount sufficient to perform at least one assay.

Autoimmune antibodies associated with acquired impaired NET function are particularly contemplated for
detection. Preferably, the NE transporter polypeptide has NE
transport activity, cross-reactivity on an anti-NE transporter antibody, or other biological activity in accordance with the
present invention. The reagents of the kit can be provided as a liquid solution, attached to a solid support or as a dried
powder. Preferably, when the reagent is provided in a liquid solution, the liquid solution is an aqueous solution. Prefer-
ably, when the reagent provided is attached to a solid support, the solid support can be chromatograph media or a
microscope slide. When the reagent provided is a dry powder, the powder can be reconstituted by the addition of a
suitable solvent. The solvent can be provided.

G. Other Diagnostic Methods

The present invention also provides the detection and
diagnoses of impaired NE transport and disorders related thereto based on the use of standard tests associated with
evaluating NE transport function, such as the NE clearance and tyramine tests described in the Examples. Such test
results are prepared, and the results are compared to results observed in patients having the NET mutation disclosed herein. Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.

For example, in the NE clearance evaluations described in the Examples, NE transport deficient patients, (i.e. those
having the NET polymorphism disclosed herein) were observed to have NE clearance rates ranging from about 1–2
liters per minute. In contrast, NE clearance rates are 2–3
liters per minute in normal patients.

Additionally, in the tyramine administration test disclosed in the Examples, elevated plasma NE levels after adminis-
tration of the unit dose of tyramine were observed to range from about 1 to about 20 pg/ml and more particularly from
about 5 to about 50 pg/ml in patients having the NE transporter polymorphism disclosed herein. In contrast, plasma NE levels after administration of a unit dose of tyramine in a normal patient ranges from about 40 to about 70 pg/ml, and usually ranges from about 50 to about 60
pg/ml.

Urinary NE levels range from about 100 to about 500
µg/24 hrs and usually from about 200 to about 400 in the
patients observed to have the NET polymorphism. In con-
trast, in normal patients, urinary NE levels range from about
0 to about 90 µg/24 hrs. Thus, these data can be used in
accordance with the present invention to detect impaired NE transport and disorders related thereto.

In accordance with the present invention, the ratio of
DHPG to NE in blood is also used to detect impaired NE
transport and disorders related thereto. DHPG is a metabo-
lite of NE, resulting from the enzymatic action of monoam-
mine oxidase. Since the monoamine oxidase is predominantly
in the neuron itself, NE pumped back into the neuron by the
NET is exposed to the enzyme and can be broken down into
DHPG, which can then leak out into the plasma. If the NET
is not functioning appropriately or if there is a deficiency of
NET, not as much norepinephrine is pumped up into the
neuron and subsequently metabolized to DHPG. Thus, the
ratio of DHPG to NE in blood is less in patients with NET
deficiency. This difference can appear during upright posture
or with exercise. The ratio of DHPG to NE in blood is
determined, and the results are compared to results observed
in patients having the NET mutation disclosed herein.

Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.

In accordance with the present invention, the ratio of
DHPG to normetanephrine (NMN) is also used to detect
impaired NE transport and disorders related thereto. When
NE is not pumped into the neuron by the NE transporter, NE
is exposed to extraneuronal tissue which contains a different
enzyme called catechol-O-methyltransferase (COMT),
which catalyzes the metabolism of NE to NMN. The
metabolism of NE to NMN is enhanced under circumstances
where NE transport into the neuron is impaired, and thus, a
ratio of DHPG to normetanephrine (NMN) can also be used
to detect impaired NE transport and disorders related thereto. The ratio of DHPG to NMN is determined, and the
results are compared to results observed in patients having
the NET mutation disclosed herein. Test results that indicate
a correlation with the results observed in a patient having the
polymorphism disclosed herein indicates the presence of a
deficiency in NE transport in a patient so screened.

In another aspect, the method can be used to detect
susceptibility to a NET mediated disorder in a patient. The
detection of secondary test results indicative of impaired
NET function can thus be used to detect susceptibility to
mental illness, hypertension, heart disease and psycho
stimulant abuse (e.g. cocaine or amphetamine abuse). Thus,
the methods of the present invention are believed to meet a
long felt need in the art for further characterization of NE
transport impairments and predictive ability to detect sus-
cceptibility to disorders related thereto.

Stated differently, the identification of the NET trans-
porter mutation as set forth herein represents the first estab-
lishment of a link between genetic causes of NET deficien-
cies and more indirect measures of NET deficiencies, such
as the tyramine and NE clearance tests disclosed in the
Examples presented below. This information is thus useful
in facilitating diagnoses of approximately half a million
patients in the United States alone who are suffering from
disorders associated with NET deficiencies.

EXAMPLES

The following Examples have been included to illustrate
preferred modes of the invention. Certain aspects of the following Examples are described in terms of techniques or
procedures found or contemplated by the present inventors
to work well in the practice of the invention. These
Examples are exemplified through the use of standard laboratory practices of the inventors. In light of the present disclosure and the general level of skill in the art, those of skill will appreciate that the following Examples are intended to be exemplary only in that numerous changes, modification, and alterations can be employed without departing from the spirit and scope of the invention.

MATERIALS AND METHODS USED IN EXAMPLES

Clinical Characteristics

The proband was a 33-year old female with a 20 year history of exertional and orthostatic provocation of tachycardia, dyspnea, concentration difficulty, and syncope. She had volatile blood pressure during or following anaesthesia with each of her three Caesarean sections with blood pressures as high as 210/180 mm Hg. Standard treatment for syncope (β-blockers, compression stockings, fludrocortisone) had been unsatisfactory. Implantation of a dual chamber pacemaker seemed to decrease the frequency of syncope, but symptoms of orthostatic intolerance persisted. An echocardiogram revealed mild mitral regurgitation and possible mitral valve prolapse. The proband identical twin also had a history of mitral valve prolapse and syncope as well as multiple symptoms worsened by stress and upright posture.

Experimental Design

The proband and her twin were admitted to the General Clinical Research Center at Vanderbilt University Medical Center, Nashville, Tenn. They were placed on a caffeine-free, low monoamine diet containing 150 mEq Na+ and 70 mEq K+ per day for 3 days. All medications had been discontinued at least two weeks prior to admission. After fasting supine overnight, blood pressure, heart rate, and plasma catecholamines were measured supine and after standing. At least two hours after breakfast standard autonomic function testing was performed as described by Mosqueda-Gracia, Disorders of the Autonomic Nervous System (1995). Urine was collected over a 24 hour period for both norepinephrine spillover and clearance, and tyramine-mediated plasma catecholamine responses were compared to responses among subjects in a group of 10 normal volunteers (8 females, 2 males, 33±2 years).

In seven additional siblings and the proband’s mother, blood pressure and heart rate were determined after twenty minutes supine and five minutes standing. Blood was obtained for determination of plasma catecholamines after twenty minutes supine and then after thirty minutes upright. In addition, blood was obtained from the proband, all nine of her siblings and her mother for DNA analysis. Plasma catecholamine or orthostatic vitals signs from one sister of the proband were not obtained. Her father is deceased. All subjects gave informed consent prior to study.

Plasma was analyzed for catecholamines by a modification of a high pressure liquid chromatographic method described by Goldstein et al., J Clin Invest (1988). Urine samples for catecholamines were assayed using analogous methods. See Goldstein et al., J Clin Invest (1988), Shoup et al., Clin Chem (1977). Tyramine responsiveness was determined by assaying blood pressure and heart rate after administration of 3 mg intravenous tyramine.

Systemic Norepinephrine Spillover and Clearance

The proband and normal controls were studied after overnight rest. Catheters were placed in a brachial artery, the ipsilateral femoral vein, and bilateral antecubital veins. Blood pressure was monitored intraarterially and heart rate was monitored by continuous ECG. After instrumentation and 30 minutes recovery, tritiated norepinephrine (3H-NE) was infused intravenously at 0.9 μCi/mL/min (see Riley et al., Clin Sci (1991)) after a loading dose of 25 μCi over 2 min. See Esler et al., Physiol Rev (1990). After allowing 30 to 40 minutes to reach steady state, blood for baseline norepinephrine concentration was obtained from the artery. Norepinephrine spillover and clearance were determined before and during baroreflex-mediated sympathetic activation with infusion of nitroprusside sufficient to decrease systolic blood pressure by 20 mmHg. 3H-NE concentration in plasma samples was determined as described by Shannon et al., Circulation (1999).

Detection of Mutations

Genomic DNA was isolated from venous blood using the PureGene DNA Extraction Kit (Gentra Systems, Minneapolis, Minn.). The exons of the human NET gene (SLC6A2, McKusick # 163970) were amplified using the polymerase chain reaction (PCR) with sense and antisense primers set forth in Table 2 as follows:

<table>
<thead>
<tr>
<th>Exon 1:</th>
<th>Primer Sets for Amplification of the Exons of the Human NET Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>RB639 (5'-aggccgcgtaaagttctctcg-3') (SEQ ID NO:16)</td>
</tr>
<tr>
<td></td>
<td>RB640 (5'-tctttgtttcatccagctctg-3') (SEQ ID NO:17)</td>
</tr>
<tr>
<td>Exon 2</td>
<td>RB641 (5'-gattgcgtgcctggtgttgg-3') (SEQ ID NO:18)</td>
</tr>
<tr>
<td></td>
<td>RB642 (5'-ctttgctttccactcaggg-3') (SEQ ID NO:19)</td>
</tr>
<tr>
<td>Exon 3</td>
<td>RB643 (5'-actggacagcagtctgtcttg-3') (SEQ ID NO:20)</td>
</tr>
<tr>
<td></td>
<td>RB644 (5'-taggtctttgccctgctagc-3') (SEQ ID NO:21)</td>
</tr>
<tr>
<td>Exon 4</td>
<td>RB645 (5'-agagctgcaagtctctctg-3') (SEQ ID NO:22)</td>
</tr>
<tr>
<td></td>
<td>RB646 (5'-ttgttctttcagctctcttt-3') (SEQ ID NO:23)</td>
</tr>
</tbody>
</table>
TABLE 2-continued

<table>
<thead>
<tr>
<th>Exon 5:</th>
<th>Primer Sets for Amplification of the Exons of the Human NET Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB647 (5'-tggcttcagggccttgcctagag-3')</td>
<td>(SEQ ID NO:24)</td>
</tr>
<tr>
<td>RB648 (5'-acaagcctggcccaaggcttggt-3')</td>
<td>(SEQ ID NO:25)</td>
</tr>
<tr>
<td>Exon 6:</td>
<td></td>
</tr>
<tr>
<td>RB649 (5'-ctgcccatctctggttcagaccat-3')</td>
<td>(SEQ ID NO:26)</td>
</tr>
<tr>
<td>RB650 (5'-ggagagttggcttccagaccaga-3')</td>
<td>(SEQ ID NO:27)</td>
</tr>
<tr>
<td>Exon 7:</td>
<td></td>
</tr>
<tr>
<td>RB651 (5'-gtatccatgtggcagcaggagc-3')</td>
<td>(SEQ ID NO:28)</td>
</tr>
<tr>
<td>RB652 (5'-cacggaagagccatgcagccaa-3')</td>
<td>(SEQ ID NO:29)</td>
</tr>
<tr>
<td>Exon 8:</td>
<td></td>
</tr>
<tr>
<td>RB653 (5'-ctcatatgtgcaagctcagaccag-3')</td>
<td>(SEQ ID NO:30)</td>
</tr>
<tr>
<td>RB654 (5'-gttctgctaatctaaaggcccttg-3')</td>
<td>(SEQ ID NO:31)</td>
</tr>
<tr>
<td>Exon 9:</td>
<td></td>
</tr>
<tr>
<td>RB655 (5'-caaggcaagctcagctagctgg-3')</td>
<td>(SEQ ID NO:32)</td>
</tr>
<tr>
<td>RB656 (5'-ggtggtggacttggttgtgta-3')</td>
<td>(SEQ ID NO:33)</td>
</tr>
<tr>
<td>Exons 9 and 10:</td>
<td></td>
</tr>
<tr>
<td>RB657 (5'-catcttgcctcactgccctgctct-3')</td>
<td>(SEQ ID NO:34)</td>
</tr>
<tr>
<td>RB658 (5'-catcttgcctcactgccctgctct-3')</td>
<td>(SEQ ID NO:35)</td>
</tr>
<tr>
<td>Exons 11 and 12:</td>
<td></td>
</tr>
<tr>
<td>RB659 (5'-gctgcaggatcaaatagcaggtgg-3')</td>
<td>(SEQ ID NO:36)</td>
</tr>
<tr>
<td>RB660 (5'-tgctcctctcctctgagctaacag-3')</td>
<td>(SEQ ID NO:37)</td>
</tr>
<tr>
<td>Exon 15:</td>
<td></td>
</tr>
<tr>
<td>RB746 (5'-ggaggtgcttggagatcatttgg-3')</td>
<td>(SEQ ID NO:38)</td>
</tr>
<tr>
<td>RB747 (5'-gcttcagtctcacattagcgagg-3')</td>
<td>(SEQ ID NO:39)</td>
</tr>
</tbody>
</table>

Amplified products (60 ng) were directly sequenced using PCR primers with AmpliTaq®-FS fluorescent dideoxy chain terminators (Perkin Elmer, Wellesley, Mass.) using 25 cycles of 96°C for 30 sec, 50°C for 15 sec, and 60°C for 4 min. After ethanol precipitation, the reactions were analyzed on an ABI 310™ automated DNA sequencer (Vanderbilt University Center for Molecular Neuroscience DNA Sequencing Core, Nashville, Tenn.). Sequences were compared to accession numbers x91117 to x91127 and the sequences reported by Pörzgen and colleagues (Pörzgen et al., Biochimica et Biophysica Acta (1998)), as well as in comparison with DNA from asymptomatic volunteers.

Functional Analysis of Identified Coding Mutation

DNA encoding the hNET A457P mutant was created using QuikChange™ Site-Directed Mutagenesis Kit (Stratagene, La Jolla, Calif.) according to manufacturer’s protocol using the oligonucleotides RB675 (5'ctctgctgcctcactgccctgctct-3') (SEQ ID NO:5) and RB676 (5'tggttttgctgctgcctgccctgctct-3') (SEQ ID NO:6). The underlying bases indicate modified bases to introduce the g237c mutation or to introduce a ScI I restriction site that could be used to identify mutated plasmids. Amplified DNA was cloned into a pcDNA3 plasmid (Invitrogen, Carlsbad, Calif.) using the oligonucleotides RB675 and RB676 (SEQ ID NO:5) and RB676 (SEQ ID NO:6). The underlying bases indicate modified bases to introduce the g237c mutation or to introduce a ScI I restriction site that could be used to identify mutated plasmids.
Example 2

Arterial norepinephrine concentration at rest was slightly elevated in the proband compared to controls (280 pg/ml vs 204±18 pg/ml). This greater concentration was primarily due to decreased NE clearance since, despite a lower NE spillover rate in the proband (436 ng/min in the proband vs 514±298 ng/min in controls), clearance in the proband was less than half of normal controls (1.56 vs 2.42±0.25 L/min). With nitroprusside infusion, NE spillover increased to 1072 ng/min in the proband but only 745±75 ng/min in control subjects. Norepinephrine clearance did not change appreciably after nitroprusside in either the proband (1.76 L/min) or the control group (2.31±0.24 L/min).

Example 3

Response to Tyramine

Tyramine is an indirectly-acting amine that exerts its effect by releasing cytosolic norepinephrine. To cause norepinephrine release, tyramine must first be taken up into the neuron by NET, as described by Blakely et al. (J Exp Biol, 1994), and Demanet, Cardiology (1976). Intravenous injection of tyramine 3 mg increased systolic blood pressure 19±2 mmHg and plasma norepinephrine by 56±21 pg/ml in normal controls. In the proband, the same dose increased systolic blood pressure similarly (118 mmHg), but the elevation in plasma norepinephrine was significantly blunted (12 pg/ml).

Identification of a Functional Missense Mutation in hNet

The combination of the low plasma DHPG/norepinephrine ratio, decrease of plasma norepinephrine clearance, and blunted response to tyramine suggested a potential defect in NET in the proband. The presence of a similar syndrome in her identical twin suggested a genetic origin.

Direct sequence analysis of the human norepinephrine transporter (hNET) gene (SLC6A2) in the proband revealed no divergence from previously published sequences in exons 1 through 8 and 10 through 15. In addition, all exonic boundaries preserved canonical g/t/a/g donor/acceptor sequences. However, two novel polymorphisms were identified within exon 9, one silent (c154a) and one missense (g237c) mutation. The proband is heterozygous for both the c154a and g237c polymorphisms (Fig. 2A). The g237c mutation results in a coding alteration of alanine to proline (A457P) within a highly conserved region of transmembrane domain 9 (Fig. 2B and Fig. 2C).

Heterologous expression of hNET in parallel with hNET cDNAs revealed that 3H-NE uptake is severely compromised by the A457P mutation. Chinese hamster ovary (CHO) cells transiently transfected with hNET cDNA display a >10 fold elevation in norepinephrine transport activity over vector transfected cells. CHO cells transiently transfected with A457P NET cDNA possessed ~2% of the uptake activity of the wild type NET transfected cells (Fig. 2D). Multiple clones were tested and all were found to be devoid of transport activity in a different cell host (LLC PK1 cells).

Segregation of A457P Mutation with Phenotype

The proband’s mother and 4 of her 8 siblings were genotyped by ASO and were found to be heterozygous for the mutant allele (AP), including her twin (Fig. 2E and Fig. 2F). Independently, heart rates and plasma catecholamines were obtained from the family. Supine heart rates displayed a trend toward elevation associated with the AP genotype (p=ns). However, upon standing, the heart rate was significantly greater in family members carrying the A457P mutation (AP) than in family members homozygous for the A457P genotype (AA) (Fig. 3A and Fig. 3B). Similarly, supine plasma norepinephrine tended to be greater in AP that AA family members, whereas upright norepinephrine was significantly greater in AP individuals (Fig. 3C and Fig. 3D). Finally, the plasma DHPG/norepinephrine ratio was significantly greater in AA individuals that in AP individuals with both supine and upright postures (Fig. 3E and Fig. 3F).

Mechanism Underlying the Loss of Transport of A457P

As disclosed herein above, the norepinephrine transporter (NET) is responsible for clearance of norepinephrine (NE) from the synapse and is a target for antidepressant drugs and psychostimulants. A human NET (hNET; SLC6A2) coding mutation, A457P, linked to orthostatic Intolerance which results in near complete loss of [3H]NE transport (~2% of wild type (wt)) is also disclosed herein above. This Example...
pertains to the identification of a mechanism underlying the loss of transport of A457P. Biotinylation of cell surface proteins and Western analysis reveal that the 80–100 kDa form of hNET, the major species in the plasma membrane, is decreased in total cell extracts and in plasma membrane from COS-7 cells transfected with A457P compared to wt. Competition of [3H]RTI-55 binding to membrane preparations demonstrates alterations in both antagonist and substrate binding to A457P. Cotransfection of A457P with wt hNET reveals a dominant negative interaction of decreased [3H]NE uptake to 59±2.4% of wt alone.

Example 7

Additional hNET Single Nucleotide Polymorphisms

Using techniques described in Example 6 above, applicants have also characterized additional hNET single nucleotide polymorphisms (SNPs) that have been identified, e.g. Stober et al. (1996) American Journal of Medical Genetics 67:523–532 and Halushka et al. (1999) Nature Genetics 22:239–247. Characterization of these SNPs has led to the observation of both loss of function as well as significant increases in transport in different mutants. By screening susceptible populations for hNET mutations and characterizing mutant proteins, structural components underlying transport function are identified and the role and prevalence of hNET mutations in disease are illuminated.

Discussion of Examples

The NET deficiency in this family represents the first demonstration of a functional mutation in a monoamine transporter in humans. Previously, coding polymorphisms have been found in hNET, but these had no effect on norepinephrine transport activity. See e.g. Stober et al., Genetics (1996). In contrast, the A457P mutation renders the transporter nonfunctional and segregates with an alteration in heart rate regulation and norepinephrine metabolism. Bedside physiological, pharmacological, and biochemical tests in the proband indicated a defect in norepinephrine reuptake. Supine resting heart rate was within normal range but about 10 bpm greater than age matched controls, as described by Shannon et al., Hypertension (1998), and rose substantially with upright posture. This heart rate change was paralleled by an increase in plasma norepinephrine which rose almost four-fold with upright posture.

The proband’s blunted plasma norepinephrine increase with tyramine, and her reduced systemic norepinephrine clearance compared to normal subjects was consistent with impaired norepinephrine reuptake as the primary defect. The relationship of plasma DHPG and norepinephrine provided further evidence of impaired norepinephrine reuptake. Some NE taken up into the neuron by NET reaches the vesicles rat by binding to a, adrenoreceptors as disclosed by Goldstein Agents which stimulate central a, adrenoreceptors (e.g., clonidine and a-methylidopa) and thus mimic increased central norepinephrine concentrations in sensitive areas are widely used to reduce central sympathetic outflow. The prominent side effects of such agents include fatigue, a common complaint of patients with OL. Acute pharmacological blockade of NET causes a decrease in sympathetic outflow, as described by Esler et al., American Journal of Physiology (1991), presumably by increasing norepinephrine concentration in central synapses. Similarly, with NET
deficiency, one would expect a decrease in the indices of sympathetic tone. Yet, in the proband and in many patients with OI, central sympathetic tone seems to be increased. Thus, chronic NET impairment, or perhaps compensatory (e.g., baroreflex) responses to it, is contemplated to further complicate phenotype. Peripheral and central impairment of NET could disrupt the fine control of autonomic balance. A limited capacity to clear synaptic norepinephrine might prolong the duration and increase the intensity of adrenergic cycle of variability in heart rate and, to a lesser extent, peripheral blood pressure and heart rate patterns. This coarsening of sympathetic modulation could result in a spontaneous cycle of variability in heart rate and, to a lesser extent, vascular tone. Volatility of heart rate in patients with OI has not been reported, see Coghlan et al., Am J Med (1979), and was evident in the proband (FIG. 1).

While family members having the A457P mutation had physiological and biochemical similarity to the affected twins and other patients with OI, not all of them manifested the full-blown syndrome. This is contemplated to be attributable to the hemizygous nature of the A457P mutation and preliminary understanding of complex regulatory control over NET mRNA and protein expression. See Apparsundaram et al., J Pharm Exp Ther (1998) and Cubells et al., J Neurochem (1995).

The disclosure of the present invention, as indicated in the Examples, facilities the discovery of other NET mutations, non-genetic NET defects, and other noradrenergic defects affecting NET function in patients with OI. Among these are autoantibodies to NET or membrane structures essential to NET function. The importance of such a role for autoimmune illnesses is more common, but by the extent that they supplement, explain, provide a background for or teach methodology, techniques and/or compositions employed herein. Adelman et al., DNA 2:183 (1983).

REFERENCES

The references listed below as well as all references cited in the specification are incorporated herein by reference to the extent that they supplement, explain, provide a background for or teach methodology, techniques and/or compositions employed herein. Adelman et al., DNA 2:183 (1983).

The references listed below as well as all references cited in the specification are incorporated herein by reference to the extent that they supplement, explain, provide a background for or teach methodology, techniques and/or compositions employed herein. Adelman et al., DNA 2:183 (1983).
Fouad et al., Am Int Med 104:298-303 (1986)
Horisberger et al., Histochem. 82:219 (1985).
McKinney et al. (1966) Anal Biochem. 14:421
O’Sullivan et al. (1978) FEBS Letters 95:311
U.S. Pat. No. 5,286,634
U.S. Pat. No. 5,399,346
U.S. Pat. No. 4,196,265
U.S. Pat. No. 4,458,066
U.S. Pat. No. 5,550,316
U.S. Pat. No. 5,399,346
U.S. Pat. No. 5,489,742
U.S. Pat. No. 5,573,933
U.S. Pat. No. 5,614,396
U.S. Pat. No. 5,646,008
U.S. Pat. No. 5,648,061
U.S. Pat. No. 5,651,964
U.S. Pat. No. 5,641,484
U.S. Pat. No. 5,489,742
U.S. Pat. No. 5,550,316
U.S. Pat. No. 5,573,933
U.S. Pat. No. 5,614,396
U.S. Pat. No. 5,741,957
U.S. Pat. No. 5,643,567
U.S. Pat. No. 5,646,008
U.S. Pat. No. 5,651,964
It will be understood that various details of the invention can be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation—the invention being defined by the claims.

SEQUENCE LISTING
AUTHORS: Porzgen, P.
Bonisch, H.
Bruss, M.

TITLE: Molecular Cloning and Organization of the Coding Region of the Human Norepinephrine Transporter Gene

VOLUME: 215
ISSUE: (3)
PAGES: 1145-1150
DATE: 1995-10-24
DATABASE ACCESSION NUMBER: x91117
DATABASE ENTRY DATE: 1996-02-20

SEQUENCE:

```
ATG CTT CTT GCG CTT GCG ATG CCG CAG GCG GAG AAC CCG
Met Leu Leu Ala Arg Met Asn Pro Gln Val Gln Pro Glu
1  5 10 15

GCG GAC CGG GCC GAG CAG GCC GCC GCC GCC GCC GCC
Ala Asp Thr Gly Gly Glu Gln Pro Pro Pro Pro Pro
20 25 30

CTG CTT GGC AAG GAG CCG GCC GAT GAG CCG CTT GCC
Leu Leu Val Val Gln Arg Pro Gln Pro Glu Arg Glu
35 40 45

GCG GAC GCC GCG CAG CCG CGG GAG CGC GAG CCG
Arg Asp Gly Asp Ala Gln Pro Arg Glu Arg Glu
50 55 60

ttc ctc ctc gcc ctc gcc ctc gcc ctc gcc ctc gcc
Phe Leu Leu Ser Val Val Gly Phe Ala Ala Asp Glu
65 70 75 80

cgc ttc ctc ctc gcc ctc gcc ctc gcc ctc gcc ctc gcc
Arg Pro Tyr Cys Tyr Lys Gly Gly Ala Phe Leu
85 90 95

ccg tac ccg ctc ctc atg cgc cgg gaa tgg cgg cgc
Pro Tyr Thr Leu Phe Ile Ala Gly Met Pro Leu Phe
100 105 110

agc ggt cgg cgg aga cgg gaa cgg ggg ggt gtc cgc
Glu Ala Leu Leu Gly Gly Glu Gly Glu Gly Glu Ala
115 120 125

aaa atc tgc cca tcc tgg ggg cag ttc cgg gag cgg
Lys Ile Cys Pro Phe Gly Gly Gly Gly Gly Gly
130 135 140

ggc ctc gtt ggc ttc tgc gcc gcc gcc gcc gcc gcc
Ala Leu Tyr Val Val Gly Tyr Tyr Tyr Tyr Tyr Tyr
145 150 155 160

tac tac ctc tct ctc ctc ctc ctc ctc ctc ctc ctc
tyr Tyr Tyr Thr Leu Ser Ser Phe Thr Leu Aasn Pro
165 170 175

ggc cca ccc ctc ctc ctc ctc ctc ctc ctc ctc ctc
gly His Thr Thr Thr Thr Thr Thr Thr Thr Thr Thr
180 185 190

ggc ttc ggt cgg cgg cgc cgg cgg cgg cgg cgg cgg
gly Ser Leu Gly Gln Gly Arg Arg Arg Arg Arg Arg
195 200 205

ccg gca ggg agg tgg cgg ctc ctc ctc ctc ctc ctc
gly Ala Glu Glu Pro Phe Leu Ser Ser Ser Ser Ser
210 215 220

agc ggg ctt cat gac cgg cgg cgg cgg cgg cgg cgg
glu Ser Ile His Asp Ile Gly Pro Glu Trp Glu Leu
225 230 235 240

ctg atg gtc gtc atc tct cgg cag tgg cgg cgg cgg
cys Met Val Val Ile Leu Val Tyr Phe Ser Leu Leu
245 250 255
```
aag aca tca gga aag gta gtt tgg atc aca gcc acg ctg cct tac ttc
Lys Thr Ser Gly Val Val Trp Ile Thr Ala Thr Leu Pro Tyr Phe
260 265 270

gtg ctc tgc tgc tgc tgc cat gtc acg ctg ccc gga gcc tcc
Val Leu Phe Val Leu Leu Val His Gly Val Thr Leu Pro Gly Ala Ser
275 280 285

aat ggc atc aat gcc tac ctg cac atc gac ttc tgc tgc tgg aaa gag
Aan Gly Ile Aen Ala Tyr Leu His Aen Phe Thy Arg Leu Lys Glu
290 295 300

gcc acg gta tgg att gat gcc gca act cag ata ttt tcc tgc tgg aag
Gcc Thr Val Trp Ile Asp Ala Thr Gln Ile Phe Phe Ser Leu Gly
305 310 315 320

gct gga ttt gga gta tgg att gcc ttc tgc tcc ttc aac aac ttt gag
Gct Ala Gly Phe Gly Val Leu Ile Aen Ala Thr Ser Asp Gln Lys
325 330 335

aac aac tgt tac agg gat gcc ctg acc aac aac ttc gat gcc aac aac
Aen Aen Cye Tyr Arg Asp Ala Ala Ala Thr Asp Ala
340 345 350

acc ggg tgc tct tgc tcc ggc
Thr Ser Phe Val Ser Gly Val Ser Gly
355 360 365

gcc cat gaa ccc aag gtc aac att gat gtt gtt gcc gca gaa gga gct
Gcc His Glu His Lys Val Asn Ile Glu Asp Val Ala Thr Glu Gly
370 375 380

gcc cta gtc atc atg ttt tcc aca cag aat ttt tct tgc tgg aag
Gly Leu Val Phe Ile Leu Leu Asp Thr Leu Ser Thr Leu Thr Leu
385 390 395 400

tct aca ttc gtc ggt gat gtt gtt ttc gtc tct gtc ggc
Ser Thr Phe Trp Ala Val Val Phe Cys Ser Thr
405 410 415

cgg gca gtc tca atg gga gcc atg gat gtc tgc acc aag gca
Gly Asp Asp Thr Leu Ser Gly Ser Gly Asp Val Ala Thr Glu Gly
420 425 430

aag cta gtt atc atg ttt tcc aca cag aat ttt tct gga
Asp Asp Phe Gly Val Leu Lys Arg His Arg Lys Leu Phe Gly
435 440 445

gtc acc tgc aat ttc ttc tcc aca aag ggt
Val Thr Phe Ser Thr Phe Ser Thr Phe Thr Lys
450 455 460

gga att tac gtc tgg acc ctc gcc acc ttc gcc tgc aag
Gly Ile Tyr Val Leu Tyr Leu Leu Asp Phe Ala Ala Gly Ser
465 470 475 480

tct ctt tgg gcc atg gcc atc gaa gct tgg tgg ttc tgg
Thr Leu Leu Ala Gly Val Ser Gly Val Ser Gly
485 490 495

aag ggc gac agg ttc aag gac aac gag ttt aag gtt gcc
Gly Val Asp Phe Ser Asp Aen Ile Glu Glu Met Met Gly Phe Arg
500 505 510

ccg gtt cta tac cgg aag gta gtt cgg cgg aag gtt cgc tgc tgg
Gly Gly Leu Tyr Tyr Trp Arg Leu Cys Trp Lys Val Ser Pro Ala Phe
515 520 525

ccg gtt cta gtt tgg tct gtc gtc gcc acc car aac gcc
Gly Gly Leu Tyr Tyr Tyr Trp Arg Gly Phe Pro Tyr Ile Thr Cys
530 535 540

tac gaa gat gct tgt gcc ggg ggc aag ggg tgt gtt ggg ggg
Tyr Asp Thr Ile Phe Pro Pro Thr Ala Asn Tyr Val Val Gly Trp Gly
545 550 555 560

aat gcc ctc tcc atc gtc ctc gcc atc tac gcc aat gtt tgg
Ile Ala Leu Ser Ser Met Val Leu Val Pro Tyr Val Ile Tyr Lys
565 570 575
<table>
<thead>
<tr>
<th>Met</th>
<th>Leu</th>
<th>Leu</th>
<th>Ala</th>
<th>Arg</th>
<th>Met</th>
<th>Asn</th>
<th>Pro</th>
<th>Gln</th>
<th>Val</th>
<th>Val</th>
<th>Pro</th>
<th>Glu</th>
<th>Asn</th>
<th>Asn</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Asp</td>
<td>Thr</td>
<td>Gly</td>
<td>Pro</td>
<td>Glu</td>
<td>Pro</td>
<td>Leu</td>
<td>Arg</td>
<td>Ala</td>
<td>Arg</td>
<td>Lys</td>
<td>Thr</td>
<td>Ala</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Val</td>
<td>Val</td>
<td>Lys</td>
<td>Glu</td>
<td>Arg</td>
<td>Asn</td>
<td>Gly</td>
<td>Gln</td>
<td>Val</td>
<td>Gln</td>
<td>Cys</td>
<td>Leu</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Asp</td>
<td>Gly</td>
<td>Asp</td>
<td>Ala</td>
<td>Gin</td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
<td>Thr</td>
<td>Trp</td>
<td>Gly</td>
<td>Lys</td>
<td>Ile</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
<td>Gly</td>
<td>Phe</td>
<td>Ala</td>
<td>Val</td>
<td>Asp</td>
<td>Leu</td>
<td>Ala</td>
<td>Asn</td>
<td>Val</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Pro</td>
<td>Tyr</td>
<td>Leu</td>
<td>Cys</td>
<td>Tyr</td>
<td>Lys</td>
<td>Asn</td>
<td>Gly</td>
<td>Gln</td>
<td>Gly</td>
<td>Ala</td>
<td>Phe</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Tyr</td>
<td>Thr</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Ile</td>
<td>Ala</td>
<td>Gly</td>
<td>Met</td>
<td>Pro</td>
<td>Leu</td>
<td>Phe</td>
<td>Tyr</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Gln</td>
<td>Tyr</td>
<td>Asn</td>
<td>Arg</td>
<td>Gly</td>
<td>Gln</td>
<td>Ala</td>
<td>Thr</td>
<td>Val</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Ile</td>
<td>Cys</td>
<td>Pro</td>
<td>Phe</td>
<td>Phe</td>
<td>Lys</td>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
<td>Tyr</td>
<td>Val</td>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Tyr</td>
<td>Val</td>
<td>Gly</td>
<td>Phe</td>
<td>Tyr</td>
<td>Asn</td>
<td>Val</td>
<td>Ile</td>
<td>Ile</td>
<td>Ala</td>
<td>Trp</td>
<td>Ser</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyr</td>
<td>Leu</td>
<td>Phe</td>
<td>Ser</td>
<td>Ser</td>
<td>Phe</td>
<td>Thr</td>
<td>Leu</td>
<td>Asn</td>
<td>Leu</td>
<td>Pro</td>
<td>Trp</td>
<td>Thr</td>
<td>Asp</td>
<td>Cys</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>His</td>
<td>Thr</td>
<td>Trp</td>
<td>Asn</td>
<td>Ser</td>
<td>Pro</td>
<td>Asn</td>
<td>Cys</td>
<td>Thr</td>
<td>Asp</td>
<td>Pro</td>
<td>Lys</td>
<td>Leu</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
<td>Asn</td>
<td>His</td>
<td>Thr</td>
<td>Lys</td>
<td>Tyr</td>
<td>Ser</td>
<td>Lys</td>
<td>Tyr</td>
<td>Lys</td>
<td>Phe</td>
<td>Thr</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Ala</td>
<td>Glu</td>
<td>Phe</td>
<td>Tyr</td>
<td>Glu</td>
<td>Arg</td>
<td>Val</td>
<td>Leu</td>
<td>His</td>
<td>Leu</td>
<td>His</td>
<td>Glu</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Ile</td>
<td>His</td>
<td>Asp</td>
<td>Ile</td>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
<td>Glu</td>
<td>Trp</td>
<td>Glu</td>
<td>Leu</td>
<td>Leu</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>225</td>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Met</td>
<td>Val</td>
<td>Val</td>
<td>Ile</td>
<td>Val</td>
<td>Tyr</td>
<td>Phe</td>
<td>Ser</td>
<td>Leu</td>
<td>Trp</td>
<td>Lys</td>
<td>Gly</td>
<td>Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Thr</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Val</td>
<td>Trp</td>
<td>Ile</td>
<td>Thr</td>
<td>Ala</td>
<td>Thr</td>
<td>Leu</td>
<td>Pro</td>
<td>Tyr</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td>Val</td>
<td>Thr</td>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Ala</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Ile</td>
<td>Asn</td>
<td>Ala</td>
<td>Tyr</td>
<td>Leu</td>
<td>His</td>
<td>Ile</td>
<td>Asp</td>
<td>Phe</td>
<td>Tyr</td>
<td>Arg</td>
<td>Leu</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Val</td>
<td>Trp</td>
<td>Ile</td>
<td>Asp</td>
<td>Ala</td>
<td>Thr</td>
<td>Gln</td>
<td>Ile</td>
<td>Phe</td>
<td>Phe</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td></td>
</tr>
</tbody>
</table>
Ala Gly Phe Gly Val Leu Ile Ala Phe Ala Ser Tyr Asn Lys Phe Asp
325 330 335
Asn Asn Cys Tyr Arg Asp Ala Leu Thr Ser Ser Ile Asn Cys Ile
340 345 350
Thr Ser Phe Val Ser Gly Phe Ala Ile Phe Ser Ile Leu Gly Tyr Met
355 360 365
Ala His Glu His Lys Val Asn Ile Glu Asp Val Ala Thr Glu Gly Ala
370 375 380
Gly Leu Val Phe Ile Leu Tyr Pro Glu Ala Ile Ser Thr Leu Ser Gly
385 390 395 400
Ser Thr Phe Trp Ala Val Val Phe Phe Val Met Leu Ala Ala Leu Gly
405 410 415
Leu Asp Ser Ser Met Gly Met Glu Ala Val Ile Thr Gly Leu Ala
420 425 430
Asp Asp Phe Gln Val Leu Lys Arg His Arg Lys Leu Phe Thr Phe Gly
435 440 445
Val Thr Phe Ser Thr Phe Leu Ala Leu Phe Cys Ile Thr Lys Gly
450 455 460
Gly Ile Tyr Val Leu Thr Leu Asp Thr Phe Ala Ala Gly Thr Ser
465 470 475 480
Ile Leu Phe Ala Val Leu Met Glu Ala Ile Gly Val Ser Trp Phe Tyr
485 490 495
Gly Val Asp Arg Phe Ser Asn Asp Ile Glu Glu Met Met Gly Phe Arg
500 505 510
Pro Gly Leu Tyr Trp Arg Leu Cys Trp Lys Phe Val Ser Pro Ala Phe
515 520 525
Leu Leu Phe Val Val Val Thr Leu Ile Asn Phe Lys Pro Leu Thr
530 535 540
Leu Leu Phe Val Val Val Thr Leu Ile Asn Phe Lys Pro Leu Thr
530 535 540
Tyr Asp Asp Tyr Ile Phe Pro Pro Trp Ala Asn Trp Val Gly Trp Gly
545 550 555 560
Ile Ala Leu Ser Ser Met Val Leu Pro Ile Tyr Val Ile Tyr Lys
565 570 575
Phe Leu Ser Thr Gln Gly Ser Leu Trp Glu Arg Leu Ala Tyr Gly Ile
580 585 590
Thr Pro Glu Asp Glu His His Leu Val Ala Gin Arg Asp Ile Arg Gin
595 600 605
Phe Gin Leu Gin His Trp Leu Ala Ile
610 615

<210> SEQ ID NO 3
<211> LENGTH: 1854
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(1851)
<400> SEQUENCE: 3
atg ctt ctg gcg cgg atg asc ccg cag cag ccc gag asc asc ggg 48
Met Leu Leu Ala Arg Met Asn Pro Gln Val Gln Pro Glu Asn Asn Gly
1 5 10 15
gcg gac acg ggt cca gag cag ccc ctt cgg ggc asc act ggc gag 96
Ala Asp Thr Gly Pro Glu Gln Pro Leu Arg Ala Arg Lys Thr Ala Glu
20 25 30
cag ctg gtc gtg aag gag cgc asc ggc gtc cag tgc ctg gcg ccc 144
Leu Leu Val Val Lys Glu Arg Aen Gly Val Gin Cys Leu Leu Ala Pro

35 40 45

cgc gac ggc ggc ggc cag ccc cgg gac acc tgg ggc aag aac atc gac
Arg Asp Gly Asp Ala Gin Pro Arg Glu Thr Trp Gly Lys Ile Asp
50 55 60

ttc cgc ccc gtc ctc gtc gta gtc gta gtc ggc gac gtc ggc gac gtc tgg
Phe Leu Leu Ser Val Val Gin Phe Ala Val Gin Leu Ala Aen Val Trp
65 70 75 80

cgc ccc gcc ttc gcc gcc gac gcc gcc ttc gcc gcc ttc gcc ccc cgg
Arg Aen Pro Tyr Leu Cys Tyr Lys Aen Gin Gin Gly Gin Gin Gin Gin
85 90 95

cgc ttc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
cgc ttc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc

192

195

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
198

tgc ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
201

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
204

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
207

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
210

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
213

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
216

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
219

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
222

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
225

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
228

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
231

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
234

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
237

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
240

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
243

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
246

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
249

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
252

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
255

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
258

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
261

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
264

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
267

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
270

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
273

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
276

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
279

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
282

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
285

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
288

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
291

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
294

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgcgcc aag gcc tgc gcc
297

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
300

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
303

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
306

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
309

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
312

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
315

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
318

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
321

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
324

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
327

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
330

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
333

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
336

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
340

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
344

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
348

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
352

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
356

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
360

gcg ctc gcc aag gcc tgc gcc tgc gcc aag gcc tgc gcc tgc gcc aag gcc
364

192

240

288

336

384

432

480

520

576

624

672

720

768

816

864

912

960

1008

1056
acc agc ttc gtc tct gqq ttc goc atc ttc tcc atc ctt gqt tac atg
Thr Ser Phe Val Ser Gly Phe Ala Ile Phe Ser Ser Leu Gly Tyr Met
355 360 365

gcc cat gaa cac aag gtc aac att gag gat gtc goc aca gaa gga gct
Ala His Glu His Lys Val Asn Ile Asp Val Ala Thr Glu Gly Ala
370 375 380

ggc ata gta atc ctt atc tct tat cca gag goc att tct acc ctt gtc
gly Leu Val Phe Ile Tyr Pro Glu Ala Ser Ser Leu Ser Gly
385 390 395 400

tct ata tcc tgg gct gtt gtt ttc gtc atc ctt gtc goc atc gtc
Ser Thr Phe Trp Ala Val Phe Phe Val Met Leu Leu Ala Gly
405 410 415

cat gac agc tca ttt gga ggc atg gag gat gtc atc aca ggc atg
Leu Asp Ser Ser Ser Met Gly Gly Met Glu Ala Ile Gly
420 425 430

gat gac ttc cag gtc cta aag cga cac cgg aca ttc tcc aca ttt ggc
Glu Asp Phe Glu Val Leu Asp His Arg Lys Leu Phe Thr Phe Gly
435 440 445

ttc acc ttc agc tac ttc ctt ctc ccc ctg ttc tgc ata acc aag ggt
Val Thr Phe Ser Thr Phe Leu Leu Pro Glu Ala Ile Thr Lys Gly
450 455 460

gga att tac gtc ttc acc ctc gac acc ctt tgt gtc ggc acc tcc
Gly Ile Tyr Val Leu Thr Leu Leu Asp Thr Ala Ala Gly Thr Ser
465 470 475 480

gtc ttc gtt gtc ctc tgc gtt gaa gac atc gga gtt tcc tgg ttt tat
Ile Leu Phe Ala Val Leu Met Leu Thr Phe Tyr
485 490 495

gga gtt gag ccg ttc cag gtc cag gaa cta ttc atg gtt ggc atg
Gly Val Asp Arg Phe Ser Ser Asn Ile Gly Met Met Gly Phe Arg
500 505 510

tcg cag atc tac tgg ags cta tgc tgg aag ttc gtc gct atc ggt ccc
Pro Gly Leu Tyr Trp Arg Leu Cys Trp Lys Phe Val Ser Pro Ala Phe
515 520 525

ttc ctc ttc gtt gtt gtt gtc atc aca ctc tgc atc aag cca ctc acc
Leu Leu Phe Val Val Val Val Phe Ser Val Asp Pro Asp Ala Thr
530 535 540

tac gac gac tac atc tcc ccc tgg goc aac tgg gtt ggg tgg ggc
Tyr Asp Asp Tyr Ile Phe Pro Pro Pro Phe Pro Ala Trp Val Gly Trp Gly
545 550 555 560

gcc cgg tcc tcc atgc tgg tgg gcc atc atc gtc atc ctc atc tat acc
Ile Ala Leu Ser Ser Met Val Leu Val Phe Ile Tyr Val Ile Lys
565 570 575

ttc ctc aac cag cag ggc tct tgg gag aga ctc gtc gec ttc ttt
Thr Ser Pro Glu Ser Ser Thr Leu Glu Arg Leu Ala Tyr Gly Ile
580 585 590

gcc cgg cgg ctc cag cag cag cac cac ctc cag cag cag gac atc aga cag
Thr Pro Glu Ser Ser His His Leu Val Ala Glu Arg Asp Ile Arg Glu
595 600 605

ttc cag tgt caa cag tgg ctc ggg atc tga
Phe Glu Leu Glu His Thr Leu Ala Ile
610 615
-continued

Ala Asp Thr Gly Pro Glu Gln Pro Leu Arg Ala Arg Lys Thr Ala Glu
20 25 30
Leu Leu Val Val Lys Glu Arg Asn Gly Val Gin Cys Leu Leu Ala Pro
35 40 45
Arg Asp Gly Asp Ala Gin Pro Arg Glu Thr Trp Gly Lys Ile Asp
50 55 60
Phe Leu Leu Ser Val Val Gly Phe Ala Val Asp Leu Ala Asn Val Trp
65 70 75 80
Arg Phe Pro Tyr Leu Cys Tyr Lys Asn Gly Gin Cys Phe Leu Ile
85 90 95
Pro Tyr Thr Leu Phe Leu Ile Ile Ala Gin Met Pro Leu Phe Tyr Met
100 105 110
Glu Leu Ala Leu Gin Tyr Asn Arg Glu Gin Ala Ala Thr Val Trp
115 120 125
Lys Ile Cys Pro Phe Phe Lys Gin Gin Lys Tyr Ala Val Ile Leu Ile
130 135 140
Ala Leu Tyr Val Gin Phe Tyr Tyr Gin Val Gin Gin Ala Tyr Ser Leu
145 150 155 160
Tyr Tyr Leu Phe Ser Ser Phe Thr Leu Asp Leu Pro Tyr Thr Gin Cys
165 170 175
Gly His Thr Gin Gin
180 185 190
Gly Ser Val Leu Gin Gin Thr Gin Gin Gin Gin Gin Gin Gin Gin Gin
195 200 205
Pro Ala Ala Gin Phe Gin Gin
210 215 220
Ser Gin Ile Gin Gin
225 230 235 240
Leu Gin Val Val Val Gin Tyr Val Val Val Val Val Val Val Val Val
245 250 255
Lys Thr Ser Gin Gin
260 265 270
Val Leu Gin Val Val Val Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
275 280 285
Asn Gin Gin
290 295 300
Ala Thr Val Gin Gin
305 310 315 320
Ala Gin Gin
325 330 335
Asn Gin Gin
340 345 350
Thr Ser Phe Val Ser Gin Gin
355 360 365
Ala Gin Gin
370 375 380
Gly Leu Gin Gin
385 390 395 400
Ser Thr Phe Gin Gin
405 410 415
Leu Gin Gin
420 425 430
Asp Gin Gin
<table>
<thead>
<tr>
<th>Residues</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>435-440</td>
<td>Val Thr Phe Ser Thr Phe Leu Leu Pro Leu Phe Cys Ile Thr Lys Gly</td>
</tr>
<tr>
<td>445</td>
<td></td>
</tr>
<tr>
<td>440-450</td>
<td>Gly Ile Tyr Val Leu Thr Leu Leu Asp Thr Phe Ala Ala Gly Thr Ser</td>
</tr>
<tr>
<td>450</td>
<td></td>
</tr>
<tr>
<td>450-460</td>
<td>Ile Leu Phe Ala Val Leu Met Glu Ala Ile Gly Val Ser Trp Phe Tyr</td>
</tr>
<tr>
<td>460</td>
<td></td>
</tr>
<tr>
<td>455-465</td>
<td>Gly Val Asp Arg Phe Ser Asn Asp Ile Gln Gln Met Met Gly Phe Arg</td>
</tr>
<tr>
<td>465</td>
<td></td>
</tr>
<tr>
<td>460-470</td>
<td>Pro Gly Leu Tyr Trp Arg Leu Cys Trp Lys Phe Val Ser Pro Ala Phe</td>
</tr>
<tr>
<td>470</td>
<td></td>
</tr>
<tr>
<td>465-475</td>
<td>Leu Leu Phe Val Val Val Ser Ile Asn Phe Lys Pro Leu Thr</td>
</tr>
<tr>
<td>475</td>
<td></td>
</tr>
<tr>
<td>470-480</td>
<td>Tyr Asp Asp Tyr Ile Phe Pro Pro Trp Ala Asn Trp Val Gly Trp Gly</td>
</tr>
<tr>
<td>480</td>
<td></td>
</tr>
<tr>
<td>475-485</td>
<td>Ile Ala Leu Ser Ser Met Val Leu Val Pro Ile Tyr Val Ile Tyr Lys</td>
</tr>
<tr>
<td>485</td>
<td></td>
</tr>
<tr>
<td>480-490</td>
<td>Phe Leu Ser Thr Gln Gly Ser Leu Trp Arg Leu Ala Tyr Gly Ile</td>
</tr>
<tr>
<td>490</td>
<td></td>
</tr>
<tr>
<td>485-495</td>
<td>Thr Pro Glu Asn Glu His His Leu Val Ala Gln Arg Asp Ile Arg Gln</td>
</tr>
<tr>
<td>495</td>
<td></td>
</tr>
<tr>
<td>490-500</td>
<td>Phe Gln Leu Gln His Trp Leu Ala Ile</td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>495-505</td>
<td></td>
</tr>
<tr>
<td>500-510</td>
<td></td>
</tr>
<tr>
<td>505-515</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td></td>
</tr>
<tr>
<td>515-520</td>
<td></td>
</tr>
<tr>
<td>520-525</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 5
LENGTH: 41
TYPE: DNA
ORGANISM: Homo sapiens
SEQUENCE: ccttcagtac tttccttctc cccctgttct gcataaccaa g

SEQ ID NO 6
LENGTH: 41
TYPE: DNA
ORGANISM: Homo sapiens
SEQUENCE: ctggtgtatg cagaacaggg ggagaaggaa agtactgaag g

SEQ ID NO 7
LENGTH: 18
TYPE: DNA
ORGANISM: Homo sapiens
SEQUENCE: cattctgggc tgttgtgt

SEQ ID NO 8
LENGTH: 21
TYPE: DNA
ORGANISM: Homo sapiens
SEQUENCE: gtggttgtgg tcagcatcat c

SEQ ID NO 9
LENGTH: 15
TYPE: DNA
ORGANISM: Homo sapiens

SEQUENCE: 9

ccttctcc gcttt

SEQ ID NO: 10
LENGTH: 15
TYPE: DNA

ORGANISM: Homo sapiens

SEQUENCE: 10

ccttcccc ccccc

SEQ ID NO: 11
LENGTH: 1854
TYPE: DNA

ORGANISM: Homo sapiens

FEATURE: CDS
NAME/KEY: CDS
LOCATION: (1)..<(1851)

SEQUENCE: 11

atg att ctc gcg cgg atg aac ccg cag gac gac ggg
Met Ile Leu Ala Arg Met Asn Pro Gln Val Gly
1 5 10 15

gcg gac acg ggt cca gag cgc cag ccc ctt cgg ggc aas act gog gac
Ala Asp Thr Gly Pro Glu Pro Leu Arg Ala Arg Lys Thr Ala Glu
20 25 30

cgg ctc gtt gsg aag gag cgc aac gcg gtc cag tgc cgg ccc
Leu Val Val Gly Arg Ala Arg Lys Cys Leu Leu Ala Pro
35 40 45

cgc gac gcc ggc ggc gac cgg cag gcc gag aac aag aac atc gcc
Arg Asp Gly Asp Ala Gln Pro Arg Glu Thr Trp Gly Lys Ile Asp
50 55 60

ttc gtc gtt gcc gtc ctc cta gta gtc ggc ttc gca gtt gac ctg gcc aac gtg tgg
Phe Leu Ser Val Val Gly Pro Arg Ala Asp Leu Ala Asn Val Trp
65 70 75 80

cgg tcc ctc ctc gcc ctc tgc ctc aag gag ggc ggc gac ttg gcc ccc aac gcc
Arg Phe Pro Tyr Leu Cys Tyr Lys Asn Gly Gly Gly Ala Phe Leu Ile
85 90 95

cgg tcc ctc ctc ctc atc gct gcc ggc ggc gac ctg gcc ccc aac ctc ctc cgc
crc Pro Tyr Thr Leu Phe Leu Ile Ile Ala Gly Met Pro Phe Tyr Met
100 105 110

gag ctc gct ctc gcc cag tac aac cag gcc gag ggt gcc acc gtt tgg
Glu Ala Ala Leu Gly Gln Tyr Asn Arg Glu Gln Thr Val Trp
115 120 125

aaa atc tgc ctc ttc tcc tcc aac gtt gcc ctt gct gt tgc atc ctg gcc
Lys Ile Cys Pro Phe Phe Gly Tyr Val Tyr Ala Val Ile Ile Leu
130 135 140

gcc ctc acc ctt gcc ctc tac acc gcc gcc ctt gcc ctc ctc	cgc
Ala Leu Tyr Val Gln Phe Tyr Tyr Arg Ala Ile Ile Ala
145 150 155

tac tcc ctc ctc ctc gcc ctc ctc gcc ccc ctt gcc ccc aac gcc
tyr Leu Phe Ser Ser Phe Thr Leu Amen Leu Pro Tyr Thr Cys
165 170 175

ggc ctc ctc ctc ctc gcc ctc ctc ctc gcc ccc ccc ctt ggc ccc aac gcc
gly His Thr Trp Amen Ser Phe Ser Phe Thr Leu Amen
180 185 190

ggc ctc ctc ctc gcc ctc ctc ctc gcc ccc ccc ctt gcc ccc aac gcc
gly Ser Val Leu Gly Amen His Thr Lys Tyr Ser Lys Tyr Lys Phe Thr
195 200 205
ctc ctg ttc gtt gtt gtc agc atc aac ttc aag cca ctc acc
Leu Leu Phe Val Val Val Ser Ile Asn Phe Lys Pro Leu Thr
530 535 540

tac gac gac tac atc ttc ccc tgg gcc aac tgg gsg tgg ggc
Tyr Asp Asp Tyr Ile Phe Pro Pro Ala Asn Trp Val Gly Gly
545 550 555 560

gtc gtt gtc gtt gtc gtt ggc
1632

ttc ctc ctg ttc ccc tgg gcc atc tac gtc atc tat aag
Ile Ala Leu Ser Ser Met Val Val Val Tyr Ile Tyr Lys
565 570 575

ttc ctc gtc ggc gtc tct ctt ggg gag cag gtt gca ttc gcc
Phe Leu Ser Thr Glu Ser Leu Trp Glu Arg Leu Ala Tyr Gly
1680 1685 1690 1695

<210> SEQ ID NO 12
<211> LENGTH: 617
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 12

Met Ile Leu Ala Arg Met Asn Pro Gln Val Glu Pro Ala Asn Gly
1 5 10 15

Ala Leu Val Val Val Arg Ala Arg Lys Thr Ala Glu
20 25 30

Leu Leu Val Val Lys Glu Arg Asn Gly Val Glu Cys Leu Leu Ala Pro
35 40 45

Arg Asp Gly Asp Ala Gln Pro Arg Glu Thr Trp Gly Lys Ile Asp
50 55 60

Phe Leu Leu Ser Val Val Gly Phe Ala Val Asp Leu Ala Asn Val Trp
65 70 75 80

Arg Pro Tyr Leu Cys Tyr Asn Gly Gly Gly Ala Phe Leu Ile
85 90 95

Pro Tyr Thr Leu Phe Leu Ile Ala Gly Met Pro Leu Phe Tyr Met
100 105 110

Glu Leu Ala Leu Gly Gln Tyr Arg Arg Asp Gly Pro Gln Glu Pro Glu Gly Pro Glu Arg Ala Asn Gly
115 120 125

Lys Ile Cys Pro Phe Phe Gly Val Gly Val Gly Tyr Ala Val Ile Leu Ile
130 135 140

Ala Leu Tyr Val Gly Phe Tyr Tyr Asn Val Ile Ala Trp Ser Leu
145 150 155 160

Tyr Tyr Leu Phe Ser Ser Phe Thr Leu Asn Leu Pro Trp Thr Asp Cys
165 170 175

Gly His Thr Cys Asp Pro Phe Thr His Arg Ser Pro Lys Leu Leu Asn
180 185 190

Gly Ser Val Leu Gly Asn His Thr Lys Tyr Ser Tyr Lys Tyr Lys Phe Thr
195 200 205

Pro Ala Ala Glu Phe Tyr Glu Arg Gly Val Leu His Leu His Glu Ser
210 215 220

Ser Gly Ile His Asp Ile Gly Leu Pro Gln Thr Glu Leu Leu Leu Cys
225 230 235 240

Leu Met Val Val Val Leu Val Tyr Phe Ser Leu Trp Lys Gly Val
Lys Thr Ser Gly Lys Val Val Trp Ile Thr Ala Thr Leu Pro Tyr Phe
Val Leu Phe Val Leu Leu Val His Gly Val Thr Leu Pro Gly Ala Ser
Asn Gly Ile Asn Ala Tyr Leu His Ile Asp Phe Tyr Arg Leu Lys Glu
 Ala Thr Val Trp Ile Asp Ala Ala Thr Gln Ile Phe Phe Ser Leu Gly
 Ala Gly Phe Gly Val Leu Ile Ala Phe Ala Ser Tyr Asn Lys Phe Asp
Asn Asn Cys Tyr Arg Asp Ala Leu Thr Ser Ser Ile Asn Cys Ile
Thr Ser Phe Val Ser Gly Phe Ala Ile Phe Ser Ile Leu Gly Tyr Met
 Ala His Glu His Lys Val Asn Ile Glu Asp Val Ala Thr Glu Gly Ala
 Gly Leu Val Phe Ile Leu Tyr Pro Glu Ala Ile Ser Thr Leu Ser Gly
 Ser Thr Phe Trp Ala Val Phe Phe Val Met Leu Leu Ala Leu Gly
 Leu Asp Ser Ser Met Gly Gly Met Glu Ala Val Ile Thr Gly Leu Ala
Asp Asp Phe Gin Val Leu Lys Arg His Arg Lys Leu Phe Thr Phe Gly
Val Thr Phe Ser Thr Phe Leu Leu Ala Leu Phe Cys Ile Thr Lys Gly
Gly Ile Tyr Val Leu Thr Leu Asp Thr Phe Ala Ala Gly Thr Ser
Ile Leu Phe Ala Val Leu Met Glu Ala Ile Gly Val Ser Trp Phe Tyr
Gly Val Asp Arg Phe Ser Asn Asp Ile Gin Gin Met Met Gly Phe Arg
Pro Gly Leu Tyr Trp Arg Leu Cys Tyr Phe Val Ser Pro Ala Phe
Leu Leu Phe Val Val Val Val Ile Asn Phe Lys Pro Leu Thr
Tyr Asp Asp Tyr Ile Phe Pro Pro Tyr Ala Asn Asp Val Gly Trp Gly
Ile Ala Leu Ser Ser Met Val Leu Val Phe Tyr Ile Tyr Lys
Phe Leu Ser Thr Glu Gin Leu Ser Leu Trp Glu Arg Leu Ala Tyr Gly Ile
Thr Pro Glu Asp Gly His Leu Val Ala Gin Arg Asp Ile Arg Gin
Phe Gin Leu Gin His Thr Trp Leu Ala Ile

<210> SEQ ID NO 13
<211> LENGTH: 1854
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(1851)
<400> SEQUENCE: 13

```
  atg att ctc ggc cgg atg aac cgc cag gtc cag ccc gag aac aac ggg
  Met Ile Leu Ala Arg Met Asn Pro Glu Val Glu Pro Glu Asn Asn Gly
  1   5  10  15

  gcc gac acc gct cag cag coc gac gtc cag ccc gag aac aac ggg
  Ala Aap Thr Gly Pro Glu Pro Leu Arg Ala Arg Lys Thr Ala Glu
  20  25  30

  ctc gtc gtc gaa gac cgc gtt ctc gac cag tgc cag ccc gag aac aac ggg
  Leu Leu Val Val Lys Glu Arg Glu Val Glu Val Gly Ala Leu Ala Pro
  35  40  45

  gcc gac gcc gcc gac cgc cag ccc gag aac gga acc tgg gcc aag aag atc gac
  Arg Asp Gly Asp Ala Glu Thr Trp Gly Lys Ile Asp
  50  55  60

  ttg ctg ttc gta gtc ggc tca gcc gac gcc gtc cag ccc gag aac aac ggg
  Phe Leu Leu Ser Val Val Gly Phe Ala Ala Asp Ala Val Pro Glu Asn Asn Gly
  65  70  75  80

  gcc ttc ccc tac ctc tgc tac aag gaa ggc ggt gcc aag aag gtg gcc tga tgc ttc
  Arg Phe Pro Tyr Leu Cys Tyr Ala Ile Gly Gly Ala Phe Leu Ile
  85  90  95

  gac gcc gcc
  Asp Asp
  96

  gcg gac gcc gcc
  Arg Asp Asp
  100 105 110

  gag ctc gct gta gaa gcc atc ggg gac gcc gcc gac gcc gcc gcc gcc gcc
  Glu Leu Ala Glu Gly Glu Val Met Asp Ala Ala Asp Ala Ala Asp Ala Ala Glu
  115 120 125

  aac ctc tac tgc cca ttc ttc aag aag ggt gcc ggt gcc ttc tgc cca ttc ttc
  Lys Ile Cys Pro Phe Phe Lys Gly Val Val Val Val Val Val Val
  130 135 140

  gac gcc gcc
  Asp Asp
  144

  gcc ctc gcc gcc
  Ala Ala
  148 153 158 163 168 173 178 183 188 193 198 203 208 213 218 223 228

  gcc gc
  Ala Glu
  232 237 242 247 252 257 262 267 272 277 282 287 292 297 302 307 312

  gcc gcc
  Ala Ala
  316 321 326 331 336 341 346 351 356 361 366 371 376 381 386 391 396

  gcc gc
  Ala Glu
  400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480
```
-continued

Ala Thr Val Trp Ile Asp Ala Ala Thr Gln Ile Phe Phe Ser Leu Gly
305 310 315 320

GAA GGA GGA GGA GTA TTG ATT GCC AGT TAC AAC AAA TTT GAC
Ala Gly Phe Gly Val Leu Ile Phe Ala Ser Tyr Asn Lys Phe Asp
325 330 335

AAT AAT GTA AAC GGT CTT CTC TGG TGG AAG TTG GTC AGT CAG CAG
Aas Aac Tgt Tac Gag Gcc Ctg Ctg Gcc Gct Gct Gtt Gtt Tcc Tcc
340 345 350

AAS AAN CYS TYR ARG ASP ALA LEU THR SER SER ILE AAN CYSA ILE
355 360 365

GCA GCC CCT GCT CTG GGG TGT TAT
Thr Ser Gly Phe Leu Leu Gly Gly Tyr Leu Met
370 375 380

GTT TTG ATT TCA AAG CTA GGA CTA AAT GCT GCC
Val Leu Leu Leu His Thr Gly Ile Gln Ala Ala
385 390 395 400

GTC TCT CTC GTC ATC ACG CAC GGC
Val Leu Leu Val Thr Thr Phe Asp Gly
405 410 415

GCT GCA CTC TTG ATG GAT GTG GCC
Ala Gln Leu Leu Val Met Asp Val Ala
420 425 430

CTT TTT GCT GTC CTG ATC CTC CTC CTC
Leu Leu Leu Val Val Ile Leu Leu
435 440 445

GAA GAA GAA GAA ATA GGA ATT TAC GTC TTG
Glu Glu Glu Glu Ile Gly Tyr Val Leu Met
450 455 460

GAA GAA GAA GAA AAT GGA ATT TAC GTC TTG TAT CAT
Glu Glu Glu Glu Asn Gly Tyr Val Leu Tyr
465 470 475 480

GTC TCT CGG CGG AGG ATC TAT TAT
Val Leu Leu Leu Leu Tyr Tyr
485 490 495

AGA GAG GAG GAG GTA ATG GAT GTG GCC
Arg Glu Glu Glu Val Met Asp Val Ala
500 505 510

CGA GAA GCA CTA TCT TAC TAC CCA GAT GCT
Arg Gln Gcu Aca Ttc Ttc Gcu Gct
515 520 525

CGA GAA GCA CTA TCT TAC TAC CCA GAT GCT
Arg Gln Gcu Aca Ttc Ttc Gcu Gct
530 535 540

TAC GAA GAC TAC TAC TAC TAC TAC TAC TAC
Tyr Asp Asp Tyr Asp Tyr Asp Tyr Asp Tyr
545 550 555 560

ATG TCC CAA TCT CAA TCT CAA TCT CAA TCT
Met Leu Leu Leu Leu Leu Leu Leu Leu
565 570 575

GGT GTA AAT TAT GAT GAT GTG GCC
Pro Glu Leu Leu Tyr Asp Asp Val Ala
580 585 590

TCA CTC GCA CAG TCT GCT TCT GCT TCT GCT
Pro Asp Leu Leu Asp Asp Asp Asp Asp
595 600 605

TCA GAA GCA CAG TCT GCT TCT GCT TCT GCT
Pro Glu Leu Leu Asp Asp Asp Asp Asp
610 615
<210> SEQ ID NO 14
<211> LENGTH: 617
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 14

Met Ile Leu Ala Arg Met Asn Pro Gln Val Gin Pro Asn Asn Gly
1 5 10 15
Ala Asp Thr Gly Pro Glu Gin Pro Leu Arg Ala Arg Lys Thr Ala Glu
20 25 30
Leu Leu Val Val Lys Gin Arg Asn Gin Gin Cys Leu Leu Ala Pro
35 40 45
Arg Asp Gly Asp Ala Gin Gin Pro Gin Thr Trp Gin Gin Lys Gin Asp
50 55 60
Phe Leu Leu Ser Val Val Phe Ala Val Asp Ala Gin Val Val Gin Cys Val Leu Leu Ala Pro
65 70 75 80
Arg Phe Pro Tyr Leu Cys Tyr Gin Gin Gin Gly Gin Ala Phe Leu Gin
85 90 95
Pro Tyr Thr Leu Phe Leu Ile Ile Ala Gin Gin Met Pro Leu Phe Tyr Met
100 105 110
Glu Leu Gin Gin Gin Gin Gin Met Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
115 120 125
Lys Gin Gin
130 135 140
Ala Leu Tyr Val Gin Phe Gin Gin Met Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
145 150 155 160
Tyr Tyr Leu Phe Ser Ser Gin Ser Ser Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
165 170 175
Gly His Thr Gin Gin
180 185 190
Gly Ser Gin Gin
195 200 205
Pro Gin Gin
210 215 220
Ser Gin Gin
225 230 235 240
Leu Met Gin Gin
245 250 255
Lys Thr Gin Gin
260 265 270
Val Gin Gin
275 280 285
Asn Gin Gin
290 295 300
Ala Thr Gin Gin
305 310 315 320
Ala Gin Gin
325 330 335
Asn Gin Gin
340 345 350
Thr Gin Gin
355 360 365
Ala Gin Gin
370 375 380
<210> SEQ ID NO 15
<211> LENGTH: 980
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE: exon
<221> NAME/KEY: exon
<222> LOCATION: (129)..(257)
<221> NAME/KEY: gene
<222> LOCATION: (129)..(800)
<221> NAME/KEY: exon
<222> LOCATION: (701)..(802)

<300> PUBLICATION INFORMATION:
<301> AUTHORS: Porzingen, P.
Bonisch, H.
Bruss, M.
<302> TITLE: Molecular Cloning and Organization of the Coding Region of the Human Norepinephrine Transporter Gene
<304> VOLUME: 215
<305> ISSUE: (3)
<306> PAGES: 1145-1150
<307> DATE: 1995-10-24
<308> DATABASE ACCESSION NUMBER: x91117
<309> DATABASE ENTRY DATE: 1996-02-20

<400> SEQUENCE: 15

```
TTTCTGAGA GAGGCAAGGC AGCCTACATG AGTCCTGGGC TGCAAGAGGC TCTAGGAACT 60
CTGGGGCCCT AGACTGAGGT CCAGGGAGAC CCTAATTCC GCACCCACC CCTCCGGTT 120
CCCTCCAG ATG GGA GGC ATG GAG GCT GTC ATC ACG GGC CTG GCA GAT GAC 170
```

<410> SEQUENCE: 15

```
Gly Leu Val Phe Ile Leu Tyr Pro Glu Ala Ile Ser Thr Leu Ser Gly 385 390 395 400
Ser Thr Phe Trp Ala Val Val Phe Phe Val Met Leu Ala Leu Gly 405 410 415
Leu Asp Ser Ser Met Gly Gly Met Glu Ala Val Ile Thr Gly Leu Ala 420 425 430
Asp Asp Phe Gly Val Leu Leu Tyr Arg His Arg Lys Leu Phe Thr Phe Gly 435 440 445
Val Thr Phe Ser Thr Phe Leu Leu Pro Leu Phe Cys Ile Thr Lys Gly 450 455 460
Gly Ile Tyr Val Leu Thr Leu Leu Asp Thr Phe Ala Ala Gly Thr Ser 465 470 475 480
Ile Leu Phe Ala Val Leu Met Glu Ala Ile Gly Val Ser Trp Phe Tyr 485 490 495
Gly Val Asp Arg Phe Ser Asn Asp Ile Gln Gln Met Met Gly Phe Arg 500 505 510
Pro Gly Leu Tyr Trp Arg Leu Cys Trp Lys Phe Val Ser Pro Ala Phe 515 520 525
Leu Leu Phe Val Val Val Val Ile Asn Phe Lys Pro Leu Thr 530 535 540
Tyr Asp Asp Tyr Ile Phe Pro Pro Trp Ala Asn Trp Val Gly Trp Gly 545 550 555 560
Ile Ala Leu Ser Ser Met Val Leu Val Pro Ile Tyr Val Ile Tyr Lys 565 570 575
Phe Leu Ser Thr Gln Gly Ser Leu Trp Glu Arg Ala Tyr Gly Ile 580 585 590
Thr Pro Glu Asn Glu His His Leu Val Ala Glu Arg Asp Ile Arg Gln 595 600 605
Phe Gln Leu Gln His Thr Leu Ala Ile 610 615
```
ttc cag gtc ctg aag cga cac cgg aac ttc ttc aca ttt ggc gtc acc

<210> SEQ ID NO 16
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 16

aggaccggta aagttcctct cg

<210> SEQ ID NO 17
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 17
tccgtgtgta ttccagctcc tg

<210> SEQ ID NO 18
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 18
gattgcgtgc gtcgctcctt g

<210> SEQ ID NO 19
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 19
cotttagatct caacacctgga g

<210> SEQ ID NO 20
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 20
catgogacg gtcactggtg 20

<210> SEQ ID NO 21
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 21
tagtgttttgg ctcaggtcat ac 22

<210> SEQ ID NO 22
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 22
agaqtagcga ggctctgtct 20

<210> SEQ ID NO 23
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 23
cctggacttc cagctccatc tt 22

<210> SEQ ID NO 24
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 24
tggcttcaggg cttcagaccg aga 23

<210> SEQ ID NO 25
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 25
daaagctcg gccaaggcctg ggt 23

<210> SEQ ID NO 26
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 26
cctgccactt ctcggtcagag ccct 24

<210> SEQ ID NO 27
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 27
gagaggtgg cttccagacc aga 23

<210> SEQ ID NO 28
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 28
gtatccatgt ggcagcagga gc
<210> SEQ ID NO 29
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 29

cagggagag cacagagcc aa
<210> SEQ ID NO 30
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 30

catatggtg cagctcagac caatgg
<210> SEQ ID NO 31
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 31

gttgcaatt taatagggc cttctgg
<210> SEQ ID NO 32
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 32

cagggagcc tacatgagtc ctgg
<210> SEQ ID NO 33
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 33

taacaggct gaatggaatc ctcag
<210> SEQ ID NO 34
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 34

ggtgcaaggt tctaggagga ctgg
<210> SEQ ID NO 35
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 35

catgttccct caatgccttg ctc
<210> SEQ ID NO 36
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
What is claimed is:

1. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
 (a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
 (b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene comprises a G to C transversion within NE transporter exon 9 (nucleotides 129-257 of SEQ ID NO: 15), the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.

2. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
 (a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
 (b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene comprises a G to C transversion within NE transporter exon 9 (nucleotides 129-257 of SEQ ID NO: 15) and encodes a NE transporter polypeptide having a proline moiety at amino acid 457 of SEQ ID NO: 1, the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.

3. The method of claim 2, wherein the polymorphism is detected by amplifying a target nucleic acid in the nucleic acid sample from the subject using an amplification technique.

4. The method of claim 3, wherein the polymorphism is detected by amplifying a target nucleic acid in the nucleic acid sample from the subject using an oligonucleotide pair, wherein a first oligonucleotide of the pair hybridizes to a first portion of the NE transporter gene, wherein the first portion includes the polymorphism of the NE transporter gene, and wherein the second of the oligonucleotide pair hybridizes to a second portion of the NE transporter gene that is adjacent to the first portion.

5. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
 (a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
 (b) detecting a polymorphism of a NE transporter gene encoding an amino acid change in the biological sample from the subject, wherein the polymorphism of the NE transporter gene is detected by amplifying a
target nucleic acid in the nucleic acid sample from the subject using an oligonucleotide pair, wherein a first oligonucleotide of the pair hybridizes to a first portion of the NE transporter gene including exon 9 (nucleotides 129–257 of SEQ ID NO: 15) and the polymorphism of the NE transporter gene, and wherein the second oligonucleotide of the pair hybridizes to a second portion of the NE transporter gene that is adjacent to the first portion, the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.

6. The method of claim 4, wherein the first and the second oligonucleotides each further comprise a detectable label, and wherein the label of the first oligonucleotide is distinguishable from the label of the second oligonucleotide.

7. The method of claim 6, wherein said label of said first oligonucleotide is a radiolabel, and wherein said label of said second oligonucleotide is a biotin label.

8. The method of claim 1 or 2, wherein the polymorphism is detected by sequencing a target nucleic acid in the nucleic acid sample from the subject.

9. The method of claim 8, wherein the sequencing comprises dideoxy sequencing.

10. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:

(a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and

(b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene is detected by contacting a target nucleic acid in the nucleic acid sample from the subject with a reagent that detects the presence of the NE transporter polymorphism and detecting the reagent, wherein the reagent detects a G to C transversion within NE transporter exon 9 (nucleotides 129–257 of SEQ ID NO: 15), the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.

11. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:

(a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and

(b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene is detected by contacting a target nucleic acid in the nucleic acid sample from the subject with a reagent that detects the presence of the NE transporter polymorphism and detecting the reagent, wherein the reagent is an oligonucleotide primer as set forth in SEQ ID NO: 9 or SEQ ID NO: 10, the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.

12. The method of claim 1, wherein the subject is a human subject.

13. The method of claim 2, wherein the susceptibility of the subject to sub-optimal NE transport is further characterized as susceptibility to orthostatic intolerance.

14. The method of claim 2, wherein the polymorphism results in a norepinephrine transporter comprising an amino acid sequence as set forth in SEQ ID NO: 4.