ABSTRACT

An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.

13 Claims, 10 Drawing Sheets
U.S. PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Inventor(s)</th>
<th>Classification(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,541,402</td>
<td>7/1996</td>
<td>Ackland et al.</td>
<td>250/208.1</td>
</tr>
<tr>
<td>5,884,100</td>
<td>12/1998</td>
<td>Chi</td>
<td></td>
</tr>
<tr>
<td>5,909,026</td>
<td>6/1999</td>
<td>Zhou et al.</td>
<td></td>
</tr>
<tr>
<td>5,923,370</td>
<td>7/1999</td>
<td>Miethig et al.</td>
<td>348/320</td>
</tr>
<tr>
<td>6,147,846</td>
<td>11/2000</td>
<td>Borg</td>
<td></td>
</tr>
<tr>
<td>6,486,503</td>
<td>11/2002</td>
<td>Fossum</td>
<td>257/215</td>
</tr>
</tbody>
</table>

OTHER PUBLICATIONS

* cited by examiner
FIG. 1

VERTICAL ADDRESSING CIRCUIT

ROW DRIVERS

PIXEL ARRAY

TIMING AND CONTROL

HORIZONTAL ADDRESSING CIRCUIT

READOUT

FIG. 1
FIG. 3A

FIG. 3B
<table>
<thead>
<tr>
<th>ARRAY FORMAT</th>
<th>128 x128</th>
<th>PEAK QE</th>
<th>18%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIXEL TYPE</td>
<td>PHOTOGATE</td>
<td>LINEARITY</td>
<td>> 99.9 OVER 90% OF RANGE</td>
</tr>
<tr>
<td>FABRICATION PROCESS</td>
<td>14.4-μm x 14.4-μm</td>
<td>READ NOISE</td>
<td>< 10 ELECTRONS</td>
</tr>
<tr>
<td>PIXEL SIZE</td>
<td>HP 0.5-μm; 3-METAL, 1-POLY</td>
<td>FULL WELL</td>
<td>> 50,000 ELECTRONS</td>
</tr>
<tr>
<td>COMPLEXITY</td>
<td>6 TRANSISTORS PER PIXEL</td>
<td>DYNAMIC RANGE</td>
<td>74 dB</td>
</tr>
<tr>
<td>CONVERSION GAIN</td>
<td>25 μV/e−</td>
<td>MIN. EXPOSURE TIME</td>
<td>< 90 μsec</td>
</tr>
<tr>
<td>FIXED PATTERN NOISE</td>
<td>0.1% AFTER DDS CORRECTION</td>
<td>DARK RATE</td>
<td>10-77 pA/cm² @ R.T.</td>
</tr>
<tr>
<td>MAX. FRAME RATE</td>
<td>400 frames/sec.</td>
<td>IMAGE LAG</td>
<td>< 74 dB</td>
</tr>
<tr>
<td>POWER</td>
<td>< 3 mW @ 1 Mpix/sec.</td>
<td>BLOOMING CONTROL</td>
<td>> 80 dB ABOVE SATURATION</td>
</tr>
</tbody>
</table>

FIG. 4
IMAGE SENSOR WITH MOTION ARTIFACT
SUPRESSION AND ANTI-BLOOMING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of U.S. application Ser. No. 09/479,379, filed Jan. 5, 2000, now U.S. Pat. No. 6,352,950, which claims the priority of U.S. Provisional Application Ser. No. 60/115,190, filed Jan. 6, 1999.

STATEMENT AS TO FEDERALLY-SPONSORED
RESEARCH

The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 U.S.C. 202) in which the Contractor has elected to retain title.

FIELD OF THE INVENTION

This invention relates to image sensors.

BACKGROUND

Image sensors find applications in a wide variety of fields, including machine vision, robotics, guidance and navigation, automotive applications, and consumer products. Imaging circuits often include a two-dimensional array of photosensors each of which forms one picture element (pixel) of the image. Light energy emitted or reflected from an object impinges upon the array of photosensors and is converted by the photosensors to electrical signals. The individual photosensors can be scanned to read out and process the electrical signals.

One class of solid-state image sensors includes an array of active pixel sensors (APS). An APS is a light sensing device with sensing circuitry inside each pixel. Each active pixel includes a sensing element formed in a semiconductor substrate and capable of converting optical signals into electronic signals. As photons strike the surface of a photosensitive region, free charge carriers are generated and collected. Once collected, the charge carriers, often referred to as a charge packet, are transferred to output circuitry for processing.

An active pixel also includes one or more active transistors within the pixel itself. The active transistors can amplify and buffer the signals generated by the light sensor. Thus, in contrast to charge coupled devices (CCDs) and metal oxide semiconductor (MOS) diode arrays, an APS can convert the photocharge to an electronic signal prior to transferring the signal to a common conductor that conducts the signals to an output node.

APS devices can be fabricated in a manner compatible with complementary metal oxide semiconductor (CMOS) processes. Compatibility with CMOS processes allows many signal processing functions and operation controls to be integrated on an APS chip. Use of CMOS circuitry with APS devices also reduces the costs of manufacturing. CMOS circuitry also allows simple power supplies to be used and can result in reduced power consumption. Moreover, the active pixels of APS devices allow non-destructive readout and random access.

In an exemplary CMOS APS, charge carriers are collected in the photosite via a photogate. The charge packet is stored in spatially defined depletion regions of the semiconductor, also known as potential wells, in the semiconductor sub-
strate beneath the photosite. The charge packet then is transferred to an isolated diffusion region via a transfer gate. The diffusion region receives the charge from the photogate well and sends a corresponding electrical signal to the pixel amplifier for further processing.

The near-surface potential within the semiconductor can be controlled by the potential of an electrode near the semiconductor surface. If closely-spaced electrodes are at different voltages, they will form potential wells of different depths. Free positive charges (e.g., holes) move from a region of higher potential to a region of lower potential. Similarly, free negative charges (e.g., electrons) move from the region of lower potential to the region of higher potential.

Typically, a CMOS active pixel array is operated in a rolling shutter mode in which each row of the array is exposed at different instants of time. The non-simultaneous exposure of the pixels can lead to image distortion, for example, when there is relative motion between the imager and the image that is to be captured. Furthermore, although the exposure time generally is defined by the duration for which the photogate is turned on, floating diffusion regions can continue to collect photocharges even after the photogate is turned off. Transfer of such unwanted charges into the sense node can result in image distortion and excess noise. Furthermore, the distortions tend to become more pronounced as the exposure time is reduced.

SUMMARY

An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photosensitive region in the semiconductor substrate, a sense node, and a power supply. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photosensitive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photosensitive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photosensitive region are accumulated in the photosensitive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and additional photocharges generated in the photosensitive region are transferred to the power supply node during a third period without passing through the sense node.

According to another aspect, an image sensor includes an array of pixels formed on a semiconductor substrate. Each pixel includes a photosensitive region in the semiconductor substrate, a sense node, and a power supply node, and first and second transfer gates disposed in proximity to the surface of the semiconductor substrate. The image sensor also includes a controller that causes bias signals to be provided to the electrodes to operate the pixels in one of at least three modes. In a first mode, photocharges generated in the photosensitive region of a pixel are accumulated in the pixel’s photosensitive region. In a second mode, the accumulated photocharges are transferred to the pixel’s power supply node via the pixel’s first transfer gate. In a third mode, photocharges generated in the pixel’s photosensitive region are transferred to the pixel’s second transfer gate without passing through the pixel’s sense node.
FIG. 2A illustrates a schematic cross-section and potential well diagram of a photogate-type active pixel sensor according to the invention.

FIG. 2B illustrates an exemplary layout of the pixel in FIG. 2A.

FIGS. 3A, 3B and 3C illustrate schematic cross-sections and potential well diagrams during operation of the photogate-type pixel according to the invention.

FIG. 3D is a timing diagram of various control signals associated with FIGS. 3A, 3B and 3C.

FIG. 4 is a table listing design specifications and test results of an exemplary snapshot APS according to the invention.

FIG. 5A illustrates a schematic cross-section and potential well diagram of a photodiode-type active pixel sensor according to the invention.

FIG. 5B illustrates an exemplary layout of the pixel in FIG. 5A.

FIGS. 6A, 6B and 6C illustrate schematic cross-sections and potential well diagrams during operation of the photodiode-type pixel according to the invention.

FIG. 6D is a timing diagram of various control signals associated with FIGS. 6A, 6B and 6C.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 shows an exemplary imager 10 implemented as a CMOS active pixel sensor integrated circuit chip. The imager 10 includes an array 30 of active pixel sensors and a controller 32 that provides timing and control signals to enable reading out of signals stored in the pixels. The array 30 can be read out a row at a time using a parallel column readout architecture. The controller 32 selects a particular row of pixels in the array 30 by controlling the operation of a vertical addressing circuit 34 and row drivers 40. Signals stored in the selected row of pixels are read out to circuitry 42 for amplifying the pixel signals and for converting the analog signals to corresponding digital signals. Signals for selecting the digital signals corresponding to a particular column in the array are provided from the controller 32 through a horizontal addressing circuit 44.

As shown in FIGS. 2A and 2B, an exemplary pixel 50 in the array 30 includes a photosensitive element, which in the illustrated embodiment, has a photogate 52 with a floating doped output region 54 separated by a first transfer gate electrode 56. The photogate 52 is controlled by a signal (PG). When PG is a digital high signal, charge (Q_{ph}) that is generated as a result of light impinging on the photosensitive element can be accumulated in a photoactive region 60 below the photogate 52. The pixel 50 also includes a second transfer gate electrode 62 also located adjacent the photogate. The respective states of the first and second transfer gates 56, 62 determine whether charge generated beneath the photogate 52 accumulates in the region 60 or is transferred either to the floating doped output region 54 or to a doped region 64 electrically coupled to a power supply voltage (V_{DD}).

A signal (TX2) that is applied to the second transfer gate 62 controls the transfer of charge from the photoactive region 60 to the power supply node 64.

A signal (TX) that is applied to the first transfer gate 56 controls the transfer of charge from the photoactive region 60 to the floating doped output region 54 that serves as a charge sense node. The signal from the floating doped output region 54 is buffered by a source-follower transistor M_{in} and a pixel selection switch that can be implemented, for
example, as a transistor \(M_{\text{sel}} \). A signal (\(\text{ROW} \)) is applied to the gate of the pixel selection switch \(M_{\text{sel}} \) to enable the pixel to be read out to the readout circuit 42 (FIG. 1). The output signal from a pixel in a particular row is read out via a conductor 72 that is common to all pixels in a particular column. The signal appearing on the conductor 72 is indicated by \(\text{COL} \).

The pixel 50 also includes a reset gate 74 controlled by a signal (\(\text{RST} \)). When the sense node 54 of the pixel 50 is reset, charge in the sense node is drained to a doped region 58 that is electrically coupled to the power supply voltage \(V_{DD} \).

The pixel 50 includes a metal shield 70 that covers the sense node 54. The shield 70 also may cover active circuitry in the pixel other than the photoreactive region(s). The shield 70 helps prevent stray light from being sensed and collected by the sense node 54.

The imager 10 can be fabricated, for example, using a single polysilicon standard CMOS process. In that case, doped diffusion regions 66, 68 generally will be present between the photogate 52 and the transfer gates 56, 62. However, if a double polysilicon process is used, the doped diffusion regions 66, 68 preferably are omitted.

Operation of the imager 10 having an array of pixels like the photogate-type pixel 50 is explained with reference to FIGS. 3A, 3B, 3C and 3D. In general, the signals \(\text{TX}, \text{TX2} \) and \(\text{PG} \) are common to all the pixels in the array 30. Thus, the integration period for all the pixels in the array occurs at substantially the same time to allow snap-shot operation of the imager 10. The reset and pixel selection signals (\(\text{RST}, \text{ROW} \)) are common to the pixels in a particular row of the array 30. In other words, each row of pixels is provided with its own reset and row selection signals. For the purposes of illustration, it is assumed that there are \(N \) rows of pixels in the array 30 and that the rows are read out sequentially in the following order: \(\text{Row}(1), \ldots, \text{Row}(i), \text{Row}(i+1), \ldots, \text{Row}(N) \). As explained below, the controller 32 controls the signals \(\text{PG}, \text{TX}, \text{TX2}, \text{RST} \) and \(\text{ROW} \) to allow the following operations to be performed: setting pixel integration periods, transferring the integrated signals to the sense nodes 54, and double sampling of pixel outputs. The addition of the second transfer gate 62 together with the various control signals allows the imager 10 to be operated in an electronically-shuttered snap-shot mode. Distortions that might otherwise result from motion artifacts can be reduced or eliminated. Also, removal of overflow charge is facilitated to provide blooming control.

In general, the controller 32 provides timing and control signals so that the integration period for a new image frame can occur while a previous image frame is being read out from the sensing nodes 54. Once all pixels 50 from the previous frame have been read out, the sense nodes 54 in the pixels are reset, and the integrated signals for the new frame can be transferred to the sense nodes. The new frame can subsequently be read out as well.

As can be seen in FIG. 3D, the pixel selection switches \(M_{\text{sel}} \) are selectively pulsed with respective signals (\(\text{ROW} \)) so that a previously-stored frame of an image is read out one row at a time. For example, at a time \(t=t1 \), \(\text{row}(i) \) of the array 30 is pulsed to allow signals stored in the sense node 54 of each pixel 50 in that row to be read out to an associated column line 72. After sampling the signals stored by the sense nodes 54 in a particular row of pixels, the sense node in each pixel in that row are reset using the \(\text{RST} \) signal. The reset value of the pixel is then sampled. Thus, each pixel 50 can be double sampled to allow the readout circuit 42 to provide differential outputs.
efficiency (QE), good blooming control, low dark current, low noise and low image lag.

FIG. 4 is a table listing various design specifications and test results for one exemplary embodiment of a photogate-type active pixel sensor using including a second transfer gate as described above. The various specifications and test results are exemplary only and other specifications and results are within the scope of the invention.

For example, instead of using photogate-type pixels as described above, photodiode-type pixels, such as the pixel 80, can be used, as shown in FIGS. 5A and 5B. The pixel 80 includes a photodiode as the photo-sensitive element. In particular, the pixel 80 has a doped region 120 that serves as the photoactive region in which a light signal can be converted into electrical charge. The pixel 80 also includes electrodes 156, 162 that form first and second transfer gates 156, 162 in proximity to the surface of regions of the semiconductor substrate adjacent the photoactive region 120. The first transfer gate 156 separates the photodiode 120 from a floating doped output region 154. The bias voltages on the first and second transfer gates 156, 162 determine whether charge generated in the photoactive region 120 is stored in that region or is transferred either to the floating doped output region 154 or to a doped region 164 electrically coupled to a power supply voltage VDD.

FIG. 5D, the controller 32 provides timing and control signals to the photodiode-type pixels 80 so that the integration period for a new image frame can occur while a previous image frame is being read out from the sensing nodes 154. Once the pixel signals for the previous frame have been read out, the sense nodes are reset, and the integrated signals for the new frame can be transferred to the sense nodes. The new frame can subsequently be read out as well.

As can be seen in FIG. 6D, the pixel selection switches M sel are selectively pulsed with respective signals (ROW) so that a previously-stored frame of an image is read out one row at a time. For example, at a time t=t1, row(i) of the array 30 is pulsed to allow signals stored in the sense node 154 of each pixel 80 in that row to be read out to an associated column line 172. After sampling the signals stored by the sense nodes 154 in a particular row of pixels, the sense node 154 of each pixel in that row is reset using the RST signal. The reset value of the pixel is then sampled. Thus, each pixel 80 can be double sampled to allow the readout circuit 42 to provide differential outputs.

As further shown in FIG. 6D, during the non-integration period (e.g., at t=t1), the voltage signal on the first transfer gate 156 is biased low, and the voltage signal on the second transfer gate 162 is biased high. As illustrated in FIG. 6A, the relative bias levels on the transfer gates 156, 162 are selected so that any charge generated in the photoactive region 120 is drained off to the power supply node 164. In the illustrated example, signals from a previously-stored frame are read out from the pixels in rows (i) and (i+1) during the non-integration period.

As previously described with respect to the photogate implementation, the controller 32 provides timing and control signals to the photodiode-type pixels 80 so that the integration period for a new image frame can occur while a previous image frame is being read out from the sensing nodes 154. Once the pixel signals for the previous frame have been read out, the sense nodes are reset, and the integrated signals for the new frame can be transferred to the sense nodes. The new frame can subsequently be read out as well.

As can be seen in FIG. 6D, the pixel selection switches M sel are selectively pulsed with respective signals (ROW) so that a previously-stored frame of an image is read out one row at a time. For example, at a time t=t1, row(i) of the array 30 is pulsed to allow signals stored in the sense node 154 of each pixel 80 in that row to be read out to an associated column line 172. After sampling the signals stored by the sense nodes 154 in a particular row of pixels, the sense node 154 of each pixel in that row is reset using the RST signal. The reset value of the pixel is then sampled. Thus, each pixel 80 can be double sampled to allow the readout circuit 42 to provide differential outputs.

As further shown in FIG. 6D, during the non-integration period (e.g., at t=t1), the voltage signal on the first transfer gate 156 is biased low, and the voltage signal on the second transfer gate 162 is biased high. As illustrated in FIG. 6A, the relative bias levels on the transfer gates 156, 162 are selected so that any charge generated in the photoactive region 120 is drained off to the power supply node 164. In the illustrated example, signals from a previously-stored frame are read out from the pixels in rows (i) and (i+1) during the non-integration period.

At some later time (somewhat before t=t2 in FIG. 5D), the controller 32 causes the signal TX2 applied to the second transfer gate 162 to go low. The bias on the first transfer gate 156 remains low. As illustrated in FIG. 5B, that allows each pixel 80 to integrate charge generated in its photoactive region 120. Thus, charge carriers that are generated in the photoactive region 120 are stored there as a result of the spatially defined potential wells in the semiconductor substrate. As previously noted, the integration period for all pixels 80 in the array 30 occurs at substantially the same time. The voltage TX2 on the transfer gate 162 can be made sufficiently high to allow the transfer gate 162 to provide an anti-blooming function. As shown in FIG. 6B, preferably the transfer gates 156 and 162 are biased with TX2 slightly higher than TX. If the light signal impinging on the pixel 80 exceeds the storage capacity of the photodiode, overflow charges are transferred from the photoactive region 120 to the power supply node 164. As shown in FIG. 6D, signals from the previously-stored frame are sampled from pixels in row(j) through row(N) and are read out during the integration period for the next frame.

As previously described with respect to the photogate implementation, the controller 32 provides timing and control signals to the photodiode-type pixels 80 so that the integration period for a new image frame can occur while a previous image frame is being read out from the sensing nodes 154. Once the pixel signals for the previous frame have been read out, the sense nodes are reset, and the integrated signals for the new frame can be transferred to the sense nodes. The new frame can subsequently be read out as well.

As can be seen in FIG. 6D, the pixel selection switches M sel are selectively pulsed with respective signals (ROW) so that a previously-stored frame of an image is read out one row at a time. For example, at a time t=t1, row(i) of the array 30 is pulsed to allow signals stored in the sense node 154 of each pixel 80 in that row to be read out to an associated column line 172. After sampling the signals stored by the sense nodes 154 in a particular row of pixels, the sense node 154 of each pixel in that row is reset using the RST signal. The reset value of the pixel is then sampled. Thus, each pixel 80 can be double sampled to allow the readout circuit 42 to provide differential outputs.

As further shown in FIG. 6D, during the non-integration period (e.g., at t=t1), the voltage signal on the first transfer gate 156 is biased low, and the voltage signal on the second transfer gate 162 is biased high. As illustrated in FIG. 6A, the relative bias levels on the transfer gates 156, 162 are selected so that any charge generated in the photoactive region 120 is drained off to the power supply node 164. In the illustrated example, signals from a previously-stored frame are read out from the pixels in rows (i) and (i+1) during the non-integration period.

At some later time (somewhat before t=t2 in FIG. 5D), the controller 32 causes the signal TX2 applied to the second transfer gate 162 to go low. The bias on the first transfer gate 156 remains low. As illustrated in FIG. 5B, that allows each pixel 80 to integrate charge generated in its photoactive region 120. Thus, charge carriers that are generated in the photoactive region 120 are stored there as a result of the spatially defined potential wells in the semiconductor substrate. As previously noted, the integration period for all pixels 80 in the array 30 occurs at substantially the same time. The voltage TX2 on the transfer gate 162 can be made sufficiently high to allow the transfer gate 162 to provide an anti-blooming function. As shown in FIG. 6B, preferably the transfer gates 156 and 162 are biased with TX2 slightly higher than TX. If the light signal impinging on the pixel 80 exceeds the storage capacity of the photodiode, overflow charges are transferred from the photoactive region 120 to the power supply node 164. As shown in FIG. 6D, signals from the previously-stored frame are sampled from pixels in row(j) through row(N) and are read out during the integration period for the next frame.

Towards the end of the integration period for the next frame, the sense node 154 of each pixel 80 in the array 30 is reset in preparation for reading out the next frame, as indicated by FIG. 6D. When a sense node 154 is reset, charge that is stored by the sense node is transferred to the power supply node 158. Resetting the sense nodes can help remove residual signals and/or dark current from the pixels. To transfer signals from the photoactive region 120 to the corresponding sense node 154, the controller 32 causes the signal TX applied to the first transfer gate 156 to go high. The bias applied to the second transfer gate 162 remains low. As illustrated by FIG. 6C, charge stored in the photoactive region 120 of each pixel 80 is transferred to the associated
sense node 154 and simultaneously is prevented from flowing to the power supply node 164.

While charge is being transferred from the photoactive regions 120 to the sense nodes 154, the pixels 80 should not be read out. However, after completion of the transfer, in other words, once the signal TX on the first transfer gate 156 goes low, the output signals from the pixels 80 can be read out as described above.

Exemplary values of high bias levels for TX and TX2 are 1.5 V and 1.5 V, respectively. Similarly, exemplary values of low bias levels for TX and TX2 are 0 V and 0.5 V, respectively.

Using the foregoing techniques, high quality imaging can be obtained from an electronically shuttered CMOS imager. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. Furthermore, the imager can be implemented, for example, using single-polysilicon standard CMOS fabrication processes.

Other implementations are within the scope of the following claims.

What is claimed is:

1. An image sensor comprising:
 a plurality of pixels on a semiconductor substrate, wherein each pixel includes:
 a photoactive region in the semiconductor substrate;
 a sense node;
 a first electrode disposed near a surface of the semiconductor substrate, wherein, during operation, a bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node;
 a power supply node; and
 a second electrode disposed near the surface of the semiconductor substrate, wherein, during operation, a bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node; and
 a controller that, during operation, causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and additional photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node, wherein the transfer of the accumulated photocharges to the sense node is achieved by raising a bias voltage on the first electrode and lowering a bias voltage on the second electrode.

2. The image sensor of claim 1 wherein the integration period of the pixels occurs at substantially the same time.

3. The image sensor of claim 1 wherein, during operation, the controller provides a bias signal to the second electrode so that excess photocharges generated in the photoactive region are transferred to the power supply node during the pixel integration period.

4. The image sensor of claim 1 wherein the plurality of pixels include photogate-type pixels.

5. The image sensor of claim 1 wherein the plurality of pixels include photodiode-type pixels.

6. The image sensor of claim 1 wherein each pixel further includes a reset gate, wherein, during operation, the controller provides a bias signal to the reset gate to cause charge in the pixel's sense node to be transferred to a power supply node.

7. The image sensor of claim 1 wherein each pixel further includes an amplifier and a pixel selection switch.

8. The image sensor comprising:
 an array of pixels on a semiconductor substrate, wherein each pixel includes:
 a photoactive region in the semiconductor substrate;
 a sense node;
 a power supply node; and
 first and second transfer gates disposed in proximity to the surface of the semiconductor substrate; and
 a controller that, during operation, causes bias signals to be provided to the electrodes to operate the pixels in at least three modes including a first mode in which photocharges generated in the photoactive region of a pixel are accumulated in the pixel's photoactive region, a second mode in which the accumulated photocharges are transferred to the pixel's sense node via the pixel's first transfer gate, and a third mode in which additional photocharges generated in the pixel's photoactive region are transferred to the pixel's power supply node via the pixel's second transfer gate without passing through the pixel's sense node, wherein the transfer of the accumulated photocharges to the sense node is achieved by raising a bias voltage on the first transfer gate and lowering a bias voltage on the second transfer gate.

9. The image sensor of claim 1 wherein each pixel is identified by a row and column in the array and includes a row selection switch that is selectively enabled by the controller to read out a signal stored by the pixel's sense node.

10. The image sensor of claim 9 wherein each pixel is operated in the first mode at substantially the same time.

11. The image sensor of claim 9 wherein, during operation, the controller controls the row selection switches to read out the rows of pixels sequentially, one row of pixels at a time.

12. The image sensor of claim 9 in which each pixel is operated in the first mode at substantially the same time.

13. The image sensor of claim 12 in which each pixel is operated in the second mode at substantially the same time.