The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16s rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16s rDNA sequence of the Bacillus pumilus isolate is AY167879.

1 Claim, 4 Drawing Sheets

ABSTRACT
OTHER PUBLICATIONS

Setlow, B., and P. Setlow. 1995. Binding to DNA protects alpha/beta-type, small, acid-soluble spore proteins of *Bacillus* and Clostridium species against digestion by their specific proteases as well as by other proteases. J Bacteriol 177:4149-51.

Figure 1. Dose response curve for 3 *Bacillus* species.
Figure 2. Resistance of 3 strains of *Bacillus* to UV radiation at the Mars solar constant.
Figure 3. Protection of *B. subtilis* by SAFR-32 from full spectrum irradiation at the Mars solar constant.
FIG. 4
Scanning electron micrograph of *B. pumilus* SAFR-032 spores

FIG. 5
Light microscope photograph of *B. pumilus* SAFR-032 cells

FIG. 6
Transmission electron micrograph of a *B. pumilus* SAFR-032 spore
BACILLUS PUMILUS SAFR-032 ISOLATE

PRIORITY CLAIM

This application is a non-provisional application, claiming the benefit of priority to provisional application No. 60/568,740, filed in the United States on May 6, 2004, entitled “UV Resistant Bacillus pumilus SAFR-032.”

GOVERNMENT RIGHTS

The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 U.S.C. 202) in which the Contractor has elected to retain title.

FIELD OF INVENTION

The present invention relates to an isolated biologically pure culture of a novel spore forming Bacillus species, and more particularly, to a Bacillus pumilus SAFR-032 isolate with high sterilization resistant properties.

BACKGROUND OF INVENTION

Several physiologically and phylogenetically distinct microorganisms have been encountered while examining microbial contamination of spacecraft materials. Some of these microorganisms form round, exosporium-bearing spores, whose exosporia might be responsible for adaptation to the extreme clean conditions of, and direct adherence to, spacecraft surfaces.

Such biofouling is a concern not only space travel, but in a number of industries. Isolation, identification and understanding of the highly resistant and adhesive microorganisms could be of significant use in industry, where biofouling is a major cause of reduction in productivity (resulting in a loss of over $6.5 billion in marine industries alone), and in medicine, where bacterial adherence is often a primary step in human disease. In addition, purified exosporium components (proteins, lipids, etc.) could possibly be used in other ways, such as in sunscreens or to prolong the lives of convertible tops, tents, etc. as a W-ray retardant spray.

Additionally, isolation of the microorganism would allow for formation of strategies for inactivating those resistance characteristics that interfere with sterilization of spacecraft materials; in particular, resistance to Hydrogen Peroxide (H₂O₂), Ultra Violet (UV), radiation and adhesion. An understanding of these mechanisms will guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, and could eliminate the need for unctually harsh methods that jeopardize equipment. A need exists for highly resistant bacterial isolates to study further to create an improved sterilization procedure that would enable spacecraft to meet planetary protection requirements without a terminal heat sterilization step. This would support implementation of planetary protection policies for life detection missions.

SUMMARY OF INVENTION

The present invention relates to an isolated biologically pure culture of a novel spore forming Bacillus species, and more particularly, to a Bacillus pumilus SAFR-032 isolate with high sterilization resistant properties, having a Gen-Bank accession number of AY167879.

Additionally, because of its UV resistant properties, purified exosporium components (proteins, lipids, etc.) of B. pumilus SAFR-032 could be used in sunscreens or to prolong the lives of convertible tops, tents, etc. as a W-ray retardant spray.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present invention will be apparent from the following detailed description of the various aspects of the invention in conjunction with reference to the following drawings, where:

FIG. 1 is a chart illustrating UV dose response curves for three Bacillus species;

FIG. 2 is a chart illustrating relative resistance of three strains of Bacillus to UV radiation at the Mars solar constant;

FIG. 3 is a chart illustrating the protection of B. subtilis by SAFR-032 from full spectrum irradiation at the Mars solar constant;

FIG. 4 is scanning electron microscopy image of Bacillus pumilus SAFR-032 spores;

FIG. 5 is a light microscopy image of Bacillus pumilus SAFR-032 spores;

FIG. 6 is a transmission electron microscopy image of Bacillus pumilus SAFR-032 spores;

Appendix A is an article co-authored by an inventor of the present invention, discussing Bacillus pumilus SAFR-032, entitled, “Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation;”

Appendix B is an article co-authored by an inventor of the present invention, discussing the identification and classification of Bacillus pumilus spores, entitled, “MALDI-TOFMS compared with other polyphasic taxonomy approaches for the identification and classification of Bacillus pumilus spores;” and

Appendix C is an article co-authored by an inventor of the present invention, discussing the UV resistance of Bacillus pumilus isolates, entitled, “Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultra clean spacecraft assembly facility.”

DETAILED DESCRIPTION

The present invention relates to an isolated biologically pure culture of a novel spore forming Bacillus species, and more particularly, to a Bacillus pumilus SAFR-032 isolate with high UV and sterilization resistant properties.

The following description, taken in conjunction with the referenced drawings and/or tables, is presented to enable one of ordinary skill in the art to make and use the invention. Various modifications will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to a wide range of aspects. Thus, the present invention is not intended to be limited to the aspects presented, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. Furthermore, it should be noted that unless explicitly stated otherwise, the figures included herein are illustrated qualitatively and without any specific scale, and are intended to generally present the concept of the present invention.

In order to provide a working frame of reference, first a glossary of terms used in the description and claims is given as a central resource for the reader. Next, a discussion of various aspects of the present invention is provided to give an understanding of the specific details.
(1) Glossary

Before describing the specific details of the present invention, a centralized location is provided in which various terms used herein and in the claims are defined. The glossary provided is intended to provide the reader with a general understanding for the intended meaning of the terms, but is not intended to convey the entire scope of each term. Rather, the glossary is intended to supplement the rest of the specification in more clearly explaining the terms used.

16S rDNA—The term “16S rDNA” refers to codes for a small subunit of ribosomal RNA. The 16S rDNA is now the most widely used informational macromolecule for bacterial systematic studies at the family, genus, species, and subspecies levels. The 16S rDNA contains conserved sequences that can be used to infer natural relationships between distantly related species and variable regions that can be used to separate closely related ones.

API 20NE Test Strips—The term “API 20NE” refers to strips that are used for 24-48 hour identification of gram-negative Enterobacteriaceae.

DNA-DNA hybridization—The term “DNA-DNA hybridization” refers to a technique that provides for genetic comparisons integrated over the entire genome of two species.

GenBank—The term “GenBank” refers to the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences. GenBank is part of the International Nucleotide Sequence Database Collaboration, which is comprised of the DNA DataBank of Japan (DDBJ), the European Molecular Biology Laboratory (EMBL), and GenBank at the National Center for Biotechnology Information. Each GenBank entry includes a concise description of the sequence, the scientific name and taxonomy of the source organism, and a table of features that identifies coding regions and other sites of biological significance, such as transcription units, sites of mutations or modifications, and repeats.

Gram-positive —The term “gram positive” refers to bacteria that are stained dark blue or violet by gram staining, in contrast to gram negative bacteria which are not stained dark blue or violet by gram staining. The stain is caused by a higher amount of peptidoglycan in the cell wall, which typically lacks the secondary membrane and lipopolysaccharide layer found in other bacteria.

(2) Introduction

This specification describes Bacillus pumilus SAFR-032, isolated from the surface in a spacecraft assembly facility, whose round spores are resistant to Ultra Violet (UV) and gamma radiation, Hydrogen Peroxide (H2O2) and desiccation. The Bacillus strain isolated and described herein was characterized based on a polyphasic taxonomic approach that examined its phenotype and genotypic affiliations. It is readily apparent to those skilled in the art that within nature, various modifications and variations occur to any given organism and that the description herein may be altered to account for any modifications or variations.

The strain disclosed in this description will be deposited in an international depository, under conditions that assure that access to the cultures will be available during the pendency of this patent application to one determined by the Commissioner of Patents and Trademarks to be entitled thereto under 37 C.F.R. 1.14 and 35 U.S.C. 122. The strain disclosed in this description has been deposited in the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va. 20110 U.S.A. as PTA-7603. The deposit was received by the ATCC on May 19, 2006 and was given an accession number by the International Depository Authority of PTA-7603. The deposit has been made to and received by the International Depository Authority under the provisions of the Budapest Treaty, and all restrictions upon public access to the deposit will be irrevocably removed upon the grant of a patent on this application. The deposits will be available as required by foreign patent laws in countries wherein counterparts of the subject application, or its progeny, are filed. However, it should be understood that the availability of the deposits does not constitute a license to practice the subject invention in derogation of patent rights granted by governmental action.

Further, the subject culture deposits will be stored and made available to the public in accord with the provisions of the Budapest Treaty for the Deposit of Microorganisms i.e., they will be stored with all the care necessary to keep them viable and uncontaminated for a period of at least five years after the most recent request for the furnishing of a sample of a deposit, and in any case, for a period of at least thirty (30) years after the date of deposit or for the enforceable life of any patent which may issue disclosing the cultures. The depositor acknowledges the duty to replace the deposit(s) should the depository be unable to furnish a sample when requested due to the condition of the deposit(s).

Several surveys on the microbial diversity of spacecraft assembly facilities over a period of 3 years have lead to the repeated isolation of Bacillus pumilus strains. Of these strains tested, B. pumilus SAFR-032 spores were the most resistant to UV irradiation (254 nm; FIG. 1) and the total flux at the Mars simulated solar constant. Spores of B. pumilus SAFR-032 showed highest resistance to all three UV bandwidths. LD90 of B. pumilus SAFR-032 under Mars solar UV simulated solar constant was >360 sec, about 10 times greater than B. subtilis 168 (FIG. 2). B. pumilus SAFR-032 spores are 2 to 3 times and ten times more resistant than a previously patented “hardy” B. odysseyi spores to UV 254 nm and Mars UV simulated solar constant, respectively. B. pumilus is more resistant than any bacterium reported in the literature to date.

It follows that standard UV treatments which are effective against B. subtilis spores may not be sufficient to inactivate all spores such as SAFR-032. Hence the spores of B. subtilis can not be reliably used as a biodosimetry model for the UV inactivation of spores. SAFR-032 spores also exhibited resistance to H2O2. Upon exposure to 5% liquid H2O2 SAFR-32 spores experienced a 2 log decrease in population compared to a 4 log reduction exhibited by B. subtilis 168 spores. In addition, B. pumilus SAFR-032 spores were resistant to 0.5 Mrad gamma-radiation (25 rad/sec).

The goal of planetary protection as stated in NASA policy is the prevention of forward and backward contamination. This policy applies directly to the control of terrestrial organisms contaminating spacecraft intended to land, orbit, flyby or be in the vicinity of extraterrestrial bodies. Planetary Protection protocols for the non-life detection Mars landing missions such as, Mars Exploration Rovers (MER), did not require that the rovers be heat-sterilized prior to launch. Instead, NASA relied on a series of sequential sterilization steps using alcohol to maintain the cleanliness of the MER vehicles. The question is whether forward contamination will be significantly increased by the current approach to spacecraft sanitation such as used for the MARS landers.

Spores of Bacillus subtilis have been shown to survive up to 6 years under interstellar space conditions. However, only shielding from UV radiation enabled B. subtilis endospores to survive the conditions long term. The solar flux at the Martian surface is considerably less than interstellar space and there is the potential that atmospheric conditions could
further attenuate UV radiation. In order to examine the
germicidal effects of direct UV irradiation predicted for
equatorial Mars, spores were exposed to irradiation while in
aqueous solutions, and or while deposited to spacecraft
surfaces. B. pumilus SAFR-032 is 10x more resistant to UV
radiation than B. subtilis. It follows that organisms able to
survive in this environment may exhibit resistance to other
perturbations. In addition, it has previously been suggested
that the organisms associated with the facilities where
assembly and encapsulation activities take place will indi-
cate likely contamination of the spacecraft. Studies that
follow existing planetary protection microbial isolation
procedures that involve a heat-shock step have shown spore-
formers to be the most common type of microbes isolated
from surfaces of various spacecraft. Since most of the
published information was based on the laboratory strains,
predicting the actual survival and possible adaptation of
terrestrial life on Mars is limited due to the lack of robust
temporal data on the survival of indigenous spacecraft
microbes to the Martian UV conditions. Previous studies
have used model dosimetric strains to represent the potential
survival of organisms under ~200 J/m2 UVC (14) and Mars
solar UV irradiation conditions. The present invention pro-
duces data that indicates spores of B. pumilus SAFR-032 are
far more resistant to Mars solar UV irradiation condi-
tions than these model dosimetric strains. It may be necessary
to consider these resistant organisms when investigating the
survival of microorganisms under outer space or the Martian
conditions.

The search for life on other planets will involve ultra-
sensitive technologies that detect cells and biomarkers.
Contamination of extraterrestrial bodies with cells or biom-
arkers originating from Earth (forward contamination)
would seriously compromise the interpretation that life
signatures. Recent data indicate the routine meteorite
exchange between Earth and Mars and living microbes,
particularly bacterial spores, may survive interplanetary
transfer. Consequently, current planetary protection proto-
cols require that spacecraft be constructed and assembled
under conditions as nearly as possible approaching sterility.
To achieve these conditions, robotic spacecraft are
assembled in clean rooms where air circulation is controlled
and strict hygienic practices are implemented to minimize
microbial contamination. In addition a number of sterilants
including vaporized hydrogen peroxide (H2O2) and ultra-
violet radiation (UV) are under consideration. As part of the
NASA planetary protection program, recent monitoring of
microbial diversity in the relatively extreme environment
(low nutrient, controlled humidity, periodic disinfection)
NASA JPL-SAF resulted in the isolation of a number of
microbial species inhabiting various parts of the facility. The
predominant strains of spore-forming bacteria identified by
biochemical testing and 16S rDNA analysis as being most
closely related to Bacillus pumilus. Not only were B. pumi-
lus spores found to survive in the JPL-SAF, but were also
recently recovered from hardware surfaces and air particles
aboard the International Space Station (ISS). It follows that
spores of B. pumilus are capable of escaping current space-
craft disinfection regimens and may be inadvertently trans-
ported into space.

A key element of spore resistance is a multilayered
protein shell that encases the spore called the spore coat. The
court the best-studied spore-forming microbe, B. subtilis,
is comprised of at least 45 proteins, most of which are poorly
characterized. Several protective roles for the coat are well
caracterized, including resistance to large toxic molecules,
ortho-phthalaldehyde, and UV radiation. It has only recently
been shown that SAFR-032 can be mixed with UV suscep-
tible species such as B. subtilis 168, allowing the susceptible
species to survive longer (FIG. 3). These results make a
strong argument that the physical makeup of SAFR-032
rather than biochemical reactions is responsible for its
heightened resistance.

A goal associated with the present invention is to produce
new strategies for inactivating resistant organisms like
SAFR-032. Identifying the particular component of the
spore that allows this heightened resistance can guide the
development of sterilization procedures that are targeted to
the specific molecules responsible for resistance, and avoid
using unduly harsh methods that jeopardize equipment. An
important specific long-term goal is an improved steriliza-
tion procedure that will enable NASA to meet planetary
protection requirements without a terminal heat sterilization
step. This would support implementation of planetary pro-
tection policies for life detection missions.

Typically hospitals and government agencies use biological
dicators to ensure the quality of sterilization processes (http://www.ravenlabs.com/bis.html). The spores
of SAFR-032 that are more resistant to several sterilization
procedures would serve as a better biological indicator than
those in use currently.

As such, the present invention comprises an isolated
biologically pure culture of Bacillus pumilus SAFR-032, under GenBank accession number AY157879. For further
illustration, FIGS. 4, 5, and 6 illustrate micrograph images
of the Bacillus pumilus SAFR-032 spores.

For a further description of B. pumilus SAFR-032, including
both a phenotypic and genotypic description, see Appen-
dices A, B, and C. Appendices A, B, and C are incorporated
herein as though set forth fully herein. As can be appreciated
by one in the art, the Appendices provide an enabling
description of the isolation and classification of B. pumi-
lus SAFR-032.

What is claimed is:
1. An isolated biologically pure culture of Bacillus pumi-
lus SAFR-032 deposited under ATCC accession number
PTA-7603.

* * * * *